151
|
Guo W, Wu Z, Song J, Jiang F, Wang Z, Deng S, Walker VK, Zhou S. Juvenile hormone-receptor complex acts on mcm4 and mcm7 to promote polyploidy and vitellogenesis in the migratory locust. PLoS Genet 2014; 10:e1004702. [PMID: 25340846 PMCID: PMC4207617 DOI: 10.1371/journal.pgen.1004702] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/23/2014] [Indexed: 11/18/2022] Open
Abstract
Juvenile hormone (JH), a sesquiterpenoid produced by the corpora allata, coordinates insect growth, metamorphosis, and reproduction. While JH action for the repression of larval metamorphosis has been well studied, the molecular basis of JH in promoting adult reproduction has not been fully elucidated. Methoprene-tolerant (Met), the JH receptor, has been recently shown to mediate JH action during metamorphosis as well as in vitellogenesis, but again, the precise mechanism underlying the latter has been lacking. We have now demonstrated using Met RNAi to phenocopy a JH-deprived condition in migratory locusts, that JH stimulates DNA replication and increases ploidy in preparation for vitellogenesis. Mcm4 and Mcm7, two genes in the DNA replication pathway were expressed in the presence of JH and Met. Depletion of Mcm4 or Mcm7 inhibited de novo DNA synthesis and polyploidization, and resulted in the substantial reduction of vitellogenin mRNA levels as well as severely impaired oocyte maturation and ovarian growth. By using luciferase reporter and electrophoretic mobility shift assays, we have shown that Met directly regulates the transcription of Mcm4 and Mcm7 by binding to upstream consensus sequences with E-box or E-box-like motifs. Our work suggests that the JH-receptor complex acts on Mcm4 and Mcm7 to regulate DNA replication and polyploidy for vitellogenesis and oocyte maturation.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhongxia Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jiasheng Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Zhiming Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shun Deng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | - Shutang Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
152
|
Juvenile Hormone Biosynthesis in Insects: What Is New, What Do We Know, and What Questions Remain? INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:967361. [PMID: 27382622 PMCID: PMC4897325 DOI: 10.1155/2014/967361] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/26/2014] [Indexed: 12/02/2022]
Abstract
Our understanding of JH biosynthesis has significantly changed in the last years. In this review I would like to discuss the following topics: (1) the progresses in understanding the JH biosynthesis pathway. Access to genome sequences has facilitated the identification of all the genes encoding biosynthetic enzymes and the completion of comprehensive transcriptional studies, as well as the expression and characterization of recombinant enzymes. Now the existence of different flux directionalites, feed-back loops and pathway branching points in the JH biosynthesis pathways can be explored; (2) the new concepts in the modulation of JH synthesis by allatoregulators. The list of putative JH modulators is increasing. I will discuss their possible role during the different physiological states of the CA; (3) the new theoretical and physiological frameworks for JH synthesis analysis. I will discuss the bases of the flux model for JH biosynthesis. JH plays multiple roles in the control of ovary development in female mosquitoes; therefore, the CA presents different physiological states, where JH synthesis is altered by gating the flux at distinctive points in the pathway; (4) in the final section I will identify new challenges and future directions on JH synthesis research.
Collapse
|
153
|
Nagamine K, Kayukawa T, Hoshizaki S, Matsuo T, Shinoda T, Ishikawa Y. Cloning, phylogeny, and expression analysis of the Broad-Complex gene in the longicorn beetle Psacothea hilaris. SPRINGERPLUS 2014; 3:539. [PMID: 25279330 PMCID: PMC4175664 DOI: 10.1186/2193-1801-3-539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/11/2014] [Indexed: 12/26/2022]
Abstract
Seven isoforms of Broad-Complex (PhBR-C), in which the sequence of the zinc finger domain differed (referred to as Z1, Z2, Z3, Z2/Z3, Z4, Z5/Z6, and Z6, respectively), were cloned from the yellow-spotted longicorn beetle Psacothea hilaris. The Z1–Z4 sequences were highly conserved among insect species. The Z5/Z6 isoform was aberrant in that it contained a premature stop codon. Z6 had previously only been detected in a hemimetabola, the German cockroach Blattella germanica. The presence of Z6 in P. hilaris, and not in other holometabolous model insects such as Drosophila melanogaster or Tribolium castaneum, suggests that Z6 was lost multiple times in holometabolous insects during the course of evolution. PhBR-C expression levels in the brain, salivary gland, and epidermis of larvae grown under different feeding regimens were subsequently investigated. PhBR-C expression levels increased in every tissue examined after the gut purge, and high expression levels were observed in prepupae. A low level of PhBR-C expression was continuously observed in the brain. An increase was noted in PhBR-C expression levels in the epidermis when 4th instar larvae were starved after 4 days of feeding, which induced precocious pupation. No significant changes were observed in expression levels in any tissues of larvae starved immediately after ecdysis into 4th instar, which did not grow and eventually died.
Collapse
Affiliation(s)
- Keisuke Nagamine
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan ; National Institute of Agrobiological Sciences, Tsukuba, 305-8634 Japan
| | - Takumi Kayukawa
- National Institute of Agrobiological Sciences, Tsukuba, 305-8634 Japan
| | - Sugihiko Hoshizaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Takashi Matsuo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, 305-8634 Japan
| | - Yukio Ishikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| |
Collapse
|
154
|
Marchal E, Hult EF, Huang J, Pang Z, Stay B, Tobe SS. Methoprene-tolerant (Met) knockdown in the adult female cockroach, Diploptera punctata completely inhibits ovarian development. PLoS One 2014; 9:e106737. [PMID: 25197795 PMCID: PMC4157775 DOI: 10.1371/journal.pone.0106737] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023] Open
Abstract
Independent of the design of the life cycle of any insect, their growth and reproduction are highly choreographed through the action of two versatile hormones: ecdysteroids and juvenile hormones (JH). However, the means by which JH can target tissues and exert its pleiotropic physiological effects is currently still not completely elucidated. Although the identity of the one JH receptor is currently still elusive, recent evidence seems to point to the product of the Methoprene-tolerant gene (Met) as the most likely contender in transducing the action of JH. Studies on the role of this transcription factor have mostly been focused on immature insect stages. In this study we used the viviparous cockroach Diploptera punctata, a favorite model in studying JH endocrinology, to examine the role of Met during reproduction. A tissue distribution and developmental profile of transcript levels was determined for Met and its downstream partners during the first gonadotropic cycle of this cockroach. Using RNA interference, our study shows that silencing Met results in an arrest of basal oocyte development; vitellogenin is no longer transcribed in the fat body and no longer taken up by the ovary. Patency is not induced in these animals which fail to produce the characteristic profile of JH biosynthesis typical of the first gonadotropic cycle. Moreover, the ultrastructure of the follicle cells showed conspicuous whorls of rough endoplasmic reticulum and a failure to form chorion. Our study describes the role of Met on a cellular and physiological level during insect reproduction, and confirms the role of Met as a key factor in the JH signaling pathway.
Collapse
Affiliation(s)
- Elisabeth Marchal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Ekaterina F. Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Juan Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Zhenguo Pang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Barbara Stay
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
155
|
Cui Y, Sui Y, Xu J, Zhu F, Palli SR. Juvenile hormone regulates Aedes aegypti Krüppel homolog 1 through a conserved E box motif. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:23-32. [PMID: 24931431 PMCID: PMC4143451 DOI: 10.1016/j.ibmb.2014.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 05/19/2023]
Abstract
Juvenile hormone (JH) plays important roles in regulation of many physiological processes including development, reproduction and metabolism in insects. However, the molecular mechanisms of JH signaling pathway are not completely understood. To elucidate the molecular mechanisms of JH regulation of Krüppel homolog 1 gene (Kr-h1) in Aedes aegypti, we employed JH-sensitive Aag-2 cells developed from the embryos of this insect. In Aag-2 cells, AaKr-h1 gene is induced by nanomolar concentration of JH III, its expression peaked at 1.5 h after treatment with JH III. RNAi studies showed that JH induction of this gene requires the presence of Ae. aegypti methoprene-tolerant (AaMet). A conserved 13 nucleotide JH response element (JHRE, TGCCTCCACGTGC) containing canonical E box motif (underlined) identified in the promoter of AaKr-h1 is required for JH induction of this gene. Critical nucleotides in the JHRE required for JH action were identified by employing mutagenesis and reporter assays. Reporter assays also showed that basic helix loop helix (bHLH) domain of AaMet is required for JH induction of AaKr-h1. 5' rapid amplification of cDNA ends method identified two isoforms of AaKr-h1, AaKr-h1α and AaKr-h1β, the expression of both isoforms is induced by JH III, but AaKr-h1α is the predominant isoform in both Aag-2 cells and Ae. aegypti larvae.
Collapse
Affiliation(s)
- Yingjun Cui
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | - Yipeng Sui
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | - Jingjing Xu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | - Fang Zhu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
156
|
Belles X, Santos CG. The MEKRE93 (Methoprene tolerant-Krüppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:60-8. [PMID: 25008785 DOI: 10.1016/j.ibmb.2014.06.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 05/12/2023]
Abstract
Recent studies on transcription factor E93 revealed that it triggers adult morphogenesis in Blattella germanica, Tribolium castaneum and Drosophila melanogaster. Moreover, we show here that Krüppel homolog 1 (Kr-h1), a transducer of the antimetamorphic action of juvenile hormone (JH), represses E93 expression. Kr-h1 is upstream of E93, and upstream of Kr-h1 is Methoprene-tolerant (Met), the latter being the JH receptor in hemimetabolan and holometabolan species. As such, the Met - Kr-h1 - E93 pathway (hereinafter named "MEKRE93 pathway") appears to be central to the status quo action of JH, which switch adult morphogenesis off and on in species ranging from cockroaches to flies. The decrease in Kr-h1 mRNA and the rise of E93 expression that triggers adult morphogenesis occur at the beginning of the last instar nymph or in the prepupae of hemimetabolan and holometabolan species, respectively. This suggests that the hemimetabolan last nymph (considering the entire stage, from the apolysis to the last instar until the next apolysis that gives rise to the adult) is ontogenetically homologous to the holometabolan pupa (also considered between two apolyses, thus comprising the prepupal stage).
Collapse
Affiliation(s)
- Xavier Belles
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra-CSIC), Passeig Maritim de la Barceloneta 37, 0803 Barcelona, Spain.
| | - Carolina G Santos
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra-CSIC), Passeig Maritim de la Barceloneta 37, 0803 Barcelona, Spain; Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
157
|
Song J, Wu Z, Wang Z, Deng S, Zhou S. Krüppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:94-101. [PMID: 25017142 DOI: 10.1016/j.ibmb.2014.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/19/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Juvenile hormone (JH) prevents insect larval metamorphosis and stimulates processes for adult reproduction. Krüppel-homolog 1 (Kr-h1), a zinc finger transcription factor, is shown to mediate the anti-metamorphic effect of JH in both holometabolous and hemimetabolous insects. However, the role of Kr-h1 in JH-mediated reproduction has not been determined. Using the migratory locust, Locusta migratoria, we showed here that Kr-h1 was expressed in response to JH in female adults, and Kr-h1 transcription was directly regulated by the JH-receptor complex comprised of Methoprene-tolerant (Met) and steroid receptor co-activator. We demonstrated that Kr-h1 RNAi phenocopied Met RNAi and JH-deprived condition during post-eclosion development and vitellogenesis of female locusts. Knockdown of Kr-h1 resulted in substantial reduction of Vg expression in the fat body and lipid accumulation in the primary oocytes, accompanied by blocked follicular epithelium development, oocyte maturation and ovarian growth. Our data therefore reveal a crucial role of Kr-h1 in insect vitellogenesis and egg production. This study suggests that JH-Met-Kr-h1 signaling pathway is also functional in insect reproduction.
Collapse
Affiliation(s)
- Jiasheng Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongxia Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhiming Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shun Deng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shutang Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
158
|
Lozano J, Belles X. Role of Methoprene-tolerant (Met) in adult morphogenesis and in adult ecdysis of Blattella germanica. PLoS One 2014; 9:e103614. [PMID: 25072526 PMCID: PMC4114754 DOI: 10.1371/journal.pone.0103614] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/28/2014] [Indexed: 11/19/2022] Open
Abstract
Juvenile Hormone (JH) represses metamorphosis of young instars in insects. One of the main players in hormonal signalling is Methoprene-tolerant (Met), which plays the role of JH receptor. Using the Polyneopteran insect Blattella germanica as the model and RNAi for transcript depletion, we have confirmed that Met transduces the antimetamorphic signal of JH in young nymphs and plays a role in the last nymphal instar moult in this species. Previously, the function of Met as the JH receptor had been demonstrated in the Eumetabola clade, with experiments in Holometabola (in the beetle Tribolium castaneum) and in their sister group Paraneoptera (in the bug Pyrrhocoris apterus). Our result shows that the function of Met as JH receptor is also conserved in the more basal Polyneoptera. The function of Met as JH transducer might thus predate the evolutionary innovation of metamorphosis. Moreover, expression of Met was also found in last nymphal instar of B. germanica, when JH is absent. Depletion of Met in this stage provoked deficiencies in wing growth and ecdysis problems in the imaginal moult. Down-regulation of the ecdysone-inducible gene E75A and Insulin-Like-Peptide 1 in these Met-depleted specimens suggest that Met is involved in the ecdysone and insulin signalling pathways in last nymphal instar, when JH is virtually absent.
Collapse
Affiliation(s)
- Jesus Lozano
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Xavier Belles
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| |
Collapse
|
159
|
Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects. Proc Natl Acad Sci U S A 2014; 111:7024-9. [PMID: 24778249 DOI: 10.1073/pnas.1401478111] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
All immature animals undergo remarkable morphological and physiological changes to become mature adults. In winged insects, metamorphic changes either are limited to a few tissues (hemimetaboly) or involve a complete reorganization of most tissues and organs (holometaboly). Despite the differences, the genetic switch between immature and adult forms in both types of insects relies on the disappearance of the antimetamorphic juvenile hormone (JH) and the transcription factors Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) during the last juvenile instar. Here, we show that the transcription factor E93 is the key determinant that promotes adult metamorphosis in both hemimetabolous and holometabolous insects, thus acting as the universal adult specifier. In the hemimetabolous insect Blattella germanica, BgE93 is highly expressed in metamorphic tissues, and RNA interference (RNAi)-mediated knockdown of BgE93 in the nymphal stage prevented the nymphal-adult transition, inducing endless reiteration of nymphal development, even in the absence of JH. We also find that BgE93 down-regulated BgKr-h1 and BgBR-C expression during the last nymphal instar of B. germanica, a key step necessary for proper adult differentiation. This essential role of E93 is conserved in holometabolous insects as TcE93 RNAi in Tribolium castaneum prevented pupal-adult transition and produced a supernumerary second pupa. In this beetle, TcE93 also represses expression of TcKr-h1 and TcBR-C during the pupal stage. Similar results were obtained in the more derived holometabolous insect Drosophila melanogaster, suggesting that winged insects use the same regulatory mechanism to promote adult metamorphosis. This study provides an important insight into the understanding of the molecular basis of adult metamorphosis.
Collapse
|
160
|
Erezyilmaz DF, Hayward A, Huang Y, Paps J, Acs Z, Delgado JA, Collantes F, Kathirithamby J. Expression of the pupal determinant broad during metamorphic and neotenic development of the strepsipteran Xenos vesparum Rossi. PLoS One 2014; 9:e93614. [PMID: 24709670 PMCID: PMC3977908 DOI: 10.1371/journal.pone.0093614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/07/2014] [Indexed: 11/18/2022] Open
Abstract
Derived members of the endoparasitic order Strepsiptera have acquired an extreme form of sexual dimorphism whereby males undergo metamorphosis and exist as free-living adults while females remain larviform, reaching sexual maturity within their hosts. Expression of the transcription factor, broad (br) has been shown to be required for pupal development in insects in which both sexes progress through metamorphosis. A surge of br expression appears in the last larval instar, as the epidermis begins pupal development. Here we ask if br is also up-regulated in the last larval instar of male Xenos vesparum Rossi (Stylopidae), and whether such expression is lost in neotenic larviform females. We clone three isoforms of br from X. vesparum (Xv’br), and show that they share greatest similarity to the Z1, Z3 and Z4 isoforms of other insect species. By monitoring Xv’br expression throughout development, we detect elevated levels of total br expression and the Xv’Z1, Xv’Z3, and Xv’Z4 isoforms in the last larval instar of males, but not females. By focusing on Xv’br expression in individual samples, we show that the levels of Xv’BTB and Xv’Z3 in the last larval instar of males are bimodal, with some males expressing 3X greater levels of Xv’br than fourth instar femlaes. Taken together, these data suggest that neoteny (and endoparasitism) in females of Strepsiptera Stylopidia could be linked to the suppression of pupal determination. Our work identifies a difference in metamorphic gene expression that is associated with neoteny, and thus provides insights into the relationship between metamorphic and neotenic development.
Collapse
Affiliation(s)
- Deniz F. Erezyilmaz
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| | - Alex Hayward
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedical Centre, Uppsala, Sweden
| | - Yan Huang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jordi Paps
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Zoltan Acs
- Kaposvar University, Faculty of Animal Science, Kaposvar, Hungary
| | - Juan A. Delgado
- Departamento de Zoologia, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | - Francisco Collantes
- Departamento de Zoologia, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | | |
Collapse
|
161
|
Kayukawa T, Murata M, Kobayashi I, Muramatsu D, Okada C, Uchino K, Sezutsu H, Kiuchi M, Tamura T, Hiruma K, Ishikawa Y, Shinoda T. Hormonal regulation and developmental role of Krüppel homolog 1, a repressor of metamorphosis, in the silkworm Bombyx mori. Dev Biol 2014; 388:48-56. [DOI: 10.1016/j.ydbio.2014.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/17/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
|
162
|
Hepat R, Kim Y. JH modulates a cellular immunity of Tribolium castaneum in a Met-independent manner. JOURNAL OF INSECT PHYSIOLOGY 2014; 63:40-47. [PMID: 24607640 DOI: 10.1016/j.jinsphys.2014.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Juvenile hormone (JH) regulates diverse physiological processes in insects during entire developmental stages. Especially, the identification of Methoprene-tolerant (Met), a JH nuclear receptor, allows us to better understand molecular actions of JH to control gene expressions related with metamorphosis. However, several physiological processes including cellular immune response and some molecular actions of JH have been suspected to be mediated via its non-genomic actions. To prove its non-genomic action, JH nuclear signals were suppressed by RNA interference (RNAi) of Met or its downstream gene, Krüppel homolog 1 (Kr-h1), in the red flour beetle, Tribolium castaneum. These RNAi-treated larvae failed to undergo a normal development and suffered precocious metamorphosis. Hemocytes of T. castaneum exhibited their spreading behavior on extracellular matrix and nodule formation in response to bacterial challenge. When the larvae were treated with either RNAi of Met or Kr-h1, the hemocytes of the treated larvae were responsive to JH without any significant difference with those of control larvae. These results suggest that the response of hemocytes to JH is not mediated by its nuclear signal. On the other hand, the JH modulation of hemocyte behaviors of T. castaneum was significantly influenced by membrane and cytosolic protein activities, in which ethoxyzolamide (a specific inhibitor of carbonic anhydrase), calphostin C (a specific inhibitor of protein kinase C) or ouabain (a specific inhibitor of Na(+)-K(+) ATPase) significantly suppressed the responsiveness of hemocytes to JH.
Collapse
Affiliation(s)
- Rahul Hepat
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea.
| |
Collapse
|
163
|
De Loof A, De Haes W, Janssen T, Schoofs L. The essence of insect metamorphosis and aging: electrical rewiring of cells driven by the principles of juvenile hormone-dependent Ca(2+)-homeostasis. Gen Comp Endocrinol 2014; 199:70-85. [PMID: 24480635 DOI: 10.1016/j.ygcen.2014.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 01/22/2023]
Abstract
In holometabolous insects the fall to zero of the titer of Juvenile Hormone ends its still poorly understood "status quo" mode of action in larvae. Concurrently it initiates metamorphosis of which the programmed cell death of all internal tissues that actively secrete proteins, such as the fat body, midgut, salivary glands, prothoracic glands, etc. is the most drastic aspect. These tissues have a very well developed rough endoplasmic reticulum, a known storage site of intracellular Ca(2+). A persistent high [Ca(2+)]i is toxic, lethal and causal to apoptosis. Metamorphosis becomes a logical phenomenon if analyzed from: (1) the causal link between calcium toxicity and apoptosis; (2) the largely overlooked fact that at least some isoforms of Ca(2+)-ATPases have a binding site for farnesol-like endogenous sesquiterpenoids (FRS). The Ca(2+)-ATPase blocker thapsigargin, like JH a sesquiterpenoid derivative, illustrates how absence of JH might work. The Ca(2+)-homeostasis system is concurrently extremely well conserved in evolution and highly variable, enabling tissue-, developmental-, and species specificity. As long as JH succeeds in keeping [Ca(2+)]i low by keeping the Ca(2+)-ATPases pumping, it acts as "the status quo" hormone. When it disappears, its various inhibitory effects are lifted. The electrical wiring system of cells, in particular in the regenerating tissues, is subject to change during metamorphosis. The possibility is discussed that in vertebrates an endogenous farnesol-like sesquiterpenoid, probably farnesol itself, acts as a functional, but hitherto completely overlooked Juvenile anti-aging "Inbrome", a novel concept in signaling.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium.
| | - Wouter De Haes
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| | - Tom Janssen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| |
Collapse
|
164
|
Smykal V, Daimon T, Kayukawa T, Takaki K, Shinoda T, Jindra M. Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Dev Biol 2014; 390:221-30. [PMID: 24662045 DOI: 10.1016/j.ydbio.2014.03.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/16/2022]
Abstract
Juvenile hormone (JH) postpones metamorphosis of insect larvae until they have attained an appropriate stage and size. Then, during the final larval instar, a drop in JH secretion permits a metamorphic molt that transforms larvae to adults either directly (hemimetaboly) or via a pupal stage (holometaboly). In both scenarios, JH precludes metamorphosis by activating the Kr-h1 gene through a JH receptor, Methoprene-tolerant (Met). Removal of Met, Kr-h1, or JH itself triggers deleterious precocious metamorphosis. Although JH is thought to maintain the juvenile status throughout larval life, various methods of depleting JH failed to induce metamorphosis in early-instar larvae. To determine when does JH signaling become important for the prevention of precocious metamorphosis, we chose the hemimetabolous bug, Pyrrhocoris apterus, and the holometabolous silkworm, Bombyx mori. Both species undergo a fixed number of five larval instars. Pyrrhocoris larvae subjected to RNAi-mediated knockdown of Met or Kr-h1 underwent precocious adult development when treated during the fourth (penultimate) instar, but younger larvae proved increasingly resistant to loss of either gene. The earliest instar developing minor signs of precocious metamorphosis was the third. Therefore, the JH-response genes may not be required to maintain the larval program during the first two larval instars. Next, we examined Bombyx mod mutants that cannot synthesize authentic, epoxidized forms of JH. Although mod larvae expressed Kr-h1 mRNA at severely reduced levels since hatching, they only entered metamorphosis by pupating after four, rarely three instars. Based on findings in Pyrrhocoris and Bombyx, we propose that insect postembryonic development is initially independent of JH. Only later, when larvae gain competence to enter metamorphosis, JH signaling becomes necessary to prevent precocious metamorphosis and to optimize growth.
Collapse
Affiliation(s)
- Vlastimil Smykal
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Takaaki Daimon
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Takumi Kayukawa
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiko Takaki
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Marek Jindra
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research Organization, North Ryde, NSW 2113, Australia.
| |
Collapse
|
165
|
Smykal V, Bajgar A, Provaznik J, Fexova S, Buricova M, Takaki K, Hodkova M, Jindra M, Dolezel D. Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:69-76. [PMID: 24361539 DOI: 10.1016/j.ibmb.2013.12.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 05/11/2023]
Abstract
Juvenile hormone (JH), a sesquiterpenoid produced by the insect corpus allatum gland (CA), prevents metamorphosis in larvae and stimulates vitellogenesis in adult females. Whether the same JH signaling pathway regulates both processes is presently unknown. Here, we employ the robust JH response during reproduction and development of the linden bug, Pyrrhocoris apterus, to compare the function of key JH-signaling genes encoding the JH receptor, Methoprene-tolerant (Met), its binding partner Taiman (Tai), and a JH-inducible protein, Krüppel-homolog 1 (Kr-h1). RNA interference (RNAi) with Met or Tai, but not Kr-h1, blocked ovarian development and suppressed vitellogenin gene expression in the fat body of females raised under reproduction-inducing conditions. Loss of Met and Tai matched the effects of CA ablation or the natural absence of JH during reproductive diapause. Stimulation of vitellogenesis by treatment of diapausing females with a JH mimic methoprene also required both Met and Tai in the fat body, whereas Kr-h1 RNAi had no effect. Therefore, the Met-Tai complex likely functions as a JH receptor during vitellogenesis. In contrast to Met and Kr-h1 that are both required for JH to prevent precocious metamorphosis in P. apterus larvae, removal of Tai disrupted larval ecdysis without causing premature adult development. Our results show that while Met operates during metamorphosis in larvae and reproduction in adult females, its partner Tai is only required for the latter. The diverse functions of JH thus likely rely on a common receptor whose actions are modulated by distinct components.
Collapse
Affiliation(s)
- Vlastimil Smykal
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Jan Provaznik
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Silvie Fexova
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Marcela Buricova
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Keiko Takaki
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | - Magdalena Hodkova
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | - Marek Jindra
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research Organization, North Ryde, NSW 2113, Australia.
| | - David Dolezel
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
166
|
Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V. The developmental control of size in insects. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:113-34. [PMID: 24902837 PMCID: PMC4048863 DOI: 10.1002/wdev.124] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse.
Collapse
|
167
|
Jones D, Jones G, Teal PEA. Sesquiterpene action, and morphogenetic signaling through the ortholog of retinoid X receptor, in higher Diptera. Gen Comp Endocrinol 2013; 194:326-35. [PMID: 24120505 DOI: 10.1016/j.ygcen.2013.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/11/2013] [Accepted: 09/29/2013] [Indexed: 01/31/2023]
Abstract
Morphogenetic signaling by small terpenoid hormones is a common feature of both vertebrate and invertebrate development. Most attention on insect developmental signaling by small terpenoids has focused on signaling by juvenile hormone through bHLH-PAS proteins (e.g., the MET protein), especially as that signaling axis intersects with ecdysteroid action through the receptor EcR. However, a series of endocrine and pharmacological studies on pupariation in cyclorrhaphous Diptera have remained persistently refractory to explanation with the above two-axis model. Recently, the terpenoid compound methyl farnesoate has been physicochemically demonstrated to exist in circulation at physiological concentrations, in several mecopterid orders, including Diptera. In addition, it has also been recently demonstrated that the receptor to which methyl farnesoate binds with nanomolar affinity (ultraspiracle, an ortholog of retinoid X receptor) requires a functioning ligand binding pocket to sustain the morphogenetic transition to puparium formation. This review evaluates endocrine and pharmacological evidence for developmental pathways reached by methyl farnesoate action, and assesses the participation of the retinoid X receptor ligand pocket in signal transduction to those developmental endpoints.
Collapse
Affiliation(s)
- Davy Jones
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40504, USA.
| | | | | |
Collapse
|
168
|
Ormerod KG, Hadden JK, Deady LD, Mercier AJ, Krans JL. Action of octopamine and tyramine on muscles of Drosophila melanogaster larvae. J Neurophysiol 2013; 110:1984-96. [DOI: 10.1152/jn.00431.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10−5 and 10−4 M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10−5 M OA increased synaptically driven contractions by ∼1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.
Collapse
Affiliation(s)
- Kiel G. Ormerod
- Department of Biological Sciences, Brock University, Saint Catharines, Ontario, Canada; and
| | - Julia K. Hadden
- Department of Neuroscience, Western New England University, Springfield, Massachusetts
| | - Lylah D. Deady
- Department of Neuroscience, Western New England University, Springfield, Massachusetts
| | - A. Joffre Mercier
- Department of Biological Sciences, Brock University, Saint Catharines, Ontario, Canada; and
| | - Jacob L. Krans
- Department of Neuroscience, Western New England University, Springfield, Massachusetts
| |
Collapse
|
169
|
Koyama T, Mendes CC, Mirth CK. Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Front Physiol 2013; 4:263. [PMID: 24133450 PMCID: PMC3783933 DOI: 10.3389/fphys.2013.00263] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/06/2013] [Indexed: 12/25/2022] Open
Abstract
Nutrition, via the insulin/insulin-like growth factor (IIS)/Target of Rapamycin (TOR) signaling pathway, can provide a strong molding force for determining animal size and shape. For instance, nutrition induces a disproportionate increase in the size of male horns in dung and rhinoceros beetles, or mandibles in staghorn or horned flour beetles, relative to body size. In these species, well-fed male larvae produce adults with greatly enlarged horns or mandibles, whereas males that are starved or poorly fed as larvae bear much more modest appendages. Changes in IIS/TOR signaling plays a key role in appendage development by regulating growth in the horn and mandible primordia. In contrast, changes in the IIS/TOR pathway produce minimal effects on the size of other adult structures, such as the male genitalia in fruit flies and dung beetles. The horn, mandible and genitalia illustrate that although all tissues are exposed to the same hormonal environment within the larval body, the extent to which insulin can induce growth is organ specific. In addition, the IIS/TOR pathway affects body size and shape by controlling production of metamorphic hormones important for regulating developmental timing, like the steroid molting hormone ecdysone and sesquiterpenoid hormone juvenile hormone. In this review, we discuss recent results from Drosophila and other insects that highlight mechanisms allowing tissues to differ in their sensitivity to IIS/TOR and the potential consequences of these differences on body size and shape.
Collapse
Affiliation(s)
- Takashi Koyama
- Development, Evolution and the Environment Laboratory, Instituto Gulbenkian de Ciência Oeiras, Portugal
| | | | | |
Collapse
|
170
|
Establishment of a versatile cell line for juvenile hormone signaling analysis in Tribolium castaneum. Sci Rep 2013; 3:1570. [PMID: 23535851 PMCID: PMC3610134 DOI: 10.1038/srep01570] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/13/2013] [Indexed: 11/09/2022] Open
Abstract
The red flour beetle, Tribolium castaneum, has been widely used as a laboratory model for analyzing gene function. In this study, we established a novel cell line (Tc81) from T. castaneum embryos and validated the utility of this cell line by analyzing the juvenile hormone (JH) signaling pathway. In Tc81 cells, the Krüppel homolog 1 gene (Kr-h1), which is a JH-dependent repressor of insect metamorphosis, was rapidly induced by subnanomolar levels of JHs. Bioinformatics analysis and reporter assays identified 2 JH response elements (kJHREs) located in the region upstream of the transcription start site and in the first intron of Kr-h1. Furthermore, methoprene tolerant (Met) and steroid receptor co-activator (SRC) RNAi reduced JH-dependent induction of Kr-h1 transcripts and kJHRE-reporter activities. Thus, this novel Tc81 cell line is useful for the elucidation of JH signaling and is a promising tool for the functional analysis of genes by RNAi and reporter assays.
Collapse
|
171
|
Baumann AA, Benoit JB, Michalkova V, Mireji P, Attardo GM, Moulton JK, Wilson TG, Aksoy S. Juvenile hormone and insulin suppress lipolysis between periods of lactation during tsetse fly pregnancy. Mol Cell Endocrinol 2013; 372:30-41. [PMID: 23499946 PMCID: PMC4222070 DOI: 10.1016/j.mce.2013.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/30/2013] [Accepted: 02/26/2013] [Indexed: 11/30/2022]
Abstract
Tsetse flies are viviparous insects that nurture a single intrauterine progeny per gonotrophic cycle. The developing larva is nourished by the lipid-rich, milk-like secretions from a modified female accessory gland (milk gland). An essential feature of the lactation process involves lipid mobilization for incorporation into the milk. In this study, we examined roles for juvenile hormone (JH) and insulin/IGF-like (IIS) signaling pathways during tsetse pregnancy. In particular, we examined the roles for these pathways in regulating lipid homeostasis during transitions between non-lactating (dry) and lactating periods. The dry period occurs over the course of oogenesis and embryogenesis, while the lactation period spans intrauterine larvigenesis. Genes involved in the JH and IIS pathways were upregulated during dry periods, correlating with lipid accumulation between bouts of lactation. RNAi suppression of Forkhead Box Sub Group O (FOXO) expression impaired lipolysis during tsetse lactation and reduced fecundity. Similar reduction of the JH receptor Methoprene tolerant (Met), but not its paralog germ cell expressed (gce), reduced lipid accumulation during dry periods, indicating functional divergence between Met and gce during tsetse reproduction. Reduced lipid levels following Met knockdown led to impaired fecundity due to inadequate fat reserves at the initiation of milk production. Both the application of the JH analog (JHA) methoprene and injection of insulin into lactating females increased stored lipids by suppressing lipolysis and reduced transcripts of lactation-specific genes, leading to elevated rates of larval abortion. To our knowledge, this study is the first to address the molecular physiology of JH and IIS in a viviparous insect, and specifically to provide a role for JH signaling through Met in the regulation of lipid metabolism during insect lactation.
Collapse
Affiliation(s)
- Aaron A. Baumann
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT 06520
- Author for correspondence:
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT 06520
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Paul Mireji
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT 06520
| | - John K. Moulton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville TN
| | - Thomas G. Wilson
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT 06520
| |
Collapse
|
172
|
El-Shesheny I, Hajeri S, El-Hawary I, Gowda S, Killiny N. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. PLoS One 2013; 8:e65392. [PMID: 23734251 PMCID: PMC3667074 DOI: 10.1371/journal.pone.0065392] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022] Open
Abstract
Huanglongbing (HLB) causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP), the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas), the causal agent of HLB. Silencing genes by RNA interference (RNAi) is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd) gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th)) of the nymphal stage. Micro-application (topical application) of dsRNA to 5(th) instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.
Collapse
Affiliation(s)
- Ibrahim El-Shesheny
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Subhas Hajeri
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Ibrahim El-Hawary
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Siddarame Gowda
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Nabil Killiny
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
173
|
Andruszewska G, Ożyhar A, Kochman M, Schmidt M. Different pattern of Galleria mellonella jhbp gene expression in high five and Sf9 cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:141-157. [PMID: 23334896 DOI: 10.1002/arch.21081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Juvenile hormone binding protein (JHBP) is the key element of the system that transmits hormone signals to target tissues. Recently, we found that the core promoter of the jhbp gene is strongly under the control of the TATA box and the transcription start site. In this report, we have shown that the jhbp promoter contains distal regulatory elements whose functionality clearly depends on the particular cell environment and that the scope of research from one cell line is insufficient to generalize the conclusions of the analysis. Cf1/Usp (where Usp is ultraspiracle protein previously known as Cf1, chorion factor 1) elements suppressed transcription of the reporter gene in the High Five cell line but not in the Sf9 cell line. However, upstream from all three Cf1/Usp elements there is a DNA sequence, containing the Zeste element, which activates jhbp in both systems. We found that juvenile hormone strongly inhibited the activity of the jhbp promoter in the Sf9 cell line, whereas it did not have an effect in the High Five cell line. A second key hormone that controls insect development--20-hydroxyecdysone, was also found to suppress the transcription of jhbp. This is the first report describing how these two hormones affect jhbp gene expression in different cell lines.
Collapse
Affiliation(s)
- Grażyna Andruszewska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego, Wrocław, Poland
| | | | | | | |
Collapse
|
174
|
Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc Natl Acad Sci U S A 2013; 110:4416-21. [PMID: 23442387 DOI: 10.1073/pnas.1217060110] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In temperate regions, the shortening day length informs many insect species to prepare for winter by inducing diapause. The adult diapause of the linden bug, Pyrrhocoris apterus, involves a reproductive arrest accompanied by energy storage, reduction of metabolic needs, and preparation to withstand low temperatures. By contrast, nondiapause animals direct nutrient energy to muscle activity and reproduction. The photoperiod-dependent switch from diapause to reproduction is systemically transmitted throughout the organism by juvenile hormone (JH). Here, we show that, at the organ-autonomous level of the insect gut, the decision between reproduction and diapause relies on an interaction between JH signaling and circadian clock genes acting independently of the daily cycle. The JH receptor Methoprene-tolerant and the circadian proteins Clock and Cycle are all required in the gut to activate the Par domain protein 1 gene during reproduction and to simultaneously suppress a mammalian-type cryptochrome 2 gene that promotes the diapause program. A nonperiodic, organ-autonomous feedback between Par domain protein 1 and Cryptochrome 2 then orchestrates expression of downstream genes that mark the diapause vs. reproductive states of the gut. These results show that hormonal signaling through Methoprene-tolerant and circadian proteins controls gut-specific gene activity that is independent of circadian oscillations but differs between reproductive and diapausing animals.
Collapse
|
175
|
Huang JH, Lozano J, Belles X. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim Biophys Acta Gen Subj 2013; 1830:2178-87. [DOI: 10.1016/j.bbagen.2012.09.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 01/02/2023]
|
176
|
Matsui H, Kakei M, Iwami M, Sakurai S. Hormonal regulation of the death commitment in programmed cell death of the silkworm anterior silk glands. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1575-1581. [PMID: 23063728 DOI: 10.1016/j.jinsphys.2012.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 06/01/2023]
Abstract
During larval-pupal transformation, the anterior silk glands (ASGs) of the silkworm Bombyx mori undergo programmed cell death (PCD) triggered by 20-hydroxyecdysone (20E). Under standard in vitro culture conditions (0.3 ml of medium with 1 μM 20E), ASGs of the fourth-instar larvae do not undergo PCD in response to 20E. Similarly, larvae of the fifth instar do not respond to 20E through day 5 of the instar (V5). However, ASGs of V6 die when challenged by 20E, indicating that the glands might be destined to die before V6 but that a death commitment is not yet present. When we increased the volume of culture medium for one gland from 0.3 to 9 ml, V5 ASGs underwent PCD. We examined the response of ASGs to 20E every day by culturing them in 9 ml of medium and found that ASGs on and after V2 were fully responsive to 20E. Because pupal commitment is associated with juvenile hormone (JH), the corpora allata (a JH secretory organ) were removed on day 3 of the fourth larval instar (IV3), and their ASGs on V0 were cultured with 20E. Removal of the corpora allata allowed the V0 larval ASGs to respond to 20E with PCD. In contrast, topical application of a JH analogue inhibited the response to 20E when applied on or before V5. We conclude that the acquisition of responsiveness to 20E precedes the loss of JH sensitivity, and that the death commitment in ASGs occurs between V5 and 6.
Collapse
Affiliation(s)
- Hiroto Matsui
- Division of Biological Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
177
|
Riddiford LM. How does juvenile hormone control insect metamorphosis and reproduction? Gen Comp Endocrinol 2012; 179:477-84. [PMID: 22728566 DOI: 10.1016/j.ygcen.2012.06.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/22/2012] [Accepted: 06/01/2012] [Indexed: 01/08/2023]
Abstract
In insects juvenile hormone (JH) regulates both metamorphosis and reproduction. This lecture focuses on our current understanding of JH action at the molecular level in both of these processes based primarily on studies in the tobacco hornworm Manduca sexta, the flour beetle Tribolium castaneum, the mosquito Aedes aegypti, and the fruit fly Drosophila melanogaster. The roles of the JH receptor complex and the transcription factors that it regulates during larval molting and metamorphosis are summarized. Also highlighted are the intriguing interactions of the JH and insulin signaling pathways in both imaginal disc development and vitellogenesis. Critical actions of JH and its receptor in the timing of maturation of the adult optic lobe and of female receptivity in Drosophila are also discussed.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
178
|
Jindra M, Palli SR, Riddiford LM. The juvenile hormone signaling pathway in insect development. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:181-204. [PMID: 22994547 DOI: 10.1146/annurev-ento-120811-153700] [Citation(s) in RCA: 577] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The molecular action of juvenile hormone (JH), a regulator of vital importance to insects, was until recently regarded as a mystery. The past few years have seen an explosion of studies of JH signaling, sparked by a finding that a JH-resistance gene, Methoprene-tolerant (Met), plays a critical role in insect metamorphosis. Here, we summarize the recently acquired knowledge on the capacity of Met to bind JH, which has been mapped to a particular ligand-binding domain, thus establishing this bHLH-PAS protein as a novel type of an intracellular hormone receptor. Next, we consider the significance of JH-dependent interactions of Met with other transcription factors and signaling pathways. We examine the regulation and biological roles of genes acting downstream of JH and Met in insect metamorphosis. Finally, we discuss the current gaps in our understanding of JH action and outline directions for future research.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | | | | |
Collapse
|
179
|
Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc Natl Acad Sci U S A 2012; 109:11729-34. [PMID: 22753472 DOI: 10.1073/pnas.1204951109] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Krüppel homolog 1 gene (Kr-h1) has been proposed to play a key role in the repression of insect metamorphosis. Kr-h1 is assumed to be induced by juvenile hormone (JH) via a JH receptor, methoprene-tolerant (Met), but the mechanism of induction is unclear. To elucidate the molecular mechanism of Kr-h1 induction, we first cloned cDNAs encoding Kr-h1 (BmKr-h1) and Met (BmMet1 and BmMet2) homologs from Bombyx mori. In a B. mori cell line, BmKr-h1 was rapidly induced by subnanomolar levels of natural JHs. Reporter assays identified a JH response element (kJHRE), comprising 141 nucleotides, located ∼2 kb upstream from the BmKr-h1 transcription start site. The core region of kJHRE (GGCCTCCACGTG) contains a canonical E-box sequence to which Met, a basic helix-loop-helix Per-ARNT-Sim (bHLH-PAS) transcription factor, is likely to bind. In mammalian HEK293 cells, which lack an intrinsic JH receptor, ectopic expression of BmMet2 fused with Gal4DBD induced JH-dependent activity of an upstream activation sequence reporter. Meanwhile, the kJHRE reporter was activated JH-dependently in HEK293 cells only when cotransfected with BmMet2 and BmSRC, another bHLH-PAS family member, suggesting that BmMet2 and BmSRC jointly interact with kJHRE. We also found that the interaction between BmMet2 and BmSRC is dependent on JH. Therefore, we propose the following hypothesis for the mechanism of JH-mediated induction of BmKr-h1: BmMet2 accepts JH as a ligand, JH-liganded BmMet2 interacts with BmSRC, and the JH/BmMet2/BmSRC complex activates BmKr-h1 by interacting with kJHRE.
Collapse
|
180
|
Bernardo TJ, Dubrovsky EB. Molecular Mechanisms of Transcription Activation by Juvenile Hormone: A Critical Role for bHLH-PAS and Nuclear Receptor Proteins. INSECTS 2012; 3:324-38. [PMID: 26467963 PMCID: PMC4553631 DOI: 10.3390/insects3010324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 11/16/2022]
Abstract
Juvenile hormone (JH) is responsible for controlling many biological processes. In several insect species JH has been implicated as a key regulator of developmental timing, preventing the premature onset of metamorphosis during larval growth periods. However, the molecular basis of JH action is not well-understood. In this review, we highlight recent advances which demonstrate the importance of transcription factors from the bHLH-PAS and nuclear receptor families in mediating the response to JH.
Collapse
Affiliation(s)
| | - Edward B Dubrovsky
- Department of Biology, Fordham University, Bronx, NY 10458, USA.
- Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Bronx, NY 10458, USA.
| |
Collapse
|
181
|
Affiliation(s)
- René Feyereisen
- INRA-CNRS-Université de Nice Sophia Antipolis, Sophia Antipolis, France.
| | | |
Collapse
|
182
|
Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc Natl Acad Sci U S A 2011; 108:21128-33. [PMID: 22167806 DOI: 10.1073/pnas.1116123109] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Juvenile hormone (JH) is a sesquiterpenoid of vital importance for insect development, yet the molecular basis of JH signaling remains obscure, mainly because a bona fide JH receptor has not been identified. Mounting evidence points to the basic helix-loop-helix (bHLH)/Per-Arnt-Sim (PAS) domain protein Methoprene-tolerant (Met) as the best JH receptor candidate. However, details of how Met transduces the hormonal signal are missing. Here, we demonstrate that Met specifically binds JH III and its biologically active mimics, methoprene and pyriproxyfen, through its C-terminal PAS domain. Substitution of individual amino acids, predicted to form a ligand-binding pocket, with residues possessing bulkier side chains reduces JH III binding likely because of steric hindrance. Although a mutation that abolishes JH III binding does not affect a Met-Met complex that forms in the absence of methoprene, it prevents both the ligand-dependent dissociation of the Met-Met dimer and the ligand-dependent interaction of Met with its partner bHLH-PAS protein Taiman. These results show that Met can sense the JH signal through direct, specific binding, thus establishing a unique class of intracellular hormone receptors.
Collapse
|