151
|
Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:358-371. [PMID: 34037476 DOI: 10.1089/omi.2021.0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
About a tenth of all cancers are caused by viruses or associated with viral infection. Recent global events including the coronavirus disease-2019 (COVID-19) pandemic means that human encounter with viruses is increased. Cancer development in individuals with viral infection can take many years after infection, demonstrating that the involvement of viruses in cancer development is a long and complex process. This complexity emanates from individual genetic heterogeneity and the many steps involved in cancer development owing to viruses. The process of tumorigenesis is driven by the complex interaction between several viral factors and host factors leading to the creation of a tumor microenvironment (TME) that is ideal and promotes tumor formation. Viruses associated with human cancers ensure their survival and proliferation through activation of several cellular processes including inflammation, migration, and invasion, resistance to apoptosis and growth suppressors. In addition, most human oncoviruses evade immune detection and can activate signaling cascades including the PI3K-Akt-mTOR, Notch and Wnt pathways associated with enhanced proliferation and angiogenesis. This expert review examines and synthesizes the multiple biological factors related to oncoviruses, and the signaling cascades activated by these viruses contributing to viral oncogenesis. In particular, I examine and review the Epstein-Barr virus, human papillomaviruses, and Kaposi's sarcoma herpes virus in a context of cancer pathogenesis. I conclude with a future outlook on therapeutic targeting of the viruses and their associated oncogenic pathways within the TME. These anticancer strategies can be in the form of, but not limited to, antibodies and inhibitors.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
152
|
Soheili M, Keyvani H, Soheili M, Nasseri S. Human papilloma virus: A review study of epidemiology, carcinogenesis, diagnostic methods, and treatment of all HPV-related cancers. Med J Islam Repub Iran 2021; 35:65. [PMID: 34277502 PMCID: PMC8278030 DOI: 10.47176/mjiri.35.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Human papillomavirus (HPV) infection is considered as the most common viral sexually transmitted infection worldwide. This poses an increasingly interdisciplinary medical challenge. Since there is vast scattered information in databases about HPV and the correlated diseases, we decided to collect useful data so that the experts can get a more comprehensive view of HPV. Methods: In this article, HPV-associated diseases, prevalence, prevention, and new treatments are discussed. The retrieved articles reporting the latest data about the required information for our review were selected through searching in Web of Science, Scopus, Medline (PubMed), EMBASE, Cochrane Library, Ovid, and CINHAL with language limitations of English and German. Results: There are 2 groups of HPVs: (1) low-risk HPV types that can lead to genital warts, and (2) high-risk HPV types that are involved in HPV-associated oncogenesis. About 70% of all sexually active women are infected and most of these infections heal within many weeks or months. In the case of HPV-persistence, a risk of preneoplasia or carcinoma exists. These types of viruses are responsible for the existence of genitoanal, gastrointestinal, urinary tract, and head and neck tumors. There is still no definite successful treatment. The detection of HPV-related condylomata occurs macroscopically in women and men, and the diagnosis of the precursors of cervical carcinoma in women is possible by Pap smear. Conclusion: For extragenital manifestations, there is no structured early detection program. Meanwhile, studies on HPV vaccines confirm that they should be used for the primary prevention of HPV-dependent diseases. However, we need more research to find out the real advantages and disadvantages of vaccines.
Collapse
Affiliation(s)
- Maryam Soheili
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | - Hossein Keyvani
- Department of Medical Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Soheili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Human Revivification Society of Congress 60, Tehran, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Molecular Medicine and Medical Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
153
|
Da Silva MLR, De Albuquerque BHDR, Allyrio TADMF, De Almeida VD, Cobucci RNDO, Bezerra FL, Andrade VS, Lanza DCF, De Azevedo JCV, De Araújo JMG, Fernandes JV. The role of HPV-induced epigenetic changes in cervical carcinogenesis (Review). Biomed Rep 2021; 15:60. [PMID: 34094536 PMCID: PMC8165754 DOI: 10.3892/br.2021.1436] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is associated with infection by certain types of human papillomaviruses (HPVs), and this affects women worldwide. Despite the improvements in prevention and cure of HPV-induced cervical cancer, it remains the second most common type of cancer in women in the least developed regions of the world. Epigenetic modifications are stable long-term changes that occur in the DNA, and are part of a natural evolutionary process of necessary adaptations to the environment. They do not result in changes in the DNA sequence, but do affect gene expression and genomic stability. Epigenetic changes are important in several biological processes. The effects of the environment on gene expression can contribute to the development of numerous diseases. Epigenetic modifications may serve a critical role in cancer cells, by silencing tumor suppressor genes, activating oncogenes, and exacerbating defects in DNA repair mechanisms. Although cervical cancer is directly related to a persistent high-risk HPV infection, several epigenetic changes have been identified in both the viral DNA and the genome of the infected cells: DNA methylation, histone modification and gene silencing by non-coding RNAs, which initiate and sustain epigenetic changes. In the present review, recent advances in the role of epigenetic changes in cervical cancer are summarized.
Collapse
Affiliation(s)
- Martha Laysla Ramos Da Silva
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | | | - Valéria Duarte De Almeida
- Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoro 59607-360, Brazil
| | | | - Fabiana Lima Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Vania Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Daniel Carlos Ferreira Lanza
- Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Josélio Maria Galvão De Araújo
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
154
|
Lefèvre AC, Pallisgaard N, Kronborg C, Wind KL, Krag SRP, Spindler KLG. The Clinical Value of Measuring Circulating HPV DNA during Chemo-Radiotherapy in Squamous Cell Carcinoma of the Anus. Cancers (Basel) 2021; 13:cancers13102451. [PMID: 34070045 PMCID: PMC8158133 DOI: 10.3390/cancers13102451] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Circulating tumor DNA (ctDNA) is investigated in various cancers. In squamous cell carcinoma of the anus (SCCA) infection with human papilloma virus (HPV) is found in around 90% of cases and here, plasma HPV (pHPV) can be used as ctDNA. Preliminary data have proved the ability to detect pHPV16 and -18 in SCCA. We have developed a highly sensitive method for measurement of six relevant pHPV subtypes, to investigate the elimination pattern of pHPV during chemo-radiotherapy (CRT) for SCCA and its clinical value. MATERIAL AND METHODS Patients treated at Aarhus University Hospital from 2016-2020 were included. P16 status in the primary biopsy was measured and 82% of patients had P16 positive tumor. Blood samples were collected prior to treatment (PT), mid treatment (MT), end of therapy (EOT), and during follow-up (FU). An in-house multiplex digital droplet PCR method measured pHPV subtypes 16, 18, 31, 33, 51, 58. RESULTS Samples from 88 patients were drawn PT (n = 73), MT (n = 72), EOT (n = 64) and during FU (n = 41). Plasma HPV was detectable in 52 patients and PT pHPV levels correlated to tumor stages. Three elimination patterns were observed during CRT with correlation to outcome: fast responders with no local or distant failures (0/12); slow responders with high risk of local failures (4/20), no distant failures; persistent molecular responders with high risk of distant failures (4/13), but no local failures, p < 0.01. CONCLUSION During CRT, pHPV can divide patients with SCCA into three groups with significantly different risk of failure. The use of pHPV can potentially assist in clinical treatment decision.
Collapse
Affiliation(s)
- Anna C. Lefèvre
- Experimental Clinical Oncology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.C.L.); (K.L.W.)
| | - Niels Pallisgaard
- Department of Pathology, Zealand University Hospital, 4000 Roskilde, Denmark;
| | | | - Karen L. Wind
- Experimental Clinical Oncology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.C.L.); (K.L.W.)
| | - Søren R. P. Krag
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | - Karen-Lise G. Spindler
- Experimental Clinical Oncology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.C.L.); (K.L.W.)
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Correspondence:
| |
Collapse
|
155
|
Isaguliants M, Krasnyak S, Smirnova O, Colonna V, Apolikhin O, Buonaguro FM. Genetic instability and anti-HPV immune response as drivers of infertility associated with HPV infection. Infect Agent Cancer 2021; 16:29. [PMID: 33971936 PMCID: PMC8111735 DOI: 10.1186/s13027-021-00368-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Human papillomavirus (HPV) is a sexually transmitted infection common among men and women of reproductive age worldwide. HPV viruses are associated with epithelial lesions and cancers. HPV infections have been shown to be significantly associated with many adverse effects in reproductive function. Infection with HPVs, specifically of high-oncogenic risk types (HR HPVs), affects different stages of human reproduction, resulting in a series of adverse outcomes: 1) reduction of male fertility (male infertility), characterized by qualitative and quantitative semen alterations; 2) impairment of couple fertility with increase of blastocyst apoptosis and reduction of endometrial implantation of trophoblastic cells; 3) defects of embryos and fetal development, with increase of spontaneous abortion and spontaneous preterm birth. The actual molecular mechanism(s) by which HPV infection is involved remain unclear. HPV-associated infertility as Janus, has two faces: one reflecting anti-HPV immunity, and the other, direct pathogenic effects of HPVs, specifically, of HR HPVs on the infected/HPV-replicating cells. Adverse effects observed for HR HPVs differ depending on the genotype of infecting virus, reflecting differential response of the host immune system as well as functional differences between HPVs and their individual proteins/antigens, including their ability to induce genetic instability/DNA damage. Review summarizes HPV involvement in all reproductive stages, evaluate the adverse role(s) played by HPVs, and identifies mechanisms of viral pathogenicity, common as well as specific for each stage of the reproduction process.
Collapse
Affiliation(s)
- Maria Isaguliants
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia. .,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia. .,Riga Stradiņs University, Riga, Latvia. .,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Stepan Krasnyak
- Research Institute of Urology and Interventional Radiology named after N.A. Lopatkin, Moscow, Russia
| | - Olga Smirnova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedecine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vincenza Colonna
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Oleg Apolikhin
- Research Institute of Urology and Interventional Radiology named after N.A. Lopatkin, Moscow, Russia
| | | |
Collapse
|
156
|
Pathogenic Role of Immune Evasion and Integration of Human Papillomavirus in Oropharyngeal Cancer. Microorganisms 2021; 9:microorganisms9050891. [PMID: 33919460 PMCID: PMC8143538 DOI: 10.3390/microorganisms9050891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of oropharyngeal cancer (OPC) is increasing remarkably among all head and neck cancers, mainly due to its association with the human papillomavirus (HPV). Most HPVs are eliminated by the host’s immune system; however, because HPV has developed an effective immune evasion mechanism to complete its replication cycle, a small number of HPVs are not eliminated, leading to persistent infection. Moreover, during the oncogenic process, the extrachromosomal HPV genome often becomes integrated into the host genome. Integration involves the induction and high expression of E6 and E7, leading to cell cycle activation and increased genomic instability in the host. Therefore, integration is an important event in oncogenesis, although the associated mechanism remains unclear, especially in HPV-OPC. In this review, we summarize the current knowledge on HPV-mediated carcinogenesis, with special emphasis on immune evasion and integration mechanisms, which are crucial for oncogenesis.
Collapse
|
157
|
Sitarz K, Czamara K, Bialecka J, Klimek M, Szostek S, Kaczor A. Dual Switch in Lipid Metabolism in Cervical Epithelial Cells during Dysplasia Development Observed Using Raman Microscopy and Molecular Methods. Cancers (Basel) 2021; 13:1997. [PMID: 33919178 PMCID: PMC8122332 DOI: 10.3390/cancers13091997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/31/2023] Open
Abstract
Cellular lipid metabolism is significantly transformed during oncogenesis. To assess how dysplasia development influences lipid cellular metabolisms and what is the molecular background behind it, cervical epithelial cells of 63 patients assigned to seven groups (based on the cytological examination and HPVhr test results) were studied using a multimethodological approach including Raman microscopy and molecular methods. The consistent picture obtained studying the lipid content, cell inflammation, SREBF1 gene methylation (hence SREBP1 inhibition) and level of mitochondrial DNA copies (indirectly the number of mitochondria) showed that changes in lipid metabolism were multidirectional. Cells from patients classified as mildly dysplastic (LSIL) exhibited a unique behavior (the highest level of inflammation and SREBF1 methylation, the lowest lipid content and mitochondrial DNA). On the contrary, cells from severe dysplastic (HSIL) and cancer (SCC) groups showed the opposite characteristics including the lowest SREBF1 gene methylation as well as the highest level of mitochondrial DNA and lipid cellular concentration (for HSIL/HPVhr+ and SCC groups). Following dysplastic progression, the lipid content decreases significantly (compared to the control) for mildly abnormal cells, but then increases for HSIL/HPVhr+ and SCC groups. This intriguing dual switch in lipid metabolism (reflected also in other studied parameters) on the way from normal to squamous carcinoma cells is of potential diagnostic interest.
Collapse
Affiliation(s)
- Katarzyna Sitarz
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Krakow, Poland;
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Street, 30-348 Krakow, Poland;
| | - Joanna Bialecka
- Centre of Microbiological Research and Autovaccines, 17 Slawkowska Street, 31-016 Krakow, Poland;
| | - Malgorzata Klimek
- Clinic of Radiotherapy, Maria Sklodowska-Curie Institute—Oncology Center, 11 Garncarska Street, 31-115 Krakow, Poland;
| | - Slawa Szostek
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Krakow, Poland;
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Street, 30-348 Krakow, Poland;
| |
Collapse
|
158
|
The exon junction complex core factor eIF4A3 is a key regulator of HPV16 gene expression. Biosci Rep 2021; 41:228142. [PMID: 33760064 PMCID: PMC8026852 DOI: 10.1042/bsr20203488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023] Open
Abstract
High-risk human papillomavirus (hrHPVs), particularly HPV16 and HPV18, are the etiologic factors of ano-genital cancers and some head and neck squamous cell carcinomas (HNSCCs). Viral E6 and E7 oncoproteins, controlled at both transcriptional and post-transcriptional levels, drive hrHPVs-induced carcinogenesis. In the present study, we investigated the implication of the DEAD-box helicase eukaryotic translation initiation factor 4A3 (eIF4A3,) an Exon Junction Complex factor, in the regulation of HPV16 gene expression. Our data revealed that the depletion of the factor eIF4A3 up-regulated E7 oncoprotein levels. We also showed that the inhibition of the nonsense-mediated RNA decay (NMD) pathway, resulted in the up-regulation of E7 at both RNA and protein levels. We therefore proposed that HPV16 transcripts might present different susceptibilities to NMD and that this pathway could play a key role in the levels of expression of these viral oncoproteins during the development of HPV-related cancers.
Collapse
|
159
|
Bubie A, Zoulim F, Testoni B, Miles B, Posner M, Villanueva A, Losic B. Landscape of oncoviral genotype and co-infection via human papilloma and hepatitis B viral tumor in situ profiling. iScience 2021; 24:102368. [PMID: 33889830 PMCID: PMC8050859 DOI: 10.1016/j.isci.2021.102368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
The role of oncoviral genotype and co-infection driving oncogenesis remains unclear. We have developed a scalable, high throughput tool for sensitive and precise oncoviral genotype deconvolution. Using tumor RNA sequencing data, we applied it to 537 virally infected liver, cervical, and head and neck tumors, providing the first comprehensive integrative landscape of tumor-viral gene expression, viral antigen immunogenicity, patient survival, and mutational profiling organized by tumor oncoviral genotype. We find that HBV and HPV genotype and co-infection serve as significant predictors of patient survival and immune activation. Finally, we demonstrate that HPV genotype is more associated with viral oncogene expression than cancer type, implying that expression may be similar across episomal and stochastic integration-based infections. While oncoviral infections are known risk factors for oncogenesis, viral genotype and co-infection are shown to strongly associate with disease progression, patient survival, mutational signatures, and putative tumor neoantigen immunogenicity, facilitating novel clinical associations with infections. ViralMine parses oncoviral genotypes and co-infection from in situ tumor data Oncoviral genotyping of TCGA CESC, HNSC, and LIHC cohorts Tumor fitness, immunogenicity, and mutational signatures associate with oncoviral genotype
Collapse
Affiliation(s)
- Adrian Bubie
- Departments of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Fabien Zoulim
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France
| | - Barbara Testoni
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France
| | - Brett Miles
- Department of Otolaryngology Head and Neck Surgery, New York, NY 10029, USA
| | - Marshall Posner
- Division of Hematology Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Augusto Villanueva
- Departments of Genetics and Genomic Sciences, New York, NY 10029, USA.,Division of Liver Diseases, Division of Hematology/Oncology, Department of Medicine, Graduate School of Biomedical Sciences, Tisch Cancer Institute, Diabetes, Obesity, and Metabolism Institute, New York, NY 10029, USA
| | - Bojan Losic
- Departments of Genetics and Genomic Sciences, New York, NY 10029, USA.,Division of Liver Diseases, Division of Hematology/Oncology, Department of Medicine, Graduate School of Biomedical Sciences, Tisch Cancer Institute, Diabetes, Obesity, and Metabolism Institute, New York, NY 10029, USA
| |
Collapse
|
160
|
Läsche M, Urban H, Gallwas J, Gründker C. HPV and Other Microbiota; Who's Good and Who's Bad: Effects of the Microbial Environment on the Development of Cervical Cancer-A Non-Systematic Review. Cells 2021; 10:cells10030714. [PMID: 33807087 PMCID: PMC8005086 DOI: 10.3390/cells10030714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer is responsible for around 5% of all human cancers worldwide. It develops almost exclusively from an unsolved, persistent infection of the squamocolumnar transformation zone between the endo- and ecto-cervix with various high-risk (HR) human papillomaviruses (HPVs). The decisive turning point on the way to persistent HPV infection and malignant transformation is an immune system weakened by pathobionts and oxidative stress and an injury to the cervical mucosa, often caused by sexual activities. Through these injury and healing processes, HPV viruses, hijacking activated keratinocytes, move into the basal layers of the cervical epithelium and then continue their development towards the distal prickle cell layer (Stratum spinosum). The microbial microenvironment of the cervical tissue determines the tissue homeostasis and the integrity of the protective mucous layer through the maintenance of a healthy immune and metabolic signalling. Pathological microorganisms and the resulting dysbiosis disturb this signalling. Thus, pathological inflammatory reactions occur, which manifest the HPV infection. About 90% of all women contract an HPV infection in the course of their lives. In about 10% of cases, the virus persists and cervical intra-epithelial neoplasia (CIN) develops. Approximately 1% of women with a high-risk HPV infection incur a cervical carcinoma after 10 to 20 years. In this non-systematic review article, we summarise how the sexually and microbial mediated pathogenesis of the cervix proceeds through aberrant immune and metabolism signalling via CIN to cervical carcinoma. We show how both the virus and the cancer benefit from the same changes in the immune and metabolic environment.
Collapse
|
161
|
Garza-Rodríguez ML, Oyervides-Muñoz MA, Pérez-Maya AA, Sánchez-Domínguez CN, Berlanga-Garza A, Antonio-Macedo M, Valdés-Chapa LD, Vidal-Torres D, Vidal-Gutiérrez O, Pérez-Ibave DC, Treviño V. Analysis of HPV Integrations in Mexican Pre-Tumoral Cervical Lesions Reveal Centromere-Enriched Breakpoints and Abundant Unspecific HPV Regions. Int J Mol Sci 2021; 22:ijms22063242. [PMID: 33810183 PMCID: PMC8005155 DOI: 10.3390/ijms22063242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/11/2023] Open
Abstract
Human papillomavirus (HPV) DNA integration is a crucial event in cervical carcinogenesis. However, scarce studies have focused on studying HPV integration (HPVint) in early-stage cervical lesions. Using HPV capture followed by sequencing, we investigated HPVint in pre-tumor cervical lesions. Employing a novel pipeline, we analyzed reads containing direct evidence of the integration breakpoint. We observed multiple HPV infections in most of the samples (92%) with a median integration rate of 0.06% relative to HPV mapped reads corresponding to two or more sequence breakages. Unlike cancer studies, most integrations events were unique (supported by one read), consistent with the lack of clonal selection. Congruent to other studies, we found that breakpoints could occur, practically, in any part of the viral genome. We noted that L1 had a higher frequency of rupture integration (25%). Based on host genome integration frequencies, we found previously reported integration sites in cancer for genes like FHIT, CSMD1, and LRP1B and putatively many new ones such as those exemplified in CSMD3, ROBO2, and SETD3. Similar host integrations regions and genes were observed in diverse HPV types within many genes and even equivalent integration positions in different samples and HPV types. Interestingly, we noted an enrichment of integrations in most centromeres, suggesting a possible mechanism where HPV exploits this structural machinery to facilitate integration. Supported by previous findings, overall, our analysis provides novel information and insights about HPVint.
Collapse
Affiliation(s)
- María Lourdes Garza-Rodríguez
- Hospital Universitario “Dr. José Eleuterio González”, Centro Universitario Contra el Cáncer, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (M.L.G.-R.); (D.C.P.-I.); (O.V.-G.)
| | - Mariel Araceli Oyervides-Muñoz
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro Monterrey, Nuevo León 64460, Mexico; (A.A.P.-M.); (C.N.S.-D.)
| | - Antonio Alí Pérez-Maya
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro Monterrey, Nuevo León 64460, Mexico; (A.A.P.-M.); (C.N.S.-D.)
| | - Celia Nohemí Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro Monterrey, Nuevo León 64460, Mexico; (A.A.P.-M.); (C.N.S.-D.)
| | - Anais Berlanga-Garza
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Mauro Antonio-Macedo
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Lezmes Dionicio Valdés-Chapa
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Diego Vidal-Torres
- Departamento de Ginecología y Obstetricia, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (A.B.-G.); (M.A.-M.); (L.D.V.-C.); (D.V.-T.)
| | - Oscar Vidal-Gutiérrez
- Hospital Universitario “Dr. José Eleuterio González”, Centro Universitario Contra el Cáncer, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (M.L.G.-R.); (D.C.P.-I.); (O.V.-G.)
| | - Diana Cristina Pérez-Ibave
- Hospital Universitario “Dr. José Eleuterio González”, Centro Universitario Contra el Cáncer, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero S/N, Mitras Centro, Nuevo León 64460, Mexico; (M.L.G.-R.); (D.C.P.-I.); (O.V.-G.)
| | - Víctor Treviño
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. Morones Prieto 3000, Colonia Los Doctores, Nuevo León 64710, Mexico
- Correspondence:
| |
Collapse
|
162
|
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol 2021; 102:001540. [PMID: 33427604 PMCID: PMC8148304 DOI: 10.1099/jgv.0.001540] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.
Collapse
Affiliation(s)
- James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Present address: Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
163
|
Della Fera AN, Warburton A, Coursey TL, Khurana S, McBride AA. Persistent Human Papillomavirus Infection. Viruses 2021; 13:v13020321. [PMID: 33672465 PMCID: PMC7923415 DOI: 10.3390/v13020321] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The success of HPV as an infectious agent lies not within its ability to cause disease, but rather in the adeptness of the virus to establish long-term persistent infection. The ability of HPV to replicate and maintain its genome in a stratified epithelium is contingent on the manipulation of many host pathways. HPVs must abrogate host anti-viral defense programs, perturb the balance of cellular proliferation and differentiation, and hijack DNA damage signaling and repair pathways to replicate viral DNA in a stratified epithelium. Together, these characteristics contribute to the ability of HPV to achieve long-term and persistent infection and to its evolutionary success as an infectious agent. Abstract Persistent infection with oncogenic human papillomavirus (HPV) types is responsible for ~5% of human cancers. The HPV infectious cycle can sustain long-term infection in stratified epithelia because viral DNA is maintained as low copy number extrachromosomal plasmids in the dividing basal cells of a lesion, while progeny viral genomes are amplified to large numbers in differentiated superficial cells. The viral E1 and E2 proteins initiate viral DNA replication and maintain and partition viral genomes, in concert with the cellular replication machinery. Additionally, the E5, E6, and E7 proteins are required to evade host immune responses and to produce a cellular environment that supports viral DNA replication. An unfortunate consequence of the manipulation of cellular proliferation and differentiation is that cells become at high risk for carcinogenesis.
Collapse
|
164
|
Host-virus chimeric events in SARS-CoV2 infected cells are infrequent and artifactual. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33619483 PMCID: PMC7899447 DOI: 10.1101/2021.02.17.431704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pathogenic mechanisms underlying severe SARS-CoV2 infection remain largely unelucidated. High throughput sequencing technologies that capture genome and transcriptome information are key approaches to gain detailed mechanistic insights from infected cells. These techniques readily detect both pathogen and host-derived sequences, providing a means of studying host-pathogen interactions. Recent studies have reported the presence of host-virus chimeric (HVC) RNA in RNA-seq data from SARS-CoV2 infected cells and interpreted these findings as evidence of viral integration in the human genome as a potential pathogenic mechanism. Since SARS-CoV2 is a positive sense RNA virus that replicates in the cytoplasm it does not have a nuclear phase in its life cycle, it is biologically unlikely to be in a location where splicing events could result in genome integration. Here, we investigated the biological authenticity of HVC events. In contrast to true biological events such as mRNA splicing and genome rearrangement events, which generate reproducible chimeric sequencing fragments across different biological isolates, we found that HVC events across >100 RNA-seq libraries from patients with COVID-19 and infected cell lines, were highly irreproducible. RNA-seq library preparation is inherently error-prone due to random template switching during reverse transcription of RNA to cDNA. By counting chimeric events observed when constructing an RNA-seq library from human RNA and spike-in RNA from an unrelated species, such as fruit-fly, we estimated that ~1% of RNA-seq reads are artifactually chimeric. In SARS-CoV2 RNA-seq we found that the frequency of HVC events was, in fact, not greater than this background “noise”. Finally, we developed a novel experimental approach to enrich SARS-CoV2 sequences from bulk RNA of infected cells. This method enriched viral sequences but did not enrich for HVC events, suggesting that the majority of HVC events are, in all likelihood, artifacts of library construction. In conclusion, our findings indicate that HVC events observed in RNA-sequencing libraries from SARS-CoV2 infected cells are extremely rare and are likely artifacts arising from either random template switching of reverse-transcriptase and/or sequence alignment errors. Therefore, the observed HVC events do not support SARS-CoV2 fusion to cellular genes and/or integration into human genomes.
Collapse
|
165
|
Lourenço de Freitas N, Deberaldini MG, Gomes D, Pavan AR, Sousa Â, Dos Santos JL, Soares CP. Histone Deacetylase Inhibitors as Therapeutic Interventions on Cervical Cancer Induced by Human Papillomavirus. Front Cell Dev Biol 2021; 8:592868. [PMID: 33634093 PMCID: PMC7901962 DOI: 10.3389/fcell.2020.592868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
The role of epigenetic modifications on the carcinogenesis process has received a lot of attention in the last years. Among those, histone acetylation is a process regulated by histone deacetylases (HDAC) and histone acetyltransferases (HAT), and it plays an important role in epigenetic regulation, allowing the control of the gene expression. HDAC inhibitors (HDACi) induce cancer cell cycle arrest, differentiation, and cell death and reduce angiogenesis and other cellular events. Human papillomaviruses (HPVs) are small, non-enveloped double-stranded DNA viruses. They are major human carcinogens, being intricately linked to the development of cancer in 4.5% of the patients diagnosed with cancer worldwide. Long-term infection of high-risk (HR) HPV types, mainly HPV16 and HPV18, is one of the major risk factors responsible for promoting cervical cancer development. In vitro and in vivo assays have demonstrated that HDACi could be a promising therapy to HPV-related cervical cancer. Regardless of some controversial studies, the therapy with HDACi could target several cellular targets which HR-HPV oncoproteins could be able to deregulate. This review article describes the role of HDACi as a possible intervention in cervical cancer treatment induced by HPV, highlighting the main advances reached in the last years and providing insights for further investigations regarding those agents against cervical cancer.
Collapse
Affiliation(s)
- Natália Lourenço de Freitas
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Gabriela Deberaldini
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Diana Gomes
- CICS-UBI – Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Aline Renata Pavan
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ângela Sousa
- CICS-UBI – Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Jean Leandro Dos Santos
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| | - Christiane P. Soares
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
166
|
Oton-Gonzalez L, Rotondo JC, Cerritelli L, Malagutti N, Lanzillotti C, Bononi I, Ciorba A, Bianchini C, Mazziotta C, De Mattei M, Pelucchi S, Tognon M, Martini F. Association between oncogenic human papillomavirus type 16 and Killian polyp. Infect Agent Cancer 2021; 16:3. [PMID: 33413530 PMCID: PMC7792173 DOI: 10.1186/s13027-020-00342-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/25/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Killian polyp (KP) is a benign lesion that arises from the maxillary sinus. The etiology of KP is unknown. The aim of this study was to investigate the potential involvement of human papilloma- (HPV) and polyoma-viruses (HPyV) infections in the onset of KP. METHODS DNA from antral (n = 14) and nasal (n = 14) KP fractions were analyzed for HPV and HPyV sequences, genotypes, viral DNA load and physical status along with expression of viral proteins and p16 cellular protein. RESULTS The oncogenic HPV16 was detected in 3/14 (21.4%) antral KPs, whilst nasal KPs tested HPV-negative (0/14). The mean HPV16 DNA load was 4.65 ± 2.64 copy/104 cell. The whole HPV16 episomal genome was detected in one KP sample, whereas HPV16 DNA integration in two KPs. P16 mRNA level was lower in the KP sample carrying HPV16 episome than in KPs carrying integrated HPV16 and HPV- negative KPs (p< 0.001). None of the antral and nasal KP samples tested positive for HPyV DNA (0/28). CONCLUSIONS A fraction of KP tested positive for the oncogenic HPV16. HPV16 detection in the KP antral portion may be consistent with HPV16 infection derived from the maxillary sinus. HPV16 DNA integration represents a novel finding. Altogether, these data improve our knowledge on the association between KP and HPV infection, whereas it indicates that the KP onset is heterogeneous.
Collapse
Affiliation(s)
- Lucia Oton-Gonzalez
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Luca Cerritelli
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Nicola Malagutti
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Ilaria Bononi
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Andrea Ciorba
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Chiara Bianchini
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Stefano Pelucchi
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Mauro Tognon
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy.
| | - Fernanda Martini
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
167
|
Hampson IN, Oliver AW, Hampson L. Potential Effects of Human Papillomavirus Type Substitution, Superinfection Exclusion and Latency on the Efficacy of the Current L1 Prophylactic Vaccines. Viruses 2020; 13:v13010022. [PMID: 33374445 PMCID: PMC7823767 DOI: 10.3390/v13010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
There are >200 different types of human papilloma virus (HPV) of which >51 infect genital epithelium, with ~14 of these classed as high-risk being more commonly associated with cervical cancer. During development of the disease, high-risk types have an increased tendency to develop a truncated non-replicative life cycle, whereas low-risk, non-cancer-associated HPV types are either asymptomatic or cause benign lesions completing their full replicative life cycle. HPVs can also be present as non-replicative so-called “latent” infections and they can also show superinfection exclusion, where cells with pre-existing infections with one type cannot be infected with a different HPV type. Thus, the HPV repertoire and replication status present in an individual can form a complex dynamic meta-community which changes with respect to both time and exposure to different HPV types. In light of these considerations, it is not clear how current prophylactic HPV vaccines will affect this system and the potential for iatrogenic outcomes is discussed in light of recent outcome data.
Collapse
|
168
|
Abstract
Anal intraepithelial neoplasia (AIN) and 89-100% of anal cancers are caused by persistent infections with high-risk (HR) human papillomaviruses (HPV). In HIV-positive patients, anal HPV infection and AIN are very common and these patients have a significantly increased risk for anal cancer. However, a continuous increase in the incidence of anal cancer has also been observed in the general population in recent decades. AIN can clinically present in diverse manners. In HIV-positive patients AIN can be hidden in condylomas. Approximately 3-14% of high-grade AIN progress to anal cancer within 5 years. Therefore, screening examinations should be offered to patients with an increased risk for anal cancer. The treatment options for AIN are similar to those for condylomas. HIV-positive patients with controlled immune status and HIV-negative patients with anal cancer respond comparably well to combined radiochemotherapy. A German-language S3 guideline for anal cancer will be available in 2020. In HIV-positive patients over 26 years of age, HPV vaccination showed no effect in a controlled phase‑3 study. To prevent AIN and anal cancer in the future, HPV vaccination rates need to be increased in HPV-naïve girls and boys.
Collapse
|
169
|
Rungkamoltip P, Temisak S, Piboonprai K, Japrung D, Thangsunan P, Chanpanitkitchot S, Chaowawanit W, Chandeying N, Tangjitgamol S, Iempridee T. Rapid and ultrasensitive detection of circulating human papillomavirus E7 cell-free DNA as a cervical cancer biomarker. Exp Biol Med (Maywood) 2020; 246:654-666. [PMID: 33307803 DOI: 10.1177/1535370220978899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Circulating cell-free DNA (cfDNA) has attracted attention as a non-invasive biomarker for diagnosing and monitoring various cancers. Given that human papillomavirus (HPV) DNA integration and overexpression of E6/E7 oncogenes are pivotal events for carcinogenesis, we sought to determine if HPV E7 cfDNA could serve as a specific biomarker for cervical cancer detection. We applied droplet digital PCR (ddPCR) to quantify HPV16/18 E7 cfDNA from the serum of patients with cervical cancer, cervical intraepithelial neoplasia, and controls. HPV16/18 E7 cfDNA was highly specific for cervical cancer, displaying 30.77% sensitivity, 100% specificity, and an area under the curve of 0.65. Furthermore, we developed a sensitive isothermal detection of HPV16/18 E7 and the PIK3CA WT reference gene based on recombinase polymerase amplification combined with a lateral flow strip (RPA-LF). The assay took less than 30 min and the detection limit was 5-10 copies. RPA-LF exhibited 100% sensitivity and 88.24% specificity towards HPV16/18 E7 cfDNA in clinical samples. The agreement between RPA-LF and ddPCR was 83.33% (κ = 0.67) for HPV16 E7 and 100% (κ = 1.0) for HPV18 E7, indicating a good correlation between both tests. Therefore, we conclude that HPV E7 cfDNA represents a potential tumor marker with excellent specificity and moderate sensitivity for minimally invasive cervical cancer monitoring. Moreover, the RPA-LF assay provides an affordable, rapid, and ultrasensitive tool for detecting HPV cfDNA in resource-limited settings.
Collapse
Affiliation(s)
- Phetploy Rungkamoltip
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sasithon Temisak
- Chemical Metrology and Biometry Department, National Institute of Metrology (NIMT), Pathum Thani 12120, Thailand
| | - Kitiya Piboonprai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand.,Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pattanapong Thangsunan
- Chemical Metrology and Biometry Department, National Institute of Metrology (NIMT), Pathum Thani 12120, Thailand
| | - Saranya Chanpanitkitchot
- Department of Obstetrics and Gynecology, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok 10400, Thailand
| | - Woraphot Chaowawanit
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindhadhiraj University, Bangkok 10300, Thailand
| | - Nutthaporn Chandeying
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindhadhiraj University, Bangkok 10300, Thailand
| | - Siriwan Tangjitgamol
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindhadhiraj University, Bangkok 10300, Thailand.,Obstetrics and Gynecology Section, MedPark Hospital, Bangkok 10110, Thailand
| | - Tawin Iempridee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| |
Collapse
|
170
|
Hussen BM, Ahmadi G, Marzban H, Fard Azar ME, Sorayyayi S, Karampour R, Nahand JS, Hidayat HJ, Moghoofei M. The role of HPV gene expression and selected cellular MiRNAs in lung cancer development. Microb Pathog 2020; 150:104692. [PMID: 33301856 DOI: 10.1016/j.micpath.2020.104692] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The high mortality rate of lung cancer can be justified that strong need to explore new aspect of tumor biology. Human papillomavirus (HPV) has been detected as risk factor for the development of lung cancer. The aim of this study was to determine the role of HPV and cellular/miRNAs genes expression in the epithelial-mesenchymal transition (EMT) and development of lung cancer. METHODS In this case-control study, 109 lung cancer tissue and 52 controls were included. We analyzed the presence of HPV infection, its genotypes (in positive samples) and the expression of viral genes (E2, E6 and E7). Also, We examined the expression of celluar factors including (a) p53 and retinoblastoma (Rb) (as anti-carcinogenic genes), (b) EMT related genes, (c) selected miRNAs. RESULTS Our results reported 51.4% and 23.1% of HPV genome in tumor tissues and control tissues samples, respectively. There was a significant association between the HPV positive status and lung cancer (OR = 3.26, 95% C.I = 1.47-7.02, P = 0.001). HPV type 16 was the most prevalent genotype in tissues. The expression of p53, RB, TIMP1, CCNG-1, E-cad and PTPN13 were decreased while MMP-2 and N-cad were increased in HPV-positive tumor/control tissues compared to HPV-negative tissues. Also, among miRNAs, let-7, miR-23, miR-34, miR-125, miR-146 were downregulated and miR-20, miR-424 were upregulated in HPV-positve tissues compared to HPV-negative tissues. CONCLUSION This study demonstrated that HPV infection and interaction with cellular genes and miRNAs promote EMT which involved in the lung cancer development.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Gelavizh Ahmadi
- Department of Biotechnology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Havva Marzban
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Saba Sorayyayi
- Department of Clinical Biochemistry, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Romina Karampour
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Erbil, Iraq
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
171
|
Hirose Y, Yamaguchi-Naka M, Onuki M, Tenjimbayashi Y, Tasaka N, Satoh T, Tanaka K, Iwata T, Sekizawa A, Matsumoto K, Kukimoto I. High Levels of Within-Host Variations of Human Papillomavirus 16 E1/E2 Genes in Invasive Cervical Cancer. Front Microbiol 2020; 11:596334. [PMID: 33324377 PMCID: PMC7721666 DOI: 10.3389/fmicb.2020.596334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/01/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) is the most common HPV genotype found in invasive cervical cancer (ICC). Recent comprehensive genomics studies of HPV16 have revealed that a large number of minor nucleotide variations in the viral genome are present in each infected woman; however, it remains unclear whether such within-host variations of HPV16 are linked to cervical carcinogenesis. Here, by employing next-generation sequencing approaches, we explored the mutational profiles of the HPV16 genome within individual clinical specimens from ICC (n = 31) and normal cervix (n = 21) in greater detail. A total of 367 minor nucleotide variations (167 from ICC and 200 from the normal cervix) were detected throughout the viral genome in both groups, while nucleotide variations at high frequencies (>10% abundance in relative read counts in a single sample) were more prevalent in ICC (10 in ICC versus 1 in normal). Among the high-level variations found in ICC, six were located in the E1/E2 genes, and all of them were non-synonymous substitutions (Q142K, M207I, and L262V for E1; D153Y, R302T, and T357A for E2). In vitro functional analyses of these E1/E2 variants revealed that E1/M207I, E2/D153Y, and E2/R302T had reduced abilities to support viral replication, and that E2/D153Y and E2/R302T failed to suppress the viral early promoter. These results imply that some within-host variations of E1/E2 present at high levels in ICC may be positively selected for and contribute to cervical cancer development through dysfunction or de-stabilization of viral replication/transcription proteins.
Collapse
Affiliation(s)
- Yusuke Hirose
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Mayuko Yamaguchi-Naka
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Mamiko Onuki
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Yuri Tenjimbayashi
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Nobutaka Tasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toyomi Satoh
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kohsei Tanaka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Iwata
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Koji Matsumoto
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
172
|
Rotondo JC, Oton-Gonzalez L, Mazziotta C, Lanzillotti C, Iaquinta MR, Tognon M, Martini F. Simultaneous Detection and Viral DNA Load Quantification of Different Human Papillomavirus Types in Clinical Specimens by the High Analytical Droplet Digital PCR Method. Front Microbiol 2020; 11:591452. [PMID: 33329471 PMCID: PMC7710522 DOI: 10.3389/fmicb.2020.591452] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
Human papillomaviruses (HPVs) are small DNA tumor viruses that mainly infect mucosal epithelia of anogenital and upper respiratory tracts. There has been progressive demand for more analytical assays for HPV DNA quantification. A novel droplet digital PCR (ddPCR) method was developed to simultaneously detect and quantify HPV DNA from different HPV types. DdPCR was initially tested for assay sensitivity, accuracy, specificity as well as intra- and inter-run assay variation employing four recombinant plasmids containing HPV16, HPV18, HPV11, and HPV45 DNAs. The assay was extended to investigate/quantify HPV DNA in Cervical Intraepithelial Neoplasia (CIN, n = 45) specimens and human cell lines (n = 4). DdPCR and qPCR data from clinical samples were compared. The assay showed high accuracy, sensitivity and specificity, with low intra-/inter- run variations, in detecting/quantifying HPV16/18/11/45 DNAs. HPV DNA was detected in 51.1% (23/45) CIN DNA samples by ddPCR, whereas 40% (18/45) CIN tested HPV-positive by qPCR. Five CIN, tested positive by ddPCR, were found to be negative by qPCR. In CIN specimens, the mean HPV DNA loads determined by ddPCR were 3.81 copy/cell (range 0.002-51.02 copy/cell), whereas 8.04 copy/cell (range 0.003-78.73 copy/cell) by qPCR. DdPCR and qPCR concordantly detected HPV DNA in SiHa, CaSki and Hela cells, whereas HaCaT tested HPV-negative. The correlation between HPV DNA loads simultaneously detected by ddPCR/qPCR in CINs/cell lines was good (R 2 = 0.9706, p < 0.0001). Our data indicate that ddPCR is a valuable technique in quantifying HPV DNA load in CIN specimens and human cell lines, thereby improving clinical applications, such as patient management after primary diagnosis of HPV-related lesions with HPV-type specific assays.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
173
|
Human papilloma virus (HPV) integration signature in Cervical Cancer: identification of MACROD2 gene as HPV hot spot integration site. Br J Cancer 2020; 124:777-785. [PMID: 33191407 PMCID: PMC7884736 DOI: 10.1038/s41416-020-01153-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/02/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Background Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality with infection by human papilloma virus (HPV) being the most important risk factor. We analysed the association between different viral integration signatures, clinical parameters and outcome in pre-treated CCs. Methods Different integration signatures were identified using HPV double capture followed by next-generation sequencing (NGS) in 272 CC patients from the BioRAIDs study [NCT02428842]. Correlations between HPV integration signatures and clinical, biological and molecular features were assessed. Results Episomal HPV was much less frequent in CC as compared to anal carcinoma (p < 0.0001). We identified >300 different HPV-chromosomal junctions (inter- or intra-genic). The most frequent integration site in CC was in MACROD2 gene followed by MIPOL1/TTC6 and TP63. HPV integration signatures were not associated with histological subtype, FIGO staging, treatment or PFS. HPVs were more frequently episomal in PIK3CA mutated tumours (p = 0.023). Viral integration type was dependent on HPV genotype (p < 0.0001); HPV18 and HPV45 being always integrated. High HPV copy number was associated with longer PFS (p = 0.011). Conclusions This is to our knowledge the first study assessing the prognostic value of HPV integration in a prospectively annotated CC cohort, which detects a hotspot of HPV integration at MACROD2; involved in impaired PARP1 activity and chromosome instability.
Collapse
|
174
|
Pisarska J, Baldy-Chudzik K. MicroRNA-Based Fingerprinting of Cervical Lesions and Cancer. J Clin Med 2020; 9:jcm9113668. [PMID: 33203149 PMCID: PMC7698009 DOI: 10.3390/jcm9113668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The regulatory functions of microRNA (miRNA) are involved in all processes contributing to carcinogenesis and response to viral infections. Cervical cancer in most cases is caused by the persistence of high-risk human papillomavirus (HR-HPV) infection. While oncogenic human papillomaviruses induce aberrant expression of many cellular miRNAs, this dysregulation could be harnessed as a marker in early diagnosis of HR-HPV infection, cervical squamous intraepithelial lesions, and cancer. In recent years, growing data indicate that miRNAs show specific patterns at various stages of cervical pathology. The aim of this review is to systematize current reports on miRNA capacity that can be utilized in personalized diagnostics of cervical precancerous and cancerous lesions. The analysis of the resources available in online databases (National Center for Biotechnology Information—NCBI, PubMed, ScienceDirect, Scopus) was performed. To date, no standardized diagnostic algorithm using the miRNA pattern in cervical pathology has been defined. However, the high sensitivity and specificity of the reported assays gives hope for the development of non-invasive diagnostic tests that take into account the heterogeneity of tumor-related changes. Due to this variability resulting in difficult to predict clinical outcomes, precise molecular tools are needed to improve the diagnostic and therapeutic process.
Collapse
|
175
|
Use of Cap Analysis Gene Expression to detect human papillomavirus promoter activity patterns at different disease stages. Sci Rep 2020; 10:17991. [PMID: 33093512 PMCID: PMC7582169 DOI: 10.1038/s41598-020-75133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Transcription of human papillomavirus (HPV) genes proceeds unidirectionally from multiple promoters. Direct profiling of transcription start sites (TSSs) by Cap Analysis Gene Expression (CAGE) is a powerful strategy for examining individual HPV promoter activity. The objective of this study was to evaluate alterations of viral promoter activity during infection using CAGE technology. We used CAGE-based sequencing of 46 primary cervical samples, and quantitatively evaluated TSS patterns in the HPV transcriptome at a single-nucleotide resolution. TSS patterns were classified into two types: early promoter-dominant type (Type A) and late promoter-dominant type (Type B). The Type B pattern was more frequently found in CIN1 and CIN2 lesions than in CIN3 and cancer samples. We detected transcriptomes from multiple HPV types in five samples. Interestingly, in each sample, the TSS patterns of both HPV types were the same. The viral gene expression pattern was determined by the differentiation status of the epithelial cells, regardless of HPV type. We performed unbiased analyses of TSSs across the HPV genome in clinical samples. Visualising TSS pattern dynamics, including TSS shifts, provides new insights into how HPV infection status relates to disease state.
Collapse
|
176
|
Pinatti LM, Sinha HN, Brummel CV, Goudsmit CM, Geddes TJ, Wilson GD, Akervall JA, Brenner CJ, Walline HM, Carey TE. Association of human papillomavirus integration with better patient outcomes in oropharyngeal squamous cell carcinoma. Head Neck 2020; 43:544-557. [PMID: 33073473 DOI: 10.1002/hed.26501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The molecular drivers of human papillomavirus-related head and neck squamous cell carcinoma (HPV + HNSCC) are not entirely understood. This study evaluated the relationship between HPV integration, expression of E6/E7, and patient outcomes in p16+ HNSCCs. METHODS HPV type was determined by HPV PCR-MassArray, and integration was called using detection of integrated papillomavirus sequences polymerase chain reaction (PCR). We investigated whether fusion transcripts were produced by reverse transcriptase polymerase chain reaction (RT-PCR). E6/E7 expression was assessed by quantitative RT-PCR. We assessed if there was a relationship between integration and E6/E7 expression, clinical variables, or patient outcomes. RESULTS Most samples demonstrated HPV integration, which sometimes resulted in a fusion transcript. HPV integration was positively correlated with age at diagnosis and E6/E7 expression. There was a significant difference in survival between patients with vs without integration. CONCLUSIONS Contrary to previous reports, HPV integration was associated with improved patient survival. Therefore, HPV integration may act as a molecular marker of good prognosis.
Collapse
Affiliation(s)
- Lisa M Pinatti
- Cancer Biology Program, Program in the Biomedical Sciences, Rackham Graduate School, University of Michigan, Ann Arbor, Michigan, USA.,Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Hana N Sinha
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Collin V Brummel
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Christine M Goudsmit
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - George D Wilson
- Beaumont BioBank, Beaumont Hospital, Royal Oak, Michigan, USA.,Department of Radiation Oncology, Beaumont Hospital, Royal Oak, Michigan, USA
| | - Jan A Akervall
- Beaumont BioBank, Beaumont Hospital, Royal Oak, Michigan, USA.,Department of Otolaryngology, Saint Joseph Mercy Hospital, Ypsilanti, Michigan, USA
| | - Chad J Brenner
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Heather M Walline
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas E Carey
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
177
|
Myers JE, Zwolinska K, Sapp MJ, Scott RS. An Exonuclease V-qPCR Assay to Analyze the State of the Human Papillomavirus 16 Genome in Cell Lines and Tissues. ACTA ACUST UNITED AC 2020; 59:e119. [PMID: 33064937 DOI: 10.1002/cpmc.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Integration of the human papillomavirus (HPV) genome into host cell chromosomes has been observed in a majority of HPV-positive cervical cancers and a subset of oral HPV-associated cancers. HPV integration also occurs in long-term cell culture. Screening for HPV integration can be labor intensive and yield results that are difficult to interpret. Here we describe an assay based on exonuclease V (ExoV/RecBCD) and quantitative polymerase chain reaction (qPCR) to determine if samples from cell lines and tissues contain episomal or integrated HPV. This assay can be applied to screen other small DNA viruses with episomal/linear genome configurations in their viral lifecycle and has the potential to be used in clinical settings to define viral genomic conformations associated with disease. © 2020 Wiley Periodicals LLC. Basic Protocol: Exonuclease V genomic DNA digestion and qPCR for detection of HPV16 genome configuration in cells Support Protocol: Exonuclease V analysis of HPV16 genome configuration in tissues Alternate Protocol: Determining HPV integration type or integrity of HPV episome.
Collapse
Affiliation(s)
- Julia E Myers
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.,Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Katarzyna Zwolinska
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.,Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Martin J Sapp
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.,Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Rona S Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.,Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| |
Collapse
|
178
|
Tian R, Zhou P, Li M, Tan J, Cui Z, Xu W, Wei J, Zhu J, Jin Z, Cao C, Fan W, Xie W, Huang Z, Xie H, You Z, Niu G, Wu C, Guo X, Weng X, Tian X, Yu F, Yu Z, Liang J, Hu Z. DeepHPV: a deep learning model to predict human papillomavirus integration sites. Brief Bioinform 2020; 22:5924410. [PMID: 33059369 DOI: 10.1093/bib/bbaa242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/09/2023] Open
Abstract
Human papillomavirus (HPV) integrating into human genome is the main cause of cervical carcinogenesis. HPV integration selection preference shows strong dependence on local genomic environment. Due to this theory, it is possible to predict HPV integration sites. However, a published bioinformatic tool is not available to date. Thus, we developed an attention-based deep learning model DeepHPV to predict HPV integration sites by learning environment features automatically. In total, 3608 known HPV integration sites were applied to train the model, and 584 reviewed HPV integration sites were used as the testing dataset. DeepHPV showed an area under the receiver-operating characteristic (AUROC) of 0.6336 and an area under the precision recall (AUPR) of 0.5670. Adding RepeatMasker and TCGA Pan Cancer peaks improved the model performance to 0.8464 and 0.8501 in AUROC and 0.7985 and 0.8106 in AUPR, respectively. Next, we tested these trained models on independent database VISDB and found the model adding TCGA Pan Cancer performed better (AUROC: 0.7175, AUPR: 0.6284) than the model adding RepeatMasker peaks (AUROC: 0.6102, AUPR: 0.5577). Moreover, we introduced attention mechanism in DeepHPV and enriched the transcription factor binding sites including BHLHA15, CHR, COUP-TFII, DMRTA2, E2A, HIC1, INR, NPAS, Nr5a2, RARa, SCL, Snail1, Sox10, Sox3, Sox4, Sox6, STAT6, Tbet, Tbx5, TEAD, Tgif2, ZNF189, ZNF416 near attention intensive sites. Together, DeepHPV is a robust and explainable deep learning model, providing new insights into HPV integration preference and mechanism. Availability: DeepHPV is available as an open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepHPV.git, Contact: huzheng1998@163.com, liangjiuxing@m.scnu.edu.cn, lizheyzy@163.com.
Collapse
Affiliation(s)
- Rui Tian
- Translational Medicine of the First Affiliated Hospital, Sun Yat-sen University
| | - Ping Zhou
- Dongguan Maternal and Child Health Care Hospital
| | - Mengyuan Li
- Department of Obstetrics and Gynecology at the First Affiliated Hospital, Sun Yat-sen University
| | - Jinfeng Tan
- First Affiliated Hospital, Sun Yat-sen University
| | - Zifeng Cui
- First Affiliated Hospital, Sun Yat-sen University
| | - Wei Xu
- Department of Obstetrics and Gynecology at the First Affiliated Hospital, Sun Yat-sen University
| | - Jingyue Wei
- Department of Obstetrics and Gynecology at the First Affiliated Hospital, Sun Yat-sen University
| | - Jingjing Zhu
- Department of Obstetrics and Gynecology of the First Affiliated Hospital, Sun Yat-sen University
| | - Zhuang Jin
- First Affiliated Hospital, Sun Yat-sen University
| | - Chen Cao
- Central Hospital of Wuhan, China
| | - Weiwen Fan
- College of Medicine at the Sun Yat-sen University
| | - Weiling Xie
- First Affiliated Hospital, Sun Yat-sen University
| | | | | | - Zeshan You
- First Affiliated Hospital, Sun Yat-sen University
| | - Gang Niu
- Department of Obstetrics and Gynecology of the First Affiliated Hospital, Sun Yat-sen University
| | - Canbiao Wu
- Institute for Brain Research and Rehabilitation at the South China Normal University
| | - Xiaofang Guo
- Department of Medical Oncology of the Eastern Hospital at the First Affiliated Hospital, Sun Yat-sen University
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation at the South China Normal University
| | | | - Fubing Yu
- Dongguan Maternal and Child Health Care Hospital
| | - Zhiying Yu
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center
| | - Jiuxing Liang
- Institute for Brain Research and Rehabilitation at the South China Normal University
| | - Zheng Hu
- Gynecological Oncology of the First Affiliated Hospital, Precision Medicine Institute, Sun Yat-sen University
| |
Collapse
|
179
|
The association between HPV gene expression, inflammatory agents and cellular genes involved in EMT in lung cancer tissue. BMC Cancer 2020; 20:916. [PMID: 32972386 PMCID: PMC7517685 DOI: 10.1186/s12885-020-07428-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer morbidity and mortality worldwide. Several studies have suggested that Human papillomavirus (HPV) infection is an important risk factor in the development of lung cancer. In this study, we aim to address the role of HPV in the development of lung cancer mechanistically by examining the induction of inflammation and epithelial-mesenchymal transition (EMT) by this virus. METHODS In this case-control study, tissue samples were collected from 102 cases with lung cancer and 48 controls. We examined the presence of HPV DNA and also the viral genotype in positive samples. We also examined the expression of viral genes (E2, E6 and E7), anti-carcinogenic genes (p53, retinoblastoma (RB)), and inflammatory cytokines in HPV positive cases. RESULTS HPV DNA was detected in 52.9% (54/102) of the case samples and in 25% (12/48) of controls. A significant association was observed between a HPV positive status and lung cancer (OR = 3.37, 95% C.I = 1.58-7.22, P = 0.001). The most prevalent virus genotype in the patients was type 16 (38.8%). The expression of p53 and RB were decreased while and inflammatory cytokines were increased in HPV-positive lung cancer and HPV-positive control tissues compared to HPV-negative lung cancer and HPV-negative control tissues. Also, the expression level of E-cad and PTPN-13 genes were decreased in HPV- positive samples while the expression level of SLUG, TWIST and N-cad was increased in HPV-positive samples compared to negative samples. CONCLUSION Our study suggests that HPV infection drives the induction of inflammation and EMT which may promote in the development of lung cancer.
Collapse
|
180
|
Aranda-Rivera AK, Cruz-Gregorio A, Briones-Herrera A, Pedraza-Chaverri J. Regulation of autophagy by high- and low-risk human papillomaviruses. Rev Med Virol 2020; 31:e2169. [PMID: 33590566 DOI: 10.1002/rmv.2169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
While high-risk human papillomavirus (HR-HPV) infection is related to the development of cervical, vulvar, anal, penile and oropharyngeal cancer, low-risk human papillomavirus (LR-HPV) infection is implicated in about 90% of genital warts, which rarely progress to cancer. The carcinogenic role of HR-HPV is due to the overexpression of HPV E5, E6 and E7 oncoproteins which target and modify cellular proteins implicated in cell proliferation, apoptosis and immortalization. LR-HPV proteins also target and modify some of these processes; however, their oncogenic potential is lower than that of HR-HPV. HR-HPVs have substantial differences with LR-HPVs such as viral integration into the cell genome, induction of p53 and retinoblastoma protein degradation, alternative splicing in HR-HPV E6-E7 open reading frames, among others. In addition, LR-HPV can activate the autophagy process in infected cells while HR-HPV infection deactivates it. However, in cancer HR-HPV might reactivate autophagy in advance stages. Autophagy is a catabolic process that maintains cell homoeostasis by lysosomal degradation and recycling of damaged macromolecules and organelles; nevertheless, depending upon cellular context autophagy may also induce cell death. Therefore, autophagy can contribute either as a promotor or as a suppressor of tumours. In this review, we focus on the role of HR-HPV and LR-HPV in autophagy during viral infection and cancer development. Additionally, we review key regulatory molecules such as microRNAs in HPV present during autophagy, and we emphasize the potential use of cancer treatments associated with autophagy in HPV-related cancers.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - Alfredo Cruz-Gregorio
- Laboratorio 225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Alfredo Briones-Herrera
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.,Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - José Pedraza-Chaverri
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
181
|
Lou H, Boland JF, Torres-Gonzalez E, Albanez A, Zhou W, Steinberg MK, Diaw L, Mitchell J, Roberson D, Cullen M, Garland L, Bass S, Burk RD, Yeager M, Wentzensen N, Schiffman M, Freites EA, Gharzouzi E, Mirabello L, Dean M. The D2 and D3 Sublineages of Human Papilloma Virus 16-Positive Cervical Cancer in Guatemala Differ in Integration Rate and Age of Diagnosis. Cancer Res 2020; 80:3803-3809. [PMID: 32631904 PMCID: PMC7501218 DOI: 10.1158/0008-5472.can-20-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023]
Abstract
Human papillomavirus (HPV) 16 displays substantial sequence variation; four HPV16 lineages (A, B, C, and D) have been described as well as multiple sublineages. To identify molecular events associated with HPV16 carcinogenesis, we evaluated viral variation, the integration of HPV16, and somatic mutation in 96 cervical cancer samples from Guatemala. A total of 65% (62/96) of the samples had integrated HPV16 sequences and integration was associated with an earlier age of diagnosis and premenopausal disease. HPV16 integration sites were broadly distributed in the genome, but in one tumor, HPV16 integrated into the promoter of the IFN regulatory factor 4 (IRF4) gene, which plays an important role in the regulation of the IFN response to viral infection. The HPV16 D2 and D3 sublineages were found in 23% and 30% of the tumors, respectively, and were significantly associated with adenocarcinoma. D2-positive tumors had a higher rate of integration, earlier age of diagnosis, and a lower rate of somatic mutation, whereas D3-positive tumors were less likely to integrate, had later age of diagnosis, and exhibited a higher rate of somatic mutation. In conclusion, Guatemalan cervical tumors have a high frequency of very high-risk HPV16 D2 and D3 sublineages harboring distinct histology, which may help guide future therapeutic strategies to target the tumor and reduce recurrence. SIGNIFICANCE: This study details the biological and molecular properties of the most pathogenic forms of HPV16, the cause of the majority of cervical cancers.
Collapse
Affiliation(s)
- Hong Lou
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., National Laboratory for Cancer Research, Gaithersburg, Maryland
| | - Joseph F Boland
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., National Laboratory for Cancer Research, Gaithersburg, Maryland
| | - Edmundo Torres-Gonzalez
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, Gaithersburg, Maryland
| | | | - Weiyin Zhou
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., National Laboratory for Cancer Research, Gaithersburg, Maryland
| | - Mia K Steinberg
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., National Laboratory for Cancer Research, Gaithersburg, Maryland
| | - Lena Diaw
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, Gaithersburg, Maryland
| | - Jason Mitchell
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., National Laboratory for Cancer Research, Gaithersburg, Maryland
| | - David Roberson
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., National Laboratory for Cancer Research, Gaithersburg, Maryland
| | - Michael Cullen
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., National Laboratory for Cancer Research, Gaithersburg, Maryland
| | - Lisa Garland
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., National Laboratory for Cancer Research, Gaithersburg, Maryland
| | - Sara Bass
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., National Laboratory for Cancer Research, Gaithersburg, Maryland
| | - Robert D Burk
- Departments of Pediatrics, Microbiology and Immunology, and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York
| | - Meredith Yeager
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., National Laboratory for Cancer Research, Gaithersburg, Maryland
| | - Nicolas Wentzensen
- Laboratory of Cancer Genetics, Division of Cancer Epidemiology and Genetics, NCI, Gaithersburg, Maryland
| | - Mark Schiffman
- Laboratory of Cancer Genetics, Division of Cancer Epidemiology and Genetics, NCI, Gaithersburg, Maryland
| | - Enrique Alvirez Freites
- Hospital Central Universitario "Dr. Antonio M Pineda," Barquisimeto, Lara State, Venezuela
- Universidad Andina del Cusco, Vicerrectorado de Investigación, Division of Cancer Research, Cusco, Perú
| | | | - Lisa Mirabello
- Laboratory of Cancer Genetics, Division of Cancer Epidemiology and Genetics, NCI, Gaithersburg, Maryland
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, Gaithersburg, Maryland.
| |
Collapse
|
182
|
Stankiewicz Karita HC, Waterboer T, Magaret A, Doody DR, Pawlita M, Brenner N, Galloway DA, Wald A, Madeleine MM. Humoral Response to HPV16 Proteins in Persons with Anal High-Grade Squamous Intraepithelial Lesion or Anal Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:2255-2260. [PMID: 32883662 DOI: 10.1158/1055-9965.epi-20-0749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/30/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND This study was launched to evaluate the association of early and late antibodies to human papillomavirus 16 (HPV16) detection and risk of anal high-grade squamous intraepithelial lesions (HSIL) or cancer. METHODS We analyzed data from persons with anal HSIL or cancer and controls from a case-control study in Seattle, Washington. Sera were evaluated for HPV16 early (E1, E2, E4, E6, and E7) and late (L1) antibodies by multiplex serology. Logistic regression models were used to assess serologic associations with risk of anal HSIL or cancer. RESULTS The study included 67 participants with anal HSIL, 116 with anal cancer, and 830 population-based controls. HPV16 seropositivity to L1 [adjusted OR (aOR), 13.8; 95% confidence interval (CI), 7.4-25.8], E4 (aOR, 2.3; 95% CI, 1.1-4.5), and E6 (aOR, 4.9; 95% CI, 1.1-21.2) was associated with HSIL; and detection of all antibodies to HPV16 late and early proteins was associated with increased risk of anal cancer ranging from aOR 1.7 to 32.5 [L1 aOR, 12.5 (95% CI, 7.3-21.7); E1 aOR, 24.9 (95% CI, 10.3-59.9); E2 aOR, 6.3 (95% CI, 3.4-11.7); E4 aOR, 2.8 (95% CI, 1.6-4.8); E6 aOR, 32.5 (95% CI, 14.2-74.4); and E7 aOR, 1.7 (95% CI, 1.0-3.0)]. CONCLUSIONS HPV serologic markers proved to be specific for identifying anal cancer. HPV16 E6 seropositivity is relatively uncommon in persons without anal cancer. IMPACT This large study comprehensively describes the distinct antibody responses to the HPV16 proteins in persons with anal HSIL or anal cancer. Antibodies to HPV16 E6 should be further evaluated as a potential biomarker for anal cancer prevention.
Collapse
Affiliation(s)
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amalia Magaret
- Department of Biostatistics, University of Washington, Seattle, Washington.,Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - David R Doody
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael Pawlita
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicole Brenner
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Denise A Galloway
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, Washington.,Department of Laboratory Medicine, University of Washington, Seattle, Washington.,Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, University of Washington, Seattle, Washington
| | - Margaret M Madeleine
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, University of Washington, Seattle, Washington
| |
Collapse
|
183
|
Jee B, Yadav R, Pankaj S, Shahi SK. Immunology of HPV-mediated cervical cancer: current understanding. Int Rev Immunol 2020; 40:359-378. [PMID: 32853049 DOI: 10.1080/08830185.2020.1811859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human papilloma virus (HPV) has emerged as a primary cause of cervical cancer worldwide. HPV is a relatively small (55 nm in diameter) and non-enveloped virus containing approximately 8 kb long double stranded circular DNA genome. To date, 228 genotypes of HPV have been identified. Although all HPV infections do not lead to the development of malignancy of cervix, only persistent infection of high-risk types of HPV (mainly with HPV16 and HPV18) results in the disease. In addition, the immunity of the patients also acts as a key determinant in the carcinogenesis. Since, no HPV type specific medication is available for the patient suffering with cervical cancer, hence, a deep understanding of the disease etiology may be vital for developing an effective strategy for its prevention and management. From the immunological perspectives, the entire mechanisms of disease progression still remain unclear despite continuous efforts. In the present review, the recent developments in immunology of HPV-mediated cervix carcinoma were discussed. At the end, the prevention of disease using HPV type specific recombinant vaccines was also highlighted.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Renu Yadav
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Sangeeta Pankaj
- Department of Gynecological Oncology, Regional Cancer Centre, Indira Gandhi Institute of Medical Sciences, Patna, India
| | - Shivendra Kumar Shahi
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, India
| |
Collapse
|
184
|
da Silva Neto AM, Wander Montalvão R, Bruneska Gondim Martins D, de Lima Filho JL, Castelletti CHM. A model of key residues interactions for HPVs E1 DNA binding domain-DNA interface based on HPVs residues conservation profiles and molecular dynamics simulations. J Biomol Struct Dyn 2020; 38:3720-3729. [DOI: 10.1080/07391102.2019.1659185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
185
|
Gagliardi A, Porter VL, Zong Z, Bowlby R, Titmuss E, Namirembe C, Griner NB, Petrello H, Bowen J, Chan SK, Culibrk L, Darragh TM, Stoler MH, Wright TC, Gesuwan P, Dyer MA, Ma Y, Mungall KL, Jones SJM, Nakisige C, Novik K, Orem J, Origa M, Gastier-Foster JM, Yarchoan R, Casper C, Mills GB, Rader JS, Ojesina AI, Gerhard DS, Mungall AJ, Marra MA. Analysis of Ugandan cervical carcinomas identifies human papillomavirus clade-specific epigenome and transcriptome landscapes. Nat Genet 2020; 52:800-810. [PMID: 32747824 PMCID: PMC7498180 DOI: 10.1038/s41588-020-0673-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/26/2020] [Indexed: 01/18/2023]
Abstract
Cervical cancer is the most common cancer affecting sub-Saharan African women and is prevalent among HIV-positive (HIV+) individuals. No comprehensive profiling of cancer genomes, transcriptomes or epigenomes has been performed in this population thus far. We characterized 118 tumors from Ugandan patients, of whom 72 were HIV+, and performed extended mutation analysis on an additional 89 tumors. We detected human papillomavirus (HPV)-clade-specific differences in tumor DNA methylation, promoter- and enhancer-associated histone marks, gene expression and pathway dysregulation. Changes in histone modification at HPV integration events were correlated with upregulation of nearby genes and endogenous retroviruses.
Collapse
Affiliation(s)
- Alessia Gagliardi
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Vanessa L Porter
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zusheng Zong
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | | | - Nicholas B Griner
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Jay Bowen
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Simon K Chan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Teresa M Darragh
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA
| | - Mark H Stoler
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Thomas C Wright
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Patee Gesuwan
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maureen A Dyer
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Karen Novik
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | | | | | - Julie M Gastier-Foster
- Nationwide Children's Hospital, Columbus, OH, USA
- Departments of Pathology and Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Robert Yarchoan
- Office of HIV and AIDS Malignancy, National Cancer Institute, National Institues of Health, Bethesda, MD, USA
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Corey Casper
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Akinyemi I Ojesina
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
186
|
Czech-Sioli M, Günther T, Therre M, Spohn M, Indenbirken D, Theiss J, Riethdorf S, Qi M, Alawi M, Wülbeck C, Fernandez-Cuesta I, Esmek F, Becker JC, Grundhoff A, Fischer N. High-resolution analysis of Merkel Cell Polyomavirus in Merkel Cell Carcinoma reveals distinct integration patterns and suggests NHEJ and MMBIR as underlying mechanisms. PLoS Pathog 2020; 16:e1008562. [PMID: 32833988 PMCID: PMC7470373 DOI: 10.1371/journal.ppat.1008562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/03/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Merkel Cell Polyomavirus (MCPyV) is the etiological agent of the majority of Merkel Cell Carcinomas (MCC). MCPyV positive MCCs harbor integrated, defective viral genomes that constitutively express viral oncogenes. Which molecular mechanisms promote viral integration, if distinct integration patterns exist, and if integration occurs preferentially at loci with specific chromatin states is unknown. We here combined short and long-read (nanopore) next-generation sequencing and present the first high-resolution analysis of integration site structure in MCC cell lines as well as primary tumor material. We find two main types of integration site structure: Linear patterns with chromosomal breakpoints that map closely together, and complex integration loci that exhibit local amplification of genomic sequences flanking the viral DNA. Sequence analysis suggests that linear patterns are produced during viral replication by integration of defective/linear genomes into host DNA double strand breaks via non-homologous end joining, NHEJ. In contrast, our data strongly suggest that complex integration patterns are mediated by microhomology-mediated break-induced replication, MMBIR. Furthermore, we show by ChIP-Seq and RNA-Seq analysis that MCPyV preferably integrates in open chromatin and provide evidence that viral oncogene expression is driven by the viral promoter region, rather than transcription from juxtaposed host promoters. Taken together, our data explain the characteristics of MCPyV integration and may also provide a model for integration of other oncogenic DNA viruses such as papillomaviruses.
Collapse
Affiliation(s)
- Manja Czech-Sioli
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Günther
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Marlin Therre
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Spohn
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Juliane Theiss
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabine Riethdorf
- Institute of Tumorbiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Minyue Qi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Corinna Wülbeck
- Translational skin cancer research, German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Irene Fernandez-Cuesta
- Institute of Nanostructure- and Solid State Physics (INF), Center for Hybrid Nanostructures (CHyN), University of Hamburg, Hamburg, Germany
| | - Franziska Esmek
- Institute of Nanostructure- and Solid State Physics (INF), Center for Hybrid Nanostructures (CHyN), University of Hamburg, Hamburg, Germany
| | - Jürgen C. Becker
- Translational skin cancer research, German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail: (AG); (NF)
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (AG); (NF)
| |
Collapse
|
187
|
Islam MS, Chakraborty B, Panda CK. Human papilloma virus (HPV) profiles in breast cancer: future management. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:650. [PMID: 32566587 PMCID: PMC7290605 DOI: 10.21037/atm-19-2756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is frequent among women in worldwide as well as in India. Several studies have reported a wide variation (1.6–86.2%) in the frequency of incidence of human papillomavirus (HPV) infection in BC with high prevalence of high risk HPV16 subtype. HPV infection in breast can occur through different routes like body fluid or by micro-lesion of breast skin from genital/agential sites, though the actual mode of HPV transmission is not yet known in details. Frequent integration and sequence variation with low copy number of HPV16 were seen in this tumour. In addition, high frequencies of methylation in p97 promoter region of HPV16 were evident in this tumour. Novel splice variants of E6/E7 along with other common variants and their protein expression were seen in the tumour. This indicates the importance of HPV in this tumor, its early diagnosis and prognosis. Thus, HPV may be targeted through vaccination to control the disease. However, detailed analysis of HPV associated molecular pathogenesis of BC is warranted for proper therapeutic intervention.
Collapse
Affiliation(s)
- Md Saimul Islam
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Balarko Chakraborty
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| |
Collapse
|
188
|
Epigenetic Regulation of the Human Papillomavirus Life Cycle. Pathogens 2020; 9:pathogens9060483. [PMID: 32570816 PMCID: PMC7350343 DOI: 10.3390/pathogens9060483] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Persistent infection with certain types of human papillomaviruses (HPVs), termed high risk, presents a public health burden due to their association with multiple human cancers, including cervical cancer and an increasing number of head and neck cancers. Despite the development of prophylactic vaccines, the incidence of HPV-associated cancers remains high. In addition, no vaccine has yet been licensed for therapeutic use against pre-existing HPV infections and HPV-associated diseases. Although persistent HPV infection is the major risk factor for cancer development, additional genetic and epigenetic alterations are required for progression to the malignant phenotype. Unlike genetic mutations, the reversibility of epigenetic modifications makes epigenetic regulators ideal therapeutic targets for cancer therapy. This review article will highlight the recent advances in the understanding of epigenetic modifications associated with HPV infections, with a particular focus on the role of these epigenetic changes during different stages of the HPV life cycle that are closely associated with activation of DNA damage response pathways.
Collapse
|
189
|
Cao C, Hong P, Huang X, Lin D, Cao G, Wang L, Feng B, Wu P, Shen H, Xu Q, Ren C, Meng Y, Zhi W, Yu R, Wei J, Ding W, Tian X, Zhang Q, Li W, Gao Q, Chen G, Li K, Sung WK, Hu Z, Wang H, Li G, Wu P. HPV-CCDC106 integration alters local chromosome architecture and hijacks an enhancer by three-dimensional genome structure remodeling in cervical cancer. J Genet Genomics 2020; 47:437-450. [PMID: 33023834 DOI: 10.1016/j.jgg.2020.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Integration of human papillomavirus (HPV) DNA into the human genome is a reputed key driver of cervical cancer. However, the effects of HPV integration on chromatin structural organization and gene expression are largely unknown. We studied a cohort of 61 samples and identified an integration hot spot in the CCDC106 gene on chromosome 19. We then selected fresh cancer tissue that contained the unique integration loci at CCDC106 with no HPV episomal DNA and performed whole-genome, RNA, chromatin immunoprecipitation and high-throughput chromosome conformation capture (Hi-C) sequencing to identify the mechanisms of HPV integration in cervical carcinogenesis. Molecular analyses indicated that chromosome 19 exhibited significant genomic variation and differential expression densities, with correlation found between three-dimensional (3D) structural change and gene expression. Importantly, HPV integration divided one topologically associated domain (TAD) into two smaller TADs and hijacked an enhancer from PEG3 to CCDC106, with a decrease in PEG3 expression and an increase in CCDC106 expression. This expression dysregulation was further confirmed using 10 samples from our cohort, which exhibited the same HPV-CCDC106 integration. In summary, we found that HPV-CCDC106 integration altered local chromosome architecture and hijacked an enhancer via 3D genome structure remodeling. Thus, this study provides insight into the 3D structural mechanism underlying HPV integration in cervical carcinogenesis.
Collapse
Affiliation(s)
- Canhui Cao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingyu Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Bio-Medical Center, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Bio-Medical Center, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liming Wang
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bei Feng
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Wu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Shen
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ci Ren
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yifan Meng
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenhua Zhi
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruidi Yu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juncheng Wei
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wencheng Ding
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Qinghua Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Wei Li
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qinglei Gao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Chen
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kezhen Li
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wing-Kin Sung
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China; Department of Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Zheng Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Gynecological Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hui Wang
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Peng Wu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
190
|
James CD, Morgan IM, Bristol ML. The Relationship between Estrogen-Related Signaling and Human Papillomavirus Positive Cancers. Pathogens 2020; 9:E403. [PMID: 32455952 PMCID: PMC7281727 DOI: 10.3390/pathogens9050403] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
High risk-human papillomaviruses (HPVs) are known carcinogens. Numerous reports have linked the steroid hormone estrogen, and the expression of estrogen receptors (ERs), to HPV-related cancers, although the exact nature of the interactions remains to be fully elucidated. Here we will focus on estrogen signaling and describe both pro and potentially anti-cancer effects of this hormone in HPV-positive cancers. This review will summarize: (1) cell culture-related evidence, (2) animal model evidence, and (3) clinical evidence demonstrating an interaction between estrogen and HPV-positive cancers. This comprehensive review provides insights into the potential relationship between estrogen and HPV. We suggest that estrogen may provide a potential therapeutic for HPV-related cancers, however additional studies are necessary.
Collapse
Affiliation(s)
- Claire D. James
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
| | - Iain M. Morgan
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
- VCU Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Molly L. Bristol
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
| |
Collapse
|
191
|
The Transcriptional Cofactor VGLL1 Drives Transcription of Human Papillomavirus Early Genes via TEAD1. J Virol 2020; 94:JVI.01945-19. [PMID: 32132238 DOI: 10.1128/jvi.01945-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
The TEAD family of transcription factors requires associating cofactors to induce gene expression. TEAD1 is known to activate the early promoter of human papillomavirus (HPV), but the precise mechanisms of TEAD1-mediated transactivation of the HPV promoter, including its relevant cofactors, remain unexplored. Here, we reveal that VGLL1, a TEAD-interacting cofactor, contributes to HPV early gene expression. Knockdown of VGLL1 and/or TEAD1 led to a decrease in viral early gene expression in human cervical keratinocytes and cervical cancer cell lines. We identified 11 TEAD1 target sites in the HPV16 long control region (LCR) by in vitro DNA pulldown assays; 8 of these sites contributed to the transcriptional activation of the early promoter in luciferase reporter assays. VGLL1 bound to the HPV16 LCR via its interaction with TEAD1 both in vitro and in vivo Furthermore, introducing HPV16 and HPV18 whole genomes into primary human keratinocytes led to increased levels of VGLL1, due in part to the upregulation of TEADs. These results suggest that multiple VGLL1/TEAD1 complexes are recruited to the LCR to support the efficient transcription of HPV early genes.IMPORTANCE Although a number of transcription factors have been reported to be involved in HPV gene expression, little is known about the cofactors that support HPV transcription. In this study, we demonstrate that the transcriptional cofactor VGLL1 plays a prominent role in HPV early gene expression, dependent on its association with the transcription factor TEAD1. Whereas TEAD1 is ubiquitously expressed in a variety of tissues, VGLL1 displays tissue-specific expression and is implicated in the development and differentiation of epithelial lineage tissues, where HPV gene expression occurs. Our results suggest that VGLL1 may contribute to the epithelial specificity of HPV gene expression, providing new insights into the mechanisms that regulate HPV infection. Further, VGLL1 is also critical for the growth of cervical cancer cells and may represent a novel therapeutic target for HPV-associated cancers.
Collapse
|
192
|
HPV vaccination and cancer prevention. Best Pract Res Clin Obstet Gynaecol 2020; 65:109-124. [DOI: 10.1016/j.bpobgyn.2020.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
|
193
|
Yamaguchi-Naka M, Onuki M, Tenjimbayashi Y, Hirose Y, Tasaka N, Satoh T, Morisada T, Iwata T, Sekizawa A, Matsumoto K, Kukimoto I. Molecular epidemiology of human papillomavirus 18 infections in Japanese Women. INFECTION GENETICS AND EVOLUTION 2020; 83:104345. [PMID: 32360473 DOI: 10.1016/j.meegid.2020.104345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Among the oncogenic genotypes of human papillomavirus (HPV), HPV18 is the second most common type detected in cervical cancer worldwide and is primarily involved in the generation of cervical adenocarcinoma. Although HPV intra-type variants confer different risks of cervical carcinogenesis, there is little information on the genetic diversity of HPV18 compared to the most prevalent type, HPV16. In this study, we investigated the genetic variation of HPV18 in cervical specimens obtained from Japanese women with normal cervices or cervical cancers and precancers. Of the 101 HPV18-positive samples analyzed, viral whole genome amplification followed by next-generation sequencing led to the determination of viral complete genome sequences of 18 samples. Phylogenetic analysis of these HPV18 whole genome sequences identified a distinct variant cluster consisting of only Japanese samples (n = 7) belonging to sublineage A1. Viral genome sequences were also analyzed for the E6/E7 (n = 66) and E2 (n = 27) genes by Sanger sequencing. Phylogenetic analyses of these regions showed that the variant distribution among Japanese women was strongly biased toward sublineage A1 (72 of 87; 82.8%). No significant differences were observed in the prevalence of specific sublineages between cervical cancer/precancer cases and controls, and between squamous cell carcinoma and adenocarcinoma cases. These data contribute to our understanding of the genetic diversity of HPV18 in Japanese women.
Collapse
Affiliation(s)
- Mayuko Yamaguchi-Naka
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo 142-8666, Japan; Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Mamiko Onuki
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yuri Tenjimbayashi
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yusuke Hirose
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Nobutaka Tasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Toyomi Satoh
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Tohru Morisada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Takashi Iwata
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Koji Matsumoto
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan.
| |
Collapse
|
194
|
Fernandes Q, Gupta I, Vranic S, Al Moustafa AE. Human Papillomaviruses and Epstein-Barr Virus Interactions in Colorectal Cancer: A Brief Review. Pathogens 2020; 9:pathogens9040300. [PMID: 32325943 PMCID: PMC7238043 DOI: 10.3390/pathogens9040300] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPVs) and the Epstein-Barr virus (EBV) are the most common oncoviruses, contributing to approximately 10%-15% of all malignancies. Oncoproteins of high-risk HPVs (E5 and E6/E7), as well as EBV (LMP1, LMP2A and EBNA1), play a principal role in the onset and progression of several human carcinomas, including head and neck, cervical and colorectal. Oncoproteins of high-risk HPVs and EBV can cooperate to initiate and/or enhance epithelial-mesenchymal transition (EMT) events, which represents one of the hallmarks of cancer progression and metastasis. Although the role of these oncoviruses in several cancers is well established, their role in the pathogenesis of colorectal cancer is still nascent. This review presents an overview of the most recent advances related to the presence and role of high-risk HPVs and EBV in colorectal cancer, with an emphasis on their cooperation in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (Q.F.); (I.G.)
- Biomedical Research Centre, Qatar University, Doha 2713, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (Q.F.); (I.G.)
- Biomedical Research Centre, Qatar University, Doha 2713, Qatar
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (Q.F.); (I.G.)
- Correspondence: (S.V.); (A.-E.A.M.); Tel.:+974-4403-7873 (S.V.); +974-4403-7817 (A.-E.A.M.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (Q.F.); (I.G.)
- Biomedical Research Centre, Qatar University, Doha 2713, Qatar
- Correspondence: (S.V.); (A.-E.A.M.); Tel.:+974-4403-7873 (S.V.); +974-4403-7817 (A.-E.A.M.)
| |
Collapse
|
195
|
Spurgeon ME, Lambert PF. Mus musculus Papillomavirus 1: a New Frontier in Animal Models of Papillomavirus Pathogenesis. J Virol 2020; 94:e00002-20. [PMID: 32051276 PMCID: PMC7163119 DOI: 10.1128/jvi.00002-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Animal models of viral pathogenesis are essential tools in human disease research. Human papillomaviruses (HPVs) are a significant public health issue due to their widespread sexual transmission and oncogenic potential. Infection-based models of papillomavirus pathogenesis have been complicated by their strict species and tissue specificity. In this Gem, we discuss the discovery of a murine papillomavirus, Mus musculus papillomavirus 1 (MmuPV1), and how its experimental use represents a major advancement in models of papillomavirus-induced pathogenesis/carcinogenesis, and their transmission.
Collapse
Affiliation(s)
- Megan E Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
196
|
Wieland U, Oellig F, Kreuter A. [Anal dysplasia and anal cancer]. Hautarzt 2020; 71:284-292. [PMID: 32065247 DOI: 10.1007/s00105-020-04548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Anal intraepithelial neoplasia (AIN) and 89-100% of anal cancers are caused by persistent infections with high-risk (HR) human papillomaviruses (HPV). In HIV-positive patients, anal HPV infection and AIN are very common and these patients have a greatly increased risk of developing anal cancer. However, a continuous increase in the incidence of anal cancer has also been observed in the general population in recent decades. AIN can clinically present in diverse manners. In HIV-positive patients AIN can be hidden in condylomas. Furthermore, 3-14% of high-grade AIN progress to anal cancer within 5 years. Therefore, screening examinations should be offered to patients with an increased risk for anal cancer. The treatment options for AIN are similar to those for condylomas. HIV-positive patients with controlled immune status and HIV-negative patients with anal cancer respond comparably well to combined radiochemotherapy. A German-language AWMF S3 guideline for anal cancer will be available in 2020. In HIV-positive patients over 26 years of age, HPV vaccination showed no effect in a controlled phase‑3 study. To prevent AIN and anal cancer in the future, HPV vaccination rates need to be increased in HPV-naïve girls and boys.
Collapse
Affiliation(s)
- Ulrike Wieland
- Institut für Virologie, Nationales Referenzzentrum für Papillom- und Polyomaviren, Universität zu Köln, Köln, Deutschland
| | - Frank Oellig
- Institut für Pathologie, Mühlheim an der Ruhr, Deutschland
| | - Alexander Kreuter
- Klinik für Dermatologie, Venerologie und Allergologie, HELIOS St. Elisabeth Klinik Oberhausen, Universität Witten/Herdecke, Josefstr. 3, 46045, Oberhausen, Deutschland.
| |
Collapse
|
197
|
RNA-based high-risk HPV genotyping and identification of high-risk HPV transcriptional activity in cervical tissues. Mod Pathol 2020; 33:748-757. [PMID: 31537894 DOI: 10.1038/s41379-019-0369-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
Abstract
Nearly all cervical cancers are initiated by a persistent infection with one of the high-risk human papillomaviruses (high-risk HPV). High-risk HPV DNA testing is highly sensitive but cannot distinguish between active, productive infections and dormant infections or merely deposited virus. A solution for this shortcoming may be the detection of transcriptional activity of viral oncogenes instead of mere presence of high-risk HPVs. In this study, fresh-frozen cervical tissues (n = 22) were subjected to high-risk HPV DNA detection using the line probe assay and to targeted RNA next-generation sequencing using single-molecule molecular inversion probes. Targeted RNA sequencing was applied for (1) RNA-based genotyping of high-risk HPV, giving information on specific HPV-subtype (2) discrimination of E2, E6, and E7 transcripts and (3) discovery of possible non-HPV cancer biomarkers. Data were analyzed using computational biology. Targeted RNA sequencing enabled reliable genotyping of high-risk HPV subtypes and allowed quantitative detection of E2, E6, and E7 viral gene expression, thereby discriminating cervical lesions from normal cervical tissues. Moreover, targeted RNA sequencing identified possible cervical cancer biomarkers other than high-risk HPV. Interestingly, targeted RNA sequencing also provided high-quality transcription profiles from cervical scrape samples, even after 1 week of dry storage or storage in Preservcyt fixative. This proof of concept study shows that targeted RNA sequencing can be used for high-risk HPV genotyping and simultaneous detection of high-risk HPV gene activity. Future studies are warranted to investigate the potential of targeted RNA sequencing for risk assessment for the development of cervical lesions, based on molecular analysis of cervical scrapes.
Collapse
|
198
|
Macedo J, Silva E, Nogueira L, Coelho R, da Silva J, Dos Santos A, Teixeira-Júnior AA, Belfort M, Silva G, Khayat A, de Oliveira E, Dos Santos AP, Cavalli LR, Pereira SR. Genomic profiling reveals the pivotal role of hrHPV driving copy number and gene expression alterations, including mRNA downregulation of TP53 and RB1 in penile cancer. Mol Carcinog 2020; 59:604-617. [PMID: 32212199 DOI: 10.1002/mc.23185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
The incidence of penile cancer (PeCa) is increasing worldwide, however, the highest rates are reported in underdeveloped countries. The molecular mechanisms that underly the onset and progression of these tumors are still unclear. Therefore, our goal was to determine the genome-wide copy number alterations and the involvement of human papiloma virus (HPV) (TP53 and RB1), inflammatory (COX2 and EGFR), and PI3K/AKT pathway (AKT1, AKT2, EGFR, ERBB3, ERBB4, PIK3CA, and PTEN) associated genes in patients with PeCa from a high incidence region in Brazil (Maranhão). HPV genotyping was performed by nest-PCR and genome sequencing, copy number alterations (CNAs) by array comparative genomic hybridization and gene copy number status, gene, and protein expression by quantitative polymerase chain reaction, reverse transcriptase-quantitative polymerase chain reaction, and immunohistochemistry, respectively. HPV genotyping revealed one of the highest frequencies of HPV reported in PeCa, affecting 96.4% of the cases. The most common CNAs observed were located at the HPV integration sites, such as 2p12-p11.2 and 14q32.33, where ADAM 6, KIAA0125, LINC00226, LINC00221, and miR7641-2, are mapped. Increased copy number of ERBB3 and EGFR genes were observed in association with COX2 and EGFR overexpression, reinforcing the role of the inflammatory pathway in PeCa, and suggesting anti-EGFR and anti-COX2 inhibitors as promising therapies for PeCa. Additionally, TP53 and RB1 messenger RNA downregulation was observed, suggesting the occurrence of other mechanisms for repression of these oncoproteins, in addition to the canonical HPV/TP53/RB1 signaling pathway. Our data reinforce the role of epigenetic events in abnormal gene expression in HPV-associated carcinomas and suggest the pivotal role of HPV driving CNAs and controlling gene expression in PeCa.
Collapse
Affiliation(s)
- Juliana Macedo
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Elis Silva
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | - Ronald Coelho
- Aldenora Bello Cancer Hospital, São Luís, Maranhão, Brazil
| | - Jenilson da Silva
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Maranhão, Brazil.,Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Alcione Dos Santos
- Public Health Department, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | - Marta Belfort
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Gyl Silva
- Biology Undergraduate Course, Department of Pathology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - André Khayat
- Oncology Research Center, Federal University of Pará, Belém, Pará, Brazil
| | - Edivaldo de Oliveira
- Tissue Culture and Cytogenetics Laboratory, Institute of Evandro Chagas, Belém, Pará, Brazil
| | - Ana Paula Dos Santos
- Department of Physiological Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Luciane R Cavalli
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.,Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, United States
| | - Silma Regina Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
199
|
Zhu B, Xiao Y, Yeager M, Clifford G, Wentzensen N, Cullen M, Boland JF, Bass S, Steinberg MK, Raine-Bennett T, Lee D, Burk RD, Pinheiro M, Song L, Dean M, Nelson CW, Burdett L, Yu K, Roberson D, Lorey T, Franceschi S, Castle PE, Walker J, Zuna R, Schiffman M, Mirabello L. Mutations in the HPV16 genome induced by APOBEC3 are associated with viral clearance. Nat Commun 2020; 11:886. [PMID: 32060290 PMCID: PMC7021686 DOI: 10.1038/s41467-020-14730-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
HPV16 causes half of cervical cancers worldwide; for unknown reasons, most infections resolve within two years. Here, we analyze the viral genomes of 5,328 HPV16-positive case-control samples to investigate mutational signatures and the role of human APOBEC3-induced mutations in viral clearance and cervical carcinogenesis. We identify four de novo mutational signatures, one of which matches the COSMIC APOBEC-associated signature 2. The viral genomes of the precancer/cancer cases are less likely to contain within-host somatic HPV16 APOBEC3-induced mutations (Fisher's exact test, P = 6.2 x 10-14), and have a 30% lower nonsynonymous APOBEC3 mutation burden compared to controls. We replicate the low prevalence of HPV16 APOBEC3-induced mutations in 1,749 additional cases. APOBEC3 mutations also historically contribute to the evolution of HPV16 lineages. We demonstrate that cervical infections with a greater burden of somatic HPV16 APOBEC3-induced mutations are more likely to be benign or subsequently clear, suggesting they may reduce persistence, and thus progression, within the host.
Collapse
Affiliation(s)
- Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gary Clifford
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon, Cedex 08, France
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Michael Cullen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph F Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sara Bass
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mia K Steinberg
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tina Raine-Bennett
- Women's Health Research Institute, Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - DongHyuk Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Robert D Burk
- Departments of Pediatrics, Microbiology and Immunology, and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maisa Pinheiro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Chase W Nelson
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - David Roberson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thomas Lorey
- Regional Laboratory, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | - Philip E Castle
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joan Walker
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rosemary Zuna
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
200
|
Aigner F, Werner RN, Siegel R. Diagnostik und Therapie des Analkarzinoms. COLOPROCTOLOGY 2020. [DOI: 10.1007/s00053-020-00436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|