151
|
Munjral S, Maindarkar M, Ahluwalia P, Puvvula A, Jamthikar A, Jujaray T, Suri N, Paul S, Pathak R, Saba L, Chalakkal RJ, Gupta S, Faa G, Singh IM, Chadha PS, Turk M, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji J, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Viswanathan V, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Fouda MM, Suri JS. Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review. Diagnostics (Basel) 2022; 12:1234. [PMID: 35626389 PMCID: PMC9140106 DOI: 10.3390/diagnostics12051234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.
Collapse
Affiliation(s)
- Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India;
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Ankush Jamthikar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Tanay Jujaray
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95616, USA
| | - Neha Suri
- Mira Loma High School, Sacramento, CA 95821, USA;
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India;
| | - Rajesh Pathak
- Department of Computer Science Engineering, Rawatpura Sarkar University, Raipur 492015, India;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy; (L.S.); (A.B.)
| | | | - Suneet Gupta
- CSE Department, Bennett University, Greater Noida 201310, India;
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Paramjit S. Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India; (N.N.K.); (A.S.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA;
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece; (D.W.S.); (P.P.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy; (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece; (D.W.S.); (P.P.S.)
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Columbus, OH 43214, USA;
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India; (N.N.K.); (A.S.)
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA;
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor MVD Research Centre, Chennai 600013, India;
| | | | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| |
Collapse
|
152
|
Exploration of Black Boxes of Supervised Machine Learning Models: A Demonstration on Development of Predictive Heart Risk Score. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5475313. [PMID: 35602638 PMCID: PMC9119773 DOI: 10.1155/2022/5475313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
Machine learning (ML) often provides applicable high-performance models to facilitate decision-makers in various fields. However, this high performance is achieved at the expense of the interpretability of these models, which has been criticized by practitioners and has become a significant hindrance in their application. Therefore, in highly sensitive decisions, black boxes of ML models are not recommended. We proposed a novel methodology that uses complex supervised ML models and transforms them into simple, interpretable, transparent statistical models. This methodology is like stacking ensemble ML in which the best ML models are used as a base learner to compute relative feature weights. The index of these weights is further used as a single covariate in the simple logistic regression model to estimate the likelihood of an event. We tested this methodology on the primary dataset related to cardiovascular diseases (CVDs), the leading cause of mortalities in recent times. Therefore, early risk assessment is an important dimension that can potentially reduce the burden of CVDs and their related mortality through accurate but interpretable risk prediction models. We developed an artificial neural network and support vector machines based on ML models and transformed them into a simple statistical model and heart risk scores. These simplified models were found transparent, reliable, valid, interpretable, and approximate in predictions. The findings of this study suggest that complex supervised ML models can be efficiently transformed into simple statistical models that can also be validated.
Collapse
|
153
|
Battineni G, Hossain MA, Chintalapudi N, Amenta F. A Survey on the Role of Artificial Intelligence in Biobanking Studies: A Systematic Review. Diagnostics (Basel) 2022; 12:1179. [PMID: 35626333 PMCID: PMC9140088 DOI: 10.3390/diagnostics12051179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: In biobanks, participants' biological samples are stored for future research. The application of artificial intelligence (AI) involves the analysis of data and the prediction of any pathological outcomes. In AI, models are used to diagnose diseases as well as classify and predict disease risks. Our research analyzed AI's role in the development of biobanks in the healthcare industry, systematically. Methods: The literature search was conducted using three digital reference databases, namely PubMed, CINAHL, and WoS. Guidelines for preferred reporting elements for systematic reviews and meta-analyses (PRISMA)-2020 in conducting the systematic review were followed. The search terms included "biobanks", "AI", "machine learning", and "deep learning", as well as combinations such as "biobanks with AI", "deep learning in the biobanking field", and "recent advances in biobanking". Only English-language papers were included in the study, and to assess the quality of selected works, the Newcastle-Ottawa scale (NOS) was used. The good quality range (NOS ≥ 7) is only considered for further review. Results: A literature analysis of the above entries resulted in 239 studies. Based on their relevance to the study's goal, research characteristics, and NOS criteria, we included 18 articles for reviewing. In the last decade, biobanks and artificial intelligence have had a relatively large impact on the medical system. Interestingly, UK biobanks account for the highest percentage of high-quality works, followed by Qatar, South Korea, Singapore, Japan, and Denmark. Conclusions: Translational bioinformatics probably represent a future leader in precision medicine. AI and machine learning applications to biobanking research may contribute to the development of biobanks for the utility of health services and citizens.
Collapse
Affiliation(s)
- Gopi Battineni
- Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (M.A.H.); (N.C.); (F.A.)
| | | | | | | |
Collapse
|
154
|
Fahmy AS, Csecs I, Arafati A, Assana S, Yankama TT, Al-Otaibi T, Rodriguez J, Chen YY, Ngo LH, Manning WJ, Kwong RY, Nezafat R. An Explainable Machine Learning Approach Reveals Prognostic Significance of Right Ventricular Dysfunction in Nonischemic Cardiomyopathy. JACC Cardiovasc Imaging 2022; 15:766-779. [PMID: 35033500 DOI: 10.1016/j.jcmg.2021.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The authors implemented an explainable machine learning (ML) model to gain insight into the association between cardiac magnetic resonance markers and adverse outcomes of cardiovascular hospitalization and all-cause death (composite endpoint) in patients with nonischemic dilated cardiomyopathy (NICM). BACKGROUND Risk stratification of patients with NICM remains challenging. An explainable ML model has the potential to provide insight into the contributions of different risk markers in the prediction model. METHODS An explainable ML model based on extreme gradient boosting (XGBoost) machines was developed using cardiac magnetic resonance and clinical parameters. The study cohorts consist of patients with NICM from 2 academic medical centers: Beth Israel Deaconess Medical Center (BIDMC) and Brigham and Women's Hospital (BWH), with 328 and 214 patients, respectively. XGBoost was trained on 70% of patients from the BIDMC cohort and evaluated based on the other 30% as internal validation. The model was externally validated using the BWH cohort. To investigate the contribution of different features in our risk prediction model, we used Shapley additive explanations (SHAP) analysis. RESULTS During a mean follow-up duration of 40 months, 34 patients from BIDMC and 33 patients from BWH experienced the composite endpoint. The area under the curve for predicting the composite endpoint was 0.71 for the internal BIDMC validation and 0.69 for the BWH cohort. SHAP analysis identified parameters associated with right ventricular (RV) dysfunction and remodeling as primary markers of adverse outcomes. High risk thresholds were identified by SHAP analysis and thus provided thresholds for top predictive continuous clinical variables. CONCLUSIONS An explainable ML-based risk prediction model has the potential to identify patients with NICM at risk for cardiovascular hospitalization and all-cause death. RV ejection fraction, end-systolic and end-diastolic volumes (as indicators of RV dysfunction and remodeling) were determined to be major risk markers.
Collapse
Affiliation(s)
- Ahmed S Fahmy
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Ibolya Csecs
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arghavan Arafati
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Salah Assana
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Tuyen T Yankama
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Talal Al-Otaibi
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Rodriguez
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Yun Chen
- Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Long H Ngo
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Warren J Manning
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Raymond Y Kwong
- Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Reza Nezafat
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
155
|
Predictive Classifier for Cardiovascular Disease Based on Stacking Model Fusion. Processes (Basel) 2022. [DOI: 10.3390/pr10040749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The etiology of cardiovascular disease is still an unsolved world problem, and high morbidity, disability, and mortality are the main characteristics of cardiovascular diseases. There is, therefore, a need for effective and rapid early prediction of likely outcomes in patients with cardiovascular disease using artificial intelligence (AI) techniques. The Internet of Things (IoT) is becoming a catalyst for enhancing the capabilities of AI applications. Data are collected through IoT sensors and analyzed and predicted using machine learning (ML). Existing traditional ML models do not handle data inequities well and have relatively low model prediction accuracy. To address this problem, considering the data observation mechanism and training methods of different algorithms, this paper proposes an ensemble framework based on stacking model fusion, from Support Vector Machines (SVM), K-Nearest Neighbor (KNN), Logistic Regression (LR), Random Forest (RF), Extra Tree (ET), Gradient Boosting Decision Tree (GBDT), XGBoost, LightGBM, CatBoost, and Multilayer Perceptron (MLP) (10 classifiers to select the optimal base learners). In order to avoid the overfitting phenomenon generated by the base learners, we use the Logistic Regression (LR) simple linear classifier as the meta learner. We validated the proposed algorithm using a fused Heart Dataset from several UCI machine learning repositories and another publicly available Heart Attack Dataset, and compared it with 10 single classifier models. The experimental results show that the proposed stacking classifier outperforms other classifiers in terms of accuracy and applicability.
Collapse
|
156
|
Vilne B, Ķibilds J, Siksna I, Lazda I, Valciņa O, Krūmiņa A. Could Artificial Intelligence/Machine Learning and Inclusion of Diet-Gut Microbiome Interactions Improve Disease Risk Prediction? Case Study: Coronary Artery Disease. Front Microbiol 2022; 13:627892. [PMID: 35479632 PMCID: PMC9036178 DOI: 10.3389/fmicb.2022.627892] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and the main leading cause of morbidity and mortality worldwide, posing a huge socio-economic burden to the society and health systems. Therefore, timely and precise identification of people at high risk of CAD is urgently required. Most current CAD risk prediction approaches are based on a small number of traditional risk factors (age, sex, diabetes, LDL and HDL cholesterol, smoking, systolic blood pressure) and are incompletely predictive across all patient groups, as CAD is a multi-factorial disease with complex etiology, considered to be driven by both genetic, as well as numerous environmental/lifestyle factors. Diet is one of the modifiable factors for improving lifestyle and disease prevention. However, the current rise in obesity, type 2 diabetes (T2D) and CVD/CAD indicates that the “one-size-fits-all” approach may not be efficient, due to significant variation in inter-individual responses. Recently, the gut microbiome has emerged as a potential and previously under-explored contributor to these variations. Hence, efficient integration of dietary and gut microbiome information alongside with genetic variations and clinical data holds a great promise to improve CAD risk prediction. Nevertheless, the highly complex nature of meals combined with the huge inter-individual variability of the gut microbiome poses several Big Data analytics challenges in modeling diet-gut microbiota interactions and integrating these within CAD risk prediction approaches for the development of personalized decision support systems (DSS). In this regard, the recent re-emergence of Artificial Intelligence (AI) / Machine Learning (ML) is opening intriguing perspectives, as these approaches are able to capture large and complex matrices of data, incorporating their interactions and identifying both linear and non-linear relationships. In this Mini-Review, we consider (1) the most used AI/ML approaches and their different use cases for CAD risk prediction (2) modeling of the content, choice and impact of dietary factors on CAD risk; (3) classification of individuals by their gut microbiome composition into CAD cases vs. controls and (4) modeling of the diet-gut microbiome interactions and their impact on CAD risk. Finally, we provide an outlook for putting it all together for improved CAD risk predictions.
Collapse
Affiliation(s)
- Baiba Vilne
- Bioinformatics Lab, Riga Stradins University, Riga, Latvia
- COST Action CA18131 - Statistical and Machine Learning Techniques in Human Microbiome Studies, Brussels, Belgium
- *Correspondence: Baiba Vilne
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Inese Siksna
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Ilva Lazda
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Olga Valciņa
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Angelika Krūmiņa
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
- Department of Infectology and Dermatology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
157
|
Petrazzini BO, Chaudhary K, Márquez-Luna C, Forrest IS, Rocheleau G, Cho J, Narula J, Nadkarni G, Do R. Coronary Risk Estimation Based on Clinical Data in Electronic Health Records. J Am Coll Cardiol 2022; 79:1155-1166. [PMID: 35331410 PMCID: PMC8956801 DOI: 10.1016/j.jacc.2022.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/05/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Clinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. OBJECTIVES The purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD. METHODS We applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (BioMe) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation. RESULTS Compared with the PCE, the EHR score improved CAD prediction by 12% in the BioMe Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score. CONCLUSIONS The EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems.
Collapse
Affiliation(s)
- Ben O Petrazzini
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA. https://twitter.com/OmegaPetrazzini
| | - Kumardeep Chaudhary
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carla Márquez-Luna
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Iain S Forrest
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ghislain Rocheleau
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Judy Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jagat Narula
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Girish Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
158
|
Nwegbu N, Tirunagari S, Windridge D. A novel kernel based approach to arbitrary length symbolic data with application to type 2 diabetes risk. Sci Rep 2022; 12:4985. [PMID: 35322076 PMCID: PMC8943170 DOI: 10.1038/s41598-022-08757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/07/2022] [Indexed: 11/08/2022] Open
Abstract
Predictive modeling of clinical data is fraught with challenges arising from the manner in which events are recorded. Patients typically fall ill at irregular intervals and experience dissimilar intervention trajectories. This results in irregularly sampled and uneven length data which poses a problem for standard multivariate tools. The alternative of feature extraction into equal-length vectors via methods like Bag-of-Words (BoW) potentially discards useful information. We propose an approach based on a kernel framework in which data is maintained in its native form: discrete sequences of symbols. Kernel functions derived from the edit distance between pairs of sequences may then be utilized in conjunction with support vector machines to classify the data. Our method is evaluated in the context of the prediction task of determining patients likely to develop type 2 diabetes following an earlier episode of elevated blood pressure of 130/80 mmHg. Kernels combined via multi kernel learning achieved an F1-score of 0.96, outperforming classification with SVM 0.63, logistic regression 0.63, Long Short Term Memory 0.61 and Multi-Layer Perceptron 0.54 applied to a BoW representation of the data. We achieved an F1-score of 0.97 on MKL on external dataset. The proposed approach is consequently able to overcome limitations associated with feature-based classification in the context of clinical data.
Collapse
Affiliation(s)
- Nnanyelugo Nwegbu
- Department of Computer Science, School of Science and Technology, Middlesex University, London, NW4 4BT, UK.
| | - Santosh Tirunagari
- Department of Computer Science, School of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - David Windridge
- Department of Computer Science, School of Science and Technology, Middlesex University, London, NW4 4BT, UK
- Centre for Vision Speech and Signal Processing Alan Turing Building (BB), University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
159
|
Suri JS, Bhagawati M, Paul S, Protogerou AD, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S, Faa G, Laird JR, Johri AM, Kalra MK, Paraskevas KI, Saba L. A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review. Diagnostics (Basel) 2022; 12:722. [PMID: 35328275 PMCID: PMC8947682 DOI: 10.3390/diagnostics12030722] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Athanasios D. Protogerou
- Research Unit Clinic, Laboratory of Pathophysiology, Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 11527 Athens, Greece;
| | - George D. Kitas
- Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester 46962, UK;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110020, India;
| | - Zoltan Ruzsa
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary;
| | - Aditya M. Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhubaneswar 751003, India;
| | - Gavino Faa
- Department of Pathology, A.O.U., di Cagliari-Polo di Monserrato s.s., 09045 Cagliari, Italy;
| | - John R. Laird
- Cardiology Department, St. Helena Hospital, St. Helena, CA 94574, USA;
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, N. Iraklio, 14122 Athens, Greece;
| | - Luca Saba
- Department of Radiology, A.O.U., di Cagliari-Polo di Monserrato s.s., 09045 Cagliari, Italy;
| |
Collapse
|
160
|
Corianò M, Tona F. Strategies for Sudden Cardiac Death Prevention. Biomedicines 2022; 10:639. [PMID: 35327441 PMCID: PMC8944952 DOI: 10.3390/biomedicines10030639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
Sudden cardiac death (SCD) represents a major challenge in modern medicine. The prevention of SCD orbits on two levels, the general population level and individual level. Much research has been done with the aim to improve risk stratification of SCD, although no radical changes in evidence and in therapeutic strategy have been achieved. Artificial intelligence (AI), and in particular machine learning (ML) models, represent novel technologic tools that promise to improve predictive ability of fatal arrhythmic events. In this review, firstly, we analyzed the electrophysiological basis and the major clues of SCD prevention at population and individual level; secondly, we reviewed the main research where ML models were used for risk stratification in other field of cardiology, suggesting its potentiality in the field of SCD prevention.
Collapse
Affiliation(s)
| | - Francesco Tona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy;
| |
Collapse
|
161
|
Epidemiological predictive modeling: lessons learned from the Kuopio Ischemic Heart Disease Risk Factor Study. Ann Epidemiol 2022; 70:1-8. [DOI: 10.1016/j.annepidem.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/15/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022]
|
162
|
Adedinsewo DA, Pollak AW, Phillips SD, Smith TL, Svatikova A, Hayes SN, Mulvagh SL, Norris C, Roger VL, Noseworthy PA, Yao X, Carter RE. Cardiovascular Disease Screening in Women: Leveraging Artificial Intelligence and Digital Tools. Circ Res 2022; 130:673-690. [PMID: 35175849 PMCID: PMC8889564 DOI: 10.1161/circresaha.121.319876] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease remains the leading cause of death in women. Given accumulating evidence on sex- and gender-based differences in cardiovascular disease development and outcomes, the need for more effective approaches to screening for risk factors and phenotypes in women is ever urgent. Public health surveillance and health care delivery systems now continuously generate massive amounts of data that could be leveraged to enable both screening of cardiovascular risk and implementation of tailored preventive interventions across a woman's life span. However, health care providers, clinical guidelines committees, and health policy experts are not yet sufficiently equipped to optimize the collection of data on women, use or interpret these data, or develop approaches to targeting interventions. Therefore, we provide a broad overview of the key opportunities for cardiovascular screening in women while highlighting the potential applications of artificial intelligence along with digital technologies and tools.
Collapse
Affiliation(s)
- Demilade A. Adedinsewo
- Department of Cardiovascular Medicine (D.A.A., A.W.P., S.D.P.), Mayo Clinic, Jacksonville, FL
| | - Amy W. Pollak
- Department of Cardiovascular Medicine (D.A.A., A.W.P., S.D.P.), Mayo Clinic, Jacksonville, FL
| | - Sabrina D. Phillips
- Department of Cardiovascular Medicine (D.A.A., A.W.P., S.D.P.), Mayo Clinic, Jacksonville, FL
| | - Taryn L. Smith
- Division of General Internal Medicine (T.L.S.), Mayo Clinic, Jacksonville, FL
| | - Anna Svatikova
- Department of Cardiovascular Diseases (A.S.), Mayo Clinic, Phoenix, AZ
| | - Sharonne N. Hayes
- Department of Cardiovascular Medicine (S.N.H., S.L.M., V.L.R., P.A.N.), Mayo Clinic, Rochester, MN
| | - Sharon L. Mulvagh
- Department of Cardiovascular Medicine (S.N.H., S.L.M., V.L.R., P.A.N.), Mayo Clinic, Rochester, MN
- Division of Cardiology, Dalhousie University, Halifax, Nova Scotia, Canada (S.L.M.)
| | - Colleen Norris
- Cardiovascular Health and Stroke Strategic Clinical Network, Edmonton, Canada (C.N.)
| | - Veronique L. Roger
- Department of Cardiovascular Medicine (S.N.H., S.L.M., V.L.R., P.A.N.), Mayo Clinic, Rochester, MN
- Department of Quantitative Health Sciences (V.L.R.), Mayo Clinic, Rochester, MN
- Epidemiology and Community Health Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (V.L.R.)
| | - Peter A. Noseworthy
- Department of Cardiovascular Medicine (S.N.H., S.L.M., V.L.R., P.A.N.), Mayo Clinic, Rochester, MN
| | - Xiaoxi Yao
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery (X.Y.), Mayo Clinic, Rochester, MN
| | - Rickey E. Carter
- Department of Quantitative Health Sciences (R.E.C.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
163
|
Sung SF, Hsieh CY, Hu YH. Early Prediction of Functional Outcomes After Acute Ischemic Stroke Using Unstructured Clinical Text: Retrospective Cohort Study. JMIR Med Inform 2022; 10:e29806. [PMID: 35175201 PMCID: PMC8895286 DOI: 10.2196/29806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/17/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Background Several prognostic scores have been proposed to predict functional outcomes after an acute ischemic stroke (AIS). Most of these scores are based on structured information and have been used to develop prediction models via the logistic regression method. With the increased use of electronic health records and the progress in computational power, data-driven predictive modeling by using machine learning techniques is gaining popularity in clinical decision-making. Objective We aimed to investigate whether machine learning models created by using unstructured text could improve the prediction of functional outcomes at an early stage after AIS. Methods We identified all consecutive patients who were hospitalized for the first time for AIS from October 2007 to December 2019 by using a hospital stroke registry. The study population was randomly split into a training (n=2885) and test set (n=962). Free text in histories of present illness and computed tomography reports was transformed into input variables via natural language processing. Models were trained by using the extreme gradient boosting technique to predict a poor functional outcome at 90 days poststroke. Model performance on the test set was evaluated by using the area under the receiver operating characteristic curve (AUC). Results The AUCs of text-only models ranged from 0.768 to 0.807 and were comparable to that of the model using National Institutes of Health Stroke Scale (NIHSS) scores (0.811). Models using both patient age and text achieved AUCs of 0.823 and 0.825, which were similar to those of the model containing age and NIHSS scores (0.841); the model containing preadmission comorbidities, level of consciousness, age, and neurological deficit (PLAN) scores (0.837); and the model containing Acute Stroke Registry and Analysis of Lausanne (ASTRAL) scores (0.840). Adding variables from clinical text improved the predictive performance of the model containing age and NIHSS scores, the model containing PLAN scores, and the model containing ASTRAL scores (the AUC increased from 0.841 to 0.861, from 0.837 to 0.856, and from 0.840 to 0.860, respectively). Conclusions Unstructured clinical text can be used to improve the performance of existing models for predicting poststroke functional outcomes. However, considering the different terminologies that are used across health systems, each individual health system may consider using the proposed methods to develop and validate its own models.
Collapse
Affiliation(s)
- Sheng-Feng Sung
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan.,Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Cheng-Yang Hsieh
- Department of Neurology, Tainan Sin Lau Hospital, Tainan, Taiwan
| | - Ya-Han Hu
- Department of Information Management, National Central University, Taoyuan City, Taiwan
| |
Collapse
|
164
|
Artificial Intelligence and Cardiovascular Genetics. Life (Basel) 2022; 12:life12020279. [PMID: 35207566 PMCID: PMC8875522 DOI: 10.3390/life12020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polygenic diseases, which are genetic disorders caused by the combined action of multiple genes, pose unique and significant challenges for the diagnosis and management of affected patients. A major goal of cardiovascular medicine has been to understand how genetic variation leads to the clinical heterogeneity seen in polygenic cardiovascular diseases (CVDs). Recent advances and emerging technologies in artificial intelligence (AI), coupled with the ever-increasing availability of next generation sequencing (NGS) technologies, now provide researchers with unprecedented possibilities for dynamic and complex biological genomic analyses. Combining these technologies may lead to a deeper understanding of heterogeneous polygenic CVDs, better prognostic guidance, and, ultimately, greater personalized medicine. Advances will likely be achieved through increasingly frequent and robust genomic characterization of patients, as well the integration of genomic data with other clinical data, such as cardiac imaging, coronary angiography, and clinical biomarkers. This review discusses the current opportunities and limitations of genomics; provides a brief overview of AI; and identifies the current applications, limitations, and future directions of AI in genomics.
Collapse
|
165
|
Kesar A, Baluch A, Barber O, Hoffmann H, Jovanovic M, Renz D, Stopak BL, Wicks P, Gilbert S. Actionable absolute risk prediction of atherosclerotic cardiovascular disease based on the UK Biobank. PLoS One 2022; 17:e0263940. [PMID: 35148360 PMCID: PMC8836294 DOI: 10.1371/journal.pone.0263940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the primary cause of all death globally. Timely and accurate identification of people at risk of developing an atherosclerotic CVD and its sequelae is a central pillar of preventive cardiology. One widely used approach is risk prediction models; however, currently available models consider only a limited set of risk factors and outcomes, yield no actionable advice to individuals based on their holistic medical state and lifestyle, are often not interpretable, were built with small cohort sizes or are based on lifestyle data from the 1960s, e.g. the Framingham model. The risk of developing atherosclerotic CVDs is heavily lifestyle dependent, potentially making many occurrences preventable. Providing actionable and accurate risk prediction tools to the public could assist in atherosclerotic CVD prevention. Accordingly, we developed a benchmarking pipeline to find the best set of data preprocessing and algorithms to predict absolute 10-year atherosclerotic CVD risk. Based on the data of 464,547 UK Biobank participants without atherosclerotic CVD at baseline, we used a comprehensive set of 203 consolidated risk factors associated with atherosclerosis and its sequelae (e.g. heart failure). Our two best performing absolute atherosclerotic risk prediction models provided higher performance, (AUROC: 0.7573, 95% CI: 0.755-0.7595) and (AUROC: 0.7544, 95% CI: 0.7522-0.7567), than Framingham (AUROC: 0.680, 95% CI: 0.6775-0.6824) and QRisk3 (AUROC: 0.725, 95% CI: 0.7226-0.7273). Using a subset of 25 risk factors identified with feature selection, our reduced model achieves similar performance (AUROC 0.7415, 95% CI: 0.7392-0.7438) while being less complex. Further, it is interpretable, actionable and highly generalizable. The model could be incorporated into clinical practice and might allow continuous personalized predictions with automated intervention suggestions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Stephen Gilbert
- Ada Health GmbH, Berlin, Germany
- EKFZ for Digital Health, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
166
|
Machine learning-based diagnosis and risk factor analysis of cardiocerebrovascular disease based on KNHANES. Sci Rep 2022; 12:2250. [PMID: 35145205 PMCID: PMC8831514 DOI: 10.1038/s41598-022-06333-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
The prevalence of cardiocerebrovascular disease (CVD) is continuously increasing, and it is the leading cause of human death. Since it is difficult for physicians to screen thousands of people, high-accuracy and interpretable methods need to be presented. We developed four machine learning-based CVD classifiers (i.e., multi-layer perceptron, support vector machine, random forest, and light gradient boosting) based on the Korea National Health and Nutrition Examination Survey. We resampled and rebalanced KNHANES data using complex sampling weights such that the rebalanced dataset mimics a uniformly sampled dataset from overall population. For clear risk factor analysis, we removed multicollinearity and CVD-irrelevant variables using VIF-based filtering and the Boruta algorithm. We applied synthetic minority oversampling technique and random undersampling before ML training. We demonstrated that the proposed classifiers achieved excellent performance with AUCs over 0.853. Using Shapley value-based risk factor analysis, we identified that the most significant risk factors of CVD were age, sex, and the prevalence of hypertension. Additionally, we identified that age, hypertension, and BMI were positively correlated with CVD prevalence, while sex (female), alcohol consumption and, monthly income were negative. The results showed that the feature selection and the class balancing technique effectively improve the interpretability of models.
Collapse
|
167
|
Kulm S, Kofman L, Mezey J, Elemento O. Simple Linear Cancer Risk Prediction Models With Novel Features Outperform Complex Approaches. JCO Clin Cancer Inform 2022; 6:e2100166. [PMID: 35239414 PMCID: PMC8920463 DOI: 10.1200/cci.21.00166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The ability to accurately predict an individual's risk for cancer is critical to the implementation of precision prevention measures. Current cancer risk predictions are frequently made with simple models that use a few proven risk factors, such as the Gail model for breast cancer, which are easy to interpret, but may theoretically be less accurate than advanced machine learning (ML) models. METHODS With the UK Biobank, a large prospective study, we developed models that predicted 13 cancer diagnoses within a 10-year time span. ML and linear models fit with all features, linear models fit with 10 features, and externally developed QCancer models, which are available to more than 4,000 general practices, were assessed. RESULTS The average area under the receiver operator curve (AUC) of the linear models (0.722, SE = 0.015) was greater than the average AUC of the ML models (0.720, SE = 0.016) when all 931 features were used. Linear models with only 10 features generated an average AUC of 0.706 (SE 0.015), which was comparable to the complex models using all features and greater than the average AUC of the QCancer models (0.684, SE 0.021). The high performance of the 10-feature linear model may be caused by the consideration of often omitted feature types, including census records and genetic information. CONCLUSION The high performance of the 10-feature linear models indicate that unbiased selection of diverse features, not ML models, may lead to impressively accurate predictions, possibly enabling personalized screening schedules that increase cancer survival.
Collapse
Affiliation(s)
- Scott Kulm
- Caryl and Israel Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY
| | - Lior Kofman
- Caryl and Israel Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
- Department of Computer Science, Tufts University, Medford, MA
| | - Jason Mezey
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY
- Department of Computational Biology, Cornell University, Ithaca, NY
| | - Olivier Elemento
- Caryl and Israel Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
168
|
Nadakinamani RG, Reyana A, Kautish S, Vibith AS, Gupta Y, Abdelwahab SF, Mohamed AW. Clinical Data Analysis for Prediction of Cardiovascular Disease Using Machine Learning Techniques. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2973324. [PMID: 35069715 PMCID: PMC8767405 DOI: 10.1155/2022/2973324] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is difficult to detect due to several risk factors, including high blood pressure, cholesterol, and an abnormal pulse rate. Accurate decision-making and optimal treatment are required to address cardiac risk. As machine learning technology advances, the healthcare industry's clinical practice is likely to change. As a result, researchers and clinicians must recognize the importance of machine learning techniques. The main objective of this research is to recommend a machine learning-based cardiovascular disease prediction system that is highly accurate. In contrast, modern machine learning algorithms such as REP Tree, M5P Tree, Random Tree, Linear Regression, Naive Bayes, J48, and JRIP are used to classify popular cardiovascular datasets. The proposed CDPS's performance was evaluated using a variety of metrics to identify the best suitable machine learning model. When it came to predicting cardiovascular disease patients, the Random Tree model performed admirably, with the highest accuracy of 100%, the lowest MAE of 0.0011, the lowest RMSE of 0.0231, and the fastest prediction time of 0.01 seconds.
Collapse
Affiliation(s)
| | - A. Reyana
- Department of Computer Science and Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Sandeep Kautish
- Department of Computer Science and Engineering, LBEF Campus, Kathmandu, Nepal, India
| | - A. S. Vibith
- Department of Computer Science and Engineering, RMK College of Engineering and Technology, Tiruvallur, Tamil Nadu, India
| | - Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Ali Wagdy Mohamed
- Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
- Department of Mathematics and Actuarial Science, School of Science and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
169
|
Sharma D, Gotlieb N, Farkouh ME, Patel K, Xu W, Bhat M. Machine Learning Approach to Classify Cardiovascular Disease in Patients With Nonalcoholic Fatty Liver Disease in the UK Biobank Cohort. J Am Heart Assoc 2022; 11:e022576. [PMID: 34927450 PMCID: PMC9075189 DOI: 10.1161/jaha.121.022576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide. Cardiovascular disease (CVD) is the leading cause of mortality among patients with NAFLD. The aim of our study was to develop a machine learning algorithm integrating clinical, lifestyle, and genetic risk factors to identify CVD in patients with NAFLD. Methods and Results We created a cohort of patients with NAFLD from the UK Biobank, diagnosed according to proton density fat fraction from magnetic resonance imaging data sets. A total of 400 patients with NAFLD with subclinical atherosclerosis or clinical CVD, defined by disease codes, constituted cases and 446 NAFLD cases with no CVD constituted controls. We evaluated 7 different supervised machine learning approaches on clinical, lifestyle, and genetic variables for identifying CVD in patients with NAFLD. The most significant clinical and lifestyle variables observed by the predictive modeling were age (59 years [54.00-63.00 years]), hypertension (145 mm Hg [134.0-156.0 mm Hg] and 85 mm Hg [79.00-93.00 mm Hg]), waist circumference (98 cm [95.00-105.00 cm]), and sedentary lifestyle, defined as time spent watching TV >4 h/d. In the genetic data, single-nucleotide polymorphisms in IL16 and ANKLE1 gene were most significant. Our proposed ensemble-based integrative machine learning model achieved an area under the curve of 0.849 using the random forest modeling for CVD prediction. Conclusions We propose a machine learning algorithm that identifies CVD in patients with NAFLD through integration of significant clinical, lifestyle, and genetic risk factors. These patients with NAFLD at higher risk of CVD should be flagged for screening and aggressive treatment of their cardiometabolic risk factors to prevent cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Divya Sharma
- Department of BiostatisticsPrincess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| | - Neta Gotlieb
- Division of Adult GastroenterologyUniversity Health NetworkToronto General HospitalTorontoOntarioCanada
| | - Michael E. Farkouh
- Peter Munk Cardiac Centre, Heart and Stroke Richard Lewar CentreUniversity of TorontoOntarioCanada
| | - Keyur Patel
- Division of GastroenterologyUniversity Health NetworkToronto General HospitalTorontoOntarioCanada
| | - Wei Xu
- Department of BiostatisticsPrincess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
- Biostatistics DivisionDalla Lana School of Public HealthUniversity of TorontoOntarioCanada
| | - Mamatha Bhat
- Department of MedicineMulti‐Organ Transplant ProgramToronto General HospitalTorontoOntarioCanada
| |
Collapse
|
170
|
A machine learning framework for risk prediction of multi-label cardiovascular events based on focused carotid plaque B-Mode ultrasound: A Canadian study. Comput Biol Med 2022; 140:105102. [PMID: 34973521 DOI: 10.1016/j.compbiomed.2021.105102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
MOTIVATION Machine learning (ML) algorithms can provide better cardiovascular event (CVE) prediction. However, ML algorithms are mostly explored for predicting a single CVE at a time. The objective of this study is to design and develop an ML-based system to predict multi-label CVEs, such as (i) coronary artery disease, (ii) acute coronary syndrome, and (iii) a composite CVE-a class of AtheroEdge 3.0 (ML) system. METHODS Focused carotid B-mode ultrasound and coronary angiography are performed on a group of 459 participants consisting of three cardiovascular labels. Initially, 23 risk predictors comprising (i) patients' demographics, (ii) clinical blood-biomarkers, and (iii) carotid ultrasound image-based phenotypes are collected. Six types of classification techniques comprising (a) four problem transformation methods (PTM) and (b) two algorithm adaptation methods (AAM) are used for multi-label CVE prediction. The performance of the proposed system is evaluated for accuracy, sensitivity, specificity, F1-score, and area-under-the-curve (AUC) using 10-fold cross-validation. The proposed system is also verified using another database of 522 participants. RESULTS For the primary database, PTM demonstrated a better multi-label CVE prediction than AAM (mean accuracy: 80.89% vs. 62.83%, mean AUC: 0.89 vs. 0.63), validating our hypothesis. The PTM-based binary relevance (BR) technique provided optimal performance in multi-label CVE prediction. The overall multi-label classification accuracy, sensitivity, specificity, F1-score, and AUC using BR are 81.2 ± 3.01%, 76.5 ± 8.8%, 83.8 ± 3.8%, 75.37 ± 5.8%, and 0.89 ± 0.02 (p < 0.0001), respectively. When used on the second Canadian database with seven cardiovascular events (acute coronary syndrome, myocardial infarction, angina, stroke, transient ischemic attack, heart failure, and death), the proposed system showed an accuracy of 96.36 ± 0.87% (AUC: 0.61 ± 0.06, p < 0.0001). CONCLUSION ML-based multi-label classification algorithms, such as binary relevance, yielded the best predictions for three cardiovascular endpoints.
Collapse
|
171
|
Overview of Artificial Intelligence in Medicine. Artif Intell Med 2022. [DOI: 10.1007/978-981-19-1223-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
172
|
Premsagar P, Aldous C, Esterhuizen TM, Gomes BJ, Gaskell JW, Tabb DL. Comparing conventional statistical models and machine learning in a small cohort of South African cardiac patients. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
173
|
Wallisch C, Agibetov A, Dunkler D, Haller M, Samwald M, Dorffner G, Heinze G. The roles of predictors in cardiovascular risk models - a question of modeling culture? BMC Med Res Methodol 2021; 21:284. [PMID: 34922459 PMCID: PMC8684157 DOI: 10.1186/s12874-021-01487-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND While machine learning (ML) algorithms may predict cardiovascular outcomes more accurately than statistical models, their result is usually not representable by a transparent formula. Hence, it is often unclear how specific values of predictors lead to the predictions. We aimed to demonstrate with graphical tools how predictor-risk relations in cardiovascular risk prediction models fitted by ML algorithms and by statistical approaches may differ, and how sample size affects the stability of the estimated relations. METHODS We reanalyzed data from a large registry of 1.5 million participants in a national health screening program. Three data analysts developed analytical strategies to predict cardiovascular events within 1 year from health screening. This was done for the full data set and with gradually reduced sample sizes, and each data analyst followed their favorite modeling approach. Predictor-risk relations were visualized by partial dependence and individual conditional expectation plots. RESULTS When comparing the modeling algorithms, we found some similarities between these visualizations but also occasional divergence. The smaller the sample size, the more the predictor-risk relation depended on the modeling algorithm used, and also sampling variability played an increased role. Predictive performance was similar if the models were derived on the full data set, whereas smaller sample sizes favored simpler models. CONCLUSION Predictor-risk relations from ML models may differ from those obtained by statistical models, even with large sample sizes. Hence, predictors may assume different roles in risk prediction models. As long as sample size is sufficient, predictive accuracy is not largely affected by the choice of algorithm.
Collapse
Affiliation(s)
- Christine Wallisch
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Asan Agibetov
- Section for Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Daniela Dunkler
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Maria Haller
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Nephrology, Ordensklinikum Linz, Hospital Elisabethinen, Linz, Austria
| | - Matthias Samwald
- Section for Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Georg Dorffner
- Section for Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Georg Heinze
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
174
|
Barbieri S, Mehta S, Wu B, Bharat C, Poppe K, Jorm L, Jackson R. Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach. Int J Epidemiol 2021; 51:931-944. [PMID: 34910160 PMCID: PMC9189958 DOI: 10.1093/ije/dyab258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023] Open
Abstract
Background Machine learning-based risk prediction models may outperform traditional statistical models in large datasets with many variables, by identifying both novel predictors and the complex interactions between them. This study compared deep learning extensions of survival analysis models with Cox proportional hazards models for predicting cardiovascular disease (CVD) risk in national health administrative datasets. Methods Using individual person linkage of administrative datasets, we constructed a cohort of all New Zealanders aged 30–74 who interacted with public health services during 2012. After excluding people with prior CVD, we developed sex-specific deep learning and Cox proportional hazards models to estimate the risk of CVD events within 5 years. Models were compared based on the proportion of explained variance, model calibration and discrimination, and hazard ratios for predictor variables. Results First CVD events occurred in 61 927 of 2 164 872 people. Within the reference group, the largest hazard ratios estimated by the deep learning models were for tobacco use in women (2.04, 95% CI: 1.99, 2.10) and chronic obstructive pulmonary disease with acute lower respiratory infection in men (1.56, 95% CI: 1.50, 1.62). Other identified predictors (e.g. hypertension, chest pain, diabetes) aligned with current knowledge about CVD risk factors. Deep learning outperformed Cox proportional hazards models on the basis of proportion of explained variance (R2: 0.468 vs 0.425 in women and 0.383 vs 0.348 in men), calibration and discrimination (all P <0.0001). Conclusions Deep learning extensions of survival analysis models can be applied to large health administrative datasets to derive interpretable CVD risk prediction equations that are more accurate than traditional Cox proportional hazards models.
Collapse
Affiliation(s)
- Sebastiano Barbieri
- Centre for Big Data Research in Health, University of New South Wales, Sydney, NSW, Australia
| | - Suneela Mehta
- Section of Epidemiology and Biostatistics, University of Auckland, Auckland, New Zealand
| | - Billy Wu
- Section of Epidemiology and Biostatistics, University of Auckland, Auckland, New Zealand
| | - Chrianna Bharat
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Katrina Poppe
- Section of Epidemiology and Biostatistics, University of Auckland, Auckland, New Zealand
| | - Louisa Jorm
- Centre for Big Data Research in Health, University of New South Wales, Sydney, NSW, Australia
| | - Rod Jackson
- Section of Epidemiology and Biostatistics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
175
|
Salna I, Salna E, Pahirko L, Skrebinska S, Krikova R, Folkmane I, Pīrāgs V, Sokolovska J. Achievement of treatment targets predicts progression of vascular complications in type 1 diabetes. J Diabetes Complications 2021; 35:108072. [PMID: 34635403 DOI: 10.1016/j.jdiacomp.2021.108072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/16/2021] [Accepted: 10/02/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM To study the association between achievement of guideline-defined treatment targets on HbA1c, low-density lipoproteins (LDL-C), and blood pressure with the progression of diabetic complications in patients with type 1 diabetes (T1D). METHODS The study included 355 patients at baseline and 114 patients with follow-up data after 3-5 years. Outcome variables were the progression of diabetic kidney disease, retinopathy, or cardiovascular disease (CVD). We used logistic regression and other machine learning algorithms (MLA) to model the association of achievement of treatment targets and probability of progression of complications. RESULTS Achievement of the target blood pressure was associated with 96% lower odds of a new CVD event (0.04 (95% CI 0.00, 0.53), p = 0.016), and 72% lower odds of progression of any complication (0.28 (95% CI 0.09, 0.89), p = 0.027. Achievement of HbA1c target was associated with lower odds of composite complication progression by 82% (0.18 (95% CI 0.04, 0.88), p = 0.034.) None of the patients who achieved HbA1c target progressed in CVD. MLA demonstrated good accuracy for the prediction of progression of CVD (AUC 0.824), and lower accuracy for other complications. CONCLUSION The achievement of blood pressure and HbA1c treatment targets is associated with lower odds of vascular complication of T1D in a real life study.
Collapse
Affiliation(s)
- Ilze Salna
- University of Latvia, Faculty of Medicine, Jelgavas iela 3, LV 1004 Riga, Latvia; Pauls Stradiņš Clinical University Hospital, Endocrinology Department, Pilsoņu iela 13, LV 1002 Riga, Latvia
| | - Edgars Salna
- University of Latvia, Faculty of Medicine, Jelgavas iela 3, LV 1004 Riga, Latvia
| | - Leonora Pahirko
- University of Latvia, Faculty of Physics, Mathematics and Optometry, Jelgavas iela 3, LV 1004 Riga, Latvia
| | - Sabīne Skrebinska
- Riga Stradiņš University, Faculty of Residency, Dzirciema iela 16, LV 1007 Riga, Latvia
| | - Regīna Krikova
- University of Latvia, Faculty of Medicine, Jelgavas iela 3, LV 1004 Riga, Latvia
| | - Inese Folkmane
- University of Latvia, Faculty of Medicine, Jelgavas iela 3, LV 1004 Riga, Latvia; Pauls Stradiņš Clinical University Hospital, Centre of Nephrology, Pilsoņu iela 13, LV 1002 Riga, Latvia
| | - Valdis Pīrāgs
- University of Latvia, Faculty of Medicine, Jelgavas iela 3, LV 1004 Riga, Latvia; Pauls Stradiņš Clinical University Hospital, Endocrinology Department, Pilsoņu iela 13, LV 1002 Riga, Latvia
| | | |
Collapse
|
176
|
Munjral S, Ahluwalia P, Jamthikar AD, Puvvula A, Saba L, Faa G, Singh IM, Chadha PS, Turk M, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra P, Agarwal V, Kitas GD, Kolluri R, Teji J, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Viswanathan V, Krishnan PK, Omerzu T, Naidu S, Nicolaides A, Suri JS. Nutrition, atherosclerosis, arterial imaging, cardiovascular risk stratification, and manifestations in COVID-19 framework: a narrative review. FRONT BIOSCI-LANDMRK 2021; 26:1312-1339. [PMID: 34856770 DOI: 10.52586/5026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Background: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. Layout: The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. Conclusions: By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment.
Collapse
Affiliation(s)
- Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Superspeciality Hospital, 110058 New Delhi, India
| | - Ankush D Jamthikar
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
- Visvesvaraya National Institute of Technology, 440001 Nagpur, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
- Annu's Hospitals for Skin and Diabetes, 24002 Nellore, AP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 09125 Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, AOU of Cagliari, 09125 Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27749 Delmenhorst, Germany
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON K7L, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 106 71 Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02906, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, RI 02903, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02906, USA
| | | | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 106 71 Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 546 30 Thessaloniki, Greece
| | | | - Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226018 Lucknow, UP, India
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226018 Lucknow, UP, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY2 8 Dudley, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, M13 9 Manchester, UK
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60629, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5H, Canada
| | - Surinder K Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN 55441, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, MN 55441, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor MVD Research Centre, 600003 Chennai, India
| | - P K Krishnan
- Neurology Department, Fortis Hospital, 562123 Bangalore, India
| | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, 999058 Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| |
Collapse
|
177
|
Faramand Z, Alrawashdeh M, Helman S, Bouzid Z, Martin-Gill C, Callaway C, Al-Zaiti S. Your neighborhood matters: A machine-learning approach to the geospatial and social determinants of health in 9-1-1 activated chest pain. Res Nurs Health 2021; 45:230-239. [PMID: 34820853 PMCID: PMC8930557 DOI: 10.1002/nur.22199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022]
Abstract
Healthcare disparities in the initial management of patients with acute coronary syndrome (ACS) exist. Yet, the complexity of interactions between demographic, social, economic, and geospatial determinants of health hinders incorporating such predictors in existing risk stratification models. We sought to explore a machine-learning-based approach to study the complex interactions between the geospatial and social determinants of health to explain disparities in ACS likelihood in an urban community. This study identified consecutive patients transported by Pittsburgh emergency medical service for a chief complaint of chest pain or ACS-equivalent symptoms. We extracted demographics, clinical data, and location coordinates from electronic health records. Median income was based on US census data by zip code. A random forest (RF) classifier and a regularized logistic regression model were used to identify the most important predictors of ACS likelihood. Our final sample included 2400 patients (age 59 ± 17 years, 47% Females, 41% Blacks, 15.8% adjudicated ACS). In our RF model (area under the receiver operating characteristic curve of 0.71 ± 0.03) age, prior revascularization, income, distance from hospital, and residential neighborhood were the most important predictors of ACS likelihood. In regularized regression (akaike information criterion = 1843, bayesian information criterion = 1912, χ2 = 193, df = 10, p < 0.001), residential neighborhood remained a significant and independent predictor of ACS likelihood. Findings from our study suggest that residential neighborhood constitutes an upstream factor to explain the observed healthcare disparity in ACS risk prediction, independent from known demographic, social, and economic determinants of health, which can inform future work on ACS prevention, in-hospital care, and patient discharge.
Collapse
Affiliation(s)
- Ziad Faramand
- Department of Acute and Tertiary Care Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mohammad Alrawashdeh
- Department of Acute and Tertiary Care Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Population Medicine, Boston, Massachusetts, USA.,School of Nursing, Jordan University of Science and Technology, Irbid, Jordan
| | - Stephanie Helman
- Department of Acute and Tertiary Care Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Emergency Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Zeineb Bouzid
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian Martin-Gill
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Emergency Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA.,UPMC Prehospital Care Division and Bureau of EMS, Pittsburgh, Pennsylvania, USA
| | - Clifton Callaway
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Emergency Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Salah Al-Zaiti
- Department of Acute and Tertiary Care Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
178
|
Lu H, Uddin S. A weighted patient network-based framework for predicting chronic diseases using graph neural networks. Sci Rep 2021; 11:22607. [PMID: 34799627 PMCID: PMC8604920 DOI: 10.1038/s41598-021-01964-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/08/2021] [Indexed: 01/16/2023] Open
Abstract
Chronic disease prediction is a critical task in healthcare. Existing studies fulfil this requirement by employing machine learning techniques based on patient features, but they suffer from high dimensional data problems and a high level of bias. We propose a framework for predicting chronic disease based on Graph Neural Networks (GNNs) to address these issues. We begin by projecting a patient-disease bipartite graph to create a weighted patient network (WPN) that extracts the latent relationship among patients. We then use GNN-based techniques to build prediction models. These models use features extracted from WPN to create robust patient representations for chronic disease prediction. We compare the output of GNN-based models to machine learning methods by using cardiovascular disease and chronic pulmonary disease. The results show that our framework enhances the accuracy of chronic disease prediction. The model with attention mechanisms achieves an accuracy of 93.49% for cardiovascular disease prediction and 89.15% for chronic pulmonary disease prediction. Furthermore, the visualisation of the last hidden layers of GNN-based models shows the pattern for the two cohorts, demonstrating the discriminative strength of the framework. The proposed framework can help stakeholders improve health management systems for patients at risk of developing chronic diseases and conditions.
Collapse
Affiliation(s)
- Haohui Lu
- School of Project Management, Faculty of Engineering, The University of Sydney, 21 Ross St, Forest Lodge, NSW, 2037, Australia
| | - Shahadat Uddin
- School of Project Management, Faculty of Engineering, The University of Sydney, 21 Ross St, Forest Lodge, NSW, 2037, Australia.
| |
Collapse
|
179
|
Na JY, Kim D, Kwon AM, Jeon JY, Kim H, Kim CR, Lee HJ, Lee J, Park HK. Artificial intelligence model comparison for risk factor analysis of patent ductus arteriosus in nationwide very low birth weight infants cohort. Sci Rep 2021; 11:22353. [PMID: 34785709 PMCID: PMC8595677 DOI: 10.1038/s41598-021-01640-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the many comorbidities and high mortality rate in preterm infants with patent ductus arteriosus (PDA), therapeutic strategies vary depending on the clinical setting, and most studies of the related risk factors are based on small sample populations. We aimed to compare the performance of artificial intelligence (AI) analysis with that of conventional analysis to identify risk factors associated with symptomatic PDA (sPDA) in very low birth weight infants. This nationwide cohort study included 8369 very low birth weight (VLBW) infants. The participants were divided into an sPDA group and an asymptomatic PDA or spontaneously close PDA (nPDA) group. The sPDA group was further divided into treated and untreated subgroups. A total of 47 perinatal risk factors were collected and analyzed. Multiple logistic regression was used as a standard analytic tool, and five AI algorithms were used to identify the factors associated with sPDA. Combining a large database of risk factors from nationwide registries and AI techniques achieved higher accuracy and better performance of the PDA prediction tasks, and the ensemble methods showed the best performances.
Collapse
Affiliation(s)
- Jae Yoon Na
- Department of Pediatrics, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Dongkyun Kim
- Department of Electrical and Electronic Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Korea
| | - Amy M Kwon
- Artificial Intelligence Convergence Research Center, Hanyang University ERICA, Ansan, 15588, Korea
| | - Jin Yong Jeon
- Department of Medical and Digital Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Hyuck Kim
- Department of Thoracic and Cardiovascular Surgery, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Chang-Ryul Kim
- Department of Pediatrics, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Joohyun Lee
- Department of Electrical and Electronic Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Korea.
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| |
Collapse
|
180
|
Arnould L, Guenancia C, Bourredjem A, Binquet C, Gabrielle PH, Eid P, Baudin F, Kawasaki R, Cottin Y, Creuzot-Garcher C, Jacquir S. Prediction of Cardiovascular Parameters With Supervised Machine Learning From Singapore "I" Vessel Assessment and OCT-Angiography: A Pilot Study. Transl Vis Sci Technol 2021; 10:20. [PMID: 34767626 PMCID: PMC8590163 DOI: 10.1167/tvst.10.13.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Assessment of cardiovascular risk is the keystone of prevention in cardiovascular disease. The objective of this pilot study was to estimate the cardiovascular risk score (American Hospital Association [AHA] risk score, Syntax risk, and SCORE risk score) with machine learning (ML) model based on retinal vascular quantitative parameters. Methods We proposed supervised ML algorithm to predict cardiovascular parameters in patients with cardiovascular diseases treated in Dijon University Hospital using quantitative retinal vascular characteristics measured with fundus photography and optical coherence tomography – angiography (OCT-A) scans (alone and combined). To describe retinal microvascular network, we used the Singapore “I” Vessel Assessment (SIVA), which extracts vessel parameters from fundus photography and quantitative OCT-A retinal metrics of superficial retinal capillary plexus. Results The retinal and cardiovascular data of 144 patients were included. This paper presented a high prediction rate of the cardiovascular risk score. By means of the Naïve Bayes algorithm and SIVA + OCT-A data, the AHA risk score was predicted with 81.25% accuracy, the SCORE risk with 75.64% accuracy, and the Syntax score with 96.53% of accuracy. Conclusions Performance of these algorithms demonstrated in this preliminary study that ML algorithms applied to quantitative retinal vascular parameters with SIVA software and OCT-A were able to predict cardiovascular scores with a robust rate. Quantitative retinal vascular biomarkers with the ML strategy might provide valuable data to implement predictive model for cardiovascular parameters. Translational Relevance Small data set of quantitative retinal vascular parameters with fundus and with OCT-A can be used with ML learning to predict cardiovascular parameters.
Collapse
Affiliation(s)
- Louis Arnould
- Ophthalmology Department, University Hospital, Dijon, France.,INSERM, CIC1432, Clinical Epidemiology Unit, Dijon, France; Dijon University Hospital, Clinical Investigation Center, Clinical Epidemiology/Clinical Trials Unit, Dijon, France.,Centre des Sciences du Gout et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Charles Guenancia
- Cardiology Department, University Hospital, Dijon, France.,PEC 2, University Hospital, Dijon, France
| | - Abderrahmane Bourredjem
- INSERM, CIC1432, Clinical Epidemiology Unit, Dijon, France; Dijon University Hospital, Clinical Investigation Center, Clinical Epidemiology/Clinical Trials Unit, Dijon, France
| | - Christine Binquet
- INSERM, CIC1432, Clinical Epidemiology Unit, Dijon, France; Dijon University Hospital, Clinical Investigation Center, Clinical Epidemiology/Clinical Trials Unit, Dijon, France
| | - Pierre-Henry Gabrielle
- Ophthalmology Department, University Hospital, Dijon, France.,Centre des Sciences du Gout et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Pétra Eid
- Ophthalmology Department, University Hospital, Dijon, France
| | - Florian Baudin
- Ophthalmology Department, University Hospital, Dijon, France
| | - Ryo Kawasaki
- Department of Vision Informatics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yves Cottin
- Cardiology Department, University Hospital, Dijon, France.,PEC 2, University Hospital, Dijon, France
| | - Catherine Creuzot-Garcher
- Ophthalmology Department, University Hospital, Dijon, France.,Centre des Sciences du Gout et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Sabir Jacquir
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
181
|
Aschauer J, Aschauer S, Pollreisz A, Datlinger F, Gatterer C, Mylonas G, Egner B, Hofer D, Steiner I, Hengstenberg C, Schmidt-Erfurth U. Identification of Subclinical Microvascular Biomarkers in Coronary Heart Disease in Retinal Imaging. Transl Vis Sci Technol 2021; 10:24. [PMID: 34787666 PMCID: PMC8606892 DOI: 10.1167/tvst.10.13.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Cardiovascular disease and foremost coronary heart disease (CHD) are the worldwide leading causes of death. The aim of this study was to use non-invasive, multimodel retinal imaging to define microvascular features in patients with and without coronary angiography (CA)-confirmed CHD. Methods In this prospective, cross-sectional pilot study we included adult patients who presented to a tertiary referral center for elective CA due to suspected CHD. All patients underwent widefield fundus photography for retinopathy grading. Optical coherence tomography angiography was used to measure vessel density (VD) of the individual capillary plexuses in 6 × 6-mm macular volume scans. Adaptive optics imaging was performed to assess the first-order arteriolar lumen diameter (LD), total diameter (TD), wall-to-lumen ratio (WLR), and wall cross-section area, as well as to qualitatively describe vessel morphology. Results Of the included 45 patients (13 females; 65 ± 10 years old), 27 were confirmed with CHD in elective CA. The most prevalent retinal vascular pathologies were arteriovenous nickings, focal arterial narrowings, and microaneurysms. VD in the superficial capillary plexus, deep capillary plexus, and choriocapillaris was lower in CHD patients, although the odds ratios were not significantly different from 1 (P = 0.06–0.92). Median arterial LD, TD, and WLR values were 98.3 µm (interquartile range [IQR] = 13.0), 122.9 µm (IQR = 17.6), and 0.26 µm (IQR = 0.07), respectively, with a trend toward a higher WLR in CHD patients. Conclusions In a cardiovascular risk population, high-resolution quantitative and qualitative microvascular phenotyping in the retina may provide valuable subclinical indicators for coronary artery impairment, although larger clinical trials are needed. Translational Relevance Subclinical retinal microvascular changes may serve as non-invasive, cost-effective biomarkers for risk stratification of patients with CHD.
Collapse
Affiliation(s)
- Julia Aschauer
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.,Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria
| | - Stefan Aschauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.,Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria
| | - Felix Datlinger
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.,Vienna Clinical Trial Center, Medical University of Vienna, Vienna, Austria
| | - Constantin Gatterer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Georgios Mylonas
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Berit Egner
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Dominik Hofer
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Irene Steiner
- CeMSIIS, Institute for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Ursula Schmidt-Erfurth
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
182
|
Kuang Y, Wang Y, Cao X, Peng C, Gao H. New prognostic factors and scoring system for patients with acute myeloid leukemia. Oncol Lett 2021; 22:823. [PMID: 34691250 PMCID: PMC8527825 DOI: 10.3892/ol.2021.13084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease originating from myeloid hematopoietic stem or progenitor cells. It is important to identify molecules associated with the prognosis of AML and conduct an individual risk assessment for different patients. In the present study, the RNA expression profile of 132 patients with AML and 337 healthy individuals were downloaded from the University of California Santa Cruz Xena and the Genotype-Tissue Expression project databases. Differentially expressed mRNA (DEmRNA) transcripts between normal blood and AML blood were identified. Among these, prognosis-associated signature mRNA molecules were screened using univariate Cox and least absolute shrinkage and selection operator regression. A total of four genes, namely, family with sequence similarity 124 member B (FAM124B), 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), myeloperoxidase (MPO) and purinergic receptor P2Y1 (P2RY1), were identified using multivariate Cox regression analysis and were used to construct a prognostic scoring system. Moreover, the expression levels of HPDL and MPO were higher in the samples with high immunity scores and estimate scores (sum of stromal score and immune score), compared with those with low scores. Reverse transcription-quantitative PCR and western blot analysis were used to confirm the upregulation of the four candidate genes in AML cell lines as well as in clinical AML samples. In summary, the present study identified a novel mRNA-based prognostic risk scoring system for patients with AML. The four genes used in this scoring system may also play an important role in AML.
Collapse
Affiliation(s)
- Ye Kuang
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| | - Yang Wang
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| | - Xianghong Cao
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| | - Chuanmei Peng
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| | - Hui Gao
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
183
|
Bikia V, Fong T, Climie RE, Bruno RM, Hametner B, Mayer C, Terentes-Printzios D, Charlton PH. Leveraging the potential of machine learning for assessing vascular ageing: state-of-the-art and future research. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2021; 2:676-690. [PMID: 35316972 PMCID: PMC7612526 DOI: 10.1093/ehjdh/ztab089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vascular ageing biomarkers have been found to be predictive of cardiovascular risk independently of classical risk factors, yet are not widely used in clinical practice. In this review, we present two basic approaches for using machine learning (ML) to assess vascular age: parameter estimation and risk classification. We then summarize their role in developing new techniques to assess vascular ageing quickly and accurately. We discuss the methods used to validate ML-based markers, the evidence for their clinical utility, and key directions for future research. The review is complemented by case studies of the use of ML in vascular age assessment which can be replicated using freely available data and code.
Collapse
Affiliation(s)
- Vasiliki Bikia
- Laboratory of Hemodynamics and Cardiovascular Technology (LHTC), Swiss Federal Institute of Technology, CH-1015 Lausanne, Vaud, Switzerland
| | - Terence Fong
- Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria, 3004 Australia,Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Grattan Street, Parkville, Victoria, 3010 Australia
| | - Rachel E Climie
- Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria, 3004 Australia,Université de Paris, INSERM U970, Paris Cardiovascular Research Centre, Integrative Epidemiology of Cardiovascular Disease, Paris, France
| | - Rosa-Maria Bruno
- Université de Paris, INSERM U970, Paris Cardiovascular Research Centre, Integrative Epidemiology of Cardiovascular Disease, Paris, France
| | - Bernhard Hametner
- Center for Health & Bioresources, AIT Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Christopher Mayer
- Center for Health & Bioresources, AIT Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 114 Vasilissis Sofias Avenue, 11527, Athens, Greece
| | - Peter H Charlton
- Department of Public Health and Primary Care, Strangeways Research Laboratory, 2 Worts' Causeway, Cambridge, CB1 8RN, UK,Research Centre for Biomedical Engineering, City, University of London, Northampton Square, London, EC1V 0HB, UK,Corresponding author.
| |
Collapse
|
184
|
Jang BS, Kim IA. Machine-learning algorithms predict breast cancer patient survival from UK Biobank whole-exome sequencing data. Biomark Med 2021; 15:1529-1539. [PMID: 34651513 DOI: 10.2217/bmm-2021-0280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: We tested whether machine-learning algorithm could find biomarkers predicting overall survival in breast cancer patients using blood-based whole-exome sequencing data. Materials & methods: Whole-exome sequencing data derived from 1181 female breast cancer patients within the UK Biobank was collected. We found feature genes (n = 50) regarding total mutation burden using the long short-term memory model. Then, we developed the XGBoost survival model with selected feature genes. Results: The XGBoost survival model performed acceptably, with a concordance index of 0.75 and a scaled Brier score of 0.146 in terms of overall survival prediction. The high-mutation group exhibited inferior overall survival compared with the low-mutation group in patients ≥56 years (log-rank test, p = 0.042). Conclusion: We showed that machine-learning algorithms can be used to predict overall survival in breast cancer patients from blood-based whole-exome sequencing data.
Collapse
Affiliation(s)
- Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, 13620, Korea.,Department of Radiation Oncology, Seoul National University, College of Medicine, Seoul, Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, 13620, Korea.,Department of Radiation Oncology, Seoul National University, College of Medicine, Seoul, Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Korea
| |
Collapse
|
185
|
Social Determinants in Machine Learning Cardiovascular Disease Prediction Models: A Systematic Review. Am J Prev Med 2021; 61:596-605. [PMID: 34544559 DOI: 10.1016/j.amepre.2021.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 04/19/2021] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Cardiovascular disease is the leading cause of death worldwide, and cardiovascular disease burden is increasing in low-resource settings and for lower socioeconomic groups. Machine learning algorithms are being developed rapidly and incorporated into clinical practice for cardiovascular disease prediction and treatment decisions. Significant opportunities for reducing death and disability from cardiovascular disease worldwide lie with accounting for the social determinants of cardiovascular outcomes. This study reviews how social determinants of health are being included in machine learning algorithms to inform best practices for the development of algorithms that account for social determinants. METHODS A systematic review using 5 databases was conducted in 2020. English language articles from any location published from inception to April 10, 2020, which reported on the use of machine learning for cardiovascular disease prediction that incorporated social determinants of health, were included. RESULTS Most studies that compared machine learning algorithms and regression showed increased performance of machine learning, and most studies that compared performance with or without social determinants of health showed increased performance with them. The most frequently included social determinants of health variables were gender, race/ethnicity, marital status, occupation, and income. Studies were largely from North America, Europe, and China, limiting the diversity of the included populations and variance in social determinants of health. DISCUSSION Given their flexibility, machine learning approaches may provide an opportunity to incorporate the complex nature of social determinants of health. The limited variety of sources and data in the reviewed studies emphasize that there is an opportunity to include more social determinants of health variables, especially environmental ones, that are known to impact cardiovascular disease risk and that recording such data in electronic databases will enable their use.
Collapse
|
186
|
Improved Heart Disease Prediction Using Particle Swarm Optimization Based Stacked Sparse Autoencoder. ELECTRONICS 2021. [DOI: 10.3390/electronics10192347] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heart disease is the leading cause of death globally. The most common type of heart disease is coronary heart disease, which occurs when there is a build-up of plaque inside the arteries that supply blood to the heart, making blood circulation difficult. The prediction of heart disease is a challenge in clinical machine learning. Early detection of people at risk of the disease is vital in preventing its progression. This paper proposes a deep learning approach to achieve improved prediction of heart disease. An enhanced stacked sparse autoencoder network (SSAE) is developed to achieve efficient feature learning. The network consists of multiple sparse autoencoders and a softmax classifier. Additionally, in deep learning models, the algorithm’s parameters need to be optimized appropriately to obtain efficient performance. Hence, we propose a particle swarm optimization (PSO) based technique to tune the parameters of the stacked sparse autoencoder. The optimization by the PSO improves the feature learning and classification performance of the SSAE. Meanwhile, the multilayer architecture of autoencoders usually leads to internal covariate shift, a problem that affects the generalization ability of the network; hence, batch normalization is introduced to prevent this problem. The experimental results show that the proposed method effectively predicts heart disease by obtaining a classification accuracy of 0.973 and 0.961 on the Framingham and Cleveland heart disease datasets, respectively, thereby outperforming other machine learning methods and similar studies.
Collapse
|
187
|
Westerlund AM, Hawe JS, Heinig M, Schunkert H. Risk Prediction of Cardiovascular Events by Exploration of Molecular Data with Explainable Artificial Intelligence. Int J Mol Sci 2021; 22:10291. [PMID: 34638627 PMCID: PMC8508897 DOI: 10.3390/ijms221910291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVD) annually take almost 18 million lives worldwide. Most lethal events occur months or years after the initial presentation. Indeed, many patients experience repeated complications or require multiple interventions (recurrent events). Apart from affecting the individual, this leads to high medical costs for society. Personalized treatment strategies aiming at prediction and prevention of recurrent events rely on early diagnosis and precise prognosis. Complementing the traditional environmental and clinical risk factors, multi-omics data provide a holistic view of the patient and disease progression, enabling studies to probe novel angles in risk stratification. Specifically, predictive molecular markers allow insights into regulatory networks, pathways, and mechanisms underlying disease. Moreover, artificial intelligence (AI) represents a powerful, yet adaptive, framework able to recognize complex patterns in large-scale clinical and molecular data with the potential to improve risk prediction. Here, we review the most recent advances in risk prediction of recurrent cardiovascular events, and discuss the value of molecular data and biomarkers for understanding patient risk in a systems biology context. Finally, we introduce explainable AI which may improve clinical decision systems by making predictions transparent to the medical practitioner.
Collapse
Affiliation(s)
- Annie M. Westerlund
- Department of Cardiology, Deutsches Herzzentrum München, Technical University Munich, Lazarettstrasse 36, 80636 Munich, Germany; (A.M.W.); (J.S.H.)
- Institute of Computational Biology, HelmholtzZentrum München, Ingolstädter Landstrasse 1, 85764 Munich, Germany
| | - Johann S. Hawe
- Department of Cardiology, Deutsches Herzzentrum München, Technical University Munich, Lazarettstrasse 36, 80636 Munich, Germany; (A.M.W.); (J.S.H.)
| | - Matthias Heinig
- Institute of Computational Biology, HelmholtzZentrum München, Ingolstädter Landstrasse 1, 85764 Munich, Germany
- Department of Informatics, Technical University Munich, Boltzmannstrasse 3, 85748 Garching, Germany
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technical University Munich, Lazarettstrasse 36, 80636 Munich, Germany; (A.M.W.); (J.S.H.)
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance, Biedersteiner Strasse 29, 80802 Munich, Germany
| |
Collapse
|
188
|
Petch J, Di S, Nelson W. Opening the black box: the promise and limitations of explainable machine learning in cardiology. Can J Cardiol 2021; 38:204-213. [PMID: 34534619 DOI: 10.1016/j.cjca.2021.09.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
Many clinicians remain wary of machine learning due to long-standing concerns about "black box" models. "Black box" is shorthand for models that are sufficiently complex that they are not straightforwardly interpretable to humans. Lack of interpretability in predictive models can undermine trust in those models, especially in health care where so many decisions are literally life and death. There has recently been an explosion of research in the field of explainable machine learning aimed at addressing these concerns. The promise of explainable machine learning is considerable, but it is important for cardiologists who may encounter these techniques in clinical decision support tools or novel research papers to have a critical understanding of both their strengths and their limitations. This paper reviews key concepts and techniques in the field of explainable machine learning as they apply to cardiology. Key concepts reviewed include interpretability versus explainability and global versus local explanations. Techniques demonstrated include permutation importance, surrogate decision trees, local interpretable model-agnostic explanations, and partial dependence plots. We discuss several limitations with explainability techniques, focusing on the how the nature of explanations as approximations may omit important information about how black box models work and why they make certain predictions. We conclude by proposing a rule of thumb about when it is appropriate to use black box models with explanations, rather than interpretable models.
Collapse
Affiliation(s)
- Jeremy Petch
- Centre for Data Science and Digital Health, Hamilton Health Sciences; Institute of Health Policy, Management and Evaluation, University of Toronto; Division of Cardiology, Department of Medicine, McMaster University; Population Health Research Institute.
| | - Shuang Di
- Centre for Data Science and Digital Health, Hamilton Health Sciences; Dalla Lana School of Public Health, University of Toronto
| | - Walter Nelson
- Centre for Data Science and Digital Health, Hamilton Health Sciences; Department of Statistical Sciences, University of Toronto
| |
Collapse
|
189
|
Reddy KVV, Elamvazuthi I, Aziz AA, Paramasivam S, Chua HN, Pranavanand S. Heart Disease Risk Prediction Using Machine Learning Classifiers with Attribute Evaluators. APPLIED SCIENCES 2021; 11:8352. [DOI: 10.3390/app11188352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Cardiovascular diseases (CVDs) kill about 20.5 million people every year. Early prediction can help people to change their lifestyles and to ensure proper medical treatment if necessary. In this research, ten machine learning (ML) classifiers from different categories, such as Bayes, functions, lazy, meta, rules, and trees, were trained for efficient heart disease risk prediction using the full set of attributes of the Cleveland heart dataset and the optimal attribute sets obtained from three attribute evaluators. The performance of the algorithms was appraised using a 10-fold cross-validation testing option. Finally, we performed tuning of the hyperparameter number of nearest neighbors, namely, ‘k’ in the instance-based (IBk) classifier. The sequential minimal optimization (SMO) achieved an accuracy of 85.148% using the full set of attributes and 86.468% was the highest accuracy value using the optimal attribute set obtained from the chi-squared attribute evaluator. Meanwhile, the meta classifier bagging with logistic regression (LR) provided the highest ROC area of 0.91 using both the full and optimal attribute sets obtained from the ReliefF attribute evaluator. Overall, the SMO classifier stood as the best prediction method compared to other techniques, and IBk achieved an 8.25% accuracy improvement by tuning the hyperparameter ‘k’ to 9 with the chi-squared attribute set.
Collapse
|
190
|
Huang L, Lin L, Fu X, Meng C. Development and validation of a novel survival model for acute myeloid leukemia based on autophagy-related genes. PeerJ 2021; 9:e11968. [PMID: 34447636 PMCID: PMC8364747 DOI: 10.7717/peerj.11968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is one of the most common blood cancers, and is characterized by impaired hematopoietic function and bone marrow (BM) failure. Under normal circumstances, autophagy may suppress tumorigenesis, however under the stressful conditions of late stage tumor growth autophagy actually protects tumor cells, so inhibiting autophagy in these cases also inhibits tumor growth and promotes tumor cell death. Methods AML gene expression profile data and corresponding clinical data were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, from which prognostic-related genes were screened to construct a risk score model through LASSO and univariate and multivariate Cox analyses. Then the model was verified in the TCGA cohort and GEO cohorts. In addition, we also analyzed the relationship between autophagy genes and immune infiltrating cells and therapeutic drugs. Results We built a model containing 10 autophagy-related genes to predict the survival of AML patients by dividing them into high- or low-risk subgroups. The high-risk subgroup was prone to a poorer prognosis in both the training TCGA-LAML cohort and the validation GSE37642 cohort. Univariate and multivariate Cox analysis revealed that the risk score of the autophagy model can be used as an independent prognostic factor. The high-risk subgroup had not only higher fractions of CD4 naïve T cell, NK cell activated, and resting mast cells but also higher expression of immune checkpoint genes CTLA4 and CD274. Last, we screened drug sensitivity between high- and low-risk subgroups. Conclusion The risk score model based on 10 autophagy-related genes can serve as an effective prognostic predictor for AML patients and may guide for patient stratification for immunotherapies and drugs.
Collapse
Affiliation(s)
- Li Huang
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Lier Lin
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiangjun Fu
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Can Meng
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
191
|
Dabbah MA, Reed AB, Booth ATC, Yassaee A, Despotovic A, Klasmer B, Binning E, Aral M, Plans D, Morelli D, Labrique AB, Mohan D. Machine learning approach to dynamic risk modeling of mortality in COVID-19: a UK Biobank study. Sci Rep 2021; 11:16936. [PMID: 34413324 PMCID: PMC8376891 DOI: 10.1038/s41598-021-95136-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic has created an urgent need for robust, scalable monitoring tools supporting stratification of high-risk patients. This research aims to develop and validate prediction models, using the UK Biobank, to estimate COVID-19 mortality risk in confirmed cases. From the 11,245 participants testing positive for COVID-19, we develop a data-driven random forest classification model with excellent performance (AUC: 0.91), using baseline characteristics, pre-existing conditions, symptoms, and vital signs, such that the score could dynamically assess mortality risk with disease deterioration. We also identify several significant novel predictors of COVID-19 mortality with equivalent or greater predictive value than established high-risk comorbidities, such as detailed anthropometrics and prior acute kidney failure, urinary tract infection, and pneumonias. The model design and feature selection enables utility in outpatient settings. Possible applications include supporting individual-level risk profiling and monitoring disease progression across patients with COVID-19 at-scale, especially in hospital-at-home settings.
Collapse
Affiliation(s)
| | | | | | - Arrash Yassaee
- Huma Therapeutics Limited, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Aleksa Despotovic
- Huma Therapeutics Limited, London, UK
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | - Mert Aral
- Huma Therapeutics Limited, London, UK
| | - David Plans
- Huma Therapeutics Limited, London, UK.
- University of Exeter, SITE, Exeter, UK.
| | - Davide Morelli
- Huma Therapeutics Limited, London, UK
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Alain B Labrique
- Johns Hopkins Bloomberg School Public Health, Baltimore, MD, USA
| | - Diwakar Mohan
- Johns Hopkins Bloomberg School Public Health, Baltimore, MD, USA
| |
Collapse
|
192
|
Mohd Faizal AS, Thevarajah TM, Khor SM, Chang SW. A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 207:106190. [PMID: 34077865 DOI: 10.1016/j.cmpb.2021.106190] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and is a global health issue. Traditionally, statistical models are used commonly in the risk prediction and assessment of CVD. However, the adoption of artificial intelligent (AI) approach is rapidly taking hold in the current era of technology to evaluate patient risks and predict the outcome of CVD. In this review, we outline various conventional risk scores and prediction models and do a comparison with the AI approach. The strengths and limitations of both conventional and AI approaches are discussed. Besides that, biomarker discovery related to CVD are also elucidated as the biomarkers can be used in the risk stratification as well as early detection of the disease. Moreover, problems and challenges involved in current CVD studies are explored. Lastly, future prospects of CVD risk prediction and assessment in the multi-modality of big data integrative approaches are proposed.
Collapse
Affiliation(s)
- Aizatul Shafiqah Mohd Faizal
- Bioinformatics Programme, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - T Malathi Thevarajah
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siow-Wee Chang
- Bioinformatics Programme, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
193
|
Devana SK, Shah AA, Lee C, Roney AR, van der Schaar M, SooHoo NF. A Novel, Potentially Universal Machine Learning Algorithm to Predict Complications in Total Knee Arthroplasty. Arthroplast Today 2021; 10:135-143. [PMID: 34401416 PMCID: PMC8349766 DOI: 10.1016/j.artd.2021.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND There remains a lack of accurate and validated outcome-prediction models in total knee arthroplasty (TKA). While machine learning (ML) is a powerful predictive tool, determining the proper algorithm to apply across diverse data sets is challenging. AutoPrognosis (AP) is a novel method that uses automated ML framework to incorporate the best performing stages of prognostic modeling into a single well-calibrated algorithm. We aimed to compare various ML methods to AP in predictive performance of complications after TKA. METHODS Thirty-eight preoperative patient demographics and clinical features from all primary TKAs performed at California-licensed hospitals between 2015 and 2017 were evaluated as predictors of major complications after TKA. Traditional logistic regression (LR), various other ML methods (XGBoost, Gradient Boosting, AdaBoost, and Random Forest), and AP were used for model building to determine discriminative power (area under receiver operating curve), calibration (Brier score), and feature importance. RESULTS Between 2015 and 2017, there were a total of 156,750 TKAs with 1109 (0.7%) total major complications. AP had the highest discriminative performance with area under receiver operating curve 0.679 compared with LR, XGBoost, Gradient Boosting, AdaBoost, and Random Forest (0.617, 0.601, 0.662, 0.657, and 0.545, respectively). AP (Brier score 0.007) had similar calibration as the other ML methods (0.006, 0.006, 0.022, 0.007, and 0.008, respectively). The variables that are most important for AP differ from those that are most important for LR. CONCLUSION Compared to conventional ML algorithms, AP has superior discriminative ability with similar calibration and suggests nonlinear relationships between variables in outcomes of TKA.
Collapse
Affiliation(s)
- Sai K. Devana
- Department of Orthopaedic Surgery, University of California, Los Angeles, USA
| | - Akash A. Shah
- Department of Orthopaedic Surgery, University of California, Los Angeles, USA
| | - Changhee Lee
- Department of Electrical and Computer Engineering, University of California, Los Angeles, USA
| | - Andrew R. Roney
- Department of Orthopaedic Surgery, University of California, Los Angeles, USA
| | - Mihaela van der Schaar
- Department of Electrical and Computer Engineering, University of California, Los Angeles, USA
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, London, UK
- The Alan Turing Institute, London, UK
| | - Nelson F. SooHoo
- Department of Orthopaedic Surgery, University of California, Los Angeles, USA
| |
Collapse
|
194
|
Reddy KVV, Elamvazuthi I, Aziz AA, Paramasivam S, Chua HN. Heart Disease Risk Prediction using Machine Learning with Principal Component Analysis. 2020 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS) 2021. [DOI: 10.1109/icias49414.2021.9642676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
195
|
Lee J, Kiiskinen T, Mars N, Jukarainen S, Ingelsson E, Neale B, Ripatti S, Natarajan P, Ganna A. Clinical Conditions and Their Impact on Utility of Genetic Scores for Prediction of Acute Coronary Syndrome. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003283. [PMID: 34232692 DOI: 10.1161/circgen.120.003283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Acute coronary syndrome (ACS) is a clinically significant presentation of coronary heart disease. Genetic information has been proposed to improve prediction beyond well-established clinical risk factors. While polygenic scores (PS) can capture an individual's genetic risk for ACS, its prediction performance may vary in the context of diverse correlated clinical conditions. Here, we aimed to test whether clinical conditions impact the association between PS and ACS. METHODS We explored the association between 405 clinical conditions diagnosed before baseline and 9080 incident cases of ACS in 387 832 individuals from the UK Biobank. Results were replicated in 6430 incident cases of ACS in 177 876 individuals from FinnGen. RESULTS We identified 80 conventional (eg, stable angina pectoris and type 2 diabetes) and unconventional (eg, diaphragmatic hernia and inguinal hernia) associations with ACS. The association between PS and ACS was consistent in individuals with and without most clinical conditions. However, a diagnosis of stable angina pectoris yielded a differential association between PS and ACS. PS was associated with a significantly reduced (interaction P=2.87×10-8) risk for ACS in individuals with stable angina pectoris (hazard ratio, 1.163 [95% CI, 1.082-1.251]) compared with individuals without stable angina pectoris (hazard ratio, 1.531 [95% CI, 1.497-1.565]). These findings were replicated in FinnGen (interaction P=1.38×10-6). CONCLUSIONS In summary, while most clinical conditions did not impact utility of PS for prediction of ACS, we found that PS was substantially less predictive of ACS in individuals with prevalent stable coronary heart disease. PS may be more appropriate for prediction of ACS in asymptomatic individuals than symptomatic individuals with clinical suspicion for coronary heart disease.
Collapse
Affiliation(s)
- Jiwoo Lee
- Department of Biomedical Data Science, Stanford University, CA (J.L., E.I.).,Broad Institute of MIT and Harvard, Cambridge (J.L., B.N., S.R., P.N., A.G.).,Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston (J.L., B.N., S.R., A.G.).,Finnish Institute for Molecular Medicine, HiLIFE, University of Helsinki, Finland (J.L., T.K., N.M., S.J., S.R., A.G.)
| | - Tuomo Kiiskinen
- Finnish Institute for Molecular Medicine, HiLIFE, University of Helsinki, Finland (J.L., T.K., N.M., S.J., S.R., A.G.)
| | - Nina Mars
- Finnish Institute for Molecular Medicine, HiLIFE, University of Helsinki, Finland (J.L., T.K., N.M., S.J., S.R., A.G.)
| | - Sakari Jukarainen
- Finnish Institute for Molecular Medicine, HiLIFE, University of Helsinki, Finland (J.L., T.K., N.M., S.J., S.R., A.G.)
| | - Erik Ingelsson
- Department of Biomedical Data Science, Stanford University, CA (J.L., E.I.)
| | - Benjamin Neale
- Broad Institute of MIT and Harvard, Cambridge (J.L., B.N., S.R., P.N., A.G.).,Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston (J.L., B.N., S.R., A.G.)
| | - Samuli Ripatti
- Broad Institute of MIT and Harvard, Cambridge (J.L., B.N., S.R., P.N., A.G.).,Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston (J.L., B.N., S.R., A.G.).,Finnish Institute for Molecular Medicine, HiLIFE, University of Helsinki, Finland (J.L., T.K., N.M., S.J., S.R., A.G.)
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge (J.L., B.N., S.R., P.N., A.G.)
| | - Andrea Ganna
- Broad Institute of MIT and Harvard, Cambridge (J.L., B.N., S.R., P.N., A.G.).,Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston (J.L., B.N., S.R., A.G.).,Finnish Institute for Molecular Medicine, HiLIFE, University of Helsinki, Finland (J.L., T.K., N.M., S.J., S.R., A.G.)
| |
Collapse
|
196
|
Bibicheva TS, Skazkina VV, Ogneva MV, Simonyan MA, Gridnev VI, Karavaev AS. Missing value imputation with linear methods in the database of cardiological patients in prediction of mortality. CARDIO-IT 2021. [DOI: 10.15275/cardioit.2021.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study examines missing value imputation in the Russian Acute Coronary Syndrome Registry (RusACSR) and assessment of the probability of predicting mortality. Linear methods with the most probable or average value were used for imputation. The prediction problem was solved using the k-nearest neighbors method. This work reveals that the imputation method, despite their simplicity, increases the probability of prediction of mortality by 6%.
Collapse
|
197
|
Brester C, Voutilainen A, Tuomainen TP, Kauhanen J, Kolehmainen M. Post-Analysis of Predictive Modeling with an Epidemiological Example. Healthcare (Basel) 2021; 9:792. [PMID: 34202622 PMCID: PMC8304882 DOI: 10.3390/healthcare9070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Post-analysis of predictive models fosters their application in practice, as domain experts want to understand the logic behind them. In epidemiology, methods explaining sophisticated models facilitate the usage of up-to-date tools, especially in the high-dimensional predictor space. Investigating how model performance varies for subjects with different conditions is one of the important parts of post-analysis. This paper presents a model-independent approach for post-analysis, aiming to reveal those subjects' conditions that lead to low or high model performance, compared to the average level on the whole sample. Conditions of interest are presented in the form of rules generated by a multi-objective evolutionary algorithm (MOGA). In this study, Lasso logistic regression (LLR) was trained to predict cardiovascular death by 2016 using the data from the 1984-1989 examination within the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD), which contained 2682 subjects and 950 preselected predictors. After 50 independent runs of five-fold cross-validation, the model performance collected for each subject was used to generate rules describing "easy" and "difficult" cases. LLR with 61 selected predictors, on average, achieved 72.53% accuracy on the whole sample. However, during post-analysis, three categories of subjects were discovered: "Easy" cases with an LLR accuracy of 95.84%, "difficult" cases with an LLR accuracy of 48.11%, and the remaining cases with an LLR accuracy of 71.00%. Moreover, the rule analysis showed that medication was one of the main confusing factors that led to lower model performance. The proposed approach provides insightful information about subjects' conditions that complicate predictive modeling.
Collapse
Affiliation(s)
- Christina Brester
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Ari Voutilainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1 C, P.O. Box 1627, FI-70211 Kuopio, Finland; (A.V.); (T.-P.T.); (J.K.)
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1 C, P.O. Box 1627, FI-70211 Kuopio, Finland; (A.V.); (T.-P.T.); (J.K.)
| | - Jussi Kauhanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1 C, P.O. Box 1627, FI-70211 Kuopio, Finland; (A.V.); (T.-P.T.); (J.K.)
| | - Mikko Kolehmainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P.O. Box 1627, FI-70211 Kuopio, Finland;
| |
Collapse
|
198
|
Alaa AM, Gurdasani D, Harris AL, Rashbass J, van der Schaar M. Machine learning to guide the use of adjuvant therapies for breast cancer. NAT MACH INTELL 2021. [DOI: 10.1038/s42256-021-00353-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
199
|
Prediction of arrhythmia after intervention in children with atrial septal defect based on random forest. BMC Pediatr 2021; 21:280. [PMID: 34134641 PMCID: PMC8207618 DOI: 10.1186/s12887-021-02744-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Using random forest to predict arrhythmia after intervention in children with atrial septal defect. METHODS We constructed a prediction model of complications after interventional closure for children with atrial septal defect. The model was based on random forest, and it solved the need for postoperative arrhythmia risk prediction and assisted clinicians and patients' families to make preoperative decisions. RESULTS Available risk prediction models provided patients with specific risk factor assessments, we used Synthetic Minority Oversampling Technique algorithm and random forest machine learning to propose a prediction model, and got a prediction accuracy of 94.65 % and an Area Under Curve value of 0.8956. CONCLUSIONS Our study was based on the model constructed by random forest, which can effectively predict the complications of arrhythmia after interventional closure in children with atrial septal defect.
Collapse
|
200
|
Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization. Int J Cardiovasc Imaging 2021; 37:3145-3156. [PMID: 34050838 DOI: 10.1007/s10554-021-02294-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms-random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p < 0.0001), TPA (OR = 1.61, p < 0.0001), and IPN (OR = 2.78, p < 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p < 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~ 3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p < 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~ 17.8% over the Cox-based model (0.86 vs. 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.
Collapse
|