151
|
Li C, Zhang Y, Wang H, Chen L, Zhang J, Sun M, Xu J, Wang C. The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2018; 19:909-921. [PMID: 28665481 PMCID: PMC6638095 DOI: 10.1111/mpp.12576] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 05/25/2023]
Abstract
Fusarium graminearum is a causal agent of wheat scab disease and a producer of deoxynivalenol (DON) mycotoxins. Treatment with exogenous cyclic adenosine monophosphate (cAMP) increases its DON production. In this study, to better understand the role of the cAMP-protein kinase A (PKA) pathway in F. graminearum, we functionally characterized the PKR gene encoding the regulatory subunit of PKA. Mutants deleted of PKR were viable, but showed severe defects in growth, conidiation and plant infection. The pkr mutant produced compact colonies with shorter aerial hyphae with an increased number of nuclei in hyphal compartments. Mutant conidia were morphologically abnormal and appeared to undergo rapid autophagy-related cell death. The pkr mutant showed blocked perithecium development, but increased DON production. It had a disease index of less than unity and failed to spread to neighbouring spikelets. The mutant was unstable and spontaneous suppressors with a faster growth rate were often produced on older cultures. A total of 67 suppressor strains that grew faster than the original mutant were isolated. Three showed a similar growth rate and colony morphology to the wild-type, but were still defective in conidiation. Sequencing analysis with 18 candidate PKA-related genes in three representative suppressor strains identified mutations only in the CPK1 catalytic subunit gene. Further characterization showed that 10 of the other 64 suppressor strains also had mutations in CPK1. Overall, these results showed that PKR is important for the regulation of hyphal growth, reproduction, pathogenesis and DON production, and mutations in CPK1 are partially suppressive to the deletion of PKR in F. graminearum.
Collapse
Affiliation(s)
- Chaoqun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Yonghui Zhang
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Huan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Lingfeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Ju Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Jin‐Rong Xu
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| |
Collapse
|
152
|
Affiliation(s)
- Cong Jiang
- NWAFU-Purdue Joint Research Center, College of Plant Protection, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Shaanxi, P. R. China
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Xue Zhang
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Huiquan Liu
- NWAFU-Purdue Joint Research Center, College of Plant Protection, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Shaanxi, P. R. China
| | - Jin-Rong Xu
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
153
|
Yang Q, Zhang J, Hu J, Wang X, Lv B, Liang W. Involvement of BcYak1 in the Regulation of Vegetative Differentiation and Adaptation to Oxidative Stress of Botrytis cinerea. Front Microbiol 2018. [PMID: 29515556 PMCID: PMC5826331 DOI: 10.3389/fmicb.2018.00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Yak1, a member of the dual-specificity tyrosine phosphorylation-regulated protein kinases, plays an important role in diverse cellular processes in fungi. However, to date, the role of BcYak1 in Botrytis cinerea, the causal agent of gray mold diseases in various plant species, remains uncharacterized. Our previous study identified one lysine acetylation site (Lys252) in BcYak1, which is the first report of such a site in Yak1. In this study, the function of BcYak1 and its lysine acetylation site were investigated using gene disruption and site-directed mutagenesis. The gene deletion mutant ΔBcYak1 not only exhibits much lower pathogenicity, conidiation and sclerotium formation, but was also much more sensitive to H2O2 and the ergosterol biosynthesis inhibitor (EBI) triadimefon. The Lys252 site-directed mutagenesis mutant strain ΔBcYak1-K252Q (mimicking the acetylation of the site), however, only showed lower sclerotium formation and higher sensitivity to H2O2. These results indicate that BcYAK1 is involved in the vegetative differentiation, adaptation to oxidative stress and triadimefon, and virulence of B. cinerea.
Collapse
Affiliation(s)
- Qianqian Yang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jianan Zhang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jicheng Hu
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xue Wang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Binna Lv
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
154
|
Shin J, Kim JE, Lee YW, Son H. Fungal Cytochrome P450s and the P450 Complement (CYPome) of Fusarium graminearum. Toxins (Basel) 2018; 10:E112. [PMID: 29518888 PMCID: PMC5869400 DOI: 10.3390/toxins10030112] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450s (CYPs), heme-containing monooxygenases, play important roles in a wide variety of metabolic processes important for development as well as biotic/trophic interactions in most living organisms. Functions of some CYP enzymes are similar across organisms, but some are organism-specific; they are involved in the biosynthesis of structural components, signaling networks, secondary metabolisms, and xenobiotic/drug detoxification. Fungi possess more diverse CYP families than plants, animals, or bacteria. Various fungal CYPs are involved in not only ergosterol synthesis and virulence but also in the production of a wide array of secondary metabolites, which exert toxic effects on humans and other animals. Although few studies have investigated the functions of fungal CYPs, a recent systematic functional analysis of CYP genes in the plant pathogen Fusarium graminearum identified several novel CYPs specifically involved in virulence, asexual and sexual development, and degradation of xenobiotics. This review provides fundamental information on fungal CYPs and a new platform for further metabolomic and biochemical studies of CYPs in toxigenic fungi.
Collapse
Affiliation(s)
| | | | | | - Hokyoung Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.S.); (J.-E.K.); (Y.-W.L.)
| |
Collapse
|
155
|
Yin T, Zhang Q, Wang J, Liu H, Wang C, Xu J, Jiang C. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2018; 19:552-563. [PMID: 28142217 PMCID: PMC6638064 DOI: 10.1111/mpp.12540] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 05/25/2023]
Abstract
Fusarium graminearum is a causal agent of wheat scab and a producer of the trichothecene mycotoxin deoxynivalenol (DON). The expression of trichothecene biosynthesis (TRI) genes and DON production are mainly regulated by the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway and two pathway-specific transcription factors (TRI6 and TRI10). Interestingly, deletion mutants of TRI6 show reduced expression of several components of cAMP signalling, including the FgCAP1 adenylate-binding protein gene that has not been functionally characterized in F. graminearum. In this study, we show that FgCap1 interacts with Fac1 adenylate cyclase and that deletion of FgCAP1 reduces the intracellular cAMP level and PKA activity. The Fgcap1 deletion mutant is defective in vegetative growth, conidiogenesis and plant infection. It also shows significantly reduced DON production and TRI gene expression, which can be suppressed by exogenous cAMP, indicating a PKA-dependent regulation of DON biosynthesis by FgCap1. The wild-type, but not tri6 mutant, shows increased levels of intracellular cAMP and FgCAP1 expression under DON-producing conditions. Furthermore, the promoter of FgCAP1 contains one putative Tri6-binding site that is important for its function during DON biosynthesis, but is dispensable for hyphal growth, conidiogenesis and pathogenesis. In addition, FgCap1 shows an actin-like localization to the cortical patches at the apical region of hyphal tips. Phosphorylation of FgCap1 at S353 was identified by phosphoproteomics analysis. The S353A mutation in FgCAP1 has no effect on its functions during vegetative growth, conidiation and DON production. However, expression of the FgCAP1S353A allele fails to complement the defects of the Fgcap1 mutant in plant infection, indicating the importance of the phosphorylation of FgCap1 at S353 during pathogenesis. Taken together, our results suggest that FgCAP1 is involved in the regulation of DON production via cAMP signalling and subjected to a feedback regulation by TRI6, but the phosphorylation of FgCap1 at S353 is probably unrelated to the cAMP-PKA pathway because the S353A mutation only affects plant infection.
Collapse
Affiliation(s)
- Tao Yin
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jianhua Wang
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
- Institute for Agri‐food Standards and Testing TechnologyShanghai Academy of Agricultural SciencesShanghai201403China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jin‐Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| |
Collapse
|
156
|
Kim M, Zhang H, Woloshuk C, Shim WB, Yoon BJ. Computational Prediction of Pathogenic Network Modules in Fusarium verticillioides. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:506-515. [PMID: 29610099 DOI: 10.1109/tcbb.2015.2440232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fusarium verticillioides is a fungal pathogen that triggers stalk rots and ear rots in maize. In this study, we performed a comparative analysis of wild type and loss-of-virulence mutant F. verticillioides co-expression networks to identify subnetwork modules that are associated with its pathogenicity. We constructed the F. verticillioides co-expression networks from RNA-Seq data and searched through these networks to identify subnetwork modules that are differentially activated between the wild type and mutant F. verticillioides, which considerably differ in terms of pathogenic potentials. A greedy seed-and-extend approach was utilized in our search, where we also used an efficient branch-out technique for reliable prediction of functional subnetwork modules in the fungus. Through our analysis, we identified four potential pathogenicity-associated subnetwork modules, each of which consists of interacting genes with coordinated expression patterns, but whose activation level is significantly different in the wild type and the mutant. The predicted modules were comprised of functionally coherent genes and topologically cohesive. Furthermore, they contained several orthologs of known pathogenic genes in other fungi, which may play important roles in the fungal pathogenesis.
Collapse
|
157
|
Li B, Dong X, Li X, Chen H, Zhang H, Zheng X, Zhang Z. A subunit of the HOPS endocytic tethering complex, FgVps41, is important for fungal development and plant infection in Fusarium graminearum. Environ Microbiol 2018; 20:1436-1451. [PMID: 29411478 DOI: 10.1111/1462-2920.14050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 01/28/2023]
Abstract
The signals by which eukaryotic cells communicate with the environment are usually mediated by vesicle trafficking to be attenuated or terminated. However, vesicle trafficking-mediated signal transmission during interactions between pathogens and host plants is poorly understood. Here, we identified and characterized the vacuole sorting protein FgVps41, which is the yeast HOPS tethering complex subunit Vps41 homolog in Fusarium graminearum. Targeted gene deletion demonstrated that FgVps41 is important for vegetative growth, asexual/sexual development, conidial morphology, plant infection and deoxynivalenol production. Cellular localization and cytological examinations revealed that FgVps41 localizes to early/late endosomes and vacuole membrane, and is recruited to prevacuolar compartments and vacuole membrane by interacting with FgRab7 in F. graminearum. Furthermore, we found FgVps41 mediates vacuole membrane fusion and sorting of FgApeI, a cargo protein involving in the cytosol-to-vacuole targeting pathway. In addition, we found that FgVps41 interacts with FgYck3, a vacuolar type I casein kinase, which regulates vesicle fusion in the AP-3 pathway. Deletion of FgYck3 showed similar phenotypes to the ΔFgvps41 mutant, and both FgRab7 and FgYck3 regulate the normal localization of FgVps41. Collectively, our results demonstrate that FgVps41 acts as a HOPS tethering complex subunit and is important for the development of infection-related morphogenesis in F. graminearum.
Collapse
Affiliation(s)
- Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xin Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xinrui Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
158
|
Castiblanco V, Castillo HE, Miedaner T. Candidate Genes for Aggressiveness in a Natural Fusarium culmorum Population Greatly Differ between Wheat and Rye Head Blight. J Fungi (Basel) 2018; 4:E14. [PMID: 29371506 PMCID: PMC5872317 DOI: 10.3390/jof4010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Fusarium culmorum is one of the species causing Fusarium head blight (FHB) in cereals in Europe. We aimed to investigate the association between the nucleotide diversity of ten F. culmorum candidate genes and field ratings of aggressiveness in winter rye. A total of 100 F. culmorum isolates collected from natural infections were phenotyped for FHB at two locations and two years. Variance components for aggressiveness showed significant isolate and isolate-by-environment variance, as expected for quantitative host-pathogen interactions. Further analysis of the isolate-by-environment interaction revealed the dominant role of the isolate-by-year over isolate-by-location interaction. One single-nucleotide polymorphism (SNP) in the cutinase (CUT) gene was found to be significantly (p < 0.001) associated with aggressiveness and explained 16.05% of the genotypic variance of this trait in rye. The SNP was located 60 base pairs before the start codon, which suggests a role in transcriptional regulation. Compared to a previous study in winter wheat with the same nucleotide sequences, a larger variation of pathogen aggressiveness on rye was found and a different candidate gene was associated with pathogen aggressiveness. This is the first report on the association of field aggressiveness and a host-specific candidate gene codifying for a protein that belongs to the secretome in F. culmorum.
Collapse
Affiliation(s)
- Valheria Castiblanco
- State Plant Breeding Institute, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Hilda Elena Castillo
- State Plant Breeding Institute, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
159
|
Liang Y, Han Y, Wang C, Jiang C, Xu JR. Targeted Deletion of the USTA and UvSLT2 Genes Efficiently in Ustilaginoidea virens With the CRISPR-Cas9 System. FRONTIERS IN PLANT SCIENCE 2018; 9:699. [PMID: 29881395 PMCID: PMC5976777 DOI: 10.3389/fpls.2018.00699] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/07/2018] [Indexed: 05/21/2023]
Abstract
Ustilaginoidea virens is the causal agent of rice false smut, one of the major fungal diseases of rice. However, there are only limited molecular studies with this important pathogen due to the lack of efficient approaches for generating targeted gene disruption mutants. In this study, we used the CRISPR-Cas9 system to efficiently generate mutants deleted of the USTA ustiloxin and UvSLT2 MAP kinase genes. Three gRNA spacers of USTA, UA01, UA13, and UA21, were expressed with the RNAP III promoter of Gln-tRNA. For all of them, the homologous gene replacement frequency was higher when the Cas9 and gRNA constructs were transformed into U. virens on the same vector than sequentially. UA01, the spacer with the highest on-target score, had the highest knockout frequency of 90%, which was over 200 times higher than that of Agrobacterium tumefaciens-mediated transformation (ATMT) for generating ustA mutants. None of these USTA spacers had predicted off-targets with 1 or 2-nt variations. For predicted off-targets with 3 or 4-nt variations, mutations were not detected in 10 ustA mutants generated with spacer UA13 or UA21, indicating a relatively low frequency of off-target mutations in U. virens. For UvSLT2, the homologous gene replacement frequency was 50% with CRISPR-Cas9, which also was significantly higher than that of ATMT. Whereas ustA mutants had no detectable phenotypes, Uvslt2 mutants were slightly reduced in growth rate and reduced over 70% in conidiation. Deletion of UvSLT2 also increased sensitivity to cell wall stresses but tolerance to hyperosmotic or oxidative stresses. Taken together, our results showed that the CRISPR-Cas9 system can be used as an efficient gene replacement or editing approach in U. virens and the UvSlt2 MAP kinase pathway has a conserved role in cell wall integrity.
Collapse
Affiliation(s)
- Yafeng Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yu Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Jin-Rong Xu,
| |
Collapse
|
160
|
Kluge J, Kück U. AcAxl2 and AcMst1 regulate arthrospore development and stress resistance in the cephalosporin C producer Acremonium chrysogenum. Curr Genet 2017; 64:713-727. [PMID: 29209784 DOI: 10.1007/s00294-017-0790-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 11/29/2022]
Abstract
The filamentous fungus Acremonium chrysogenum is the primordial producer of the β-lactam antibiotic cephalosporin C. This antibiotic is of major biotechnological and medical relevance because of its antibacterial activity against Gram-positive and Gram-negative bacteria. Antibiotic production during the lag phase of fermentation is often accompanied by a typical morphological feature of A. chrysogenum, the fragmentation of the mycelium into arthrospores. Here, we sought to identify factors that regulate the hyphal septation process and present the first comparative functional characterization of the type I integral plasma membrane protein Axl2 (axial budding pattern protein 2), a central component of the bud site selection system (BSSS) and Mst1 (mammalian Sterile20-like kinase), a septation initiation network (SIN)-associated germinal center kinase (GCK). Although an Acaxl2 deletion strain showed accelerated arthrospore formation after 96 h in liquid culture, deletion of Acmst1 led to a 24 h delay in arthrospore development. The overexpression of Acaxl2 resulted in an arthrospore formation similar to the A3/2 strain. In contrast to this, A3/2::Acmst1 OE strain displayed an enhanced arthrospore titer. Large-scale stress tests revealed an involvement of AcAxl2 in controlling osmotic, endoplasmic reticulum, and cell wall stress response. In a similar approach, we found that AcMst1 plays an essential role in regulating growth under osmotic, cell wall, and oxidative stress conditions. Microscopic analyses and plating assays on media containing Calcofluor White and NaCl showed that arthrospore development is a stress-dependent process. Our results suggest the potential for identifying candidate genes for strain improvement programs to optimize industrial fermentation processes.
Collapse
Affiliation(s)
- Janina Kluge
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
161
|
Liu Z, Wang Z, Huang M, Yan L, Ma Z, Yin Y. The FgSsb-FgZuo-FgSsz complex regulates multiple stress responses and mycotoxin production via folding the soluble SNARE Vam7 and β2-tubulin in Fusarium graminearum. Environ Microbiol 2017; 19:5040-5059. [PMID: 29076607 DOI: 10.1111/1462-2920.13968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Abstract
Hsp70 proteins play important roles in protein folding in the budding yeast, but their functions in pathogenic fungi are largely unknown. Here, we found that Fusarium graminearum Hsp70 proteins FgSsb, FgSsz and their cochaperone FgZuo formed a complex. This complex was required for microtubule morphology, vacuole fusion and endocytosis. More importantly, the β2-tubulin FgTub2 and SNARE protein FgVam7 were identified as targeting proteins of this complex. We further found that the complex FgSsb-FgZuo-FgSsz controlled sensitivity of F. graminearum to the antimicrotubule drug carbendazim and cold stress via regulating the folding of FgTub2. Moreover, this complex assisted the folding of FgVam7, subsequently modulated vacuole fusion and responses to heavy metal, osmotic and oxidative stresses. In addition, the deletion of this complex led to dramatically decreased deoxynivalenol biosynthesis. This study uncovers a novel regulating mechanism of Hsp70 in multiple stress responses in a filamentous fungus.
Collapse
Affiliation(s)
- Zunyong Liu
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhihui Wang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mengmeng Huang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Leiyan Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China
| | - Zhonghua Ma
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
162
|
Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, Huo R, Wu H, Borriss R, Gao X. Bacillomycin D Produced by Bacillus amyloliquefaciens Is Involved in the Antagonistic Interaction with the Plant-Pathogenic Fungus Fusarium graminearum. Appl Environ Microbiol 2017; 83:e01075-17. [PMID: 28733288 PMCID: PMC5601353 DOI: 10.1128/aem.01075-17] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/17/2017] [Indexed: 11/20/2022] Open
Abstract
Fusarium graminearum (teleomorph: Ascomycota, Hypocreales, Gibberella, Gibberella zeae) is a destructive fungal pathogen that threatens the production and quality of wheat and barley worldwide. Controlling this toxin-producing pathogen is a significant challenge. In the present study, the commercially available strain Bacillus amyloliquefaciens (Bacteria, Firmicutes, Bacillales, Bacillus) FZB42 showed strong activity against F. graminearum The lipopeptide bacillomycin D, produced by FZB42, was shown to contribute to the antifungal activity. Purified bacillomycin D showed strong activity against F. graminearum, and its 50% effective concentration was determined to be approximately 30 μg/ml. Analyses using scanning and transmission electron microscopy revealed that bacillomycin D caused morphological changes in the plasma membranes and cell walls of F. graminearum hyphae and conidia. Fluorescence microscopy combined with different dyes showed that bacillomycin D induced the accumulation of reactive oxygen species and caused cell death in F. graminearum hyphae and conidia. F. graminearum secondary metabolism also responded to bacillomycin D challenge, by increasing the production of deoxynivalenol. Biological control experiments demonstrated that bacillomycin D exerted good control of F. graminearum on corn silks, wheat seedlings, and wheat heads. In response to bacillomycin D, F. graminearum genes involved in scavenging reactive oxygen species were downregulated, whereas genes involved in the synthesis of deoxynivalenol were upregulated. Phosphorylation of MGV1 and HOG1, the mitogen-activated protein kinases of F. graminearum, was increased in response to bacillomycin D. Taken together, these findings reveal the mechanism of the antifungal action of bacillomycin D.IMPORTANCE Biological control of plant disease caused by Fusarium graminearum is desirable. Bacillus amyloliquefaciens FZB42 is a representative of the biocontrol bacterial strains. In this work, the lipopeptide bacillomycin D, produced by FZB42, showed strong fungicidal activity against F. graminearum Bacillomycin D caused morphological changes in the plasma membrane and cell wall of F. graminearum, induced accumulation of reactive oxygen species, and ultimately caused cell death in F. graminearum Interestingly, when F. graminearum was challenged with bacillomycin D, the deoxynivalenol production, gene expression, mitogen-activated protein kinase phosphorylation, and pathogenicity of F. graminearum were significantly altered. These findings clarified the mechanisms of the activity of bacillomycin D against F. graminearum and highlighted the potential of B. amyloliquefaciens FZB42 as a biocontrol agent against F. graminearum.
Collapse
Affiliation(s)
- Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Yang Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Qiming Yuan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Guangming Shi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Liming Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Zhiying Lou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Rong Huo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Rainer Borriss
- Institut für Biologie, Humboldt-Universität Berlin, Berlin, Germany
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| |
Collapse
|
163
|
Jiao M, Yu D, Tan C, Guo J, Lan D, Han E, Qi T, Voegele RT, Kang Z, Guo J. Basidiomycete-specific PsCaMKL1 encoding a CaMK-like protein kinase is required for full virulence of Puccinia striiformis f. sp. tritici. Environ Microbiol 2017; 19:4177-4189. [PMID: 28805296 DOI: 10.1111/1462-2920.13881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 11/29/2022]
Abstract
Calcium/calmodulin-dependent kinases (CaMKs) are Ser/Thr protein kinases (PKs) that respond to changes in cytosolic free Ca2+ and play diverse roles in eukaryotes. In fungi, CAMKs are generally classified into four families CAMK1, CAMKL, RAD53 and CAMK-Unique. Among these, CAMKL constitutes the largest family. In some fungal plant pathogens, members of the CaMKL family have been shown to be responsible for pathogenesis. However, little is known about their role(s) in rust fungi. In this study, we functionally characterized a novel PK gene, PsCaMKL1, from Puccinia striiformis f. sp. tritici (Pst). PsCaMKL1 belongs to a group of PKs that is evolutionarily specific to basidiomyceteous fungi. PsCaMKL1 shows little intra-species polymorphism between Pst isolates. PsCaMKL1 transcripts are highly elevated at early infection stages, whereas gene expression is downregulated in barely germinated urediospores under KN93 treatment. Overexpression of PsCaMKL1 in fission yeast increased resistance to environmental stresses. Knock down of PsCaMKL1 using host-induced gene silencing (HIGS) reduced the virulence of Pst accompanied by reactive oxygen species (ROS) accumulation and a hypersensitive response. These results suggest that PsCaMKL1 is a novel pathogenicity factor that exerts it virulence function by regulating ROS production in wheat.
Collapse
Affiliation(s)
- Min Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Dan Yu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chenglong Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Dingyun Lan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ershang Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ralf Thomas Voegele
- Faculty of Agricultural Sciences, Department of Phytopathology, Institute of Phytomedicine, University of Hohenheim, Stuttgart 70599, Germany
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
164
|
Zhang Y, Gao X, Sun M, Liu H, Xu JR. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol 2017; 19:4065-4079. [PMID: 28654215 DOI: 10.1111/1462-2920.13844] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
The versatile functions of SR (serine/arginine-rich) proteins in pre-mRNA splicing and processing are modulated by reversible phosphorylation. Previous studies showed that FgPrp4, the only protein kinase among spliceosome components, is important for intron splicing and the FgSrp1 SR protein is phosphorylated at five conserved sites in Fusarium graminearum. In this study, we showed that the Fgsrp1 deletion mutant rarely produced conidia and caused only limited symptoms on wheat heads and corn silks. Deletion of FgSRP1 also reduced ascospore ejection and deoxynivalenol (DON) production. Interestingly, FgSRP1 had two transcript isoforms due to alternative splicing and both of them were required for its normal functions in growth and DON biosynthesis. FgSrp1 localized to the nucleus and interacted with FgPrp4 in vivo. Deletion of all four conserved phosphorylation sites but not individual ones affected the FgSRP1 function, suggesting their overlapping functions. RNA-seq analysis showed that the expression of over thousands of genes and splicing efficiency in over 140 introns were affected. Taken together, FgSRP1 is important for conidiation, and pathogenesis and alternative splicing is important for its normal functions. The FgSrp1 SR protein is likely important for pre-mRNA processing or splicing of various genes in different developmental and infection processes.
Collapse
Affiliation(s)
- Yimei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
165
|
Wang RJ, Peng J, Li QX, Peng YL. Phosphorylation-mediated Regulatory Networks in Mycelia of Pyricularia oryzae Revealed by Phosphoproteomic Analyses. Mol Cell Proteomics 2017; 16:1669-1682. [PMID: 28706003 PMCID: PMC5587865 DOI: 10.1074/mcp.m116.066670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/19/2017] [Indexed: 12/23/2022] Open
Abstract
Protein phosphorylation is known to regulate pathogenesis, mycelial growth, conidiation and stress response in Pyricularia oryzae However, phosphorylation mediated regulatory networks in the fungal pathogen remain largely to be uncovered. In this study, we identified 1621 phosphorylation sites of 799 proteins in mycelia of P. oryzae, including 899 new p-sites of 536 proteins and 47 new p-sites of 31 pathogenicity-related proteins. From the sequences flanking the phosphorylation sites, 19 conserved phosphorylation motifs were identified. Notably, phosphorylation was detected in 7 proteins that function upstream of Pmk1, but not in Pmk1 and its downstream Mst12 and Sfl1 that have been known to regulate appressorium formation and infection hyphal growth of P. oryzae Interestingly, phosphorylation was detected at the site Ser240 of Pmp1, which is a putative protein phosphatase highly conserved in filamentous fungi but not characterized. We thus generated Δpmp1 deletion mutants and dominant allele PMP1S240D mutants. Phenotyping analyses indicated that Pmp1 is required for virulence, conidiation and mycelial growth. Further, we observed that phosphorylation level of Pmk1 in mycelia was significantly increased in the Δpmp1 mutant, but decreased in the PMP1S240D mutant in comparison with the wild type, demonstrating that Pmp1 phosphorylated at Ser240 is important for regulating phosphorylation of Pmk1. To our surprise, phosphorylation of Mps1, another MAP kinase required for cell wall integrity and appressorium formation of P. oryzae, was also significantly enhanced in the Δpmp1 mutant, but decreased in the PMP1S240D mutant. In addition, we found that Pmp1 directly interacts with Mps1 and the region AA180-230 of Pmp1 is required for the interaction. In summary, this study sheds new lights on the protein phosphorylation mediated regulatory networks in P. oryzae.
Collapse
Affiliation(s)
- Rui-Jin Wang
- From the ‡State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing 100193, China.,§Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Junbo Peng
- From the ‡State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing 100193, China
| | - Qing X Li
- §Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822.
| | - You-Liang Peng
- From the ‡State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
166
|
Qin S, Ji C, Li Y, Wang Z. Comparative Transcriptomic Analysis of Race 1 and Race 4 of Fusarium oxysporum f. sp. cubense Induced with Different Carbon Sources. G3 (BETHESDA, MD.) 2017; 7:2125-2138. [PMID: 28468818 PMCID: PMC5499122 DOI: 10.1534/g3.117.042226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/30/2017] [Indexed: 12/13/2022]
Abstract
The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the "Gros Michel" banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity.
Collapse
Affiliation(s)
- Shiwen Qin
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Chunyan Ji
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yunfeng Li
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Zhenzhong Wang
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
167
|
RNA editing of the AMD1 gene is important for ascus maturation and ascospore discharge in Fusarium graminearum. Sci Rep 2017; 7:4617. [PMID: 28676631 PMCID: PMC5496914 DOI: 10.1038/s41598-017-04960-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Ascospores are the primary inoculum in the wheat scab fungus Fusarium graminearum that was recently shown to have sexual stage-specific A-to-I RNA editing. One of the genes with premature-stop-codons requiring A-to-I editing to encode full-length functional proteins is AMD1 that encodes a protein with a major facilitator superfamily (MFS) domain. Here, we characterized the functions of AMD1 and its UAG to UGG editing event. The amd1 deletion mutant was normal in growth and conidiation but defective in ascospore discharge due to the premature breakdown of its ascus wall in older perithecia, which is consistent with the specific expression of AMD1 at later stages of sexual development. Expression of the wild-type or edited allele of AMD1 but not un-editable allele rescued the defects of amd1 in ascospore discharge. Furthermore, Amd1-GFP localized to the ascus membrane and Amd1 orthologs are only present in ascocarp-forming fungi that physically discharge ascospores. Interestingly, deletion of AMD1 results in the up-regulation of a number of genes related to transporter activity and membrane functions. Overall, these results indicated that Amd1 may play a critical role in maintaining ascus wall integrity during ascus maturation, and A-to-I editing of its transcripts is important for ascospore discharge in F. graminearum.
Collapse
|
168
|
Trail F, Wang Z, Stefanko K, Cubba C, Townsend JP. The ancestral levels of transcription and the evolution of sexual phenotypes in filamentous fungi. PLoS Genet 2017; 13:e1006867. [PMID: 28704372 PMCID: PMC5509106 DOI: 10.1371/journal.pgen.1006867] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022] Open
Abstract
Changes in gene expression have been hypothesized to play an important role in the evolution of divergent morphologies. To test this hypothesis in a model system, we examined differences in fruiting body morphology of five filamentous fungi in the Sordariomycetes, culturing them in a common garden environment and profiling genome-wide gene expression at five developmental stages. We reconstructed ancestral gene expression phenotypes, identifying genes with the largest evolved increases in gene expression across development. Conducting knockouts and performing phenotypic analysis in two divergent species typically demonstrated altered fruiting body development in the species that had evolved increased expression. Our evolutionary approach to finding relevant genes proved far more efficient than other gene deletion studies targeting whole genomes or gene families. Combining gene expression measurements with knockout phenotypes facilitated the refinement of Bayesian networks of the genes underlying fruiting body development, regulation of which is one of the least understood processes of multicellular development.
Collapse
Affiliation(s)
- Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Kayla Stefanko
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
| | - Caitlyn Cubba
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, New Haven, CT, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States of America
| |
Collapse
|
169
|
Castiblanco V, Marulanda JJ, Würschum T, Miedaner T. Candidate gene based association mapping in Fusarium culmorum for field quantitative pathogenicity and mycotoxin production in wheat. BMC Genet 2017; 18:49. [PMID: 28525967 PMCID: PMC5438566 DOI: 10.1186/s12863-017-0511-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background Quantitative traits are common in nature, but quantitative pathogenicity has received only little attention in phytopathology. In this study, we used 100 Fusarium culmorum isolates collected from natural field environments to assess their variation for two quantitative traits, aggressiveness and deoxynivalenol (DON) production on wheat plants grown in four different field environments (location-year combinations). Seventeen Fusarium graminearum pathogenicity candidate genes were assessed for their effect on the aggressiveness and DON production of F. culmorum under field conditions. Results For both traits, genotypic variance among isolates was high and significant while the isolate-by-environment interaction was also significant, amounting to approximately half of the genotypic variance. Among the studied candidate genes, the mitogen-activated protein kinase (MAPK) HOG1 was found to be significantly associated with aggressiveness and deoxynivalenol (DON) production, explaining 10.29 and 6.05% of the genotypic variance, respectively. Conclusions To the best of our knowledge, this is the first report of a protein kinase regulator explaining differences in field aggressiveness and mycotoxin production among individuals from natural populations of a plant pathogen. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0511-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valheria Castiblanco
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Jose J Marulanda
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 79593, Stuttgart, Germany
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
170
|
Shin JY, Bui DC, Lee Y, Nam H, Jung S, Fang M, Kim JC, Lee T, Kim H, Choi GJ, Son H, Lee YW. Functional characterization of cytochrome P450 monooxygenases in the cereal head blight fungus Fusarium graminearum. Environ Microbiol 2017; 19:2053-2067. [PMID: 28296081 DOI: 10.1111/1462-2920.13730] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/27/2022]
Abstract
Fusarium graminearum is a prominent plant pathogenic fungus causing Fusarium head blight in major cereal crops worldwide. To understand the molecular mechanisms underlying fungal development and virulence, large collections of F. graminearum mutants have been constructed. Cytochrome P450 monooxygenases (P450s) are widely distributed in organisms and are involved in a diverse array of molecular/metabolic processes; however, no systematic functional analysis of P450s has been attempted in filamentous fungi. In this study, we constructed a genome-wide deletion mutant set covering 102 P450s and analyzed these mutants for changes in 38 phenotypic categories, including fungal development, stress responses and responses to several xenobiotics, to build a comprehensive phenotypic dataset. Most P450 mutants showing defective phenotypes were impaired in a single phenotypic trait, demonstrating that our mutant library is a good genetic resource for further fungal genetic studies. In particular, we identified novel P450s specifically involved in virulence (5) and both asexual (1) and sexual development (2). Most P450s seem to play redundant roles in the degradation of xenobiotics in F. graminearum. This study is the first phenome-based functional analysis of P450s, and it provides a valuable genetic resource for further basic and applied biological research in filamentous fungi and other plant pathogens.
Collapse
Affiliation(s)
- Ji Young Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Duc-Cuong Bui
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonji Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejin Nam
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soyun Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Miao Fang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Theresa Lee
- Microbial Safety Team, National Academy of Agricultural Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hun Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hokyoung Son
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
171
|
A Gin4-Like Protein Kinase GIL1 Involvement in Hyphal Growth, Asexual Development, and Pathogenesis in Fusarium graminearum. Int J Mol Sci 2017; 18:ijms18020424. [PMID: 28212314 PMCID: PMC5343958 DOI: 10.3390/ijms18020424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 11/23/2022] Open
Abstract
Fusarium graminearum is the main causal agent of Fusarium head blight (FHB) on wheat and barley. In a previous study, a GIN4-like protein kinase gene, GIL1, was found to be important for plant infection and sexual reproduction. In this study we further characterized the functions of GIL1 kinase in different developmental processes. The Δgil1 mutants were reduced in growth, conidiation, and virulence, and formed whitish and compact colonies. Although phialide formation was rarely observed in the mutants, deletion of GIL1 resulted in increased hyphal branching and increased tolerance to cell wall and cell membrane stresses. The Δgil1 mutants produced straight, elongated conidia lacking of distinct foot cells and being delayed in germination. Compared with the wild type, some compartments in the vegetative hyphae of Δgil1 mutants had longer septal distances and increased number of nuclei, suggesting GIL1 is related to cytokinesis and septation. Localization of the GIL1-GFP fusion proteins to the septum and hyphal branching and fusion sites further supported its roles in septation and branching. Overall, our results indicate that GIL1 plays a role in vegetative growth and plant infection in F. graminearum, and is involved in septation and hyphal branching.
Collapse
|
172
|
Zhang K, Li Y, Li T, Li ZG, Hsiang T, Zhang Z, Sun W. Pathogenicity Genes in Ustilaginoidea virens Revealed by a Predicted Protein-Protein Interaction Network. J Proteome Res 2017; 16:1193-1206. [PMID: 28099032 DOI: 10.1021/acs.jproteome.6b00720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rice false smut, caused by Ustilaginoidea virens, produces significant losses in rice yield and grain quality and has recently emerged as one of the most important rice diseases worldwide. Despite its importance in rice production, relatively few studies have been conducted to illustrate the complex interactome and the pathogenicity gene interactions. Here a protein-protein interaction network of U. virens was built through two well-recognized approaches, interolog- and domain-domain interaction-based methods. A total of 20 217 interactions associated with 3305 proteins were predicted after strict filtering. The reliability of the network was assessed computationally and experimentally. The topology of the interactome network revealed highly connected proteins. A pathogenicity-related subnetwork involving up-regulated genes during early U. virens infection was also constructed, and many novel pathogenicity proteins were predicted in the subnetwork. In addition, we built an interspecies PPI network between U. virens and Oryza sativa, providing new insights for molecular interactions of this host-pathogen pathosystem. A web-based publicly available interactive database based on these interaction networks has also been released. In summary, a proteome-scale map of the PPI network was described for U. virens, which will provide new perspectives for finely dissecting interactions of genes related to its pathogenicity.
Collapse
Affiliation(s)
- Kang Zhang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University , Beijing 100193, China
| | - Yuejiao Li
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University , Beijing 100193, China
| | - Tengjiao Li
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University , Beijing 100193, China
| | - Zhi-Gang Li
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University , Beijing 100193, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing 100193, China
| | - Wenxian Sun
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University , Beijing 100193, China
| |
Collapse
|
173
|
Minz-Dub A, Sharon A. The Botrytis cinerea PAK kinase BcCla4 mediates morphogenesis, growth and cell cycle regulating processes downstream of BcRac. Mol Microbiol 2017; 104:487-498. [PMID: 28164413 DOI: 10.1111/mmi.13642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 12/24/2022]
Abstract
Rac proteins are involved in a variety of cellular processes. Effector proteins that interact with active Rac convey the GTPase-generated signal to downstream developmental cascades and processes. Here we report on the analysis of the main effector and signal cascade downstream of BcRac, the Rac homolog of the grey mold fungus Botrytis cinerea. Several lines of evidence highlighted the p21-activated kinase Cla4 as an important effector of Rac in fungi. Analysis of Δbccla4 strains revealed that the BcCla4 protein was sufficient to mediate all of the examined BcRac-driven processes, including hyphal growth and morphogenesis, conidia production and pathogenicity. In addition, the Δbccla4 strains had altered nuclei content, a phenomenon that was previously observed in Δbcrac isolates, thus connecting the BcRac/BcCla4 module with cell cycle control. Further analyses revealed that BcRac/BcCla4 control mitotic entry through changes in phosphorylation status of the cyclin dependent kinase BcCdk1. The complete cascade includes the kinase BcWee1, which is downstream of BcCla4 and upstream of BcCdk1. These results provide a mechanistic insight on the connection of cell cycle, morphogenesis and pathogenicity in fungi, and position BcCla4 as the most essential effector and central regulator of all of these processes downstream of BcRac.
Collapse
Affiliation(s)
- Anna Minz-Dub
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
174
|
Son H, Park AR, Lim JY, Shin C, Lee YW. Genome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum. PLoS Genet 2017; 13:e1006595. [PMID: 28146558 PMCID: PMC5310905 DOI: 10.1371/journal.pgen.1006595] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/15/2017] [Accepted: 01/21/2017] [Indexed: 02/07/2023] Open
Abstract
Various ascomycete fungi possess sex-specific molecular mechanisms, such as repeat-induced point mutations, meiotic silencing by unpaired DNA, and unusual adenosine-to-inosine RNA editing, for genome defense or gene regulation. Using a combined analysis of functional genetics and deep sequencing of small noncoding RNA (sRNA), mRNA, and the degradome, we found that the sex-specifically induced exonic small interference RNA (ex-siRNA)-mediated RNA interference (RNAi) mechanism has an important role in fine-tuning the transcriptome during ascospore formation in the head blight fungus Fusarium graminearum. Approximately one-third of the total sRNAs were produced from the gene region, and sRNAs with an antisense direction or 5'-U were involved in post-transcriptional gene regulation by reducing the stability of the corresponding gene transcripts. Although both Dicers and Argonautes partially share their functions, the sex-specific RNAi pathway is primarily mediated by FgDicer1 and FgAgo2, while the constitutively expressed RNAi components FgDicer2 and FgAgo1 are responsible for hairpin-induced RNAi. Based on our results, we concluded that F. graminearum primarily utilizes ex-siRNA-mediated RNAi for ascosporogenesis but not for genome defenses and other developmental stages. Each fungal species appears to have evolved RNAi-based gene regulation for specific developmental stages or stress responses. This study provides new insights into the regulatory role of sRNAs in fungi and other lower eukaryotes.
Collapse
Affiliation(s)
- Hokyoung Son
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jae Yun Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
175
|
Dweba C, Figlan S, Shimelis H, Motaung T, Sydenham S, Mwadzingeni L, Tsilo T. Fusarium head blight of wheat: Pathogenesis and control strategies. CROP PROTECTION 2017. [PMID: 0 DOI: 10.1016/j.cropro.2016.10.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
176
|
Doehlemann G, Ökmen B, Zhu W, Sharon A. Plant Pathogenic Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0023-2016. [PMID: 28155813 PMCID: PMC11687436 DOI: 10.1128/microbiolspec.funk-0023-2016] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 01/05/2023] Open
Abstract
Fungi are among the dominant causal agents of plant diseases. To colonize plants and cause disease, pathogenic fungi use diverse strategies. Some fungi kill their hosts and feed on dead material (necrotrophs), while others colonize the living tissue (biotrophs). For successful invasion of plant organs, pathogenic development is tightly regulated and specialized infection structures are formed. To further colonize hosts and establish disease, fungal pathogens deploy a plethora of virulence factors. Depending on the infection strategy, virulence factors perform different functions. While basically all pathogens interfere with primary plant defense, necrotrophs secrete toxins to kill plant tissue. In contrast, biotrophs utilize effector molecules to suppress plant cell death and manipulate plant metabolism in favor of the pathogen. This article provides an overview of plant pathogenic fungal species and the strategies they use to cause disease.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Bilal Ökmen
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
177
|
Zhou S, Yang Q, Yin C, Liu L, Liang W. Systematic analysis of the lysine acetylome in Fusarium graminearum. BMC Genomics 2016; 17:1019. [PMID: 27964708 PMCID: PMC5153868 DOI: 10.1186/s12864-016-3361-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/28/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Lysine acetylation in proteins is a ubiquitous and conserved post-translational modification, playing a critical regulatory role in almost every aspect of living cells. Although known for many years, its function remains elusive in Fusarium graminearum, one of the most important necrotrophic plant pathogens with huge economic impact. RESULTS By the combination of affinity enrichment and high-resolution LC-MS/MS analysis, large-scale lysine acetylome analysis was performed. In total, 577 lysine acetylation sites matched to 364 different proteins were identified. Bioinformatics analysis of the acetylome showed that the acetylated proteins are involved in a wide range of cellular functions and exhibit diverse subcellular localizations. Remarkably, 10 proteins involved in the virulence or DON (deoxynivalenol) biosynthesis were found to be acetylated, including 4 transcription factors, 4 protein kinases and 2 phosphatases. Protein-protein interaction network analysis revealed that acetylated protein complexes are involved in diversified interactions. CONCLUSIONS This work provides the first comprehensive survey of a possible lysine acetylome in F. graminearum and reveals previously unappreciated roles of lysine acetylation in the regulation of diverse biological processes. This work provides a resource for functional analysis of acetylated proteins in filamentous fungi.
Collapse
Affiliation(s)
- Shanyue Zhou
- College of Agronomy and Plant Protection, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, Shandong, 266109, China
| | - Qianqian Yang
- College of Agronomy and Plant Protection, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, Shandong, 266109, China
| | - Changfa Yin
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Lin Liu
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxing Liang
- College of Agronomy and Plant Protection, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, Shandong, 266109, China.
| |
Collapse
|
178
|
Walkowiak S, Rowland O, Rodrigue N, Subramaniam R. Whole genome sequencing and comparative genomics of closely related Fusarium Head Blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum. BMC Genomics 2016; 17:1014. [PMID: 27938326 PMCID: PMC5148886 DOI: 10.1186/s12864-016-3371-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Fusarium graminearum species complex is composed of many distinct fungal species that cause several diseases in economically important crops, including Fusarium Head Blight of wheat. Despite being closely related, these species and individuals within species have distinct phenotypic differences in toxin production and pathogenicity, with some isolates reported as non-pathogenic on certain hosts. In this report, we compare genomes and gene content of six new isolates from the species complex, including the first available genomes of F. asiaticum and F. meridionale, with four other genomes reported in previous studies. RESULTS A comparison of genome structure and gene content revealed a 93-99% overlap across all ten genomes. We identified more than 700 k base pairs (kb) of single nucleotide polymorphisms (SNPs), insertions, and deletions (indels) within common regions of the genome, which validated the species and genetic populations reported within species. We constructed a non-redundant pan gene list containing 15,297 genes from the ten genomes and among them 1827 genes or 12% were absent in at least one genome. These genes were co-localized in telomeric regions and select regions within chromosomes with a corresponding increase in SNPs and indels. Many are also predicted to encode for proteins involved in secondary metabolism and other functions associated with disease. Genes that were common between isolates contained high levels of nucleotide variation and may be pseudogenes, allelic, or under diversifying selection. CONCLUSIONS The genomic resources we have contributed will be useful for the identification of genes that contribute to the phenotypic variation and niche specialization that have been reported among members of the F. graminearum species complex.
Collapse
Affiliation(s)
- Sean Walkowiak
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Canada.,Agriculture and Agri-Food Canada, Government of Canada, 960 Carling Ave, Ottawa, Canada
| | - Owen Rowland
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Canada
| | - Nicolas Rodrigue
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Canada
| | - Rajagopal Subramaniam
- Agriculture and Agri-Food Canada, Government of Canada, 960 Carling Ave, Ottawa, Canada.
| |
Collapse
|
179
|
Wei W, Shu S, Zhu W, Xiong Y, Peng F. The Kinome of Edible and Medicinal Fungus Wolfiporia cocos. Front Microbiol 2016; 7:1495. [PMID: 27708635 PMCID: PMC5030230 DOI: 10.3389/fmicb.2016.01495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/07/2016] [Indexed: 01/10/2023] Open
Abstract
Wolfiporia cocos is an edible and medicinal fungus that grows in association with pine trees, and its dried sclerotium, known as Fuling in China, has been used as a traditional medicine in East Asian countries for centuries. Nearly 10% of the traditional Chinese medicinal preparations contain W. cocos. Currently, the commercial production of Fuling is limited because of the lack of pine-based substrate and paucity of knowledge about the sclerotial development of the fungus. Since protein kinase (PKs) play significant roles in the regulation of growth, development, reproduction, and environmental responses in filamentous fungi, the kinome of W. cocos was analyzed by identifying the PKs genes, studying transcript profiles and assigning PKs to orthologous groups. Of the 10 putative PKs, 11 encode atypical PKs, and 13, 10, 2, 22, and 11 could encoded PKs from the AGC, CAMK, CK, CMGC, STE, and TLK Groups, respectively. The level of transcripts from PK genes associated with sclerotia formation in the mycelium and sclerotium stages were analyzed by qRT-PCR. Based on the functions of the orthologs in Sclerotinia sclerotiorum (a sclerotia-formation fungus) and Saccharomyces cerevisiae, the potential roles of these W. cocos PKs were assigned. To the best of our knowledge, our study is the first identification and functional discussion of the kinome in the edible and medicinal fungus W. cocos. Our study systematically suggests potential roles of W. cocos PKs and provide comprehensive and novel insights into W. cocos sclerotial development and other economically important traits. Additionally, based on our result, genetic engineering can be employed for over expression or interference of some significant PKs genes to promote sclerotial growth and the accumulation of active compounds.
Collapse
Affiliation(s)
- Wei Wei
- Institute for Interdisciplinary Research, Jianghan University Wuhan, China
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Wenjun Zhu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University Wuhan, China
| | - Ying Xiong
- Hefei Inzyme Information Technology Co., Ltd Wuhan, China
| | - Fang Peng
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University Wuhan, China
| |
Collapse
|
180
|
Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nat Commun 2016; 7:12766. [PMID: 27677328 PMCID: PMC5052723 DOI: 10.1038/ncomms12766] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/01/2016] [Indexed: 12/15/2022] Open
Abstract
Cryptococcus neoformans is the leading cause of death by fungal meningoencephalitis; however, treatment options remain limited. Here we report the construction of 264 signature-tagged gene-deletion strains for 129 putative kinases, and examine their phenotypic traits under 30 distinct in vitro growth conditions and in two different hosts (insect larvae and mice). Clustering analysis of in vitro phenotypic traits indicates that several of these kinases have roles in known signalling pathways, and identifies hitherto uncharacterized signalling cascades. Virulence assays in the insect and mouse models provide evidence of pathogenicity-related roles for 63 kinases involved in the following biological categories: growth and cell cycle, nutrient metabolism, stress response and adaptation, cell signalling, cell polarity and morphology, vacuole trafficking, transfer RNA (tRNA) modification and other functions. Our study provides insights into the pathobiological signalling circuitry of C. neoformans and identifies potential anticryptococcal or antifungal drug targets. Cryptococcus neoformans is the leading cause of death by fungal meningoencephalitis. Here, the authors study the roles played by 129 putative kinases in the growth and virulence of C. neoformans, identifying potential targets for development of anticryptococcal drugs.
Collapse
|
181
|
Sesma A. RNA metabolism and regulation of virulence programs in fungi. Semin Cell Dev Biol 2016; 57:120-127. [DOI: 10.1016/j.semcdb.2016.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/16/2023]
|
182
|
Chen A, Xie Q, Lin Y, Xu H, Shang W, Zhang J, Zhang D, Zheng W, Li G, Wang Z. Septins are involved in nuclear division, morphogenesis and pathogenicity in Fusarium graminearum. Fungal Genet Biol 2016; 94:79-87. [PMID: 27387218 DOI: 10.1016/j.fgb.2016.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/22/2016] [Accepted: 07/03/2016] [Indexed: 12/22/2022]
Abstract
Septins are GTP-binding proteins that regulate cell polarity, cytokinesis and cell morphogenesis. Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most devastating diseases worldwide. In this study, we have functionally characterized the core septins, Cdc3, Cdc10, Cdc11 and Cdc12 in F. graminearum. The loss of FgCdc3, FgCdc11, FgCdc12, but not FgCdc10, mutants showed significant reduction in growth, conidiation and virulence. Microscopic analyses revealed that all of them were involved in septum formation and nuclear division. Moreover, disruption of septin genes resulted in morphological defects in ascospores and conidia. Interestingly, conidia produced by ΔFgcdc3, ΔFgcdc11 and ΔFgcdc12 mutants exhibited deformation with interconnecting conidia in contrast to their parent wild-type strain PH-1 and the ΔFgcdc10 mutant that produced normal conidia. Using yeast two-hybrid assays, we determined the interactions among FgCdc3, FgCdc10, FgCdc11 and FgCdc12. Taken together, our results indicate that septins play important roles in the nuclear division, morphogenesis and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Ahai Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiurong Xie
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yahong Lin
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaijian Xu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenjie Shang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jun Zhang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dongmei Zhang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenhui Zheng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Guangpu Li
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Zonghua Wang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
183
|
Guo L, Zhao G, Xu J, Kistler HC, Gao L, Ma L. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum. THE NEW PHYTOLOGIST 2016; 211:527-41. [PMID: 26990214 PMCID: PMC5069591 DOI: 10.1111/nph.13912] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/25/2016] [Indexed: 05/09/2023]
Abstract
Head blight caused by Fusarium graminearum threatens world-wide wheat production, resulting in both yield loss and mycotoxin contamination. We reconstructed the global F. graminearum gene regulatory network (GRN) from a large collection of transcriptomic data using Bayesian network inference, a machine-learning algorithm. This GRN reveals connectivity between key regulators and their target genes. Focusing on key regulators, this network contains eight distinct but interwoven modules. Enriched for unique functions, such as cell cycle, DNA replication, transcription, translation and stress responses, each module exhibits distinct expression profiles. Evolutionarily, the F. graminearum genome can be divided into core regions shared with closely related species and variable regions harboring genes that are unique to F. graminearum and perform species-specific functions. Interestingly, the inferred top regulators regulate genes that are significantly enriched from the same genomic regions (P < 0.05), revealing a compartmentalized network structure that may reflect network rewiring related to specific adaptation of this plant pathogen. This first-ever reconstructed filamentous fungal GRN primes our understanding of pathogenicity at the systems biology level and provides enticing prospects for novel disease control strategies involving the targeting of master regulators in pathogens. The program can be used to construct GRNs of other plant pathogens.
Collapse
Affiliation(s)
- Li Guo
- Department of Biochemistry and Molecular BiologyUniversity of Massachusetts AmherstAmherstMA01003USA
| | - Guoyi Zhao
- Department of Electrical & Computer EngineeringUniversity of Massachusetts AmherstAmherstMA01003USA
| | - Jin‐Rong Xu
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907USA
| | - H. Corby Kistler
- USDA‐ARSCereal Disease LaboratoryUniversity of MinnesotaSt PaulMN55108USA
| | - Lixin Gao
- Department of Electrical & Computer EngineeringUniversity of Massachusetts AmherstAmherstMA01003USA
| | - Li‐Jun Ma
- Department of Biochemistry and Molecular BiologyUniversity of Massachusetts AmherstAmherstMA01003USA
| |
Collapse
|
184
|
Xie Q, Chen A, Zheng W, Xu H, Shang W, Zheng H, Zhang D, Zhou J, Lu G, Li G, Wang Z. Endosomal sorting complexes required for transport-0 is essential for fungal development and pathogenicity in Fusarium graminearum. Environ Microbiol 2016; 18:3742-3757. [PMID: 26971885 DOI: 10.1111/1462-2920.13296] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/30/2016] [Accepted: 03/09/2016] [Indexed: 01/19/2023]
Abstract
Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The vacuolar protein sorting (Vps) protein Vps27 is a component of ESCRT-0 involved in the multivesicular body (MVB) sorting pathway during endocytosis. In this study, we investigated the function of FgVps27 using a gene replacement strategy. The FgVPS27 deletion mutant (ΔFgvps27) exhibited a reduction in growth rate, aerial hyphae formation and hydrophobicity. It also showed increased sensitivity to cell wall-damaging agents and to osmotic stresses. In addition, FgHog1, the critical component of high osmolarity glycerol response pathway, was mis-localized in the ΔFgvps27 mutant upon NaCl treatment. Furthermore, the ΔFgvps27 mutant was defective in conidial production and was unable to generate perithecium in sexual reproduction. The depletion of FgVPS27 also caused a significant reduction in virulence. Further analysis by domain-specific deletion revealed that the FYVE domain was essential for the FgVps27 function and was necessary for the proper localization of FgVps27-GFP and endocytosis. Another component of ESCRT-0, the FgVps27-interacting partner FgHse1, also played an important role in F. graminearum development and pathogenesis. Overall, our results indicate that ESCRT-0 components play critical roles in a variety of cellular and biological processes.
Collapse
Affiliation(s)
- Qiurong Xie
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahai Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaijian Xu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjie Shang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huawei Zheng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Zhang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Zhou
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guangpu Li
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zonghua Wang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
185
|
Zheng W, Zheng H, Zhao X, Zhang Y, Xie Q, Lin X, Chen A, Yu W, Lu G, Shim WB, Zhou J, Wang Z. Retrograde trafficking from the endosome to the trans-Golgi network mediated by the retromer is required for fungal development and pathogenicity in Fusarium graminearum. THE NEW PHYTOLOGIST 2016; 210:1327-1343. [PMID: 26875543 DOI: 10.1111/nph.13867] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
In eukaryotes, the retromer is an endosome-localized complex involved in protein retrograde transport. However, the role of such intracellular trafficking events in pathogenic fungal development and pathogenicity remains unclear. The role of the retromer complex in Fusarium graminearum was investigated using cell biological and genetic methods. We observed the retromer core component FgVps35 (Vacuolar Protein Sorting 35) in the cytoplasm as fast-moving puncta. FgVps35-GFP co-localized with both early and late endosomes, and associated with the trans-Golgi network (TGN), suggesting that FgVps35 functions at the donor endosome membrane to mediate TGN trafficking. Disruption of microtubules with nocodazole significantly restricted the transportation of FgVps35-GFP and resulted in severe germination and growth defects. Mutation of FgVPS35 not only mimicked growth defects induced by pharmacological treatment, but also affected conidiation, ascospore formation and pathogenicity. Using yeast two-hybrid assays, we determined the interactions among FgVps35, FgVps26, FgVps29, FgVps17 and FgVps5 which are analogous to the yeast retromer complex components. Deletion of any one of these genes resulted in similar phenotypic defects to those of the ΔFgvps35 mutant and disrupted the stability of the complex. Overall, our results provide the first clear evidence of linkage between the retrograde transport mediated by the retromer complex and virulence in F. graminearum.
Collapse
Affiliation(s)
- Wenhui Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huawei Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Zhao
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Zhang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiurong Xie
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolian Lin
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahai Chen
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenying Yu
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
186
|
Insight into different environmental niches adaptation and allergenicity from the Cladosporium sphaerospermum genome, a common human allergy-eliciting Dothideomycetes. Sci Rep 2016; 6:27008. [PMID: 27243961 PMCID: PMC4886633 DOI: 10.1038/srep27008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/10/2016] [Indexed: 11/09/2022] Open
Abstract
Cladosporium sphaerospermum, a dematiaceous saprophytic fungus commonly found in diverse environments, has been reported to cause allergy and other occasional diseases in humans. However, its basic biology and genetic information are largely unexplored. A clinical isolate C. sphaerospermum genome, UM 843, was re-sequenced and combined with previously generated sequences to form a model 26.89 Mb genome containing 9,652 predicted genes. Functional annotation on predicted genes suggests the ability of this fungus to degrade carbohydrate and protein complexes. Several putative peptidases responsible for lung tissue hydrolysis were identified. These genes shared high similarity with the Aspergillus peptidases. The UM 843 genome encodes a wide array of proteins involved in the biosynthesis of melanin, siderophores, cladosins and survival in high salinity environment. In addition, a total of 28 genes were predicted to be associated with allergy. Orthologous gene analysis together with 22 other Dothideomycetes showed genes uniquely present in UM 843 that encode four class 1 hydrophobins which may be allergens specific to Cladosporium. The mRNA of these hydrophobins were detected by RT-PCR. The genomic analysis of UM 843 contributes to the understanding of the biology and allergenicity of this widely-prevalent species.
Collapse
|
187
|
Son H, Lim JY, Lee Y, Lee YW. Utilization of a Conidia-Deficient Mutant to Study Sexual Development in Fusarium graminearum. PLoS One 2016; 11:e0155671. [PMID: 27175901 PMCID: PMC4866773 DOI: 10.1371/journal.pone.0155671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 11/17/2022] Open
Abstract
Transcriptome analysis is a widely used approach to study the molecular mechanisms underlying development and the responses of fungi to environmental cues. However, it is difficult to obtain cells with a homogeneous status from the sexually-induced culture of the plant pathogenic fungus Fusarium graminearum. In this study, we provided phenotypic and genetic evidence to show that the current conditions applied for perithecia induction inevitably highly induced asexual sporulation in this fungus. We also found that hundreds of genes under the control of the conidiation-specific gene ABAA were unnecessarily upregulated after perithecia induction. Deletion of ABAA specifically blocked conidia production in both the wild-type strain and sexually-defective mutants during sexual development. Taken together, our results suggest that the abaA strain could be used as a background strain for studies of the initial stages of perithecia production in F. graminearum. Further comparative transcriptome analysis between the abaA mutant and the sexually-defective transcription factor mutant carrying the ABAA deletion would contribute to the construction of the genetic networks involved in perithecia development in F. graminearum.
Collapse
Affiliation(s)
- Hokyoung Son
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Jae Yun Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yoonji Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
188
|
Talas F, Kalih R, Miedaner T, McDonald BA. Genome-Wide Association Study Identifies Novel Candidate Genes for Aggressiveness, Deoxynivalenol Production, and Azole Sensitivity in Natural Field Populations of Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:417-30. [PMID: 26959837 DOI: 10.1094/mpmi-09-15-0218-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genome-wide association studies can identify novel genomic regions and genes that affect quantitative traits. Fusarium head blight is a destructive disease caused by Fusarium graminearum that exhibits several quantitative traits, including aggressiveness, mycotoxin production, and fungicide resistance. Restriction site-associated DNA sequencing was performed for 220 isolates of F. graminearum. A total of 119 isolates were phenotyped for aggressiveness and deoxynivalenol (DON) production under natural field conditions across four environments. The effective concentration of propiconazole that inhibits isolate growth in vitro by 50% was calculated for 220 strains. Approximately 29,000 single nucleotide polymorphism markers were associated to each trait, resulting in 50, 29, and 74 quantitative trait nucleotides (QTNs) that were significantly associated to aggressiveness, DON production, and propiconazole sensitivity, respectively. Approximately 41% of these QTNs caused nonsynonymous substitutions in predicted exons, while the remainder were synonymous substitutions or located in intergenic regions. Three QTNs associated with propiconazole sensitivity were significant after Bonferroni correction. These QTNs were located in genes not previously associated with azole sensitivity. The majority of the detected QTNs were located in genes with predicted regulatory functions, suggesting that nucleotide variation in regulatory genes plays a major role in the corresponding quantitative trait variation.
Collapse
|
189
|
Nox Complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Sci Rep 2016; 6:24325. [PMID: 27066837 PMCID: PMC4828707 DOI: 10.1038/srep24325] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/24/2016] [Indexed: 11/09/2022] Open
Abstract
The NADPH oxidase complex of a sclerotial mycoparasite Coniothyrium minitans, an important biocontrol agent against crop diseases caused by Sclerotinia sclerotiorum, was identified and its functions involved in conidiation and mycoparasitism were studied. Gene knock-out and complementary experiments indicated that CmNox1, but not CmNox2, is necessary for conidiation and parasitism, and its expression could be significantly induced by its host fungus. CmNox1 is regulated by CmRac1-CmNoxR and interacts with CmSlt2, a homolog of Saccharomyces cerevisiae Slt2 encoding cell wall integrity-related MAP kinase. In ΔCmNox1, CmSlt2-GFP fusion protein lost the ability to localize to the cell nucleus accurately. The defect of conidiation in ΔCmRac1 could be partially restored by over-expressing CmSlt2, indicating that CmSlt2 was a downstream regulatory factor of CmNox1 and was involved in conidiation and parasitism. The expressions of mycoparasitism-related genes CmPks1, Cmg1 and CH1 were suppressed in the knock-out mutants of the genes in CmNox1-CmSlt2 signal pathway when cultivated either on PDA. Therefore, our study infers that CmRac1-CmNoxR regulates CmNox1-CmSlt2 pathway in regulating conidiation and pathogenicity of C. minitans.
Collapse
|
190
|
Gao X, Jin Q, Jiang C, Li Y, Li C, Liu H, Kang Z, Xu JR. FgPrp4 Kinase Is Important for Spliceosome B-Complex Activation and Splicing Efficiency in Fusarium graminearum. PLoS Genet 2016; 12:e1005973. [PMID: 27058959 PMCID: PMC4825928 DOI: 10.1371/journal.pgen.1005973] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/11/2016] [Indexed: 12/23/2022] Open
Abstract
PRP4 encodes the only kinase among the spliceosome components. Although it is an essential gene in the fission yeast and other eukaryotic organisms, the Fgprp4 mutant was viable in the wheat scab fungus Fusarium graminearum. Deletion of FgPRP4 did not block intron splicing but affected intron splicing efficiency in over 60% of the F. graminearum genes. The Fgprp4 mutant had severe growth defects and produced spontaneous suppressors that were recovered in growth rate. Suppressor mutations were identified in the PRP6, PRP31, BRR2, and PRP8 orthologs in nine suppressor strains by sequencing analysis with candidate tri-snRNP component genes. The Q86K mutation in FgMSL1 was identified by whole genome sequencing in suppressor mutant S3. Whereas two of the suppressor mutations in FgBrr2 and FgPrp8 were similar to those characterized in their orthologs in yeasts, suppressor mutations in Prp6 and Prp31 orthologs or FgMSL1 have not been reported. Interestingly, four and two suppressor mutations identified in FgPrp6 and FgPrp31, respectively, all are near the conserved Prp4-phosphorylation sites, suggesting that these mutations may have similar effects with phosphorylation by Prp4 kinase. In FgPrp31, the non-sense mutation at R464 resulted in the truncation of the C-terminal 130 aa region that contains all the conserved Prp4-phosphorylation sites. Deletion analysis showed that the N-terminal 310-aa rich in SR residues plays a critical role in the localization and functions of FgPrp4. We also conducted phosphoproteomics analysis with FgPrp4 and identified S289 as the phosphorylation site that is essential for its functions. These results indicated that FgPrp4 is critical for splicing efficiency but not essential for intron splicing, and FgPrp4 may regulate pre-mRNA splicing by phosphorylation of other components of the tri-snRNP although itself may be activated by phosphorylation at S289.
Collapse
Affiliation(s)
- Xuli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Yang Li
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Chaohui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
191
|
Yao SH, Guo Y, Wang YZ, Zhang D, Xu L, Tang WH. A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum. Fungal Genet Biol 2016; 91:32-42. [PMID: 27037138 DOI: 10.1016/j.fgb.2016.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/18/2016] [Accepted: 03/25/2016] [Indexed: 01/02/2023]
Abstract
Superoxide dismutases (SODs) are scavengers of superoxide radicals, one of the main reactive oxygen species (ROS) in the cell. SOD-based ROS scavenging system constitutes the frontline defense against intra- and extracellular ROS, but the roles of SODs in the important cereal pathogen Fusarium graminearum are not very clear. There are five SOD genes in F. graminearum genome, encoding cytoplasmic Cu-Zn SOD1 and MnSOD3, mitochondrial MnSOD2 and FeSOD4, and extracellular CuSOD5. Previous studies reported that the expression of SOD1 increased during infection of wheat coleoptiles and florets. In this work we showed that the recombinant SOD1 protein had the superoxide dismutase activity in vitro, and that the SOD1-mRFP fusion protein localized in the cytoplasm of F. graminearum. The Δsod1 mutants had slightly reduced hyphal growth and markedly increased sensitivity to the intracellular ROS generator menadione. The conidial germination under extracellular oxidative stress was significantly delayed in the mutants. Wheat floret infection assay showed that the Δsod1 mutants had a reduced pathogenicity. Furthermore, the Δsod1 mutants had a significant reduction in production of deoxynivalenol mycotoxin. Our results indicate that the cytoplasmic Cu-Zn SOD1 affects fungal growth probably depending on detoxification of intracellular superoxide radicals, and that SOD1-mediated deoxynivalenol production contributes to the virulence of F. graminearum in wheat head infection.
Collapse
Affiliation(s)
- Sheng-Hua Yao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science, East China Normal University, Shanghai 200062, China
| | - Yan Guo
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Zhang Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling Xu
- School of Life Science, East China Normal University, Shanghai 200062, China
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
192
|
Zhang Y, He J, Jia LJ, Yuan TL, Zhang D, Guo Y, Wang Y, Tang WH. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast. PLoS Pathog 2016; 12:e1005485. [PMID: 26974960 PMCID: PMC4790934 DOI: 10.1371/journal.ppat.1005485] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/10/2016] [Indexed: 01/07/2023] Open
Abstract
The ascomycete fungus Fusarium graminearum causes stalk rot in maize. We tracked this pathogen's growth in wound-inoculated maize stalks using a fluorescence-labeled fungal isolate and observed that invasive hyphae grew intercellularly up to 24 h post inoculation, grew intra- and inter-cellularly between 36-48 h, and fully occupied invaded cells after 72 h. Using laser microdissection and microarray analysis, we profiled changes in global gene expression during pathogen growth inside pith tissues of maize stalk from 12 h to six days after inoculation and documented transcriptomic patterns that provide further insights into the infection process. Expression changes in transcripts encoding various plant cell wall degrading enzymes appeared to correlate with inter- and intracellular hyphal growth. Genes associated with 36 secondary metabolite biosynthesis clusters were expressed. Expression of several F. graminearum genes potentially involved in mobilization of the storage lipid triacylglycerol and phosphorus-free lipid biosynthesis were induced during early infection time points, and deletion of these genes caused reduction of virulence in maize stalk. Furthermore, we demonstrated that the F. graminearum betaine lipid synthase 1 (BTA1) gene was necessary and sufficient for production of phosphorus-free membrane lipids, and that deletion of BTA1 interfered with F. graminearum's ability to advance intercellularly. We conclude that F. graminearum produces phosphorus-free membrane lipids to adapt to a phosphate-limited extracellular microenvironment during early stages of its invasion of maize stalk.
Collapse
Affiliation(s)
- Yan Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan He
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei-Jie Jia
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting-Lu Yuan
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Guo
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yufeng Wang
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
193
|
Wang JB, St Leger RJ, Wang C. Advances in Genomics of Entomopathogenic Fungi. ADVANCES IN GENETICS 2016; 94:67-105. [PMID: 27131323 DOI: 10.1016/bs.adgen.2016.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors.
Collapse
Affiliation(s)
- J B Wang
- University of Maryland, College Park, MD, United States
| | - R J St Leger
- University of Maryland, College Park, MD, United States
| | - C Wang
- Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
194
|
Liu H, Wang Q, He Y, Chen L, Hao C, Jiang C, Li Y, Dai Y, Kang Z, Xu JR. Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes. Genome Res 2016; 26:499-509. [PMID: 26934920 PMCID: PMC4817773 DOI: 10.1101/gr.199877.115] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/22/2016] [Indexed: 01/10/2023]
Abstract
Yeasts and filamentous fungi do not have adenosine deaminase acting on RNA (ADAR) orthologs and are believed to lack A-to-I RNA editing, which is the most prevalent editing of mRNA in animals. However, during this study with the PUK1(FGRRES_01058) pseudokinase gene important for sexual reproduction in Fusarium graminearum, we found that two tandem stop codons, UA(1831)GUA(1834)G, in its kinase domain were changed to UG(1831)GUG(1834)G by RNA editing in perithecia. To confirm A-to-I editing of PUK1 transcripts, strand-specific RNA-seq data were generated with RNA isolated from conidia, hyphae, and perithecia. PUK1 was almost specifically expressed in perithecia, and 90% of transcripts were edited to UG(1831)GUG(1834)G. Genome-wide analysis identified 26,056 perithecium-specific A-to-I editing sites. Unlike those in animals, 70.5% of A-to-I editing sites inF. graminearum occur in coding regions, and more than two-thirds of them result in amino acid changes, including editing of 69PUK1-like pseudogenes with stop codons in ORFs.PUK1orthologs and other pseudogenes also displayed stage-specific expression and editing in Neurospora crassa and F. verticillioides Furthermore,F. graminearum differs from animals in the sequence preference and structure selectivity of A-to-I editing sites. Whereas A's embedded in RNA stems are targeted by ADARs, RNA editing inF. graminearum preferentially targets A's in hairpin loops, which is similar to the anticodon loop of tRNA targeted by adenosine deaminases acting on tRNA (ADATs). Overall, our results showed that A-to-I RNA editing occurs specifically during sexual reproduction and mainly in the coding regions in filamentous ascomycetes, involving adenosine deamination mechanisms distinct from metazoan ADARs.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi He
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingfeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Yafeng Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
195
|
Cao S, Zhang S, Hao C, Liu H, Xu JR, Jin Q. FgSsn3 kinase, a component of the mediator complex, is important for sexual reproduction and pathogenesis in Fusarium graminearum. Sci Rep 2016; 6:22333. [PMID: 26931632 PMCID: PMC4773989 DOI: 10.1038/srep22333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/08/2016] [Indexed: 01/05/2023] Open
Abstract
Fusarium graminearum is an important pathogen of wheat and barley. In addition to severe yield losses, infested grains are often contaminated with harmful mycotoxins. In this study, we characterized the functions of FgSSN3 kinase gene in different developmental and infection processes and gene regulation in F. graminearum. The FgSSN3 deletion mutant had a nutrient-dependent growth defects and abnormal conidium morphology. It was significantly reduced in DON production, TRI gene expression, and virulence. Deletion of FgSSN3 also resulted in up-regulation of HTF1 and PCS1 expression in juvenile cultures, and repression of TRI genes in DON-producing cultures. In addition, Fgssn3 was female sterile and defective in hypopodium formation and infectious growth. RNA-seq analysis showed that FgSsn3 is involved in the transcriptional regulation of a wide variety genes acting as either a repressor or activator. FgSsn3 physically interacted with C-type cyclin Cid1 and the cid1 mutant had similar phenotypes with Fgssn3, indicating that FgSsn3 and Cid1 form the CDK-cyclin pair as a component of the mediator complex in F. graminearum. Taken together, our results indicate that FgSSN3 is important for secondary metabolism, sexual reproduction, and plant infection, as a subunit of mediator complex contributing to transcriptional regulation of diverse genes.
Collapse
Affiliation(s)
- Shulin Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
196
|
Vargas WA, Sanz-Martín JM, Rech GE, Armijos-Jaramillo VD, Rivera LP, Echeverria MM, Díaz-Mínguez JM, Thon MR, Sukno SA. A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:83-95. [PMID: 26554735 DOI: 10.1094/mpmi-09-15-0209-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.
Collapse
Affiliation(s)
- Walter A Vargas
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - José M Sanz-Martín
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Gabriel E Rech
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Vinicio D Armijos-Jaramillo
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Lina P Rivera
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - María Mercedes Echeverria
- 2 Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata - C.C. 276 (7620) Balcarce, Buenos Aires, Argentina
| | - José M Díaz-Mínguez
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Michael R Thon
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Serenella A Sukno
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| |
Collapse
|
197
|
Guo L, Breakspear A, Zhao G, Gao L, Kistler HC, Xu JR, Ma LJ. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides. MOLECULAR PLANT PATHOLOGY 2016; 17:196-209. [PMID: 25907134 PMCID: PMC4736682 DOI: 10.1111/mpp.12272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway is a central signalling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signalling in fungal biology has been well documented and the key conserved components, adenylate cyclase (AC) and the catalytic subunit of PKA (CPKA), have been functionally characterized. However, other genes involved in this signalling pathway and their regulation are not well understood in filamentous fungi. Here, we performed a comparative transcriptomics analysis of AC and CPKA mutants in two closely related fungi: Fusarium graminearum (Fg) and F. verticillioides (Fv). Combining available Fg transcriptomics and phenomics data, we reconstructed the Fg cAMP signalling pathway. We developed a computational program that combines sequence conservation and patterns of orthologous gene expression to facilitate global transcriptomics comparisons between different organisms. We observed highly correlated expression patterns for most orthologues (80%) between Fg and Fv. We also identified a subset of 482 (6%) diverged orthologues, whose expression under all conditions was at least 50% higher in one genome than in the other. This enabled us to dissect the conserved and unique portions of the cAMP-PKA pathway. Although the conserved portions controlled essential functions, such as metabolism, the cell cycle, chromatin remodelling and the oxidative stress response, the diverged portions had species-specific roles, such as the production and detoxification of secondary metabolites unique to each species. The evolution of the cAMP-PKA signalling pathway seems to have contributed directly to fungal divergence and niche adaptation.
Collapse
Affiliation(s)
- Li Guo
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Andrew Breakspear
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St Paul, MN, 55108, USA
| | - Guoyi Zhao
- Department of Electrical & Computer Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Lixin Gao
- Department of Electrical & Computer Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - H Corby Kistler
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St Paul, MN, 55108, USA
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
198
|
Zhang H, Li B, Fang Q, Li Y, Zheng X, Zhang Z. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2016; 17:108-19. [PMID: 25880818 PMCID: PMC6638462 DOI: 10.1111/mpp.12267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play critical and conserved roles in membrane fusion and vesicle transport of eukaryotic cells. Previous studies have shown that various homologues of SNARE proteins are also important in the infection of host plants by pathogenic fungi. Here, we report the characterization of a SNARE homologue, FgVam7, from Fusarium graminearum that causes head blight in wheat and barley worldwide. Phylogenetic analysis and domain comparison reveal that FgVam7 is homologous to Vam7 proteins of Saccharomyces cerevisiae (ScVam7), Magnaporthe oryzae (MoVam7) and several additional fungi by containing a PhoX homology (PX) domain and a SNARE domain. We show that FgVam7 plays a regulatory role in cellular differentiation and virulence in F. graminearum. Deletion of FgVAM7 significantly reduces vegetative growth, conidiation and conidial germination, sexual reproduction and virulence. The ΔFgvam7 mutant also exhibits a defect in vacuolar maintenance and delayed endocytosis. Moreover, the ΔFgvam7 mutant is insensitive to salt and osmotic stresses, and hypersensitive to cell wall stressors. Further characterization of FgVam7 domains indicate that the PX and SNARE domains are conserved in controlling Vam7 protein localization and function, respectively. Finally, FgVam7 has been shown to positively regulate the expression of several deoxynivalenol (DON) biosynthesis genes TRI5, TRI6 and TRI101, and DON production. Our studies provide evidence for SNARE proteins as an additional means of regulatory mechanisms that govern growth, differentiation and virulence of pathogenic fungi.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Qin Fang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
199
|
Li Y, Li B, Liu L, Chen H, Zhang H, Zheng X, Zhang Z. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum. Sci Rep 2015; 5:18101. [PMID: 26657788 PMCID: PMC4674805 DOI: 10.1038/srep18101] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/11/2015] [Indexed: 11/08/2022] Open
Abstract
The Ccz1-Mon1 protein complex, the guanine nucleotide exchange factor (GEF) of the late endosomal Rab7 homolog Ypt7, is required for the late step of multiple vacuole delivery pathways, such as cytoplasm-to-vacuole targeting (Cvt) pathway and autophagy processes. Here, we identified and characterized the yeast Mon1 homolog in Fusarium graminearum, named FgMon1. FgMON1 encodes a trafficking protein and is well conserved in filamentous fungi. Targeted gene deletion showed that the ∆Fgmon1 mutant was defective in vegetative growth, asexual/sexual development, conidial germination and morphology, plant infection and deoxynivalenol production. Cytological examination revealed that the ∆Fgmon1 mutant was also defective in vacuole fusion and autophagy, and delayed in endocytosis. Yeast two hybrid and in vitro GST-pull down assays approved that FgMon1 physically interacts with a Rab GTPase FgRab7 which is also important for the development, infection, membrane fusion and autophagy in F. graminearum. FgMon1 likely acts as a GEF of FgRab7 and constitutively activated FgRab7 was able to rescue the defects of the ∆Fgmon1 mutant. In summary, our study provides evidences that FgMon1 and FgRab7 are critical components that modulate vesicle trafficking, endocytosis and autophagy, and thereby affect the development, plant infection and DON production of F. graminearum.
Collapse
Affiliation(s)
- Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Luping Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
200
|
Wichadakul D, Kobmoo N, Ingsriswang S, Tangphatsornruang S, Chantasingh D, Luangsa-ard JJ, Eurwilaichitr L. Insights from the genome of Ophiocordyceps polyrhachis-furcata to pathogenicity and host specificity in insect fungi. BMC Genomics 2015; 16:881. [PMID: 26511477 PMCID: PMC4625970 DOI: 10.1186/s12864-015-2101-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/16/2015] [Indexed: 01/19/2023] Open
Abstract
Background Ophiocordyceps unilateralis is an outstanding insect fungus for its biology to manipulate host ants’ behavior and for its extreme host-specificity. Through the sequencing and annotation of Ophiocordyceps polyrhachis-furcata, a species in the O. unilateralis species complex specific to the ant Polyrhachis furcata, comparative analyses on genes involved in pathogenicity and virulence between this fungus and other fungi were undertaken in order to gain insights into its biology and the emergence of host specificity. Results O. polyrhachis-furcata possesses various genes implicated in pathogenicity and virulence common with other fungi. Overall, this fungus possesses protein-coding genes similar to those found on other insect fungi with available genomic resources (Beauveria bassiana, Metarhizium robertsii (formerly classified as M. anisopliae s.l.), Metarhizium acridum, Cordyceps militaris, Ophiocordyceps sinensis). Comparative analyses in regard of the host ranges of insect fungi showed a tendency toward contractions of various gene families for narrow host-range species, including cuticle-degrading genes (proteases, carbohydrate esterases) and some families of pathogen-host interaction (PHI) genes. For many families of genes, O. polyrhachis-furcata had the least number of genes found; some genes commonly found in other insect fungi are even absent (e.g. Class 1 hydrophobin). However, there are expansions of genes involved in 1) the production of bacterial-like toxins in O. polyrhachis-furcata, compared with other entomopathogenic fungi, and 2) retrotransposable elements. Conclusions The gain and loss of gene families helps us understand how fungal pathogenicity in insect hosts evolved. The loss of various genes involved throughout the pathogenesis for O. unilateralis would result in a reduced capacity to exploit larger ranges of hosts and therefore in the different level of host specificity, while the expansions of other gene families suggest an adaptation to particular environments with unexpected strategies like oral toxicity, through the production of bacterial-like toxins, or sophisticated mechanisms underlying pathogenicity through retrotransposons. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2101-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duangdao Wichadakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand. .,Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Floor 17th, Building 4, Payathai Rd., Wangmai, Pathumwan, 10330, Bangkok, Thailand.
| | - Noppol Kobmoo
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand.
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand.
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand.
| | - Duriya Chantasingh
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand.
| | - Janet Jennifer Luangsa-ard
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand.
| | - Lily Eurwilaichitr
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|