151
|
Smc5/6 Antagonism by HBx Is an Evolutionarily Conserved Function of Hepatitis B Virus Infection in Mammals. J Virol 2018; 92:JVI.00769-18. [PMID: 29848586 DOI: 10.1128/jvi.00769-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is a major cause of liver disease and cancer in humans. HBVs (family Hepadnaviridae) have been associated with mammals for millions of years. Recently, the Smc5/6 complex, known for its essential housekeeping functions in genome maintenance, was identified as an antiviral restriction factor of human HBV. The virus has, however, evolved to counteract this defense mechanism by degrading the complex via its regulatory HBx protein. Whether the antiviral activity of the Smc5/6 complex against hepadnaviruses is an important and evolutionarily conserved function is unknown. In this study, we used an evolutionary and functional approach to address this question. We first performed phylogenetic and positive selection analyses of the Smc5/6 complex subunits and found that they have been conserved in primates and mammals. Yet, Smc6 showed marks of adaptive evolution, potentially reminiscent of a virus-host "arms race." We then functionally tested the HBx proteins from six divergent hepadnaviruses naturally infecting primates, rodents, and bats. We demonstrate that despite little sequence homology, these HBx proteins efficiently degraded mammalian Smc5/6 complexes, independently of the host species and of the sites under positive selection. Importantly, all HBx proteins also rescued the replication of an HBx-deficient HBV in primary human hepatocytes. These findings point to an evolutionarily conserved requirement for Smc5/6 inactivation by HBx, showing that Smc5/6 antiviral activity has been an important defense mechanism against hepadnaviruses in mammals. It will be interesting to investigate whether Smc5/6 may further be a restriction factor of other, yet-unidentified viruses that may have driven some of its adaptation.IMPORTANCE Infection with hepatitis B virus (HBV) led to 887,000 human deaths in 2015. HBV has been coevolving with mammals for millions of years. Recently, the Smc5/6 complex, which has essential housekeeping functions, was identified as a restriction factor of human HBV antagonized by the regulatory HBx protein. Here we address whether the antiviral activity of Smc5/6 is an important evolutionarily conserved function. We found that all six subunits of Smc5/6 have been conserved in primates, with only Smc6 showing signatures of an "evolutionary arms race." Using evolution-guided functional analyses that included infections of primary human hepatocytes, we demonstrated that HBx proteins from very divergent mammalian HBVs could all efficiently antagonize Smc5/6, independently of the host species and sites under positive selection. These findings show that Smc5/6 antiviral activity against HBV is an important function in mammals. They also raise the intriguing possibility that Smc5/6 may restrict other, yet-unidentified viruses.
Collapse
|
152
|
Azab W, Dayaram A, Greenwood AD, Osterrieder N. How Host Specific Are Herpesviruses? Lessons from Herpesviruses Infecting Wild and Endangered Mammals. Annu Rev Virol 2018; 5:53-68. [PMID: 30052491 DOI: 10.1146/annurev-virology-092917-043227] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesviruses are ubiquitous and can cause disease in all classes of vertebrates but also in animals of lower taxa, including molluscs. It is generally accepted that herpesviruses are primarily species specific, although a species can be infected by different herpesviruses. Species specificity is thought to result from host-virus coevolutionary processes over the long term. Even with this general concept in mind, investigators have recognized interspecies transmission of several members of the Herpesviridae family, often with fatal outcomes in non-definitive hosts-that is, animals that have no or only a limited role in virus transmission. We here summarize herpesvirus infections in wild mammals that in many cases are endangered, in both natural and captive settings. Some infections result from herpesviruses that are endemic in the species that is primarily affected, and some result from herpesviruses that cause fatal disease after infection of non-definitive hosts. We discuss the challenges of such infections in several endangered species in the absence of efficient immunization or therapeutic options.
Collapse
Affiliation(s)
- Walid Azab
- Institut für Virologie, Zentrum für Infektionsmedizin, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Anisha Dayaram
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), 10315 Berlin, Germany;
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), 10315 Berlin, Germany;
| | - Nikolaus Osterrieder
- Institut für Virologie, Zentrum für Infektionsmedizin, Freie Universität Berlin, 14163 Berlin, Germany;
| |
Collapse
|
153
|
Pagán I. The diversity, evolution and epidemiology of plant viruses: A phylogenetic view. INFECTION GENETICS AND EVOLUTION 2018; 65:187-199. [PMID: 30055330 DOI: 10.1016/j.meegid.2018.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
During the past four decades, the scientific community has seen an exponential advance in the number, sophistication, and quality of molecular techniques and bioinformatics tools for the genetic characterization of plant virus populations. Predating these advances, the field of Phylogenetics has significantly contributed to understand important aspects of plant virus evolution. This review aims at summarizing the impact of Phylogenetics in the current knowledge on three major aspects of plant virus evolution that have benefited from the development of phylogenetic inference: (1) The identification and classification of plant virus diversity. (2) The mechanisms and forces shaping the evolution of plant virus populations. (3) The understanding of the interaction between plant virus evolution, epidemiology and ecology. The work discussed here highlights the important role of phylogenetic approaches in the study of the dynamics of plant virus populations.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain.
| |
Collapse
|
154
|
The Role of aDNA in Understanding the Coevolutionary Patterns of Human Sexually Transmitted Infections. Genes (Basel) 2018; 9:genes9070317. [PMID: 29941858 PMCID: PMC6070984 DOI: 10.3390/genes9070317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Analysis of pathogen genome data sequenced from clinical and historical samples has made it possible to perform phylogenetic analyses of sexually transmitted infections on a global scale, and to estimate the diversity, distribution, and coevolutionary host relationships of these pathogens, providing insights into pathogen emergence and disease prevention. Deep-sequenced pathogen genomes from clinical studies and ancient samples yield estimates of within-host and between-host evolutionary rates and provide data on changes in pathogen genomic stability and evolutionary responses. Here we examine three groups of pathogens transmitted mainly through sexual contact between modern humans to provide insight into ancient human behavior and history with their pathogens. Exploring ancient pathogen genomic divergence and the ancient viral-host parallel evolutionary histories will help us to reconstruct the origin of present-day geographical distribution and diversity of clinical pathogen infections, and will hopefully allow us to foresee possible environmentally induced pathogen evolutionary responses. Lastly, we emphasize that ancient pathogen DNA research should be combined with modern clinical pathogen data, and be equitable and provide advantages for all researchers worldwide, e.g., through shared data.
Collapse
|
155
|
Xu X, Zhao H, Gong Z, Han GZ. Endogenous retroviruses of non-avian/mammalian vertebrates illuminate diversity and deep history of retroviruses. PLoS Pathog 2018; 14:e1007072. [PMID: 29902269 PMCID: PMC6001957 DOI: 10.1371/journal.ppat.1007072] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023] Open
Abstract
The deep history and early diversification of retroviruses remains elusive, largely because few retroviruses have been characterized in vertebrates other than mammals and birds. Endogenous retroviruses (ERVs) documented past retroviral infections and thus provide ‘molecular fossils’ for studying the deep history of retroviruses. Here we perform a comprehensive phylogenomic analysis of ERVs within the genomes of 92 non-avian/mammalian vertebrates, including 72 fishes, 4 amphibians, and 16 reptiles. We find that ERVs are present in all the genomes of jawed vertebrates, revealing the ubiquitous presence of ERVs in jawed vertebrates. We identify a total of >8,000 ERVs and reconstruct ~450 complete or partial ERV genomes, which dramatically expands the phylogenetic diversity of retroviruses and suggests that the diversity of exogenous retroviruses might be much underestimated in non-avian/mammalian vertebrates. Phylogenetic analyses show that retroviruses cluster into five major groups with different host distributions, providing important insights into the classification and diversification of retroviruses. Moreover, we find retroviruses mainly underwent frequent host switches in non-avian/mammalian vertebrates, with exception of spumavirus-related viruses that codiverged with their ray-finned fish hosts. Interestingly, ray-finned fishes and turtles appear to serve as unappreciated hubs for the transmission of retroviruses. Finally, we find retroviruses underwent many independent water-land transmissions, indicating the water-land interface is not a strict barrier for retrovirus transmission. Our analyses provide unprecedented insights into and valuable resources for studying the diversification, key evolutionary transitions, and macroevolution of retroviruses. Retroviruses infect a wide range of vertebrates and cause many diseases, such as AIDS and cancers. To date, retroviruses have been rarely characterized in vertebrates other than mammals and birds, impeding our understanding of the diversity and early evolution of retroviruses. Retroviruses can occasionally integrate into host genomes and become endogenous retroviruses (ERVs), which provide molecular fossils for studying the long-term evolution of retroviruses. Here we performed comparative genomic and evolutionary analyses of ERVs within 92 non-avian/mammalian vertebrates (fishes, amphibians, and reptiles) and uncovered extraordinary diversity of retroviruses in non-avian/mammalian vertebrates. Our analyses reveal an ancient aquatic origin of retroviruses and retroviruses underwent frequent host-switching. Our findings have important implications in understanding the deep history and evolutionary mode of retroviruses.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Huayao Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Zhen Gong
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
156
|
A Novel Marsupial Hepatitis A Virus Corroborates Complex Evolutionary Patterns Shaping the Genus Hepatovirus. J Virol 2018; 92:JVI.00082-18. [PMID: 29695421 PMCID: PMC6002732 DOI: 10.1128/jvi.00082-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 11/30/2022] Open
Abstract
The discovery of highly diverse nonprimate hepatoviruses illuminated the evolutionary origins of hepatitis A virus (HAV) ancestors in mammals other than primates. Marsupials are ancient mammals that diverged from other Eutheria during the Jurassic. Viruses from marsupials may thus provide important insight into virus evolution. To investigate Hepatovirus macroevolutionary patterns, we sampled 112 opossums in northeastern Brazil. A novel marsupial HAV (MHAV) in the Brazilian common opossum (Didelphis aurita) was detected by nested reverse transcription-PCR (RT-PCR). MHAV concentration in the liver was high, at 2.5 × 109 RNA copies/g, and at least 300-fold higher than those in other solid organs, suggesting hepatotropism. Hepatovirus seroprevalence in D. aurita was 26.6% as determined using an enzyme-linked immunosorbent assay (ELISA). Endpoint titers in confirmatory immunofluorescence assays were high, and marsupial antibodies colocalized with anti-HAV control sera, suggesting specificity of serological detection and considerable antigenic relatedness between HAV and MHAV. MHAV showed all genomic hallmarks defining hepatoviruses, including late-domain motifs likely involved in quasi-envelope acquisition, a predicted C-terminal pX extension of VP1, strong avoidance of CpG dinucleotides, and a type 3 internal ribosomal entry site. Translated polyprotein gene sequence distances of at least 23.7% from other hepatoviruses suggested that MHAV represents a novel Hepatovirus species. Conserved predicted cleavage sites suggested similarities in polyprotein processing between HAV and MHAV. MHAV was nested within rodent hepatoviruses in phylogenetic reconstructions, suggesting an ancestral hepatovirus host switch from rodents into marsupials. Cophylogenetic reconciliations of host and hepatovirus phylogenies confirmed that host-independent macroevolutionary patterns shaped the phylogenetic relationships of extant hepatoviruses. Although marsupials are synanthropic and consumed as wild game in Brazil, HAV community protective immunity may limit the zoonotic potential of MHAV. IMPORTANCE Hepatitis A virus (HAV) is a ubiquitous cause of acute hepatitis in humans. Recent findings revealed the evolutionary origins of HAV and the genus Hepatovirus defined by HAV in mammals other than primates in general and in small mammals in particular. The factors shaping the genealogy of extant hepatoviruses are unclear. We sampled marsupials, one of the most ancient mammalian lineages, and identified a novel marsupial HAV (MHAV). The novel MHAV shared specific features with HAV, including hepatotropism, antigenicity, genome structure, and a common ancestor in phylogenetic reconstructions. Coevolutionary analyses revealed that host-independent evolutionary patterns contributed most to the current phylogeny of hepatoviruses and that MHAV was the most drastic example of a cross-order host switch of any hepatovirus observed so far. The divergence of marsupials from other mammals offers unique opportunities to investigate HAV species barriers and whether mechanisms of HAV immune control are evolutionarily conserved.
Collapse
|
157
|
Abstract
Due to their dependence on cellular organisms for metabolism and replication, viruses are typically named and assigned to species according to their genome structure and the original host that they infect. But because viruses often infect multiple hosts and the numbers of distinct lineages within a host can be vast, their delineation into species is often dictated by arbitrary sequence thresholds, which are highly inconsistent across lineages. Here we apply an approach to determine the boundaries of viral species based on the detection of gene flow within populations, thereby defining viral species according to the biological species concept (BSC). Despite the potential for gene transfer between highly divergent genomes, viruses, like the cellular organisms they infect, assort into reproductively isolated groups and can be organized into biological species. This approach revealed that BSC-defined viral species are often congruent with the taxonomic partitioning based on shared gene contents and host tropism, and that bacteriophages can similarly be classified in biological species. These results open the possibility to use a single, universal definition of species that is applicable across cellular and acellular lifeforms.
Collapse
|
158
|
Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc Natl Acad Sci U S A 2018; 115:E5135-E5143. [PMID: 29760102 DOI: 10.1073/pnas.1802879115] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), identified in 2012, is a common enteropathogen of swine with worldwide distribution. The source and evolutionary history of this virus is, however, unknown. PDCoV belongs to the Deltacoronavirus genus that comprises predominantly avian CoV. Phylogenetic analysis suggests that PDCoV originated relatively recently from a host-switching event between birds and mammals. Insight into receptor engagement by PDCoV may shed light into such an exceptional phenomenon. Here we report that PDCoV employs host aminopeptidase N (APN) as an entry receptor and interacts with APN via domain B of its spike (S) protein. Infection of porcine cells with PDCoV was drastically reduced by APN knockout and rescued after reconstitution of APN expression. In addition, we observed that PDCoV efficiently infects cells of unusual broad species range, including human and chicken. Accordingly, PDCoV S was found to target the phylogenetically conserved catalytic domain of APN. Moreover, transient expression of porcine, feline, human, and chicken APN renders cells susceptible to PDCoV infection. Binding of PDCoV to an interspecies conserved site on APN may facilitate direct transmission of PDCoV to nonreservoir species, including humans, potentially reflecting the mechanism that enabled a virus, ancestral to PDCoV, to breach the species barrier between birds and mammals. The APN cell surface protein is also used by several members of the Alphacoronavirus genus. Hence, our data constitute the second identification of CoVs from different genera that use the same receptor, implying that CoV receptor selection is subjected to specific restrictions that are still poorly understood.
Collapse
|
159
|
Pratama AA, Chaib De Mares M, van Elsas JD. Evolutionary History of Bacteriophages in the Genus Paraburkholderia. Front Microbiol 2018; 9:835. [PMID: 29867788 PMCID: PMC5968390 DOI: 10.3389/fmicb.2018.00835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
The genus Paraburkholderia encompasses mostly environmental isolates with diverse predicted lifestyles. Genome analyses have shown that bacteriophages form a considerable portion of some Paraburkholderia genomes. Here, we analyzed the evolutionary history of prophages across all Paraburkholderia spp. Specifically, we investigated to what extent the presence of prophages and their distribution affect the diversity/diversification of Paraburkholderia spp., as well as to what extent phages coevolved with their respective hosts. Particular attention was given to the presence of CRISPR-Cas arrays as a reflection of past interactions with phages. We thus analyzed 36 genomes of Paraburkholderia spp., including those of 11 new strains, next to those of three Burkholderia species. Most genomes were found to contain at least one full prophage sequence. The highest number was found in Paraburkholderia sp. strain MF2-27; the nine prophages found amount to up to 4% of its genome. Among all prophages, potential moron genes (e.g., DNA adenine methylase) were found that might be advantageous for host cell fitness. Co-phylogenetic analyses indicated the existence of complex evolutionary scenarios between the different Paraburkholderia hosts and their prophages, including short-term co-speciation, duplication, host-switching and phage loss events. Analysis of the CRISPR-Cas systems showed a record of diverse, potentially recent, phage infections. We conclude that, overall, different phages have interacted in diverse ways with their Paraburkholderia hosts over evolutionary time.
Collapse
Affiliation(s)
- Akbar Adjie Pratama
- Department of Microbial Ecology, Microbial Ecology—Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Jan Dirk van Elsas
- Department of Microbial Ecology, Microbial Ecology—Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
160
|
Four domains: The fundamental unicell and Post-Darwinian Cognition-Based Evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 140:49-73. [PMID: 29685747 DOI: 10.1016/j.pbiomolbio.2018.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
Contemporary research supports the viewpoint that self-referential cognition is the proper definition of life. From that initiating platform, a cohesive alternative evolutionary narrative distinct from standard Neodarwinism can be presented. Cognition-Based Evolution contends that biological variation is a product of a self-reinforcing information cycle that derives from self-referential attachment to biological information space-time with its attendant ambiguities. That information cycle is embodied through obligatory linkages among energy, biological information, and communication. Successive reiterations of the information cycle enact the informational architectures of the basic unicellular forms. From that base, inter-domain and cell-cell communications enable genetic and cellular variations through self-referential natural informational engineering and cellular niche construction. Holobionts are the exclusive endpoints of that self-referential cellular engineering as obligatory multicellular combinations of the essential Four Domains: Prokaryota, Archaea, Eukaryota and the Virome. Therefore, it is advocated that these Four Domains represent the perpetual object of the living circumstance rather than the visible macroorganic forms. In consequence, biology and its evolutionary development can be appraised as the continual defense of instantiated cellular self-reference. As the survival of cells is as dependent upon limitations and boundaries as upon any freedom of action, it is proposed that selection represents only one of many forms of cellular constraint that sustain self-referential integrity.
Collapse
|
161
|
Shi M, Lin XD, Chen X, Tian JH, Chen LJ, Li K, Wang W, Eden JS, Shen JJ, Liu L, Holmes EC, Zhang YZ. The evolutionary history of vertebrate RNA viruses. Nature 2018; 556:197-202. [PMID: 29618816 DOI: 10.1038/s41586-018-0012-7] [Citation(s) in RCA: 545] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/23/2018] [Indexed: 11/09/2022]
Abstract
Our understanding of the diversity and evolution of vertebrate RNA viruses is largely limited to those found in mammalian and avian hosts and associated with overt disease. Here, using a large-scale meta-transcriptomic approach, we discover 214 vertebrate-associated viruses in reptiles, amphibians, lungfish, ray-finned fish, cartilaginous fish and jawless fish. The newly discovered viruses appear in every family or genus of RNA virus associated with vertebrate infection, including those containing human pathogens such as influenza virus, the Arenaviridae and Filoviridae families, and have branching orders that broadly reflected the phylogenetic history of their hosts. We establish a long evolutionary history for most groups of vertebrate RNA virus, and support this by evaluating evolutionary timescales using dated orthologous endogenous virus elements. We also identify new vertebrate-specific RNA viruses and genome architectures, and re-evaluate the evolution of vector-borne RNA viruses. In summary, this study reveals diverse virus-host associations across the entire evolutionary history of the vertebrates.
Collapse
Affiliation(s)
- Mang Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Xiao Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Liang-Jun Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kun Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jin-Jin Shen
- Yancheng Center for Disease Control and Prevention, Yancheng, China
| | - Li Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Edward C Holmes
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. .,Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
162
|
Abstract
Bacteriophages are the most abundant and diverse biological entities on the planet, and new phage genomes are being discovered at a rapid pace. As more phage genomes are published, new methods are needed for placing these genomes in an ecological and evolutionary context. Phages are difficult to study by phylogenetic methods, because they exchange genes regularly, and no single gene is conserved across all phages. Here, we demonstrate how gene-level networks can provide a high-resolution view of phage genetic diversity and offer a novel perspective on virus ecology. We focus our analyses on virus host range and show how network topology corresponds to host relatedness, how to find groups of genes with the strongest host-specific signatures, and how this perspective can complement phage host prediction tools. We discuss extensions of gene network analysis to predicting the emergence of phages on new hosts, as well as applications to features of phage biology beyond host range. Bacteriophages (phages) are viruses that infect bacteria, and they are critical drivers of bacterial evolution and community structure. It is generally difficult to study phages by using tree-based methods, because gene exchange is common, and no single gene is shared among all phages. Instead, networks offer a means to compare phages while placing them in a broader ecological and evolutionary context. In this work, we build a network that summarizes gene sharing across phages and test how a key constraint on phage ecology, host range, corresponds to the structure of the network. We find that the network reflects the relatedness among phage hosts, and phages with genes that are closer in the network are likelier to infect similar hosts. This approach can also be used to identify genes that affect host range, and we discuss possible extensions to analyze other aspects of viral ecology.
Collapse
|
163
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
164
|
Leopardi S, Holmes EC, Gastaldelli M, Tassoni L, Priori P, Scaravelli D, Zamperin G, De Benedictis P. Interplay between co-divergence and cross-species transmission in the evolutionary history of bat coronaviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 58:279-289. [PMID: 29355607 PMCID: PMC7106311 DOI: 10.1016/j.meegid.2018.01.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 01/01/2023]
Abstract
Coronaviruses (CoVs) have been documented in almost every species of bat sampled. Bat CoVs exhibit both extensive genetic diversity and a broad geographic range, indicative of a long-standing host association. Despite this, the respective roles of long-term virus-host co-divergence and cross-species transmission (host-jumping) in the evolution of bat coronaviruses are unclear. Using a phylogenetic approach we provide evidence that CoV diversity in bats is shaped by both species richness and their geographical distribution, and that CoVs exhibit clustering at the level of bat genera, with these genus-specific clusters largely associated with distinct CoV species. Co-phylogenetic analyses revealed that cross-species transmission has been more common than co-divergence across coronavirus evolution as a whole, and that cross-species transmission events were more likely between sympatric bat hosts. Notably, however, an analysis of the CoV RNA polymerase phylogeny suggested that many such host-jumps likely resulted in short-term spill-over infections, with little evidence for sustained onward transmission in new co-roosting host species.
Collapse
Affiliation(s)
- Stefania Leopardi
- National Reference Centre, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, Legnaro, Padova 35020, Italy.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Michele Gastaldelli
- National Reference Centre, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, Legnaro, Padova 35020, Italy
| | - Luca Tassoni
- National Reference Centre, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, Legnaro, Padova 35020, Italy
| | | | | | - Gianpiero Zamperin
- National Reference Centre, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, Legnaro, Padova 35020, Italy
| | - Paola De Benedictis
- National Reference Centre, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, Legnaro, Padova 35020, Italy
| |
Collapse
|
165
|
Wallau GL, Vieira C, Loreto ÉLS. Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome. Mob DNA 2018; 9:6. [PMID: 29422954 PMCID: PMC5791352 DOI: 10.1186/s13100-018-0112-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Background All living species contain genetic information that was once shared by their common ancestor. DNA is being inherited through generations by vertical transmission (VT) from parents to offspring and from ancestor to descendant species. This process was considered the sole pathway by which biological entities exchange inheritable information. However, Horizontal Transfer (HT), the exchange of genetic information by other means than parents to offspring, was discovered in prokaryotes along with strong evidence showing that it is a very important process by which prokaryotes acquire new genes. Main body For some time now, it has been a scientific consensus that HT events were rare and non-relevant for evolution of eukaryotic species, but there is growing evidence supporting that HT is an important and frequent phenomenon in eukaryotes as well. Conclusion Here, we will discuss the latest findings regarding HT among eukaryotes, mainly HT of transposons (HTT), establishing HTT once and for all as an important phenomenon that should be taken into consideration to fully understand eukaryotes genome evolution. In addition, we will discuss the latest development methods to detect such events in a broader scale and highlight the new approaches which should be pursued by researchers to fill the knowledge gaps regarding HTT among eukaryotes.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- 1Entomology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE Brazil
| | - Cristina Vieira
- 2Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, F-69622 Villeurbanne, France
| | - Élgion Lúcio Silva Loreto
- 3Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS Brazil
| |
Collapse
|
166
|
Host-Specific Glycans Are Correlated with Susceptibility to Infection by Lagoviruses, but Not with Their Virulence. J Virol 2018; 92:JVI.01759-17. [PMID: 29187537 DOI: 10.1128/jvi.01759-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/16/2017] [Indexed: 11/20/2022] Open
Abstract
Rabbit hemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus, respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged, and many nonpathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, nonpathogenic lagoviruses, and EBHSV potentially play a role in determining the host range and virulence of lagoviruses. We observed binding to A, B, or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits (Oryctolagus cuniculus), which have recently been classified as GI strains. However, we could not explain the emergence of virulence, since similar glycan specificities were found in several pathogenic and nonpathogenic strains. In contrast, EBHSV, recently classified as GII.1, bound to terminal β-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species (Oryctolagus cuniculus, Lepus europaeus, and Sylvilagus floridanus) showed species-specific patterns regarding susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagovirus host specificity and range.IMPORTANCE Lagoviruses constitute a genus of the family Caliciviridae comprising highly pathogenic viruses, RHDV and EBHSV, that infect rabbits and hares, respectively. Recently, nonpathogenic strains were discovered and new pathogenic strains have emerged. In addition, host jumps between lagomorphs have been observed. The mechanisms responsible for the emergence of pathogenicity and host species range are unknown. Previous studies showed that RHDV strains attach to glycans expressed in the upper respiratory and digestive tracts of rabbits, the likely portals of virus entry. Here, we studied the glycan-binding properties of novel pathogenic and nonpathogenic strains looking for a link between glycan binding and virulence or between glycan specificity and host range. We found that glycan binding did not correlate with virulence. However, expression of glycan motifs in the upper respiratory and digestive tracts of lagomorphs revealed species-specific patterns associated with the host ranges of the virus strains, suggesting that glycan diversity contributes to lagovirus host ranges.
Collapse
|
167
|
Saxenhofer M, Weber de Melo V, Ulrich RG, Heckel G. Revised time scales of RNA virus evolution based on spatial information. Proc Biol Sci 2018; 284:rspb.2017.0857. [PMID: 28794221 DOI: 10.1098/rspb.2017.0857] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
The time scales of pathogen evolution are of major concern in the context of public and veterinary health, epidemiology and evolutionary biology. Dating the emergence of a pathogen often relies on estimates of evolutionary rates derived from nucleotide sequence data. For many viruses, this has yielded estimates of evolutionary origins only a few hundred years in the past. Here we demonstrate through the incorporation of geographical information from virus sampling that evolutionary age estimates of two European hantaviruses are severely underestimated because of pervasive mutational saturation of nucleotide sequences. We detected very strong relationships between spatial distance and genetic divergence for both Puumala and Tula hantavirus-irrespective of whether nucleotide or derived amino acid sequences were analysed. Extrapolations from these relationships dated the emergence of these viruses most conservatively to at least 3700 and 2500 years ago, respectively. Our minimum estimates for the age of these hantaviruses are ten to a hundred times older than results from current non-spatial methods, and in much better accordance with the biogeography of these viruses and their respective hosts. Spatial information can thus provide valuable insights on the deeper time scales of pathogen evolution and improve our understanding of disease emergence.
Collapse
Affiliation(s)
- Moritz Saxenhofer
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment Génopode, Lausanne, Switzerland
| | - Vanessa Weber de Melo
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany.,German Center for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Insel Riems, Germany
| | - Gerald Heckel
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland .,Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment Génopode, Lausanne, Switzerland
| |
Collapse
|
168
|
Patterson Ross Z, Klunk J, Fornaciari G, Giuffra V, Duchêne S, Duggan AT, Poinar D, Douglas MW, Eden JS, Holmes EC, Poinar HN. The paradox of HBV evolution as revealed from a 16th century mummy. PLoS Pathog 2018; 14:e1006750. [PMID: 29300782 PMCID: PMC5754119 DOI: 10.1371/journal.ppat.1006750] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a ubiquitous viral pathogen associated with large-scale morbidity and mortality in humans. However, there is considerable uncertainty over the time-scale of its origin and evolution. Initial shotgun data from a mid-16th century Italian child mummy, that was previously paleopathologically identified as having been infected with Variola virus (VARV, the agent of smallpox), showed no DNA reads for VARV yet did for hepatitis B virus (HBV). Previously, electron microscopy provided evidence for the presence of VARV in this sample, although similar analyses conducted here did not reveal any VARV particles. We attempted to enrich and sequence for both VARV and HBV DNA. Although we did not recover any reads identified as VARV, we were successful in reconstructing an HBV genome at 163.8X coverage. Strikingly, both the HBV sequence and that of the associated host mitochondrial DNA displayed a nearly identical cytosine deamination pattern near the termini of DNA fragments, characteristic of an ancient origin. In contrast, phylogenetic analyses revealed a close relationship between the putative ancient virus and contemporary HBV strains (of genotype D), at first suggesting contamination. In addressing this paradox we demonstrate that HBV evolution is characterized by a marked lack of temporal structure. This confounds attempts to use molecular clock-based methods to date the origin of this virus over the time-frame sampled so far, and means that phylogenetic measures alone cannot yet be used to determine HBV sequence authenticity. If genuine, this phylogenetic pattern indicates that the genotypes of HBV diversified long before the 16th century, and enables comparison of potential pathogenic similarities between modern and ancient HBV. These results have important implications for our understanding of the emergence and evolution of this common viral pathogen.
Collapse
Affiliation(s)
- Zoe Patterson Ross
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer Klunk
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
| | - Gino Fornaciari
- Division of Paleopathology, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Valentina Giuffra
- Division of Paleopathology, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Sebastian Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Ana T. Duggan
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
| | - Debi Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
| | - Mark W. Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Hendrik N. Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry, McMaster University, Hamilton, ON, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
169
|
Abstract
Our understanding of the viral world changed just after the first structures of icosahedral viral particles were unveiled. The structural similarities between capsid proteins of distant viral groups were not anticipated, and the findings suggested the existence of common ancestors for viruses with different host range, genomic structure and multiplication strategies. This way, diverse viruses with icosahedral particles can now be grouped based on the structural homology between their capsid proteins. In the last years, the presence of conserved folds between viral proteins in non-icosahedral viruses has also emerged. Viral particles with radically different morphologies, ranging from naked and filamentous to enveloped and pleomorphic, have shown structural homology between the nucleoproteins that bind directly to their genomes. This chapter overviews recent findings regarding the similar structure found between nucleoproteins of eukaryotic ssRNA viruses. The structural homology includes the coat proteins from all known families of flexible filamentous plant viruses, a group with monopartite (+)ssRNA genomes. Their coat proteins share a core domain with nucleoproteins of previously unrelated families of enveloped viruses that have segmented (-)ssRNA genomes. This last group consists of mostly animals viruses, including influenza virus.
Collapse
Affiliation(s)
- Mikel Valle
- Molecular Recognition and Host-Pathogen Interactions, Center for Cooperative Research in Biosciences, CIC bioGUNE, Derio, Spain.
| |
Collapse
|
170
|
Nelson CW, Sibley SD, Kolokotronis SO, Hamer GL, Newman CM, Anderson TK, Walker ED, Kitron UD, Brawn JD, Ruiz MO, Goldberg TL. Selective constraint and adaptive potential of West Nile virus within and among naturally infected avian hosts and mosquito vectors. Virus Evol 2018; 4:vey013. [PMID: 29942654 PMCID: PMC6007309 DOI: 10.1093/ve/vey013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Arthropod-borne viruses are among the most genetically constrained RNA viruses, yet they have a remarkable propensity to adapt and emerge. We studied wild birds and mosquitoes naturally infected with West Nile virus (WNV) in a 'hot spot' of virus transmission in Chicago, IL, USA. We generated full coding WNV genome sequences from spatiotemporally matched bird and mosquito samples using high-throughput sequencing, allowing a molecular evolutionary assessment with deep coverage. Mean FST among samples was 0.66 (±0.02 SE) and was bimodal, with mean nucleotide diversity being higher between samples (interhost πN = 0.001; πS = 0.024) than within them (intrahost πN < 0.0001; πS < 0.001). Eight genomic sites with FST > 1.01 (in the PrM, NS2a, NS3, NS4b, and 5'-noncoding genomic regions) showed bird versus mosquito variant frequency differences of >30 per cent and/or polymorphisms fixed in ≥5 host or vector individuals, suggesting host tropism for these variants. However, phylogenetic analyses demonstrated a lack of grouping by bird or mosquito, most inter-sample differences were synonymous (mean interhost πN/πS = 0.04), and there was no significant difference between hosts and vectors in either their nucleotide diversities or levels of purifying selection (mean intrahost πN/πS = 0.28 in birds and πN/πS = 0.21 in mosquitoes). This finding contrasts with the 'trade-off' and 'selective sieve' hypotheses that have been proposed and tested in the laboratory, which predict strong host versus vector effects on WNV genetic variation, with heightened selective constraint in birds alternating with heightened viral diversity in mosquitoes. Overall, our data show WNV to be highly selectively constrained within and between both hosts and vectors but still able to vary at a limited number of sites across the genome. Such site-specific plasticity in the face of overall selective constraint may offer a mechanism whereby highly constrained viruses such as WNV and its relatives can still adapt and emerge.
Collapse
Affiliation(s)
- Chase W Nelson
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Samuel D Sibley
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sergios-Orestis Kolokotronis
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Medical Center, Brooklyn, NY 11203-2098, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Christina M Newman
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tavis K Anderson
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI 48824-4320, USA
| | - Uriel D Kitron
- Department of Environmental Studies, Emory University, Atlanta, GA 30322, USA
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Marilyn O Ruiz
- Department of Pathobiology, University of Illinois, Urbana, IL 61802, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Global Health Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
171
|
Rios L, Coronado L, Naranjo-Feliciano D, Martínez-Pérez O, Perera CL, Hernandez-Alvarez L, Díaz de Arce H, Núñez JI, Ganges L, Pérez LJ. Deciphering the emergence, genetic diversity and evolution of classical swine fever virus. Sci Rep 2017; 7:17887. [PMID: 29263428 PMCID: PMC5738429 DOI: 10.1038/s41598-017-18196-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
Classical swine fever (CSF) is one of the most important infectious diseases causing significant economic losses. Its causal agent, CSF virus (CSFV), is a member of the Pestivirus genus included into the Flaviviridae family. Previous molecular epidemiology studies have revealed the CSFV diversity is divided into three main genotypes and different subgenotypes. However, the classification system for CSFV has not yet been harmonized internationally. Similarly, the phylogeny and evolutionary dynamics of CSFV remain unclear. The current study provides novel and significant insights into the origin, diversification and evolutionary process of CSFV. In addition, the best phylogenetic marker for CSFV capable of reproducing the same phylogenetic and evolutionary information as the complete viral genome is characterized. Also, a reliable cut-off to accurately classify CSFV at genotype and subgenotype levels is established. Based on the time for the most recent common ancestor (tMRCA) reconstruction and cophylogenetic analysis, it was determined that CSFV emerged around 225 years ago when the Tunisian Sheep Virus jumped from its natural host to swine. CSFV emergence was followed by a genetic expansion in three main lineages, driven by the action of positive selection pressure and functional divergence, as main natural forces.
Collapse
Affiliation(s)
- Liliam Rios
- University of New Brunswick, Saint John, New Brunswick, E2L4L5, Canada
| | - Liani Coronado
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, 32700, Cuba
| | | | | | - Carmen L Perera
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, 32700, Cuba
| | | | - Heidy Díaz de Arce
- Hospital Italiano de Buenos Aires, Juan D. Perón 4190, C1181ACH, Buenos Aires, Argentina
| | - José I Núñez
- IRTA-CReSA. Centre de Recerca en Sanitat Animal, Barcelona, 08193, Spain
| | - Llilianne Ganges
- IRTA-CReSA. Centre de Recerca en Sanitat Animal, Barcelona, 08193, Spain.,OIE Reference Laboratory for Classical Swine Fever and OIE Collaborative Centre for Research and Control of Emerging and Re-emerging Swine Diseases in Europe, IRTA-CReSA, Barcelona, Spain
| | - Lester J Pérez
- Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, E2L4L5, Canada.
| |
Collapse
|
172
|
Gedvilaite A, Tryland M, Ulrich RG, Schneider J, Kurmauskaite V, Moens U, Preugschas H, Calvignac-Spencer S, Ehlers B. Novel polyomaviruses in shrews ( Soricidae) with close similarity to human polyomavirus 12. J Gen Virol 2017; 98:3060-3067. [PMID: 29095685 DOI: 10.1099/jgv.0.000948] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shrews (family Soricidae) have already been reported to host microorganisms pathogenic for humans. In an effort to search for additional infectious agents with zoonotic potential, we detected polyomaviruses (PyVs) in common shrew, crowned shrew, and pygmy shrew (Sorex araneus, S. coronatus and S. minutus). From these, 11 full circular genomes were determined. Phylogenetic analysis based on large T protein sequences showed that these novel PyVs form a separate clade within the genus Alphapolyomavirus. Within this clade, the phylogenetic relationships suggest host-virus co-divergence. Surprisingly, one PyV from common shrew showed a genomic sequence nearly identical to that of the human polyomavirus 12 (HPyV12). This indicated that HPyV12 is a variant of a non-human PyV that naturally infects shrews. Whether HPyV12 is a bona fide human-tropic polyomavirus arising from a recent shrew-to-human transmission event or instead reflects a technical artefact, such as consumable contamination with shrew material, needs further investigation.
Collapse
Affiliation(s)
- Alma Gedvilaite
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Morten Tryland
- Department of Arctic and Marine Biology, Arctic Infection Biology, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Julia Schneider
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.,Present address: NMI TT Pharmaservices, c/o CoLaborator, Berlin, Germany
| | | | - Ugo Moens
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | | | - Bernhard Ehlers
- Division 12 'Measles, Mumps, Rubella and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| |
Collapse
|
173
|
Miller WB. Biological information systems: Evolution as cognition-based information management. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 134:1-26. [PMID: 29175233 DOI: 10.1016/j.pbiomolbio.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
Abstract
An alternative biological synthesis is presented that conceptualizes evolutionary biology as an epiphenomenon of integrated self-referential information management. Since all biological information has inherent ambiguity, the systematic assessment of information is required by living organisms to maintain self-identity and homeostatic equipoise in confrontation with environmental challenges. Through their self-referential attachment to information space, cells are the cornerstone of biological action. That individualized assessment of information space permits self-referential, self-organizing niche construction. That deployment of information and its subsequent selection enacted the dominant stable unicellular informational architectures whose biological expressions are the prokaryotic, archaeal, and eukaryotic unicellular forms. Multicellularity represents the collective appraisal of equivocal environmental information through a shared information space. This concerted action can be viewed as systematized information management to improve information quality for the maintenance of preferred homeostatic boundaries among the varied participants. When reiterated in successive scales, this same collaborative exchange of information yields macroscopic organisms as obligatory multicellular holobionts. Cognition-Based Evolution (CBE) upholds that assessment of information precedes biological action, and the deployment of information through integrative self-referential niche construction and natural cellular engineering antecedes selection. Therefore, evolutionary biology can be framed as a complex reciprocating interactome that consists of the assessment, communication, deployment and management of information by self-referential organisms at multiple scales in continuous confrontation with environmental stresses.
Collapse
|
174
|
Extensive diversity and evolution of hepadnaviruses in bats in China. Virology 2017; 514:88-97. [PMID: 29153861 PMCID: PMC7172093 DOI: 10.1016/j.virol.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
To better understand the evolution of hepadnaviruses, we sampled bats from Guizhou, Henan and Zhejiang provinces, China, and rodents from Zhejiang province. Genetically diverse hepadnaviruses were identified in a broad range of bat species, with an overall prevalence of 13.3%. In contrast, no rodent hepadnaviruses were identified. The newly discovered bat hepadnaviruses fell into two distinct phylogenetic groups. The viruses within the first group exhibited high diversity, with some closely related to viruses previously identified in Yunnan province. Strikingly, the newly discovered viruses sampled from Jiyuan city in the second phylogenetic group were most closely related to those found in bats from West Africa, suggestive of a long-term association between bats and hepadnaviruses. A co-phylogenetic analysis revealed frequent cross-species transmission among bats from different species, genera, and families. Overall, these data suggest that there are likely few barriers to the cross-species transmission of bat hepadnaviruses. Diverse hepadnaviruses are identified in a broad range of bat species in China. Some of them were closely related to those previously identified in China. The viruses from Jiyuan were most closely related to Gabon bat hepadnaviruses. Newly discovered viruses did not clustered by bat species or geographic location. Frequent cross-species transmission among different bat species was observed.
Collapse
|
175
|
Bigot D, Dalmon A, Roy B, Hou C, Germain M, Romary M, Deng S, Diao Q, Weinert LA, Cook JM, Herniou EA, Gayral P. The discovery of Halictivirus resolves the Sinaivirus phylogeny. J Gen Virol 2017; 98:2864-2875. [DOI: 10.1099/jgv.0.000957] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| | - Anne Dalmon
- INRA UR 406 Abeilles et environnement, Centre de recherche Provence-Alpes-Côte d'Azur, Site Agroparc, Domaine St Paul 228, Route de l'aérodrome CS40509 84914 Avignon, France
| | - Bronwen Roy
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Michèle Germain
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| | - Manon Romary
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Lucy A. Weinert
- Institut des Sciences de l'Evolution UMR5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
- Present address: Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - James M. Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| |
Collapse
|
176
|
Malik SS, Azem-E-Zahra S, Kim KM, Caetano-Anollés G, Nasir A. Do Viruses Exchange Genes across Superkingdoms of Life? Front Microbiol 2017; 8:2110. [PMID: 29163404 PMCID: PMC5671483 DOI: 10.3389/fmicb.2017.02110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Viruses can be classified into archaeoviruses, bacterioviruses, and eukaryoviruses according to the taxonomy of the infected host. The host-constrained perception of viruses implies preference of genetic exchange between viruses and cellular organisms of their host superkingdoms and viral origins from host cells either via escape or reduction. However, viruses frequently establish non-lytic interactions with organisms and endogenize into the genomes of bacterial endosymbionts that reside in eukaryotic cells. Such interactions create opportunities for genetic exchange between viruses and organisms of non-host superkingdoms. Here, we take an atypical approach to revisit virus-cell interactions by first identifying protein fold structures in the proteomes of archaeoviruses, bacterioviruses, and eukaryoviruses and second by tracing their spread in the proteomes of superkingdoms Archaea, Bacteria, and Eukarya. The exercise quantified protein structural homologies between viruses and organisms of their host and non-host superkingdoms and revealed likely candidates for virus-to-cell and cell-to-virus gene transfers. Unexpected lifestyle-driven genetic affiliations between bacterioviruses and Eukarya and eukaryoviruses and Bacteria were also predicted in addition to a large cohort of protein folds that were universally shared by viral and cellular proteomes and virus-specific protein folds not detected in cellular proteomes. These protein folds provide unique insights into viral origins and evolution that are generally difficult to recover with traditional sequence alignment-dependent evolutionary analyses owing to the fast mutation rates of viral gene sequences.
Collapse
Affiliation(s)
- Shahana S Malik
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Syeda Azem-E-Zahra
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Arshan Nasir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
177
|
Shi M, Zhang YZ, Holmes EC. Meta-transcriptomics and the evolutionary biology of RNA viruses. Virus Res 2017; 243:83-90. [PMID: 29111455 PMCID: PMC7127328 DOI: 10.1016/j.virusres.2017.10.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022]
Abstract
Meta-transcriptomics (bulk RNA-Seq) is a powerful new way to characterise viromes. Meta-transcriptomic data are changing our understanding of virus evolution. Invertebrates harbor an enormous phylogenetic and genomic diversity of RNA viruses. Present sampling schemes have only revealed a miniscule fraction of the virosphere. The new wealth of virus genomic data presents a major challenge to classification.
Metagenomics is transforming the study of virus evolution, allowing the full assemblage of virus genomes within a host sample to be determined rapidly and cheaply. The genomic analysis of complete transcriptomes, so-called meta-transcriptomics, is providing a particularly rich source of data on the global diversity of RNA viruses and their evolutionary history. Herein we review some of the insights that meta-transcriptomics has provided on the fundamental patterns and processes of virus evolution, with a focus on the recent discovery of a multitude of novel invertebrate viruses. In particular, meta-transcriptomics shows that the RNA virus world is more fluid than previously realized, with relatively frequent changes in genome length and structure. As well as having a transformative impact on studies of virus evolution, meta-transcriptomics presents major new challenges for virus classification, with the greater sampling of host taxa now filling many of the gaps on virus phylogenies that were previously used to define taxonomic groups. Given that most viruses in the future will likely be characterized using metagenomics approaches, and that we have evidently only sampled a tiny fraction of the total virosphere, we suggest that proposals for virus classification pay careful attention to the wonders unearthed in this new age of virus discovery.
Collapse
Affiliation(s)
- Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia; State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia; State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.
| |
Collapse
|
178
|
Geoghegan JL, Holmes EC. Predicting virus emergence amid evolutionary noise. Open Biol 2017; 7:170189. [PMID: 29070612 PMCID: PMC5666085 DOI: 10.1098/rsob.170189] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/24/2017] [Indexed: 12/27/2022] Open
Abstract
The study of virus disease emergence, whether it can be predicted and how it might be prevented, has become a major research topic in biomedicine. Here we show that efforts to predict disease emergence commonly conflate fundamentally different evolutionary and epidemiological time scales, and are likely to fail because of the enormous number of unsampled viruses that could conceivably emerge in humans. Although we know much about the patterns and processes of virus evolution on evolutionary time scales as depicted in family-scale phylogenetic trees, these data have little predictive power to reveal the short-term microevolutionary processes that underpin cross-species transmission and emergence. Truly understanding disease emergence therefore requires a new mechanistic and integrated view of the factors that allow or prevent viruses spreading in novel hosts. We present such a view, suggesting that both ecological and genetic aspects of virus emergence can be placed within a simple population genetic framework, which in turn highlights the importance of host population size and density in determining whether emergence will be successful. Despite this framework, we conclude that a more practical solution to preventing and containing the successful emergence of new diseases entails ongoing virological surveillance at the human-animal interface and regions of ecological disturbance.
Collapse
Affiliation(s)
- Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
179
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
180
|
Abstract
The study of virus disease emergence, whether it can be predicted and how it might be prevented, has become a major research topic in biomedicine. Here we show that efforts to predict disease emergence commonly conflate fundamentally different evolutionary and epidemiological time scales, and are likely to fail because of the enormous number of unsampled viruses that could conceivably emerge in humans. Although we know much about the patterns and processes of virus evolution on evolutionary time scales as depicted in family-scale phylogenetic trees, these data have little predictive power to reveal the short-term microevolutionary processes that underpin cross-species transmission and emergence. Truly understanding disease emergence therefore requires a new mechanistic and integrated view of the factors that allow or prevent viruses spreading in novel hosts. We present such a view, suggesting that both ecological and genetic aspects of virus emergence can be placed within a simple population genetic framework, which in turn highlights the importance of host population size and density in determining whether emergence will be successful. Despite this framework, we conclude that a more practical solution to preventing and containing the successful emergence of new diseases entails ongoing virological surveillance at the human-animal interface and regions of ecological disturbance.
Collapse
Affiliation(s)
- Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
181
|
Lauber C, Seitz S, Mattei S, Suh A, Beck J, Herstein J, Börold J, Salzburger W, Kaderali L, Briggs JAG, Bartenschlager R. Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-enveloped Fish Viruses. Cell Host Microbe 2017; 22:387-399.e6. [PMID: 28867387 PMCID: PMC5604429 DOI: 10.1016/j.chom.2017.07.019] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/10/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis B viruses (HBVs), which are enveloped viruses with reverse-transcribed DNA genomes, constitute the family Hepadnaviridae. An outstanding feature of HBVs is their streamlined genome organization with extensive gene overlap. Remarkably, the ∼1,100 bp open reading frame (ORF) encoding the envelope proteins is fully nested within the ORF of the viral replicase P. Here, we report the discovery of a diversified family of fish viruses, designated nackednaviruses, which lack the envelope protein gene, but otherwise exhibit key characteristics of HBVs including genome replication via protein-primed reverse-transcription and utilization of structurally related capsids. Phylogenetic reconstruction indicates that these two virus families separated more than 400 million years ago before the rise of tetrapods. We show that HBVs are of ancient origin, descending from non-enveloped progenitors in fishes. Their envelope protein gene emerged de novo, leading to a major transition in viral lifestyle, followed by co-evolution with their hosts over geologic eras. Nackednaviruses are non-enveloped fish viruses related to hepadnaviruses Both virus families separated from a common ancestor >400 million years ago The envelope protein gene of hepadnaviruses emerged through two distinct processes Hepadnaviruses mainly co-evolve with hosts while nackednaviruses jump between hosts
Collapse
Affiliation(s)
- Chris Lauber
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Seitz
- University of Heidelberg, Department of Infectious Diseases, Molecular Virology, 69120 Heidelberg, Germany.
| | - Simone Mattei
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Alexander Suh
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, 75236 Uppsala, Sweden
| | - Jürgen Beck
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Jennifer Herstein
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jacob Börold
- University of Heidelberg, Department of Infectious Diseases, Molecular Virology, 69120 Heidelberg, Germany
| | | | - Lars Kaderali
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, 01307 Dresden, Germany; Institute for Bioinformatics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ralf Bartenschlager
- University of Heidelberg, Department of Infectious Diseases, Molecular Virology, 69120 Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
182
|
Viruses as vectors of horizontal transfer of genetic material in eukaryotes. Curr Opin Virol 2017; 25:16-22. [DOI: 10.1016/j.coviro.2017.06.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/18/2017] [Accepted: 06/13/2017] [Indexed: 01/04/2023]
|
183
|
Alcala N, Jenkins T, Christe P, Vuilleumier S. Host shift and cospeciation rate estimation from co‐phylogenies. Ecol Lett 2017; 20:1014-1024. [DOI: 10.1111/ele.12799] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/25/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Alcala
- Department of Ecology and Evolution University of Lausanne Biophore, Sorge CH‐1015 Lausanne Switzerland
- Department of Biology Stanford University Stanford CA94305‐5020 USA
| | - Tania Jenkins
- Department of Ecology and Evolution University of Lausanne Biophore, Sorge CH‐1015 Lausanne Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution University of Lausanne Biophore, Sorge CH‐1015 Lausanne Switzerland
| | - Séverine Vuilleumier
- Department of Ecology and Evolution University of Lausanne Biophore, Sorge CH‐1015 Lausanne Switzerland
- School of Life Sciences Ecole Polytechnique Fédérale de Lausanne CH‐1015 Lausanne Switzerland
- School of Nursing Sciences, La Source University of Applied Sciences & Arts of Western Switzerland CH‐1004 Lausanne Switzerland
| |
Collapse
|
184
|
Dorokhov YL, Sheshukova EV, Komarova TV. Tobamovirus 3'-Terminal Gene Overlap May be a Mechanism for within-Host Fitness Improvement. Front Microbiol 2017; 8:851. [PMID: 28553276 PMCID: PMC5425575 DOI: 10.3389/fmicb.2017.00851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Overlapping genes (OGs) are a universal phenomenon in all kingdoms, and viruses display a high content of OGs combined with a high rate of evolution. It is believed that the mechanism of gene overlap is based on overprinting of an existing gene. OGs help virus genes compress a maximum amount of information into short sequences, conferring viral proteins with novel features and thereby increasing their within-host fitness. Analysis of tobamovirus 3′-terminal genes reveals at least two modes of OG organization and mechanisms of interaction with the host. Originally isolated from Solanaceae species, viruses (referred to as Solanaceae-infecting) such as tobacco mosaic virus do not show 3′-terminal overlap between movement protein (MP) and coat protein (CP) genes but do contain open reading frame 6 (ORF6), which overlaps with both genes. Conversely, tobamoviruses, originally isolated from Brassicaceae species (referred to as Brassicaceae-infecting) and also able to infect Solanaceae plants, have no ORF6 but are characterized by overlapping MP and CP genes. Our analysis showed that the MP/CP overlap of Brassicaceae-infecting tobamoviruses results in the following: (i) genome compression and strengthening of subgenomic promoters; (ii) CP gene early expression directly from genomic and dicistronic MP subgenomic mRNA using an internal ribosome entry site (IRES) and a stable hairpin structure in the overlapping region; (iii) loss of ORF6, which influences the symptomatology of Solanaceae-infecting tobamoviruses; and (iv) acquisition of an IRES polypurine-rich region encoding an MP nuclear localization signal. We believe that MP/CP gene overlap may constitute a mechanism for host range expansion and virus adjustment to Brassicaceae plants.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- N.I. Vavilov Institute of General Genetics, Russian Academy of ScienceMoscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | | | - Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of ScienceMoscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| |
Collapse
|
185
|
Affiliation(s)
- Kenneth A McColl
- CSIRO-Australian Animal Health Laboratory, Geelong 3220, Australia
| | | | - Matt Barwick
- Fisheries Research and Development Corporation, Canberra 2600, Australia
| |
Collapse
|
186
|
|