151
|
Abstract
Helicobacter pylori colonizes about half of the world's population. It is a causative agent of stomach diseases, including malignant tumors. We report the genome sequence of strain N6, which is widely used in H. pylori research and appreciated for its large cell size and high transformation efficiency.
Collapse
|
152
|
Structural insights into Helicobacter pylori oncoprotein CagA interaction with β1 integrin. Proc Natl Acad Sci U S A 2012; 109:14640-5. [PMID: 22908298 DOI: 10.1073/pnas.1206098109] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection with the gastric pathogen Helicobacter pylori is a risk factor for the development of gastric cancer. Pathogenic strains of H. pylori carry a type IV secretion system (T4SS) responsible for the injection of the oncoprotein CagA into host cells. H. pylori and its cag-T4SS exploit α5β1 integrin as a receptor for CagA translocation. Injected CagA localizes to the inner leaflet of the host cell membrane, where it hijacks host cell signaling and induces cytoskeleton reorganization. Here we describe the crystal structure of the N-terminal ~100-kDa subdomain of CagA at 3.6 Å that unveils a unique combination of folds. The core domain of the protein consists of an extended single-layer β-sheet stabilized by two independent helical subdomains. The core is followed by a long helix that forms a four-helix helical bundle with the C-terminal domain. Mapping of conserved regions in a set of CagA sequences identified four conserved surface-exposed patches (CSP1-4), which represent putative hot-spots for protein-protein interactions. The proximal part of the single-layer β-sheet, covering CSP4, is involved in specific binding of CagA to the β1 integrin, as determined by yeast two-hybrid and in vivo competition assays in H. pylori cell-culture infection studies. These data provide a structural basis for the first step of CagA internalization into host cells and suggest that CagA uses a previously undescribed mechanism to bind β1 integrin to mediate its own translocation.
Collapse
|
153
|
You Y, He L, Zhang M, Fu J, Gu Y, Zhang B, Tao X, Zhang J. Comparative genomics of Helicobacter pylori strains of China associated with different clinical outcome. PLoS One 2012; 7:e38528. [PMID: 22701658 PMCID: PMC3368837 DOI: 10.1371/journal.pone.0038528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 05/07/2012] [Indexed: 02/06/2023] Open
Abstract
In this study, a whole-genome CombiMatrix Custom oligonucleotide tiling microarray with 90000 probes covering six sequenced Helicobacter pylori (H. pylori) genomes was designed. This microarray was used to compare the genomic profiles of eight unsequenced strains isolated from patients with different gastroduodenal diseases in Heilongjiang province of China. Since significant genomic variation was found among these strains, an additional 76 H. pylori strains associated with different clinical outcomes were isolated from various provinces of China. These strains were tested by polymerase chain reaction to demonstrate this distinction. We identified several highly variable regions in strains associated with gastritis, gastric ulceration, and gastric cancer. These regions are associated with genes involved in the bacterial type I, type II, and type III R-M systems. They were also associated with the virB gene, which lies on the well-studied cag pathogenic island. While previous studies have reported on the diverse genetic characterization of this pathogenic island, in this study, we find that it is conserved in all strains tested by microarray. Moreover, a number of genes involved in the type IV secretion system, which is related to horizontal DNA transfer between H. pylori strains, were identified in the comparative analysis of the strain-specific genes. These findings may provide insight into new biomarkers for the prediction of gastric diseases.
Collapse
Affiliation(s)
- Yuanhai You
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lihua He
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Maojun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianying Fu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yixin Gu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Binghua Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoxia Tao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
154
|
Koch M, Mollenkopf HJ, Klemm U, Meyer TF. Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis. Proc Natl Acad Sci U S A 2012; 109:E1153-62. [PMID: 22509021 PMCID: PMC3358876 DOI: 10.1073/pnas.1116125109] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Helicobacter pylori is a gastric pathogen responsible for a high disease burden worldwide. Deregulated inflammatory responses, possibly involving macrophages, are implicated in H. pylori-induced pathology, and microRNAs, such as miR-155, have recently emerged as crucial regulators of innate immunity and inflammatory responses. miR-155 is regulated by Toll-like receptor (TLR) ligands in monocyte-derived cells and has been shown to be induced in macrophages during H. pylori infection. Here, we investigated the regulation of miR-155 expression in primary murine bone marrow-derived macrophages (BMMs) during H. pylori infection and examined the downstream mRNA targets of this microRNA using microarray analysis. We report TLR2/4- and NOD1/2-independent up-regulation of miR-155, which was found to be dependent on the major H. pylori pathogenicity determinant, the type IV secretion system (T4SS). miR-155 expression was dependent on NF-κB signaling but was independent of CagA. Microarray analysis identified known gene targets of miR-155 in BMMs during H. pylori infection that are proapoptotic. We also identified and validated miR-155 binding sites in the 3' UTRs of the targets, Tspan14, Lpin1, and Pmaip1. We observed that H. pylori-infected miR-155(-/-) BMMs were significantly more susceptible to cisplatin DNA damage-induced apoptosis than were wild-type BMMs. Thus, our data suggest a function for the prototypical H. pylori pathogenicity factor, the T4SS, in the up-regulation of miR-155 in BMMs. We propose the antiapoptotic effects of miR-155 could enhance macrophage resistance to apoptosis induced by DNA damage during H. pylori infection.
Collapse
Affiliation(s)
| | | | - Uwe Klemm
- Core Facility Experimental Animals, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | | |
Collapse
|
155
|
Kim IJ, Blanke SR. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front Cell Infect Microbiol 2012; 2:37. [PMID: 22919629 PMCID: PMC3417592 DOI: 10.3389/fcimb.2012.00037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/05/2012] [Indexed: 12/13/2022] Open
Abstract
Virulence mechanisms underlying Helicobacter pylori persistence and disease remain poorly understood, in part, because the factors underlying disease risk are multifactorial and complex. Among the bacterial factors that contribute to the cumulative pathophysiology associated with H. pylori infections, the vacuolating cytotoxin (VacA) is one of the most important. Analogous to a number of H. pylori genes, the vacA gene exhibits allelic mosaicism, and human epidemiological studies have revealed that several families of toxin alleles are predictive of more severe disease. Animal model studies suggest that VacA may contribute to pathogenesis in several ways. VacA functions as an intracellular-acting protein exotoxin. However, VacA does not fit the current prototype of AB intracellular-acting bacterial toxins, which elaborate modulatory effects through the action of an enzymatic domain translocated inside host cells. Rather, VacA may represent an alternative prototype for AB intracellular acting toxins that modulate cellular homeostasis by forming ion-conducting intracellular membrane channels. Although VacA seems to form channels in several different membranes, one of the most important target sites is the mitochondrial inner membrane. VacA apparently take advantage of an unusual intracellular trafficking pathway to mitochondria, where the toxin is imported and depolarizes the inner membrane to disrupt mitochondrial dynamics and cellular energy homeostasis as a mechanism for engaging the apoptotic machinery within host cells. VacA remodeling of the gastric environment appears to be fine-tuned through the action of the Type IV effector protein CagA which, in part, limits the cytotoxic effects of VacA in cells colonized by H. pylori.
Collapse
Affiliation(s)
- Ik-Jung Kim
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana IL, USA
| | | |
Collapse
|
156
|
Johnson EM, Gaddy JA, Cover TL. Alterations in Helicobacter pylori triggered by contact with gastric epithelial cells. Front Cell Infect Microbiol 2012; 2:17. [PMID: 22919609 PMCID: PMC3417513 DOI: 10.3389/fcimb.2012.00017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/06/2012] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori lives within the mucus layer of the human stomach, in close proximity to gastric epithelial cells. While a great deal is known about the effects of H. pylori on human cells and the specific bacterial products that mediate these effects, relatively little work has been done to investigate alterations in H. pylori that may be triggered by bacterial contact with human cells. In this review, we discuss the spectrum of changes in bacterial physiology and morphology that occur when H. pylori is in contact with gastric epithelial cells. Several studies have reported that cell contact causes alterations in H. pylori gene transcription. In addition, H. pylori contact with gastric epithelial cells promotes the formation of pilus-like structures at the bacteria–host cell interface. The formation of these structures requires multiple genes in the cag pathogenicity island, and these structures are proposed to have an important role in the type IV secretion system-dependent process through which CagA enters host cells. Finally, H. pylori contact with epithelial cells can promote bacterial replication and the formation of microcolonies, phenomena that are facilitated by the acquisition of iron and other nutrients from infected cells. In summary, the gastric epithelial cell surface represents an important niche for H. pylori, and upon entry into this niche, the bacteria alter their behavior in a manner that optimizes bacterial proliferation and persistent colonization of the host.
Collapse
Affiliation(s)
- Elizabeth M Johnson
- Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA
| | | | | |
Collapse
|
157
|
J-Western forms of Helicobacter pylori cagA constitute a distinct phylogenetic group with a widespread geographic distribution. J Bacteriol 2012; 194:1593-604. [PMID: 22247512 DOI: 10.1128/jb.06340-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with Helicobacter pylori strains expressing the bacterial oncoprotein CagA confers an increased risk of gastric cancer. While much is known about the ancestry and molecular evolution of Western, East Asian, and Amerindian cagA sequences, relatively little is understood about a fourth group, known as "J-Western," which has been detected mainly in strains from Okinawa, Japan. We show here that J-Western cagA sequences have a more widespread global distribution than previously recognized, occur in strains with multiple different ancestral origins (based on multilocus sequence typing [MLST] analysis), and did not arise recently. As shown by comparisons of Western and J-Western forms of CagA, there are 45 fixed or nearly fixed amino acid differences, and J-Western forms contain a unique 4-amino-acid insertion. The mean nucleotide diversity of synonymous sites (π(s)) is slightly lower in the J-Western group than in the Western and East Asian groups (0.066, 0.086, and 0.083, respectively), which suggests that the three groups have comparable, but not equivalent, effective population sizes. The reduced π(s) of the J-Western group is attributable to ancestral recombination events within the 5' region of cagA. Population genetic analyses suggest that within the cagA region encoding EPIYA motifs, the East Asian group underwent a marked reduction in effective population size compared to the Western and J-Western groups, in association with positive selection. Finally, we show that J-Western cagA sequences are found mainly in strains producing m2 forms of the secreted VacA toxin and propose that these functionally interacting proteins coevolved to optimize the gastric colonization capacity of H. pylori.
Collapse
|
158
|
Abstract
All organisms have pathways that repair the genome, ensuring their survival and that of their progeny. But these pathways also serve to diversify the genome, causing changes at the nucleotide, whole gene, and genome structure levels. Sequencing of bacteria has revealed wide allelic diversity and differences in gene content within the same species, highlighting the importance of understanding pathways of recombination and DNA repair. The human stomach pathogen Helicobacter pylori is an excellent model system for studying these pathways. H. pylori harbors major recombination and repair pathways and is naturally competent, facilitating its ability to diversify its genome. Elucidation of DNA recombination, repair, and diversification programs in this pathogen will reveal connections between these pathways and their importance to infection.
Collapse
Affiliation(s)
- Marion S Dorer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | |
Collapse
|
159
|
Rizzato C, Torres J, Plummer M, Muñoz N, Franceschi S, Camorlinga-Ponce M, Fuentes-Pananá EM, Canzian F, Kato I. Variations in Helicobacter pylori cytotoxin-associated genes and their influence in progression to gastric cancer: implications for prevention. PLoS One 2012; 7:e29605. [PMID: 22235308 PMCID: PMC3250449 DOI: 10.1371/journal.pone.0029605] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/01/2011] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (HP) is a bacterium that colonizes the human stomach and can establish a long-term infection of the gastric mucosa. Persistent Hp infection often induces gastritis and is associated with the development of peptic ulcer disease, atrophic gastritis, and gastric adenocarcinoma. Virulent HP isolates harbor the cag (cytotoxin-associated genes) pathogenicity island (cagPAI), a 40 kb stretch of DNA that encodes components of a type IV secretion system (T4SS). This T4SS forms a pilus for the injection of virulence factors into host target cells, such as the CagA oncoprotein. We analyzed the genetic variability in cagA and other selected genes of the HP cagPAI (cagC, cagE, cagL, cagT, cagV and cag Gamma) using DNA extracted from frozen gastric biopsies or from clinical isolates. Study subjects were 95 cagA+ patients that were histologically diagnosed with chronic gastritis or gastric cancer in Venezuela and Mexico, areas with high prevalence of Hp infection. Sequencing reactions were carried out by both Sanger and next-generation pyrosequencing (454 Roche) methods. We found a total of 381 variants with unambiguous calls observed in at least 10% of the originally tested samples and reference strains. We compared the frequencies of these genetic variants between gastric cancer and chronic gastritis cases. Twenty-six SNPs (11 non-synonymous and 14 synonymous) showed statistically significant differences (P<0.05), and two SNPs, in position 1039 and 1041 of cagE, showed a highly significant association with cancer (p-value = 2.07×10⁻⁶), and the variant codon was located in the VirB3 homology domain of Agrobacterium. The results of this study may provide preliminary information to target antibiotic treatment to high-risk individuals, if effects of these variants are confirmed in further investigations.
Collapse
Affiliation(s)
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, Unidad Médica de Alta Especialidad (UMAE) Pediatria, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Martyn Plummer
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Nubia Muñoz
- National Cancer Institute of Colombia, Bogota, Colombia
| | | | - Margarita Camorlinga-Ponce
- Unidad de Investigacion en Enfermedades Infecciosas, Unidad Médica de Alta Especialidad (UMAE) Pediatria, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigacion en Enfermedades Infecciosas, Unidad Médica de Alta Especialidad (UMAE) Pediatria, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Ikuko Kato
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
160
|
Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori. INFECTION GENETICS AND EVOLUTION 2011; 12:203-13. [PMID: 22197766 DOI: 10.1016/j.meegid.2011.12.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori infection is linked to various gastroduodenal diseases; however, only approximately 20% of infected individuals develop severe diseases. Despite the high prevalence of H. pylori infection in Africa and South Asia, the incidence of gastric cancer in these areas is much lower than in other countries. Furthermore, the incidence of gastric cancer tends to decrease from north to south in East Asia. Such geographic differences in the pathology can be explained, at least in part, by the presence of different types of H. pylori virulence factors, especially cagA, vacA, and the right end of the cag pathogenicity island. The genotype of the virulence genes is also useful as a tool to track human migration utilizing the high genetic diversity and frequent recombination between different H. pylori strains. Multilocus sequence typing (MLST) analysis using seven housekeeping genes can also help to predict the history of human migrations. Population structure analysis based on MLST has revealed seven modern population types of H. pylori, which derived from six ancestral populations. Interestingly, the incidence of gastric cancer is closely related to the distribution of H. pylori populations. The different incidence of gastric cancer can be partly attributed to the different genotypes of H. pylori circulating in different geographic areas. Although approaches by MLST and virulence factors are effective, these methods focus on a small number of genes and may miss information conveyed by the rest of the genome. Genome-wide analyses using DNA microarray or whole-genome sequencing technology give a broad view on the genome of H. pylori. In particular, next-generation sequencers, which can read DNA sequences in less time and at lower costs than Sanger sequencing, enabled us to efficiently investigate not only the evolution of H. pylori, but also novel virulence factors and genomic changes related to drug resistance.
Collapse
|
161
|
Asombang AW, Kelly P. Gastric cancer in Africa: what do we know about incidence and risk factors? Trans R Soc Trop Med Hyg 2011; 106:69-74. [PMID: 22136952 DOI: 10.1016/j.trstmh.2011.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 01/01/2023] Open
Abstract
Gastric cancer is a major contributor to mortality worldwide, yet its incidence varies widely around the world in a way which our current understanding of aetiology cannot fully explain. Incidence data from Africa are weak, reflecting poor diagnostic resources, but there are firm data on intestinal metaplasia and gastric atrophy which are important steps in the carcinogenesis pathway. The available registry data suggest that incidence is unlikely to be dramatically different from Europe or North America. Helicobacter pylori infection is an important permissive factor in the development of cancer, but H. pylori seroprevalence is high all over Africa and cannot clearly be correlated with cancer. However, there is evidence that specific bacterial virulence genes, particularly vacA and iceA allele1, do contribute to cancer risk. Intestinal metaplasia and gastric atrophy have been the focus of twelve studies and are common in Africa. Epstein-Barr virus, which causes 10% of cancer worldwide, is the focus of only one African study. Work in other continents demonstrates that other risk factors apply only to one or other of the two major histological types, intestinal and diffuse. Diet, smoking, alcohol and salt intake predispose to the intestinal type of cancer, but genetic factors predispose to the diffuse type. There is a pressing need for information on the histological types occurring in Africa, and their associated risk factors. Most urgently, information on dietary predisposition to cancer is required to inform public health policy with respect to the demographic transition (urbanisation and lifestyle changes) which is occurring all over the continent.
Collapse
Affiliation(s)
- Akwi W Asombang
- Tropical Gastroenterology & Nutrition group, University of Zambia School of Medicine, Lusaka, Zambia
| | | |
Collapse
|
162
|
Expansion of European vacA and cagA alleles to East-Asian Helicobacter pylori strains in Cambodia. INFECTION GENETICS AND EVOLUTION 2011; 11:1899-905. [DOI: 10.1016/j.meegid.2011.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/04/2011] [Accepted: 08/07/2011] [Indexed: 12/16/2022]
|
163
|
Delgado-Rosado G, Dominguez-Bello MG, Massey SE. Positive selection on a bacterial oncoprotein associated with gastric cancer. Gut Pathog 2011; 3:18. [PMID: 22078307 PMCID: PMC3228766 DOI: 10.1186/1757-4749-3-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/11/2011] [Indexed: 01/01/2023] Open
Abstract
Background Helicobacter pylori is a vertically inherited gut commensal that is carcinogenic if it possesses the cag pathogenicity island (cag PaI); infection with H.pylori is the major risk factor for gastric cancer, the second leading cause of death from cancer worldwide (WHO). The cag PaI locus encodes the cagA gene, whose protein product is injected into stomach epithelial cells via a Type IV secretion system, also encoded by the cag PaI. Once there, the cagA protein binds to various cellular proteins, resulting in dysregulation of cell division and carcinogenesis. For this reason, cagA may be described as an oncoprotein. A clear understanding of the mechanism of action of cagA and its benefit to the bacteria is lacking.
Collapse
Affiliation(s)
- Gisela Delgado-Rosado
- Biology Department, University of Puerto Rico - Rio Piedras, PO Box 23360, San Juan, Puerto Rico, USA 00931.
| | | | | |
Collapse
|
164
|
Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell Commun Signal 2011; 9:28. [PMID: 22044679 PMCID: PMC3266215 DOI: 10.1186/1478-811x-9-28] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 11/01/2011] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori is a highly successful pathogen uniquely adapted to colonize humans. Gastric infections with this bacterium can induce pathology ranging from chronic gastritis and peptic ulcers to gastric cancer. More virulent H. pylori isolates harbour numerous well-known adhesins (BabA/B, SabA, AlpA/B, OipA and HopZ) and the cag (cytotoxin-associated genes) pathogenicity island encoding a type IV secretion system (T4SS). The adhesins establish tight bacterial contact with host target cells and the T4SS represents a needle-like pilus device for the delivery of effector proteins into host target cells such as CagA. BabA and SabA bind to blood group antigen and sialylated proteins respectively, and a series of T4SS components including CagI, CagL, CagY and CagA have been shown to target the integrin β1 receptor followed by injection of CagA across the host cell membrane. The interaction of CagA with membrane-anchored phosphatidylserine may also play a role in the delivery process. While substantial progress has been made in our current understanding of many of the above factors, the host cell receptors for OipA, HopZ and AlpA/B during infection are still unknown. Here we review the recent progress in characterizing the interactions of the various adhesins and structural T4SS proteins with host cell factors. The contribution of these interactions to H. pylori colonization and pathogenesis is discussed.
Collapse
|
165
|
Dominguez-Bello MG, Blaser MJ. The Human Microbiota as a Marker for Migrations of Individuals and Populations. ANNUAL REVIEW OF ANTHROPOLOGY 2011. [DOI: 10.1146/annurev-anthro-081309-145711] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Martin J. Blaser
- Departments of Medicine and Microbiology, New York University Langone Medical Center, New York, NY 10016;
| |
Collapse
|
166
|
Abstract
Helicobacter pylori infections and clinical outcome are dependent on sophisticated interactions between the bacteria and its host. Crucial bacterial factors associated with pathogenicity comprise a type IV secretion system encoded by the cag pathogenicity island, the effector protein CagA, the vacuolating cytotoxin (VacA), peptidoglycan, lipopolysaccharide (LPS), γ-glutamyl transpeptidase (GGT), protease HtrA, and the adhesins BabA, SabA, and others. The high number of these factors and allelic variation of the involved genes generates a highly complex scenario and reveals the difficulties in testing the contribution of each individual factor. Much effort has been put into identifying the molecular mechanisms associated with H. pylori-associated pathogenesis using human primary tissues, Mongolian gerbils, transgenic, knockout, and other mice as well as in vitro cell model systems. Interactions between bacterial factors and host signal transduction pathways seem to be critical for mediating the induction of pathogenic downstream processes and disease development. In this review article, we discuss the most recent progress in this research field.
Collapse
Affiliation(s)
- Steffen Backert
- UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Science Center West, Belfield Campus, Dublin, Ireland.
| | | |
Collapse
|
167
|
Shaffer CL, Gaddy JA, Loh JT, Johnson EM, Hill S, Hennig EE, McClain MS, McDonald WH, Cover TL. Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog 2011; 7:e1002237. [PMID: 21909278 PMCID: PMC3164655 DOI: 10.1371/journal.ppat.1002237] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/10/2011] [Indexed: 12/27/2022] Open
Abstract
Colonization of the human stomach by Helicobacter pylori is an important risk factor for development of gastric cancer. The H. pylori cag pathogenicity island (cag PAI) encodes components of a type IV secretion system (T4SS) that translocates the bacterial oncoprotein CagA into gastric epithelial cells, and CagL is a specialized component of the cag T4SS that binds the host receptor α5β1 integrin. Here, we utilized a mass spectrometry-based approach to reveal co-purification of CagL, CagI (another integrin-binding protein), and CagH (a protein with weak sequence similarity to CagL). These three proteins are encoded by contiguous genes in the cag PAI, and are detectable on the bacterial surface. All three proteins are required for CagA translocation into host cells and H. pylori-induced IL-8 secretion by gastric epithelial cells; however, these proteins are not homologous to components of T4SSs in other bacterial species. Scanning electron microscopy analysis reveals that these proteins are involved in the formation of pili at the interface between H. pylori and gastric epithelial cells. ΔcagI and ΔcagL mutant strains fail to form pili, whereas a ΔcagH mutant strain exhibits a hyperpiliated phenotype and produces pili that are elongated and thickened compared to those of the wild-type strain. This suggests that pilus dimensions are regulated by CagH. A conserved C-terminal hexapeptide motif is present in CagH, CagI, and CagL. Deletion of these motifs results in abrogation of CagA translocation and IL-8 induction, and the C-terminal motifs of CagI and CagL are required for formation of pili. In summary, these results indicate that CagH, CagI, and CagL are components of a T4SS subassembly involved in pilus biogenesis, and highlight the important role played by unique constituents of the H. pylori cag T4SS. Helicobacter pylori persistently colonizes the stomach in approximately half of the human population. People who are infected with H. pylori strains harboring the cag pathogenicity island (PAI) have an increased risk of developing gastric cancer. The cag PAI encodes a type IV secretion system (T4SS) that is utilized by the bacteria to inject the bacterial oncoprotein CagA into gastric epithelial cells. Related T4SSs found in several other bacteria have been studied in detail, but thus far there has been very little study of the H. pylori cag T4SS. Here, we utilized a mass spectrometry-based approach to reveal co-purification of three constituents of the H. pylori T4SS (CagH, CagI, and CagL) that lack homology to components of T4SSs in other bacterial species. These proteins are essential for CagA translocation into host cells, and scanning electron microscope studies reveal that the proteins are involved in the formation of pili at the bacterial-host cell interface. A conserved C-terminal motif present in CagH, CagI, and CagL is essential for functionality of the T4SS. This study highlights the important role played by unique constituents of the H. pylori cag T4SS, and illustrates the marked variation that exists among bacterial T4SSs.
Collapse
Affiliation(s)
- Carrie L. Shaffer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jennifer A. Gaddy
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - John T. Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Elizabeth M. Johnson
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Salisha Hill
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ewa E. Hennig
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, and Department of Oncological Genetics, Cancer Center Institute, Warsaw, Poland
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - W. Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Timothy L. Cover
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
168
|
Furuta Y, Yahara K, Hatakeyama M, Kobayashi I. Evolution of cagA oncogene of Helicobacter pylori through recombination. PLoS One 2011; 6:e23499. [PMID: 21853141 PMCID: PMC3154945 DOI: 10.1371/journal.pone.0023499] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/19/2011] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a gastric pathogen that infects half the human population and causes gastritis, ulcers, and cancer. The cagA gene product is a major virulence factor associated with gastric cancer. It is injected into epithelial cells, undergoes phosphorylation by host cell kinases, and perturbs host signaling pathways. CagA is known for its geographical, structural, and functional diversity in the C-terminal half, where an EPIYA host-interacting motif is repeated. The Western version of CagA carries the EPIYA segment types A, B, and C, while the East Asian CagA carries types A, B, and D and shows higher virulence. Many structural variants such as duplications and deletions are reported. In this study, we gained insight into the relationships of CagA variants through various modes of recombination, by analyzing all known cagA variants at the DNA sequence level with the single nucleotide resolution. Processes that occurred were: (i) homologous recombination between DNA sequences for CagA multimerization (CM) sequence; (ii) recombination between DNA sequences for the EPIYA motif; and (iii) recombination between short similar DNA sequences. The left half of the EPIYA-D segment characteristic of East Asian CagA was derived from Western type EPIYA, with Amerind type EPIYA as the intermediate, through rearrangements of specific sequences within the gene. Adaptive amino acid changes were detected in the variable region as well as in the conserved region at sites to which no specific function has yet been assigned. Each showed a unique evolutionary distribution. These results clarify recombination-mediated routes of cagA evolution and provide a solid basis for a deeper understanding of its function in pathogenesis.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Koji Yahara
- Graduate School of Medicine, Kurume University, Kurume, Fukuoka, Japan
- Fujitsu Kyushu Systems LTD, Fukuoka, Fukuoka, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
169
|
Suzuki M, Kiga K, Kersulyte D, Cok J, Hooper CC, Mimuro H, Sanada T, Suzuki S, Oyama M, Kozuka-Hata H, Kamiya S, Zou QM, Gilman RH, Berg DE, Sasakawa C. Attenuated CagA oncoprotein in Helicobacter pylori from Amerindians in Peruvian Amazon. J Biol Chem 2011; 286:29964-72. [PMID: 21757722 DOI: 10.1074/jbc.m111.263715] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Population genetic analyses of bacterial genes whose products interact with host tissues can give new understanding of infection and disease processes. Here we show that strains of the genetically diverse gastric pathogen Helicobacter pylori from Amerindians from the remote Peruvian Amazon contain novel alleles of cagA, a major virulence gene, and reveal distinctive properties of their encoded CagA proteins. CagA is injected into the gastric epithelium where it hijacks pleiotropic signaling pathways, helps Hp exploit its special gastric mucosal niche, and affects the risk that infection will result in overt gastroduodenal diseases including gastric cancer. The Amerindian CagA proteins contain unusual but functional tyrosine phosphorylation motifs and attenuated CRPIA motifs, which affect gastric epithelial proliferation, inflammation, and bacterial pathogenesis. Amerindian CagA proteins induced less production of IL-8 and cancer-associated Mucin 2 than did those of prototype Western or East Asian strains and behaved as dominant negative inhibitors of action of prototype CagA during mixed infection of Mongolian gerbils. We suggest that Amerindian cagA is of relatively low virulence, that this may have been selected in ancestral strains during infection of the people who migrated from Asia into the Americas many thousands of years ago, and that such attenuated CagA proteins could be useful therapeutically.
Collapse
Affiliation(s)
- Masato Suzuki
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Benefits of Helicobacter pylori cagE genotyping in addition to cagA genotyping: a Bulgarian study. Antonie van Leeuwenhoek 2011; 100:529-35. [PMID: 21701821 DOI: 10.1007/s10482-011-9608-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/07/2011] [Indexed: 01/16/2023]
Abstract
Associations of Helicobacter pylori cagE status with complex patient characteristics remain to be elucidated in Eastern Europe. The aim of this study was to assess the frequencies of cagE gene and cagA/cagE combinations in H. pylori strains from symptomatic Bulgarian patients and to improve cagA detection. cagA and cagE genotypes were evaluated in 219 patients with single-strain infections. In total, 84.9% of strains were cagA (+), while 68.5% were cagE (+). cagA (+), cagE (+), and cagA (+)/cagE (+) strains were more prevalent in peptic ulcer (93.8%, 84.4%, and 84.4%) compared with nonulcer patients (81.3%, 61.9%, and 61.3%, respectively). In elderly patients, cagE (+) and cagA (+)/cagE (+) strains were 1.9-fold more common than in the 12 children evaluated. Only 10% of the elderly subjects harbored low-virulence cagA (+)/cagE (-) strains compared with 16.8% of adults and 41.7% of children. Intriguingly, prevalence of the cagA (+)/cagE (-) genotype was 2.1-fold lower in men than in women, suggesting a higher frequency of more virulent strains in men. The presence of both cag genes and combinations was not linked to strain susceptibility to clarithromycin or metronidazole, place of residence, or prior therapy. Use of an extra primer pair increased cagA detection in 14.7% of 31 cagA (-) strains. In conclusion, use of a second primer pair for the cagA gene can be recommended in countries with common cagA (+) strains. Although both cag genes were linked to severe diseases in Bulgarian patients, the best discrimination of virulent strains was obtained by the cagA/cagE combination or by the cagE gene alone. cagE prevalence increased gradually with patient age, while the cagA (+)/cagE (-) genotype, implying a disrupted cag pathogenicity island, was associated with both younger age and female gender.
Collapse
|
171
|
Tegtmeyer N, Wessler S, Backert S. Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J 2011; 278:1190-202. [PMID: 21352489 DOI: 10.1111/j.1742-4658.2011.08035.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori is a very successful human-specific bacterium worldwide. Infections of the stomach with this pathogen can induce pathologies, including chronic gastritis, peptic ulcers and even gastric cancer. Highly virulent H. pylori strains encode the cytotoxin-associated gene (cag)-pathogenicity island, which expresses a type IV secretion system (T4SS). This T4SS forms a syringe-like pilus structure for the injection of virulence factors such as the CagA effector protein into host target cells. This is achieved by a number of T4SS proteins, including CagI, CagL, CagY and CagA, which by itself binds the host cell integrin member β(1) followed by delivery of CagA across the host cell membrane. A role of CagA interaction with phosphatidylserine has also been shown to be important for the injection process. After delivery, CagA becomes phosphorylated by oncogenic tyrosine kinases and mimics a host cell factor for the activation or inactivation of some specific intracellular signalling pathways. We review recent progress aiming to characterize the CagA-dependent and CagA-independent signalling capabilities of the T4SS, which include the induction of membrane dynamics, disruption of cell-cell junctions and actin-cytoskeletal rearrangements, as well as pro-inflammatory, cell cycle-related and anti-apoptotic transcriptional responses. The contribution of these signalling pathways to pathogenesis during H. pylori infections is discussed.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- School of Biomolecular and Biomedical Sciences, Science Center West, Belfield Campus, University College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
172
|
Fischer W. Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. FEBS J 2011; 278:1203-12. [PMID: 21352490 DOI: 10.1111/j.1742-4658.2011.08036.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial type IV secretion systems (T4SS) form supramolecular protein complexes that are capable of transporting DNA or protein substrates across the bacterial cell envelope and, in many cases, also across eukaryotic target cell membranes. Because of these characteristics, they are often used by pathogenic bacteria for the injection of host cell-modulating virulence factors. One example is the human pathogen Helicobacter pylori, which uses the Cag-T4SS to induce a pro-inflammatory response and multiple cytoskeletal and gene regulatory effects in gastric epithelial cells. Work in recent years has shown that the Cag-T4SS exhibits marked differences in relation to other systems, both with respect to the composition of its secretion apparatus and the molecular details of its secretion mechanisms. This review describes the molecular properties of the Cag-T4SS and compares these with prototypical systems of this family of protein transporters.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, München, Germany.
| |
Collapse
|
173
|
Ahmed N. Coevolution and adaptation of Helicobacter pylori and the case for 'functional molecular infection epidemiology'. Med Princ Pract 2011; 20:497-503. [PMID: 21986005 DOI: 10.1159/000329786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 05/10/2011] [Indexed: 01/08/2023] Open
Abstract
Helicobacter pylori is a major human pathogen and its transmission and epidemiology have been extensively studied; it has been found that H. pylori's prevalence and infection outcome is characterized by marked differences between the developing and the developed worlds. Recent data on genomic analyses and comparative core genome haplotyping have revealed that H. pylori has coevolved with its human host. While several studies advocate the protective effects of H. pylori colonization, it is prudent to systematically unleash the role of the strong virulence apparatus present within most H. pylori strains and to determine how to disarm them (or protect the host from the effects) if the intent is to allow it to remain a friendly organism or to use it as a vaccine delivery tool. While genotyping and phenotyping based on a few genetic markers have not provided much insight into such issues, use of replicate/chronological genomics (of virulent versus innocuous strains) coupled with functional screens in animal models is expected to be able to explain the acquisition and evolution of virulence factors of H. pylori and their discreet associations with serious clinical outcomes such as gastric cancer.
Collapse
Affiliation(s)
- Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
174
|
Abstract
Helicobacter pylori is a genetically diverse organism that is adapted for colonization of the human stomach. All strains contain a gene encoding a secreted, pore-forming toxin known as VacA. Genetic variation at this locus could be under strong selection as H. pylori adapts to the host immune response, colonizes new human hosts, or inhabits different host environments. Here, we analyze the molecular evolution of VacA. Phylogenetic reconstructions indicate the subdivision of VacA sequences into three main groups with distinct geographic distributions. Divergence of the three groups is principally due to positively selected sequence changes in the p55 domain, a central region required for binding of the toxin to host cells. Divergent amino acids map to surface-exposed sites in the p55 crystal structure. Comparative phylogenetic analyses of vacA sequences and housekeeping gene sequences indicate that vacA does not share the same evolutionary history as the core genome. Further, rooting the VacA tree with outgroup sequences from the close relative Helicobacter acinonychis reveals that the ancestry of VacA is different from the African origin that typifies the core genome. Finally, sequence analyses of the virulence determinant CagA reveal three main groups strikingly similar to the three groups of VacA sequences. Taken together, these results indicate that positive selection has shaped the phylogenetic structure of VacA and CagA, and each of these virulence determinants has evolved separately from the core genome.
Collapse
|