151
|
Abstract
Excitotoxicity results from prolonged activation of glutamate receptors expressed by cells in the central nervous system (CNS). This cell death mechanism was first discovered in retinal ganglion cells and subsequently in brain neurons. In addition, it has been recently observed that CNS glial cells can also undergo excitotoxicity. Among them, oligodendrocytes are highly vulnerable to glutamate signals and alterations in glutamate homeostasis may contribute to demyelinating disorders. We review here the available information on excitotoxity in CNS glial cells and its putative relevance to glio-pathologies.
Collapse
Affiliation(s)
- Carlos Matute
- Departamento de Neurociencias, Universidad del País Vasco, 48940-Leioa, Vizcaya, Spain.
| | | | | | | |
Collapse
|
152
|
McInnis J, Wang C, Anastasio N, Hultman M, Ye Y, Salvemini D, Johnson KM. The role of superoxide and nuclear factor-kappaB signaling in N-methyl-D-aspartate-induced necrosis and apoptosis. J Pharmacol Exp Ther 2002; 301:478-87. [PMID: 11961046 DOI: 10.1124/jpet.301.2.478] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptor-mediated cell death is complex, probably involving elements of necrosis and apoptosis. The mechanisms underlying this phenomenon are incompletely understood but have been suggested to involve reactive oxygen species such as nitric oxide and superoxide anion (O(2)) and nuclear factor-kappaB (NF-kappaB) signaling. In this study, we used a selective nonpeptidyl superoxide dismutase mimetic (M40403) and SN50, a peptide inhibitor of NF-kappaB translocation, to investigate the role of O(2) and the potential downstream signaling molecules in cell death induced by activation of the NMDA receptor. Application of NMDA to a mixed neuronal/glial forebrain culture resulted in an early increase in the release of cytoplasmic lactate dehydrogenase (LDH), which peaked at 4 h. This was followed by a reduction in mitochondrial metabolism of the dye MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] that continued to decrease throughout the 20-h exposure. A substantial increase in DNA fragmentation as measured by an enzyme-linked immunosorbent assay (ELISA) specific for DNA-associated histone proteins (nucleosomes) was observed at 7 and 20 h. M40403 and SN50 blocked NMDA-induced changes in LDH release at 2, 4, and 20 h, MTT metabolism at 4 and 20 h, and DNA fragmentation at 20 h as measured by the ELISA and by an increase in terminal dUTP-nick end labeling. M40403 also prevented NMDA-induced nuclear transport of NF-kappaB and increased expression of Bax relative to Bcl-X(L). SN50 was also able to block NMDA-induced cell death as well as the increased Bax/Bcl-X(L) ratio. Time course studies and experiments with SN50 and M40403 suggest that O(2) production and NF-kappaB translocation may be involved in necrosis and apoptosis, but the latter also requires an increased expression of Bax. The ability of M40403 to prevent NMDA-induced cell death relatively early in this cascade suggests its potential therapeutic utility in central nervous systems diseases such as stroke that are associated with increased NMDA receptor-mediated production of O(2).
Collapse
Affiliation(s)
- Justin McInnis
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | |
Collapse
|
153
|
Piccotti L, Marchetti C, Migliorati G, Roberti R, Corazzi L. Exogenous phospholipids specifically affect transmembrane potential of brain mitochondria and cytochrome C release. J Biol Chem 2002; 277:12075-81. [PMID: 11815626 DOI: 10.1074/jbc.m200029200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Release of cytochrome c, a decrease of membrane potential (Deltapsi(m)), and a reduction of cardiolipin (CL) of rat brain mitochondria occurred upon incubation in the absence of respiratory substrates. Since CL is critical for mitochondrial functioning, CL enrichment of mitochondria was achieved by fusion with CL liposomes. Fusion was triggered by potassium phosphate at concentrations producing mitochondrial permeability transition pore opening but not cytochrome c release, which was observed only at >10 mm. Cyclosporin A inhibited phosphate-induced CL fusion, whereas Pronase pretreatment of mitochondria abolished it, suggesting that mitochondrial permeability transition pore and protein(s) are involved in the fusion process. Phosphate-dependent fusion was enhanced in respiratory state 3 and influenced by phospholipid classes in the order CL > phosphatidylglycerol (PG) > phosphatidylserine. The probe 10-nonylacridine orange indicated that fused CL had migrated to the inner mitochondrial membrane. In state 3, CL enrichment of mitochondria resulted in a pH decrease in the intermembrane space. Cytofluorimetric analysis of mitochondria stained with 3,3'-diexyloxacarbocyanine iodide and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzymidazolylcarbocyanine iodide showed Deltapsi(m) increase upon fusion with CL or PG. In contrast, phosphatidylserine fusion required Deltapsi(m) consumption, suggesting that Deltapsi(m) is the driving force in mitochondrial phospholipid importation. Moreover, enrichment with CL and PG brought the low energy mitochondrial population to high Deltapsi(m) values and prevented phosphate-dependent cytochrome c release.
Collapse
Affiliation(s)
- Lucia Piccotti
- Department of Internal Medicine, Laboratory of Biochemistry, University of Perugia, Perugia 06122, Italy
| | | | | | | | | |
Collapse
|
154
|
Harkany T, Grosche J, Mulder J, Horvath KM, Keijser J, Hortobágyi T, Luiten PG, Härtig W. Short-term consequences of N-methyl-D-aspartate excitotoxicity in rat magnocellular nucleus basalis: effects on in vivo labelling of cholinergic neurons. Neuroscience 2002; 108:611-27. [PMID: 11738498 DOI: 10.1016/s0306-4522(01)00443-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cholinergic neurons of the basal forebrain form one of the neuron populations that are susceptible to excitotoxic injury. Whereas neuropharmacological studies have aimed at rescuing cholinergic neurons from acute excitotoxic attacks, the short-term temporal profile of excitotoxic damage to cholinergic nerve cells remains largely elusive. The effects of N-methyl-D-aspartate (NMDA) infusion on cytochemical markers of cholinergic neurons in rat magnocellular nucleus basalis were therefore determined 4, 24 and 48 h post-lesion. Additionally, the influence of excitotoxic damage on the efficacy of in vivo labelling of cholinergic neurons with carbocyanine 3-192IgG was investigated. Carbocyanine 3-192IgG was unilaterally injected in the lateral ventricle. Twenty-four hours later, NMDA (60 nM/microl) was infused in the right magnocellular nucleus basalis, while control lesions were performed contralaterally. Triple immunofluorescence labelling for carbocyanine 3-192IgG, NMDA receptor 2A and B subunits and choline-acetyltransferase (ChAT) was employed to determine temporal changes in NMDA receptor immunoreactivity on cholinergic neurons. The extent of neuronal degeneration was studied by staining with Fluoro-Jade. Moreover, changes in the numbers of ChAT or p75 low-affinity neurotrophin receptor immunoreactive neurons, and the degree of their co-labelling with carbocyanine 3-192IgG were determined in basal forebrain nuclei. The effects of NMDA-induced lesions on cortical projections of cholinergic nucleus basalis neurons were studied by acetylcholinesterase (AChE) histochemistry. Characteristic signs of cellular damage, as indicated by decreased immunoreactivity for NMDA receptors, ChAT and p75 low-affinity neurotrophin receptors, were already detected at the shortest post-lesion interval investigated. Fluoro-Jade at 4 h post-lesion only labelled the core of the excitotoxic lesion. Longer survival led to enhanced Fluoro-Jade staining, and to the decline of ChAT immunoreactivity reaching a maximum 24 h post-surgery. Significant loss of p75 low-affinity neurotrophin receptor immunoreactivity and of cortical AChE-positive projections only became apparent 48 h post-lesion. Carbocyanine 3-192IgG labelling in the ipsilateral basal forebrain exceeded that of the contralateral hemisphere at all time points investigated and progressively declined in the damaged magnocellular nucleus basalis up to 48 h after NMDA infusion. The present study indicates that excitotoxic lesion-induced alteration of cholinergic neuronal markers is a rapid and gradual process reaching its maximum 24 h post-surgery. Furthermore, in vivo labelling of cholinergic neurons may be applied to indicate neuronal survival under pathological conditions, and enable to follow their degeneration process under a variety of experimental conditions.
Collapse
Affiliation(s)
- T Harkany
- Department of Molecular Neurobiology, University of Groningen, Haren, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Armstrong JS, Hornung B, Lecane P, Jones DP, Knox SJ. Rotenone-induced G2/M cell cycle arrest and apoptosis in a human B lymphoma cell line PW. Biochem Biophys Res Commun 2001; 289:973-8. [PMID: 11741286 DOI: 10.1006/bbrc.2001.6054] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Concentrations of rotenone (ROT) that block electron flow through mitochondrial complex I (100 nM) did not significantly alter either cell viability or the growth of PW cells. However, 10- to 50-fold higher concentrations (1-5 microM) were found to induce a dose-dependent cell cycle arrest predominantly at the G2/M stage of the cycle and apoptosis. Apoptosis was dependent on the cell cycle arrest, since apoptosis but not the G2/M arrest was prevented with the broad spectrum caspase inhibitor zVADfmk. Biochemical features of apoptosis included mitochondrial cytochrome c release, reactive oxygen species generation, and the activation of procaspase 3. Thus, ROT inhibition of mitochondrial electron transport may be insufficient to induce apoptosis in PW cells. Instead, apoptosis in these cells occurs as a consequence of disruption of the cell cycle and is only indirectly dependent upon mitochondrial electron transport.
Collapse
Affiliation(s)
- J S Armstrong
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California 94305-5105, USA.
| | | | | | | | | |
Collapse
|
156
|
Maciel EN, Vercesi AE, Castilho RF. Oxidative stress in Ca(2+)-induced membrane permeability transition in brain mitochondria. J Neurochem 2001; 79:1237-45. [PMID: 11752064 DOI: 10.1046/j.1471-4159.2001.00670.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial permeability transition (PT) is a non-selective inner membrane permeabilization, typically promoted by the accumulation of excessive quantities of Ca(2+) ions in the mitochondrial matrix. This phenomenon may contribute to neuronal cell death under some circumstances, such as following brain trauma and hypoglycemia. In this report, we show that Ca(2+)-induced brain mitochondrial PT was stimulated by Na(+) (10 mM) and totally prevented by the combination of ADP and cyclosporin A. Removal of Ca(2+) from the mitochondrial suspension by EGTA or inhibition of Ca(2+) uptake by ruthenium red partially reverted the dissipation of the membrane potential associated with PT. Ca(2+)-induced brain mitochondrial PT was significantly inhibited by the antioxidant catalase, indicating the participation of reactive oxygen species in this process. An increased detection of reactive oxygen species, measured through dichlorodihydrofluorescein oxidation, was observed after mitochondrial Ca(2+) uptake. Ca(2+)-induced dichlorodihydrofluorescein oxidation was enhanced by Na(+) and prevented by ADP and cyclosporin A, indicating that PT enhances mitochondrial oxidative stress. This could be at least in part a consequence of the extensive depletion in NAD(P)H that accompanied this Ca(2+)-induced mitochondrial PT. NADPH is known to maintain the antioxidant function of the glutathione reductase/peroxidase and thioredoxin reductase/peroxidase systems. In addition, the occurrence of mitochondrial PT was associated with membrane lipid peroxidation. We conclude that PT further increases Ca(2+)-induced oxidative stress in brain mitochondria leading to secondary damage such as lipid peroxidation.
Collapse
Affiliation(s)
- E N Maciel
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | |
Collapse
|
157
|
Kitazawa M, Anantharam V, Kanthasamy AG. Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells. Free Radic Biol Med 2001; 31:1473-85. [PMID: 11728820 DOI: 10.1016/s0891-5849(01)00726-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We examined the acute toxicity of dieldrin, a possible environmental risk factor of Parkinson's disease, in a dopaminergic cell model, PC12 cells, to determine early cellular events underlying the pesticide-induced degenerative processes. EC(50) for 1 h dieldrin exposure was 143 microM for PC12 cells, whereas EC(50) for non-dopaminergic cells was 292-351 microM, indicating that dieldrin is more toxic to dopaminergic cells. Dieldrin also induced rapid, dose-dependent releases of dopamine and its metabolite, DOPAC, resulting in depletion of intracellular dopamine. Additionally, dieldrin exposure caused depolarization of mitochondrial membrane potential in a dose-dependent manner. Flow cytometric analysis showed generation of reactive oxygen species (ROS) within 5 min of dieldrin treatment, and significant increases in lipid peroxidation were also detected following 1 h exposure. ROS generation was remarkably inhibited in the presence of SOD. Dieldrin-induced apoptosis was significantly attenuated by both SOD and MnTBAP (SOD mimetic), suggesting that dieldrin-induced superoxide radicals serve as important signals in initiation of apoptosis. Furthermore, pretreatment with deprenyl (MAO-inhibitor) or alpha-methyl-L-p-tyrosine (TH-inhibitor) also suppressed dieldrin-induced ROS generation and DNA fragmentation. Taken together, these results suggest that rapid release of dopamine and generation of ROS are early cellular events that may account for dieldrin-induced apoptotic cell death in dopaminergic cells.
Collapse
Affiliation(s)
- M Kitazawa
- Parkinson Disorders Research Program, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011-1250, USA
| | | | | |
Collapse
|
158
|
Kögel D, Reimertz C, Mech P, Poppe M, Frühwald MC, Engemann H, Scheidtmann KH, Prehn JH. Dlk/ZIP kinase-induced apoptosis in human medulloblastoma cells: requirement of the mitochondrial apoptosis pathway. Br J Cancer 2001; 85:1801-8. [PMID: 11742505 PMCID: PMC2363987 DOI: 10.1054/bjoc.2001.2158] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dlk/ZIP kinase is a member of the Death Associated Protein (DAP) kinase family of pro-apoptotic serine/threonine kinases that have been implicated in regulation of apoptosis and tumour suppression. Expression of both Dlk/ZIP kinase and its interaction partner Par-4 is maintained in four medulloblastoma cell lines investigated, whereas three of seven neuroblastoma cell lines have lost expression of Par-4. Overexpression of a constitutively pro-apoptotic deletion mutant of Dlk/ZIP kinase induced significant apoptosis in D283 medulloblastoma cells. Cell death was characterized by apoptotic membrane blebbing, and a late stage during which the cells had ceased blebbing and were drastically shrunken or disrupted into apoptotic bodies. Over-expression of the anti-apoptotic Bcl-xL protein had no effect on Dlk/ZIP kinase-induced membrane blebbing, but potently inhibited Dlk/ZIP kinase-induced cytochrome c release and transition of cells to late stage apoptosis. Treatment with caspase inhibitors delayed, but did not prevent entry into late stage apoptosis. These results demonstrate that Dlk/ZIP kinase-triggered apoptosis involves the mitochondrial apoptosis pathway. However, cell death proceeded in the presence of caspase inhibitors, suggesting that Dlk/ZIP kinase is able to activate alternative cell death pathways. Alterations of signal transduction pathways leading to Dlk/ZIP kinase induced apoptosis or loss of expression of upstream activators could play important roles in tumour progression and metastasis of neural tumours.
Collapse
Affiliation(s)
- D Kögel
- Interdisciplinary Center for Clinical Research (IZKF), Research Group 'Apoptosis and Cell Death', University of Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Bidmon HJ, Emde B, Kowalski T, Schmitt M, Mayer B, Kato K, Asayama K, Witte OW, Zilles K. Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: evidence for direct and indirect mechanisms towards their resistance to neuropathology. J Chem Neuroanat 2001; 22:167-84. [PMID: 11522439 DOI: 10.1016/s0891-0618(01)00126-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuronal nitric oxide-I is constitutively expressed in approximately 2% of cortical interneurons and is co-localized with gamma-amino butric acid, somatostatin or neuropeptide Y. These interneurons additionally express high amounts of glutamate receptors which mediate the glutamate-induced hyperexcitation following cerebral injury, under these conditions nitric oxide production increases contributing to a potentiation of oxidative stress. However, perilesional nitric oxide synthase-I containing neurons are known to be resistant to ischemic and excitotoxic injury. In vitro studies show that nitrosonium and nitroxyl ions inactivate N-methyl-D-aspartate receptors, resulting in neuroprotection. The question remains of how these cells are protected against their own high intracellular nitric oxide production after activation. In this study, we investigated immunocytochemically nitric oxide synthase-I containing cortical neurons in rats after unilateral, cortical photothrombosis. In this model of focal ischemia, perilesional, constitutively nitric oxide synthase-I containing neurons survived and co-expressed antioxidative enzymes, such as manganese- and copper-zinc-dependent superoxide dismutases, heme oxygenase-2 and cytosolic glutathione peroxidase. This enhanced antioxidant expression was accompanied by a strong perinuclear presence of the antiapoptotic Bcl-2 protein. No colocalization was detectable with upregulated heme oxygenase-1 in glia and the superoxide and prostaglandin G(2)-producing cyclooxygenase-2 in neurons. These results suggest that nitric oxide synthase-I containing interneurons are protected against intracellular oxidative damage and apoptosis by Bcl-2 and several potent antioxidative enzymes. Since nitric oxide synthase-I positive neurons do not express superoxide-producing enzymes such as cyclooxygenase-1, xanthine oxidase and cyclooxygenase-2 in response to injury, this may additionally contribute to their resistance by reducing their internal peroxynitrite, H(2)O(2)-formation and caspase activation.
Collapse
Affiliation(s)
- H J Bidmon
- C&O Vogt Institute of Brain Research, Building 22.03.05, Heinrich-Heine-University, Universitaetsstr. 1, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Reimertz C, Kögel D, Lankiewicz S, Poppe M, Prehn JH. Ca(2+)-induced inhibition of apoptosis in human SH-SY5Y neuroblastoma cells: degradation of apoptotic protease activating factor-1 (APAF-1). J Neurochem 2001; 78:1256-66. [PMID: 11579134 DOI: 10.1046/j.1471-4159.2001.00503.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During apoptotic and excitotoxic neuron death, challenged mitochondria release the pro-apoptotic factor cytochrome c. In the cytosol, cytochrome c is capable of binding to the apoptotic protease-activating factor-1 (APAF-1). This complex activates procaspase-9 in the presence of dATP, resulting in caspase-mediated execution of apoptotic neuron death. Many forms of Ca(2+)-mediated neuron death, however, do not lead to prominent activation of the caspase cascade despite significant release of cytochrome c from mitochondria. We demonstrate that elevation of cytosolic Ca(2+) induced prominent degradation of APAF-1 in human SH-SY5Y neuroblastoma cells and in a neuronal cell-free apoptosis system. Loss of APAF-1 correlated with a reduced ability of cytochrome c to activate caspase-3-like proteases. Ca(2+) induced the activation of calpains, monitored by the cleavage of full-length alpha-spectrin into a calpain-specific 150-kDa breakdown product. However, pharmacological inhibition of calpain activity indicated that APAF-1 degradation also occurred via calpain-independent pathways. Our data suggest that Ca(2+) inhibits caspase activation during Ca(2+)-mediated neuron death by triggering the degradation of the cytochrome c-binding protein APAF-1.
Collapse
Affiliation(s)
- C Reimertz
- Interdisciplinary Center for Clinical Research (IZKF), Research Group Apoptosis and Cell Death, Westphalian Wilhelms-University, Münster, Germany
| | | | | | | | | |
Collapse
|
161
|
Calabresi P, Gubellini P, Picconi B, Centonze D, Pisani A, Bonsi P, Greengard P, Hipskind RA, Borrelli E, Bernardi G. Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine. J Neurosci 2001; 21:5110-20. [PMID: 11438586 PMCID: PMC6762835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2000] [Revised: 03/23/2001] [Accepted: 04/18/2001] [Indexed: 02/20/2023] Open
Abstract
Abnormal involuntary movements and cognitive impairment represent the classical clinical symptoms of Huntington's disease (HD). This genetic disorder involves degeneration of striatal spiny neurons, but not striatal large cholinergic interneurons, and corresponds to a marked decrease in the activity of mitochondrial complex II [succinate dehydrogenase (SD)] in the brains of HD patients. Here we have examined the possibility that SD inhibitors exert their toxic action by increasing glutamatergic transmission. We report that SD inhibitors such as 3-nitroproprionic acid (3-NP), but not an inhibitor of mitochondrial complex I, produce a long-term potentiation of the NMDA-mediated synaptic excitation (3-NP-LTP) in striatal spiny neurons. In contrast, these inhibitors had no effect on excitatory synaptic transmission in striatal cholinergic interneurons and pyramidal cortical neurons. 3-NP-LTP involves increased intracellular calcium and activation of the mitogen-activated protein kinase extracellular signal-regulated kinase and is critically dependent on endogenous dopamine acting via D2 receptors, whereas it is negatively regulated by D1 receptors. Thus 3-NP-LTP might play a key role in the regional and cell type-specific neuronal death observed in HD.
Collapse
Affiliation(s)
- P Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di "Tor Vergata," Rome 00133, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Poppe M, Reimertz C, Düssmann H, Krohn AJ, Luetjens CM, Böckelmann D, Nieminen AL, Kögel D, Prehn JH. Dissipation of potassium and proton gradients inhibits mitochondrial hyperpolarization and cytochrome c release during neural apoptosis. J Neurosci 2001; 21:4551-63. [PMID: 11426445 PMCID: PMC6762374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Exposure of rat hippocampal neurons or human D283 medulloblastoma cells to the apoptosis-inducing kinase inhibitor staurosporine induced rapid cytochrome c release from mitochondria and activation of the executioner caspase-3. Measurements of cellular tetramethylrhodamine ethyl ester fluorescence and subsequent simulation of fluorescence changes based on Nernst calculations of fluorescence in the extracellular, cytoplasmic, and mitochondrial compartments revealed that the release of cytochrome c was preceded by mitochondrial hyperpolarization. Overexpression of the anti-apoptotic protein Bcl-xL, but not pharmacological blockade of outward potassium currents, inhibited staurosporine-induced hyperpolarization and apoptosis. Dissipation of mitochondrial potassium and proton gradients by valinomycin or carbonyl cyanide p-trifluoromethoxy-phenylhydrazone also potently inhibited staurosporine-induced hyperpolarization, cytochrome c release, and caspase activation. This effect was not attributable to changes in cellular ATP levels. Prolonged exposure to valinomycin induced significant matrix swelling, and per se also caused release of cytochrome c from mitochondria. In contrast to staurosporine, however, valinomycin-induced cytochrome c release and cell death were not associated with caspase-3 activation and insensitive to Bcl-xL overexpression. Our data suggest two distinct mechanisms for mitochondrial cytochrome c release: (1) active cytochrome c release associated with early mitochondrial hyperpolarization, leading to neuronal apoptosis, and (2) passive cytochrome c release secondary to mitochondrial depolarization and matrix swelling.
Collapse
Affiliation(s)
- M Poppe
- Interdisciplinary Center for Clinical Research, Research Group "Apoptosis and Cell Death", Westphalian Wilhelms-University, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Atlante A, Calissano P, Bobba A, Giannattasio S, Marra E, Passarella S. Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett 2001; 497:1-5. [PMID: 11376653 DOI: 10.1016/s0014-5793(01)02437-1] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The excitatory neurotransmitter glutamate plays a major role in determining certain neurological disorders. This situation, referred to as 'glutamate neurotoxicity' (GNT), is characterized by an increasing damage of cell components, including mitochondria, leading to cell death. In the death process, reactive oxygen species (ROS) are generated. The present study describes the state of art in the field of GNT with a special emphasis on the oxidative stress and mitochondria. In particular, we report how ROS are generated and how they affect mitochondrial function in GNT. The relationship between ROS generation and cytochrome c release is described in detail, with the released cytochrome c playing a role in the cell defense mechanism against neurotoxicity.
Collapse
Affiliation(s)
- A Atlante
- Centro di sui Mitocondri e Metabolismo Energetico, CNR, Via G. Amendola 165lA, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
164
|
Zhan RZ, Wu C, Fujihara H, Taga K, Qi S, Naito M, Shimoji K. Both caspase-dependent and caspase-independent pathways may be involved in hippocampal CA1 neuronal death because of loss of cytochrome c From mitochondria in a rat forebrain ischemia model. J Cereb Blood Flow Metab 2001; 21:529-40. [PMID: 11333363 DOI: 10.1097/00004647-200105000-00007] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In a rat forebrain ischemia model, the authors examined whether loss of cytochrome c from mitochondria correlates with ischemic hippocampal CA1 neuronal death and how cytochrome c release may shape neuronal death. Forebrain ischemia was induced by bilateral common carotid artery occlusion with simultaneous hypotension for 10 minutes. After reperfusion, an early rapid depletion of mitochondrial cytochrome c and a late phase of diffuse redistribution of cytochrome c occurred in the hippocampal CA1 region, but not in the dentate gyrus and CA3 regions. Intracerebroventricular administration of Z-DEVD-FMK, a relatively selective caspase-3 inhibitor, provided limited but significant protection against ischemic neuronal damage on day 7 after reperfusion. Treatment with 3 minutes of ischemia (ischemic preconditioning) 48 hours before the 10-minute ischemia attenuated both the early and late phases of cytochrome c redistribution. In another subset of animals treated with cycloheximide, a general protein synthesis inhibitor, the late phase of cytochrome c redistribution was inhibited, whereas most hippocampal CA1 neurons never regained mitochondrial cytochrome c. Examination of neuronal survival revealed that ischemic preconditioning prevents, whereas cycloheximide only delays, ischemic hippocampal CA1 neuronal death. DNA fragmentation detected by terminal deoxytransferase-mediated dUTP-nick end labeling (TUNEL) in situ was largely attenuated by ischemic preconditioning and moderately reduced by cycloheximide. These results indicate that the loss of cytochrome c from mitochondria correlates with hippocampal CA1 neuronal death after transient cerebral ischemia in relation to both caspase-dependent and -independent pathways. The amount of mitochondrial cytochrome c regained may determine whether ischemic hippocampal CA1 neurons survive or succumb to late-phase death.
Collapse
Affiliation(s)
- R Z Zhan
- Department of Anesthesiology, Niigata University School of Medicine, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
165
|
Marks JD, Pan CY, Bushell T, Cromie W, Lee RC. Amphiphilic, tri‐block copolymers provide potent, membrane‐targeted neuroprotection. FASEB J 2001. [DOI: 10.1096/fsb2fj000547fje] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jeremy D. Marks
- Departments of Pediatrics University of Chicago 5841 S. Maryland Avenue Chicago, Ill
| | - Chien-yuan Pan
- Departments of Physiological & Pharmacological Sciences University of Chicago 5841 S. Maryland Avenue Chicago Ill
| | - Trevor Bushell
- Departments of Physiological & Pharmacological Sciences University of Chicago 5841 S. Maryland Avenue Chicago Ill
| | - William Cromie
- Departments of Surgery University of Chicago 5841 S. Maryland Avenue Chicago Ill
| | - Raphael C. Lee
- Departments of Surgery University of Chicago 5841 S. Maryland Avenue Chicago Ill
| |
Collapse
|
166
|
Abstract
Cytokines are involved both in the immune response and in controlling various events in the central nervous system, that is, they are equally immunoregulators and modulators of neural functions and neuronal survival. On the other hand, cytokine production is under the tonic control of the peripheral and the central nervous system and the cytokine balance can be modulated by the action of neurotransmitters released from nonsynaptic varicosities [131]. The neuroimmune interactions are therefore bidirectional-cytokines and other products of the immune cells can modulate the action, differentiation, and survival of neuronal cells, while the neurotransmitter and neuropeptide release play a pivotal role in influencing the immune response. Cytokines and their receptors are constitutively expressed by and act on neurons in the central nervous system, in both its normal and its pathological state, but cytokine overexpression in the brain is an important factor in the pathogenesis of neurotoxic and neurodegenerative disorders. Accordingly, it can be accepted that the peripheral and central cytokine compartments appear to be integrated, and their effects might synergize or inhibit each other; however, it should always be taken into account that they are spatiotemporally differentially regulated. New concepts are reviewed in the regulation of relations between cytokine balance and neurodegeneration, including intracellular receptor-receptor, cell-cell, and systemic neuroimmune interactions that promote the further elucidation of the complexities and cascade of the possible interactions between cytokines and the central nervous system.
Collapse
Affiliation(s)
- J Szelényi
- Laboratory of Neuroimmunology, Department of Pharmacology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
167
|
Urushitani M, Nakamizo T, Inoue R, Sawada H, Kihara T, Honda K, Akaike A, Shimohama S. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx. J Neurosci Res 2001; 63:377-87. [PMID: 11223912 DOI: 10.1002/1097-4547(20010301)63:5<377::aid-jnr1032>3.0.co;2-#] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mitochondrial uptake of Ca(2+) has recently been found to play an important role in glutamate-induced neurotoxicity (GNT) as well as in the activation of Ca(2+)-dependent molecules, such as calmodulin and neuronal nitric oxide synthase (nNOS), in the cytoplasm. Prolonged exposure to glutamate injures motor neurons predominantly through the activation of Ca(2+)/calmodulin-nNOS, as previously reported, and is, in part, associated with the pathogenesis of amyotrophic lateral sclerosis (ALS). In the present study, we investigated how mitochondrial uptake of Ca(2+) is involved in GNT in spinal motor neurons. Acute excitotoxicity induced by exposure to 0.5 mM glutamate for 5 min was found in both motor and nonmotor neurons in cultured spinal cords from rat embryos and was dependent on extracellular Ca(2+) and on N-methyl-D-aspartate (NMDA) receptor activation. Mitochondrial uncouplers markedly blocked acute excitotoxicity, and membrane-permeable superoxide dismutase mimics attenuated acute excitotoxicity induced by glutamate and NMDA but not by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) or kainate. Fluorimetric analysis showed that mitochondrial Ca(2+) was elevated promptly with subsequent accumulation of reactive oxygen species (ROS) in the mitochondria. An NMDA receptor antagonist and a mitochondrial uncoupler eliminated the increase in fluorescence of mitochondrial Ca(2+) and ROS indicators. These data indicate that acute excitotoxicity in spinal neurons is mediated by mitochondrial Ca(2+) overload and ROS generation through the activation of NMDA receptors. This mechanism is different from that of chronic GNT.
Collapse
Affiliation(s)
- M Urushitani
- Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyoku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
168
|
|