151
|
Zhang X, Zhu W, Sun H, Ding Y, Liu L. Prediction of CTCF loop anchor based on machine learning. Front Genet 2023; 14:1181956. [PMID: 37077544 PMCID: PMC10106609 DOI: 10.3389/fgene.2023.1181956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: Various activities in biological cells are affected by three-dimensional genome structure. The insulators play an important role in the organization of higher-order structure. CTCF is a representative of mammalian insulators, which can produce barriers to prevent the continuous extrusion of chromatin loop. As a multifunctional protein, CTCF has tens of thousands of binding sites in the genome, but only a portion of them can be used as anchors of chromatin loops. It is still unclear how cells select the anchor in the process of chromatin looping.Methods: In this paper, a comparative analysis is performed to investigate the sequence preference and binding strength of anchor and non-anchor CTCF binding sites. Furthermore, a machine learning model based on the CTCF binding intensity and DNA sequence is proposed to predict which CTCF sites can form chromatin loop anchors.Results: The accuracy of the machine learning model that we constructed for predicting the anchor of the chromatin loop mediated by CTCF reached 0.8646. And we find that the formation of loop anchor is mainly influenced by the CTCF binding strength and binding pattern (which can be interpreted as the binding of different zinc fingers).Discussion: In conclusion, our results suggest that The CTCF core motif and it’s flanking sequence may be responsible for the binding specificity. This work contributes to understanding the mechanism of loop anchor selection and provides a reference for the prediction of CTCF-mediated chromatin loops.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Wen Zhu
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- *Correspondence: Wen Zhu,
| | - Huimin Sun
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Yijie Ding
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
152
|
Karpinska MA, Oudelaar AM. The role of loop extrusion in enhancer-mediated gene activation. Curr Opin Genet Dev 2023; 79:102022. [PMID: 36842325 DOI: 10.1016/j.gde.2023.102022] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/28/2023]
Abstract
Gene expression patterns in complex multicellular organisms are regulated by enhancers, which communicate with their target gene promoters in three-dimensional (3D) chromatin structures. Despite advances in our understanding of the mechanisms that organize mammalian genomes into compartments and topologically associating domains (TADs), it is not well understood how specific interactions between enhancers and promoters are controlled in this 3D context. In this review, we give an overview of recent evidence that shows that a process of loop extrusion plays an important role in the regulation of enhancer-promoter communication and discuss recent insights into the molecular mechanism by which loop extrusion contributes to enhancer-mediated gene activation.
Collapse
Affiliation(s)
- Magdalena A Karpinska
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany. https://twitter.com/@MagdalenaKarp
| | | |
Collapse
|
153
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
154
|
Davidson IF, Barth R, Zaczek M, van der Torre J, Tang W, Nagasaka K, Janissen R, Kerssemakers J, Wutz G, Dekker C, Peters JM. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Nature 2023; 616:822-827. [PMID: 37076620 PMCID: PMC10132984 DOI: 10.1038/s41586-023-05961-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
In eukaryotes, genomic DNA is extruded into loops by cohesin1. By restraining this process, the DNA-binding protein CCCTC-binding factor (CTCF) generates topologically associating domains (TADs)2,3 that have important roles in gene regulation and recombination during development and disease1,4-7. How CTCF establishes TAD boundaries and to what extent these are permeable to cohesin is unclear8. Here, to address these questions, we visualize interactions of single CTCF and cohesin molecules on DNA in vitro. We show that CTCF is sufficient to block diffusing cohesin, possibly reflecting how cohesive cohesin accumulates at TAD boundaries, and is also sufficient to block loop-extruding cohesin, reflecting how CTCF establishes TAD boundaries. CTCF functions asymmetrically, as predicted; however, CTCF is dependent on DNA tension. Moreover, CTCF regulates cohesin's loop-extrusion activity by changing its direction and by inducing loop shrinkage. Our data indicate that CTCF is not, as previously assumed, simply a barrier to cohesin-mediated loop extrusion but is an active regulator of this process, whereby the permeability of TAD boundaries can be modulated by DNA tension. These results reveal mechanistic principles of how CTCF controls loop extrusion and genome architecture.
Collapse
Affiliation(s)
- Iain F Davidson
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Maciej Zaczek
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Wen Tang
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Kota Nagasaka
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
155
|
Yang BA, Larouche JA, Sabin KM, Fraczek PM, Parker SCJ, Aguilar CA. Three-dimensional chromatin re-organization during muscle stem cell aging. Aging Cell 2023; 22:e13789. [PMID: 36727578 PMCID: PMC10086523 DOI: 10.1111/acel.13789] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Age-related skeletal muscle atrophy or sarcopenia is a significant societal problem that is becoming amplified as the world's population continues to increase. The regeneration of damaged skeletal muscle is mediated by muscle stem cells, but in old age muscle stem cells become functionally attenuated. The molecular mechanisms that govern muscle stem cell aging encompass changes across multiple regulatory layers and are integrated by the three-dimensional organization of the genome. To quantitatively understand how hierarchical chromatin architecture changes during muscle stem cell aging, we generated 3D chromatin conformation maps (Hi-C) and integrated these datasets with multi-omic (chromatin accessibility and transcriptome) profiles from bulk populations and single cells. We observed that muscle stem cells display static behavior at global scales of chromatin organization during aging and extensive rewiring of local contacts at finer scales that were associated with variations in transcription factor binding and aberrant gene expression. These data provide insights into genome topology as a regulator of molecular function in stem cell aging.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Jacqueline A. Larouche
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Kaitlyn M. Sabin
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Paula M. Fraczek
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Stephen C. J. Parker
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Computational Medicine & BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
- Department of Human GeneticsUniversity of MichiganAnn ArborMichiganUSA
| | - Carlos A. Aguilar
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
156
|
Li Z, Zhang F, Sun M, Liu J, Zhao L, Liu S, Li S, Wang B. The modulatory effects of gut microbes and metabolites on blood–brain barrier integrity and brain function in sepsis-associated encephalopathy. PeerJ 2023; 11:e15122. [PMID: 37009158 PMCID: PMC10064995 DOI: 10.7717/peerj.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Background
Intestinal microbiota homeostasis and the gut-brain axis are key players associated with host health and alterations in metabolic, inflammatory, and neurodegenerative disorders. Sepsis-associated encephalopathy (SAE), which is closely associated with bacterial translocation, is a common secondary organ dysfunction and an urgent, unsolved problem affecting patient quality of life. Our study examined the neuroprotective effects of the gut microbiome and short-chain fatty acid (SCFA) metabolites on SAE.
Methods
Male C57BL/6 mice were administered SCFAs in drinking water, then subjected to cecal ligation and puncture (CLP) surgery to induce SAE. 16S rRNA sequencing was used to investigate gut microbiome changes. The open field test (OFT) and Y-maze were performed to evaluate brain function. The permeability of the blood–brain barrier (BBB) was assessed by Evans blue (EB) staining. Hematoxylin and eosin (HE) staining was used to examine intestinal tissue morphology. The expression levels of tight junction (TJ) proteins and inflammatory cytokines was assessed by western blots and immunohistochemistry. In vitro, bEND.3 cells were incubated with SCFAs and then with lipopolysaccharide (LPS). Immunofluorescence was used to examine the expression of TJ proteins.
Results
The composition of the gut microbiota was altered in SAE mice; this change may be related to SCFA metabolism. SCFA treatment significantly alleviated behavioral dysfunction and neuroinflammation in SAE mice. SCFAs upregulated occludin and ZO-1 expression in the intestine and brain in SAE mice and LPS-treated cerebromicrovascular cells.
Conclusions
These findings suggested that disturbances in the gut microbiota and SCFA metabolites play key roles in SAE. SCFA supplementation could exert neuroprotective effects against SAE by preserving BBB integrity.
Collapse
Affiliation(s)
- Zhaoying Li
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
- Institute of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Fangxiang Zhang
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Meisha Sun
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Jia Liu
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Li Zhao
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Shuchun Liu
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Shanshan Li
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Bin Wang
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| |
Collapse
|
157
|
Martin L, Neguembor MV, Cosma MP. Women’s contribution in understanding how topoisomerases, supercoiling, and transcription control genome organization. Front Mol Biosci 2023; 10:1155825. [PMID: 37051322 PMCID: PMC10083264 DOI: 10.3389/fmolb.2023.1155825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
One of the biggest paradoxes in biology is that human genome is roughly 2 m long, while the nucleus containing it is almost one million times smaller. To fit into the nucleus, DNA twists, bends and folds into several hierarchical levels of compaction. Still, DNA has to maintain a high degree of accessibility to be readily replicated and transcribed by proteins. How compaction and accessibility co-exist functionally in human cells is still a matter of debate. Here, we discuss how the torsional stress of the DNA helix acts as a buffer, regulating both chromatin compaction and accessibility. We will focus on chromatin supercoiling and on the emerging role of topoisomerases as pivotal regulators of genome organization. We will mainly highlight the major breakthrough studies led by women, with the intention of celebrating the work of this group that remains a minority within the scientific community.
Collapse
Affiliation(s)
- Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Technical Contact, Guangzhou, China
- *Correspondence: Maria Victoria Neguembor, ; Maria Pia Cosma,
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Lead Contact, Guangzhou, China
- *Correspondence: Maria Victoria Neguembor, ; Maria Pia Cosma,
| |
Collapse
|
158
|
Shin H, Kim Y. Regulation of loop extrusion on the interphase genome. Crit Rev Biochem Mol Biol 2023; 58:1-18. [PMID: 36921088 DOI: 10.1080/10409238.2023.2182273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In the human cell nucleus, dynamically organized chromatin is the substrate for gene regulation, DNA replication, and repair. A central mechanism of DNA loop formation is an ATPase motor cohesin-mediated loop extrusion. The cohesin complexes load and unload onto the chromosome under the control of other regulators that physically interact and affect motor activity. Regulation of the dynamic loading cycle of cohesin influences not only the chromatin structure but also genome-associated human disorders and aging. This review focuses on the recently spotlighted genome organizing factors and the mechanism by which their dynamic interactions shape the genome architecture in interphase.
Collapse
Affiliation(s)
- Hyogyung Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Yoori Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea.,New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
159
|
Banigan EJ, Tang W, van den Berg AA, Stocsits RR, Wutz G, Brandão HB, Busslinger GA, Peters JM, Mirny LA. Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc Natl Acad Sci U S A 2023; 120:e2210480120. [PMID: 36897969 PMCID: PMC10089175 DOI: 10.1073/pnas.2210480120] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/03/2022] [Indexed: 03/12/2023] Open
Abstract
Cohesin folds mammalian interphase chromosomes by extruding the chromatin fiber into numerous loops. "Loop extrusion" can be impeded by chromatin-bound factors, such as CTCF, which generates characteristic and functional chromatin organization patterns. It has been proposed that transcription relocalizes or interferes with cohesin and that active promoters are cohesin loading sites. However, the effects of transcription on cohesin have not been reconciled with observations of active extrusion by cohesin. To determine how transcription modulates extrusion, we studied mouse cells in which we could alter cohesin abundance, dynamics, and localization by genetic "knockouts" of the cohesin regulators CTCF and Wapl. Through Hi-C experiments, we discovered intricate, cohesin-dependent contact patterns near active genes. Chromatin organization around active genes exhibited hallmarks of interactions between transcribing RNA polymerases (RNAPs) and extruding cohesins. These observations could be reproduced by polymer simulations in which RNAPs were moving barriers to extrusion that obstructed, slowed, and pushed cohesins. The simulations predicted that preferential loading of cohesin at promoters is inconsistent with our experimental data. Additional ChIP-seq experiments showed that the putative cohesin loader Nipbl is not predominantly enriched at promoters. Therefore, we propose that cohesin is not preferentially loaded at promoters and that the barrier function of RNAP accounts for cohesin accumulation at active promoters. Altogether, we find that RNAP is an extrusion barrier that is not stationary, but rather, translocates and relocalizes cohesin. Loop extrusion and transcription might interact to dynamically generate and maintain gene interactions with regulatory elements and shape functional genomic organization.
Collapse
Affiliation(s)
- Edward J. Banigan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Wen Tang
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Aafke A. van den Berg
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Roman R. Stocsits
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Hugo B. Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA02138
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- The Broad Institute of MIT and Harvard, Cambridge, MA02142
| | - Georg A. Busslinger
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna1090, Austria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna1090, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Leonid A. Mirny
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
160
|
Alonso-Gil D, Cuadrado A, Giménez-Llorente D, Rodríguez-Corsino M, Losada A. Different NIPBL requirements of cohesin-STAG1 and cohesin-STAG2. Nat Commun 2023; 14:1326. [PMID: 36898992 PMCID: PMC10006224 DOI: 10.1038/s41467-023-36900-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cohesin organizes the genome through the formation of chromatin loops. NIPBL activates cohesin's ATPase and is essential for loop extrusion, but its requirement for cohesin loading is unclear. Here we have examined the effect of reducing NIPBL levels on the behavior of the two cohesin variants carrying STAG1 or STAG2 by combining a flow cytometry assay to measure chromatin-bound cohesin with analyses of its genome-wide distribution and genome contacts. We show that NIPBL depletion results in increased cohesin-STAG1 on chromatin that further accumulates at CTCF positions while cohesin-STAG2 diminishes genome-wide. Our data are consistent with a model in which NIPBL may not be required for chromatin association of cohesin but it is for loop extrusion, which in turn facilitates stabilization of cohesin-STAG2 at CTCF positions after being loaded elsewhere. In contrast, cohesin-STAG1 binds chromatin and becomes stabilized at CTCF sites even under low NIPBL levels, but genome folding is severely impaired.
Collapse
Affiliation(s)
- Dácil Alonso-Gil
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
161
|
Yu Z, Kim HJ, Dernburg AF. ATM signaling modulates cohesin behavior in meiotic prophase and proliferating cells. Nat Struct Mol Biol 2023; 30:436-450. [PMID: 36879153 PMCID: PMC10113158 DOI: 10.1038/s41594-023-00929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023]
Abstract
Cohesins are ancient and ubiquitous regulators of chromosome architecture and function, but their diverse roles and regulation remain poorly understood. During meiosis, chromosomes are reorganized as linear arrays of chromatin loops around a cohesin axis. This unique organization underlies homolog pairing, synapsis, double-stranded break induction, and recombination. We report that axis assembly in Caenorhabditis elegans is promoted by DNA-damage response (DDR) kinases that are activated at meiotic entry, even in the absence of DNA breaks. Downregulation of the cohesin-destabilizing factor WAPL-1 by ATM-1 promotes axis association of cohesins containing the meiotic kleisins COH-3 and COH-4. ECO-1 and PDS-5 also contribute to stabilizing axis-associated meiotic cohesins. Further, our data suggest that cohesin-enriched domains that promote DNA repair in mammalian cells also depend on WAPL inhibition by ATM. Thus, DDR and Wapl seem to play conserved roles in cohesin regulation in meiotic prophase and proliferating cells.
Collapse
Affiliation(s)
- Zhouliang Yu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | - Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,California Institute for Quantitative Biosciences, Berkeley, CA, USA.
| |
Collapse
|
162
|
A de novo transcription-dependent TAD boundary underpins critical multiway interactions during antibody class switch recombination. Mol Cell 2023; 83:681-697.e7. [PMID: 36736317 DOI: 10.1016/j.molcel.2023.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Interactions between transcription and cohesin-mediated loop extrusion can influence 3D chromatin architecture. However, their relevance in biology is unclear. Here, we report a direct role for such interactions in the mechanism of antibody class switch recombination (CSR) at the murine immunoglobulin heavy chain locus (Igh). Using Tri-C to measure higher-order multiway interactions on single alleles, we find that the juxtaposition (synapsis) of transcriptionally active donor and acceptor Igh switch (S) sequences, an essential step in CSR, occurs via the interaction of loop extrusion complexes with a de novo topologically associating domain (TAD) boundary formed via transcriptional activity across S regions. Surprisingly, synapsis occurs predominantly in proximity to the 3' CTCF-binding element (3'CBE) rather than the Igh super-enhancer, suggesting a two-step mechanism whereby transcription of S regions is not topologically coupled to synapsis, as has been previously proposed. Altogether, these insights advance our understanding of how 3D chromatin architecture regulates CSR.
Collapse
|
163
|
Bass TE, Fleenor DE, Burrell PE, Kastan MB. ATM Regulation of the Cohesin Complex Is Required for Repression of DNA Replication and Transcription in the Vicinity of DNA Double-Strand Breaks. Mol Cancer Res 2023; 21:261-273. [PMID: 36469004 PMCID: PMC9992094 DOI: 10.1158/1541-7786.mcr-22-0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
IMPLICATIONS Multiple members of the cohesin complex are involved in the regulation of DNA replication and transcription in the vicinity of DNA double-strand breaks and their role(s) are regulated by the ATM kinase.
Collapse
Affiliation(s)
- Thomas E Bass
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Donald E Fleenor
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Paige E Burrell
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Michael B Kastan
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, North Carolina
| |
Collapse
|
164
|
Rheinberger M, Costa AL, Kampmann M, Glavas D, Shytaj IL, Sreeram S, Penzo C, Tibroni N, Garcia-Mesa Y, Leskov K, Fackler OT, Vlahovicek K, Karn J, Lucic B, Herrmann C, Lusic M. Genomic profiling of HIV-1 integration in microglia cells links viral integration to the topologically associated domains. Cell Rep 2023; 42:112110. [PMID: 36790927 DOI: 10.1016/j.celrep.2023.112110] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here, we determine HIV-1 integration sites (ISs), associate them with chromatin and expression signatures at different genomic scales in a microglia cell model, and profile them together with the primary T cell reservoir. HIV-1 insertions into introns of actively transcribed genes with IS hotspots in genic and super-enhancers, characteristic of blood cells, are maintained in the microglia cell model. Genome organization analysis reveals dynamic CCCTC-binding factor (CTCF) clusters in cells with active and repressed HIV-1 transcription, whereas CTCF removal impairs viral integration. We identify CTCF-enriched topologically associated domain (TAD) boundaries with signatures of transcriptionally active chromatin as HIV-1 integration determinants in microglia and CD4+ T cells, highlighting the importance of host genome organization in HIV-1 infection.
Collapse
Affiliation(s)
- Mona Rheinberger
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Ana Luisa Costa
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany
| | - Martin Kampmann
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dunja Glavas
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iart Luca Shytaj
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Sheetal Sreeram
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Carlotta Penzo
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Nadine Tibroni
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany.
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| |
Collapse
|
165
|
de Wit E, Nora EP. New insights into genome folding by loop extrusion from inducible degron technologies. Nat Rev Genet 2023; 24:73-85. [PMID: 36180596 DOI: 10.1038/s41576-022-00530-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 01/24/2023]
Abstract
Chromatin folds into dynamic loops that often span hundreds of kilobases and physically wire distant loci together for gene regulation. These loops are continuously created, extended and positioned by structural maintenance of chromosomes (SMC) protein complexes, such as condensin and cohesin, and their regulators, including CTCF, in a highly dynamic process known as loop extrusion. Genetic loss of extrusion factors is lethal, complicating their study. Inducible protein degradation technologies enable the depletion of loop extrusion factors within hours, leading to the rapid reconfiguration of chromatin folding. Here, we review how these technologies have changed our understanding of genome organization, upsetting long-held beliefs on its role in transcription. Finally, we examine recent models that attempt to reconcile observations after chronic versus acute perturbations, and discuss future developments in this rapidly developing field of research.
Collapse
Affiliation(s)
- Elzo de Wit
- Division of Gene Regulation, Oncode Institute, Amsterdam, the Netherlands.
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Elphège P Nora
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
166
|
Davidson C, Wordsworth BP, Cohen CJ, Knight JC, Vecellio M. Chromosome conformation capture approaches to investigate 3D genome architecture in Ankylosing Spondylitis. Front Genet 2023; 14:1129207. [PMID: 36760998 PMCID: PMC9905691 DOI: 10.3389/fgene.2023.1129207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Ankylosing Spondylitis (AS) is a chronic inflammatory arthritis of the spine exhibiting a strong genetic background. The mechanistic and functional understanding of the AS-associated genomic loci, identified with Genome Wide Association Studies (GWAS), remains challenging. Chromosome conformation capture (3C) and derivatives are recent techniques which are of great help in elucidating the spatial genome organization and of enormous support in uncover a mechanistic explanation for disease-associated genetic variants. The perturbation of three-dimensional (3D) genome hierarchy may lead to a plethora of human diseases, including rheumatological disorders. Here we illustrate the latest approaches and related findings on the field of genome organization, highlighting how the instability of 3D genome conformation may be among the causes of rheumatological disease phenotypes. We suggest a new perspective on the inclusive potential of a 3C approach to inform GWAS results in rheumatic diseases. 3D genome organization may ultimately lead to a more precise and comprehensive functional interpretation of AS association, which is the starting point for emerging and more specific therapies.
Collapse
Affiliation(s)
- Connor Davidson
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - B. Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Carla J. Cohen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Julian C. Knight
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
- Centro Ricerche Fondazione Italiana Ricerca Sull’Artrite (FIRA), Fondazione Pisana x la Scienza ONLUS, San Giuliano Terme, Italy
| |
Collapse
|
167
|
Contessoto VG, Dudchenko O, Aiden EL, Wolynes PG, Onuchic JN, Di Pierro M. Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues. Nat Commun 2023; 14:326. [PMID: 36658127 PMCID: PMC9852290 DOI: 10.1038/s41467-023-35909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
We use data-driven physical simulations to study the three-dimensional architecture of the Aedes aegypti genome. Hi-C maps exhibit both a broad diagonal and compartmentalization with telomeres and centromeres clustering together. Physical modeling reveals that these observations correspond to an ensemble of 3D chromosomal structures that are folded over and partially condensed. Clustering of the centromeres and telomeres near the nuclear lamina appears to be a necessary condition for the formation of the observed structures. Further analysis of the mechanical properties of the genome reveals that the chromosomes of Aedes aegypti, by virtue of their atypical structural organization, are highly sensitive to the deformation of the nuclei. This last finding provides a possible physical mechanism linking mechanical cues to gene regulation.
Collapse
Affiliation(s)
- Vinícius G Contessoto
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Instituto de Biociências, Letras e Ciências Exatas, UNESP - Univ. Estadual Paulista, Departamento de Física, São José do Rio Preto, SP, Brazil.
| | - Olga Dudchenko
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Erez Lieberman Aiden
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Physics & Astronomy, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Department of Physics & Astronomy, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, MA, USA.
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA.
| |
Collapse
|
168
|
Ito M, Shinohara A. Chromosome architecture and homologous recombination in meiosis. Front Cell Dev Biol 2023; 10:1097446. [PMID: 36684419 PMCID: PMC9853400 DOI: 10.3389/fcell.2022.1097446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiocytes organize higher-order chromosome structures comprising arrays of chromatin loops organized at their bases by linear axes. As meiotic prophase progresses, the axes of homologous chromosomes align and synapse along their lengths to form ladder-like structures called synaptonemal complexes (SCs). The entire process of meiotic recombination, from initiation via programmed DNA double-strand breaks (DSBs) to completion of DSB repair with crossover or non-crossover outcomes, occurs in the context of chromosome axes and SCs. These meiosis-specific chromosome structures provide specialized environments for the regulation of DSB formation and crossing over. In this review, we summarize insights into the importance of chromosome architecture in the regulation of meiotic recombination, focusing on cohesin-mediated axis formation, DSB regulation via tethered loop-axis complexes, inter-homolog template bias facilitated by axial proteins, and crossover regulation in the context of the SCs. We also discuss emerging evidence that the SUMO and the ubiquitin-proteasome system function in the organization of chromosome structure and regulation of meiotic recombination.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
169
|
Park Y, Lelo A, Harris B, Berry DL, Chaldekas K, Kim JS, Waldman T. Identification of STAG2-Mutant Bladder Cancers by Immunohistochemistry. Methods Mol Biol 2023; 2684:145-151. [PMID: 37410232 DOI: 10.1007/978-1-0716-3291-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Bladder cancer is the fifth most common cancer in the United States. Most bladder cancers are early-stage lesions confined to the mucosa or submucosa and are therefore classified as non-muscle-invasive bladder cancer (NMIBC). A minority of tumors are diagnosed after they have invaded the underlying detrusor muscle and are classified as muscle-invasive bladder cancer (MIBC). Mutational inactivation of the STAG2 tumor suppressor gene is common in bladder cancer, and we and others have recently demonstrated that STAG2 mutation status can be used as an independent prognostic biomarker to predict whether NMIBC will recur and/or progress to MIBC. Here we describe an immunohistochemistry-based assay for identifying the STAG2 mutational status of bladder tumors.
Collapse
Affiliation(s)
- Youngrok Park
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Alana Lelo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Brent Harris
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Deborah L Berry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Krysta Chaldekas
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Jung-Sik Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Todd Waldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA.
| |
Collapse
|
170
|
Islam Z, Saravanan B, Walavalkar K, Farooq U, Singh AK, Radhakrishnan S, Thakur J, Pandit A, Henikoff S, Notani D. Active enhancers strengthen insulation by RNA-mediated CTCF binding at chromatin domain boundaries. Genome Res 2023; 33:1-17. [PMID: 36650052 PMCID: PMC9977152 DOI: 10.1101/gr.276643.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/10/2022] [Indexed: 01/19/2023]
Abstract
Vertebrate genomes are partitioned into chromatin domains or topologically associating domains (TADs), which are typically bound by head-to-head pairs of CTCF binding sites. Transcription at domain boundaries correlates with better insulation; however, it is not known whether the boundary transcripts themselves contribute to boundary function. Here we characterize boundary-associated RNAs genome-wide, focusing on the disease-relevant INK4a/ARF and MYC TAD. Using CTCF site deletions and boundary-associated RNA knockdowns, we observe that boundary-associated RNAs facilitate recruitment and clustering of CTCF at TAD borders. The resulting CTCF enrichment enhances TAD insulation, enhancer-promoter interactions, and TAD gene expression. Importantly, knockdown of boundary-associated RNAs results in loss of boundary insulation function. Using enhancer deletions and CRISPRi of promoters, we show that active TAD enhancers, but not promoters, induce boundary-associated RNA transcription, thus defining a novel class of regulatory enhancer RNAs.
Collapse
Affiliation(s)
- Zubairul Islam
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India;,Sastra Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Bharath Saravanan
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India;,Sastra Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Kaivalya Walavalkar
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India
| | - Umer Farooq
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India;,The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, Karnataka 560064, India
| | - Anurag Kumar Singh
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India
| | - Sabarinathan Radhakrishnan
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India
| | - Jitendra Thakur
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Awadhesh Pandit
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Dimple Notani
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India
| |
Collapse
|
171
|
Spracklin G, Abdennur N, Imakaev M, Chowdhury N, Pradhan S, Mirny LA, Dekker J. Diverse silent chromatin states modulate genome compartmentalization and loop extrusion barriers. Nat Struct Mol Biol 2023; 30:38-51. [PMID: 36550219 PMCID: PMC9851908 DOI: 10.1038/s41594-022-00892-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
The relationships between chromosomal compartmentalization, chromatin state and function are poorly understood. Here by profiling long-range contact frequencies in HCT116 colon cancer cells, we distinguish three silent chromatin states, comprising two types of heterochromatin and a state enriched for H3K9me2 and H2A.Z that exhibits neutral three-dimensional interaction preferences and which, to our knowledge, has not previously been characterized. We find that heterochromatin marked by H3K9me3, HP1α and HP1β correlates with strong compartmentalization. We demonstrate that disruption of DNA methyltransferase activity greatly remodels genome compartmentalization whereby domains lose H3K9me3-HP1α/β binding and acquire the neutrally interacting state while retaining late replication timing. Furthermore, we show that H3K9me3-HP1α/β heterochromatin is permissive to loop extrusion by cohesin but refractory to CTCF binding. Together, our work reveals a dynamic structural and organizational diversity of the silent portion of the genome and establishes connections between the regulation of chromatin state and chromosome organization, including an interplay between DNA methylation, compartmentalization and loop extrusion.
Collapse
Affiliation(s)
- George Spracklin
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Nezar Abdennur
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Maxim Imakaev
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Neil Chowdhury
- Program for Research in Mathematics, Engineering and Science for High School Students (PRIMES), MIT, Cambridge, MA, USA
| | - Sriharsa Pradhan
- Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, USA.
| |
Collapse
|
172
|
Attou A, Zülske T, Wedemann G. Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions. Biophys J 2022; 121:4788-4799. [PMID: 36325618 PMCID: PMC9811664 DOI: 10.1016/j.bpj.2022.10.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The spatial organization of the eukaryotic genome plays an important role in regulating transcriptional activity. In the nucleus, chromatin forms loops that assemble into fundamental units called topologically associating domains that facilitate or inhibit long-range contacts. These loops are formed and held together by the ring-shaped cohesin protein complex, and this can involve binding of CCCTC-binding factor (CTCF). High-resolution conformation capture experiments provide the frequency at which two DNA fragments physically associate in three-dimensional space. However, technical limitations of this approach, such as low throughput, low resolution, or noise in contact maps, make data interpretation and identification of chromatin intraloop contacts, e.g., between distal regulatory elements and their target genes, challenging. Herein, an existing coarse-grained model of chromatin at single-nucleosome resolution was extended by integrating potentials describing CTCF and cohesin. We performed replica-exchange Monte Carlo simulations with regularly spaced nucleosomes and experimentally determined nucleosome positions in the presence of cohesin-CTCF, as well as depleted systems as controls. In fully extruded loops caused by the presence of cohesin and CTCF, the number of contacts within the formed loops was increased. The number and types of these contacts were impacted by the nucleosome distribution and loop size. Microloops were observed within cohesin-mediated loops due to thermal fluctuations without additional influence of other factors, and the number, size, and shape of microloops were determined by nucleosome distribution and loop size. Nucleosome positions directly affect the spatial structure and contact probability within a loop, with presumed consequences for transcriptional activity.
Collapse
Affiliation(s)
- Aymen Attou
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany
| | - Tilo Zülske
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany
| | - Gero Wedemann
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany.
| |
Collapse
|
173
|
Bell SD. Form and function of archaeal genomes. Biochem Soc Trans 2022; 50:1931-1939. [PMID: 36511238 PMCID: PMC9764264 DOI: 10.1042/bst20221396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 07/30/2023]
Abstract
A key maxim in modernist architecture is that 'form follows function'. While modernist buildings are hopefully the product of intelligent design, the architectures of chromosomes have been sculpted by the forces of evolution over many thousands of generations. In the following, I will describe recent advances in our understanding of chromosome architecture in the archaeal domain of life. Although much remains to be learned about the mechanistic details of archaeal chromosome organization, some general principles have emerged. At the 10-100 kb level, archaeal chromosomes have a conserved local organization reminiscent of bacterial genomes. In contrast, lineage-specific innovations appear to have imposed distinct large-scale architectural features. The ultimate functions of genomes are to store and to express genetic information. Gene expression profiles have been shown to influence chromosome architecture, thus their form follows function. However, local changes to chromosome conformation can also influence gene expression and therefore, in these instances, function follows form.
Collapse
Affiliation(s)
- Stephen D. Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, U.S.A
- Biology Department, Indiana University, Bloomington, IN 47405, U.S.A
| |
Collapse
|
174
|
Zhao X, Zhu S, Peng W, Xue HH. The Interplay of Transcription and Genome Topology Programs T Cell Development and Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2269-2278. [PMID: 36469845 PMCID: PMC9731349 DOI: 10.4049/jimmunol.2200625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 01/04/2023]
Abstract
T cells are essential for mounting defense against various pathogens and malignantly transformed cells. Thymic development and peripheral T cell differentiation are highly orchestrated biological processes that require precise gene regulation. Higher-order genome organization on multiple scales, in the form of chromatin loops, topologically associating domains and compartments, provides pivotal control of T cell gene expression. CTCF and the cohesin machinery are ubiquitously expressed architectural proteins responsible for establishing chromatin structures. Recent studies indicate that transcription factors, such as T lineage-defining Tcf1 and TCR-induced Batf, may have intrinsic ability and/or engage CTCF to shape chromatin architecture. In this article, we summarize current knowledge on the dynamic changes in genome topology that underlie normal or leukemic T cell development, CD4+ helper T cell differentiation, and CD8+ cytotoxic T cell functions. The knowledge lays a solid foundation for elucidating the causative link of spatial chromatin configuration to transcriptional and functional output in T cells.
Collapse
Affiliation(s)
- Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
| | - Shaoqi Zhu
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
- New Jersey Veterans Affairs Health Care System, East Orange, NJ 07018
| |
Collapse
|
175
|
Amankwaa B, Schoborg T, Labrador M. Drosophila insulator proteins exhibit in vivo liquid-liquid phase separation properties. Life Sci Alliance 2022; 5:5/12/e202201536. [PMID: 35853678 PMCID: PMC9297610 DOI: 10.26508/lsa.202201536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Drosophila insulator proteins and the cohesin subunit Rad21 coalesce in vivo to form liquid-droplet condensates, suggesting that liquid–liquid phase separation mediates their function in 3D genome organization. Mounting evidence implicates liquid–liquid phase separation (LLPS), the condensation of biomolecules into liquid-like droplets in the formation and dissolution of membraneless intracellular organelles (MLOs). Cells use MLOs or condensates for various biological processes, including emergency signaling and spatiotemporal control over steady-state biochemical reactions and heterochromatin formation. Insulator proteins are architectural elements involved in establishing independent domains of transcriptional activity within eukaryotic genomes. In Drosophila, insulator proteins form nuclear foci known as insulator bodies in response to osmotic stress. However, the mechanism through which insulator proteins assemble into bodies is yet to be investigated. Here, we identify signatures of LLPS by insulator bodies, including high disorder tendency in insulator proteins, scaffold–client–dependent assembly, extensive fusion behavior, sphericity, and sensitivity to 1,6-hexanediol. We also show that the cohesin subunit Rad21 is a component of insulator bodies, adding to the known insulator protein constituents and γH2Av. Our data suggest a concerted role of cohesin and insulator proteins in insulator body formation and under physiological conditions. We propose a mechanism whereby these architectural proteins modulate 3D genome organization through LLPS.
Collapse
Affiliation(s)
- Bright Amankwaa
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Todd Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
176
|
Valton AL, Venev SV, Mair B, Khokhar ES, Tong AHY, Usaj M, Chan K, Pai AA, Moffat J, Dekker J. A cohesin traffic pattern genetically linked to gene regulation. Nat Struct Mol Biol 2022; 29:1239-1251. [PMID: 36482254 PMCID: PMC10228515 DOI: 10.1038/s41594-022-00890-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 11/01/2022] [Indexed: 12/13/2022]
Abstract
Cohesin-mediated loop extrusion has been shown to be blocked at specific cis-elements, including CTCF sites, producing patterns of loops and domain boundaries along chromosomes. Here we explore such cis-elements, and their role in gene regulation. We find that transcription termination sites of active genes form cohesin- and RNA polymerase II-dependent domain boundaries that do not accumulate cohesin. At these sites, cohesin is first stalled and then rapidly unloaded. Start sites of transcriptionally active genes form cohesin-bound boundaries, as shown before, but are cohesin-independent. Together with cohesin loading, possibly at enhancers, these sites create a pattern of cohesin traffic that guides enhancer-promoter interactions. Disrupting this traffic pattern, by removing CTCF, renders cells sensitive to knockout of genes involved in transcription initiation, such as the SAGA complexes, and RNA processing such DEAD/H-Box RNA helicases. Without CTCF, these factors are less efficiently recruited to active promoters.
Collapse
Affiliation(s)
- Anne-Laure Valton
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sergey V Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Barbara Mair
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eraj Shafiq Khokhar
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Amy H Y Tong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matej Usaj
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Chan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
177
|
Mansisidor AR, Risca VI. Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus 2022; 13:236-276. [PMID: 36404679 PMCID: PMC9683059 DOI: 10.1080/19491034.2022.2143106] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/22/2022] Open
Abstract
Access to DNA is a prerequisite to the execution of essential cellular processes that include transcription, replication, chromosomal segregation, and DNA repair. How the proteins that regulate these processes function in the context of chromatin and its dynamic architectures is an intensive field of study. Over the past decade, genome-wide assays and new imaging approaches have enabled a greater understanding of how access to the genome is regulated by nucleosomes and associated proteins. Additional mechanisms that may control DNA accessibility in vivo include chromatin compaction and phase separation - processes that are beginning to be understood. Here, we review the ongoing development of accessibility measurements, we summarize the different molecular and structural mechanisms that shape the accessibility landscape, and we detail the many important biological functions that are linked to chromatin accessibility.
Collapse
Affiliation(s)
- Andrés R. Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
178
|
Rossini R, Kumar V, Mathelier A, Rognes T, Paulsen J. MoDLE: high-performance stochastic modeling of DNA loop extrusion interactions. Genome Biol 2022; 23:247. [PMID: 36451166 PMCID: PMC9710047 DOI: 10.1186/s13059-022-02815-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
DNA loop extrusion emerges as a key process establishing genome structure and function. We introduce MoDLE, a computational tool for fast, stochastic modeling of molecular contacts from DNA loop extrusion capable of simulating realistic contact patterns genome wide in a few minutes. MoDLE accurately simulates contact maps in concordance with existing molecular dynamics approaches and with Micro-C data and does so orders of magnitude faster than existing approaches. MoDLE runs efficiently on machines ranging from laptops to high performance computing clusters and opens up for exploratory and predictive modeling of 3D genome structure in a wide range of settings.
Collapse
Affiliation(s)
- Roberto Rossini
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Vipin Kumar
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318, Oslo, Norway
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318, Oslo, Norway
| | - Torbjørn Rognes
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0316, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
| | - Jonas Paulsen
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
179
|
Cuadrado A, Giménez-Llorente D, De Koninck M, Ruiz-Torres M, Kojic A, Rodríguez-Corsino M, Losada A. Contribution of variant subunits and associated factors to genome-wide distribution and dynamics of cohesin. Epigenetics Chromatin 2022; 15:37. [PMID: 36424654 PMCID: PMC9686121 DOI: 10.1186/s13072-022-00469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The cohesin complex organizes the genome-forming dynamic chromatin loops that impact on all DNA-mediated processes. There are two different cohesin complexes in vertebrate somatic cells, carrying the STAG1 or STAG2 subunit, and two versions of the regulatory subunit PDS5, PDS5A and PDS5B. Mice deficient for any of the variant subunits are embryonic lethal, which indicates that they are not functionally redundant. However, their specific behavior at the molecular level is not fully understood. RESULTS The genome-wide distribution of cohesin provides important information with functional consequences. Here, we have characterized the distribution of cohesin subunits and regulators in mouse embryo fibroblasts (MEFs) either wild type or deficient for cohesin subunits and regulators by chromatin immunoprecipitation and deep sequencing. We identify non-CTCF cohesin-binding sites in addition to the commonly detected CTCF cohesin sites and show that cohesin-STAG2 is the preferred variant at these positions. Moreover, this complex has a more dynamic association with chromatin as judged by fluorescence recovery after photobleaching (FRAP), associates preferentially with WAPL and is more easily extracted from chromatin with salt than cohesin-STAG1. We observe that both PDS5A and PDS5B are exclusively located at cohesin-CTCF positions and that ablation of a single paralog has no noticeable consequences for cohesin distribution while double knocked out cells show decreased accumulation of cohesin at all its binding sites. With the exception of a fraction of cohesin positions in which we find binding of all regulators, including CTCF and WAPL, the presence of NIPBL and PDS5 is mutually exclusive, consistent with our immunoprecipitation analyses in mammalian cell extracts and previous results in yeast. CONCLUSION Our findings support the idea that non-CTCF cohesin-binding sites represent sites of cohesin loading or pausing and are preferentially occupied by the more dynamic cohesin-STAG2. PDS5 proteins redundantly contribute to arrest cohesin at CTCF sites, possibly by preventing binding of NIPBL, but are not essential for this arrest. These results add important insights towards understanding how cohesin regulates genome folding and the specific contributions of the different variants that coexist in the cell.
Collapse
Affiliation(s)
- Ana Cuadrado
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Daniel Giménez-Llorente
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Magali De Koninck
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Miguel Ruiz-Torres
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Aleksandar Kojic
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Ana Losada
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
180
|
Zelenka T, Klonizakis A, Tsoukatou D, Papamatheakis DA, Franzenburg S, Tzerpos P, Tzonevrakis IR, Papadogkonas G, Kapsetaki M, Nikolaou C, Plewczynski D, Spilianakis C. The 3D enhancer network of the developing T cell genome is shaped by SATB1. Nat Commun 2022; 13:6954. [PMID: 36376298 PMCID: PMC9663569 DOI: 10.1038/s41467-022-34345-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanisms of tissue-specific gene expression regulation via 3D genome organization are poorly understood. Here we uncover the regulatory chromatin network of developing T cells and identify SATB1, a tissue-specific genome organizer, enriched at the anchors of promoter-enhancer loops. We have generated a T-cell specific Satb1 conditional knockout mouse which allows us to infer the molecular mechanisms responsible for the deregulation of its immune system. H3K27ac HiChIP and Hi-C experiments indicate that SATB1-dependent promoter-enhancer loops regulate expression of master regulator genes (such as Bcl6), the T cell receptor locus and adhesion molecule genes, collectively being critical for cell lineage specification and immune system homeostasis. SATB1-dependent regulatory chromatin loops represent a more refined layer of genome organization built upon a high-order scaffold provided by CTCF and other factors. Overall, our findings unravel the function of a tissue-specific factor that controls transcription programs, via spatial chromatin arrangements complementary to the chromatin structure imposed by ubiquitously expressed genome organizers.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Despina Tsoukatou
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | | | - Petros Tzerpos
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032, Hungary
| | | | - George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Manouela Kapsetaki
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", 16672, Vari, Greece
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece.
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
181
|
Lohia R, Fox N, Gillis J. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships. Genome Biol 2022; 23:238. [PMID: 36352464 PMCID: PMC9647974 DOI: 10.1186/s13059-022-02790-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin contacts are essential for gene-expression regulation; however, obtaining a high-resolution genome-wide chromatin contact map is still prohibitively expensive owing to large genome sizes and the quadratic scale of pairwise data. Chromosome conformation capture (3C)-based methods such as Hi-C have been extensively used to obtain chromatin contacts. However, since the sparsity of these maps increases with an increase in genomic distance between contacts, long-range or trans-chromatin contacts are especially challenging to sample. RESULTS Here, we create a high-density reference genome-wide chromatin contact map using a meta-analytic approach. We integrate 3600 human, 6700 mouse, and 500 fly Hi-C experiments to create species-specific meta-Hi-C chromatin contact maps with 304 billion, 193 billion, and 19 billion contacts in respective species. We validate that meta-Hi-C contact maps are uniquely powered to capture functional chromatin contacts in both cis and trans. We find that while individual dataset Hi-C networks are largely unable to predict any long-range coexpression (median 0.54 AUC), meta-Hi-C networks perform comparably in both cis and trans (0.65 AUC vs 0.64 AUC). Similarly, for long-range expression quantitative trait loci (eQTL), meta-Hi-C contacts outperform all individual Hi-C experiments, providing an improvement over the conventionally used linear genomic distance-based association. Assessing between species, we find patterns of chromatin contact conservation in both cis and trans and strong associations with coexpression even in species for which Hi-C data is lacking. CONCLUSIONS We have generated an integrated chromatin interaction network which complements a large number of methodological and analytic approaches focused on improved specificity or interpretation. This high-depth "super-experiment" is surprisingly powerful in capturing long-range functional relationships of chromatin interactions, which are now able to predict coexpression, eQTLs, and cross-species relationships. The meta-Hi-C networks are available at https://labshare.cshl.edu/shares/gillislab/resource/HiC/ .
Collapse
Affiliation(s)
- Ruchi Lohia
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Nathan Fox
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Jesse Gillis
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
182
|
Yu D, Chen G, Wang Y, Wang Y, Lin R, Liu N, Zhu P, Liu H, Hu T, Feng R, Feng H, Lan F, Cai J, Chen H. Regulation of cohesin-mediated chromosome folding by PDS5 in mammals. EMBO Rep 2022; 23:e54853. [PMID: 36129789 PMCID: PMC9638874 DOI: 10.15252/embr.202254853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 09/23/2023] Open
Abstract
Cohesin regulates sister chromatid cohesion but also contributes to chromosome folding by promoting the formation of chromatin loops, a process mediated by loop extrusion. Although PDS5 regulates cohesin dynamics on chromatin, the exact function of PDS5 in cohesin-mediated chromatin looping remains unclear. Two paralogs of PDS5 exist in vertebrates, PDS5A and PDS5B. Here we show that PDS5A and PDS5B co-localize with RAD21 and CTCF at loop anchors. Rapid PDS5A or PDS5B degradation in liver cancer cells using an inducible degron system reduces chromatin loops and increases loop size. RAD21 enrichment at loop anchors is decreased upon depletion of PDS5A or PDS5B. PDS5B loss also reduces CTCF signals at loop anchors and has a stronger effect on loop enlargement compared with PDS5A. Co-depletion of PDS5A and PDS5B reduces RAD21 levels at loop anchors although the amount of cohesin on chromatin is increased. Our study provides insight into how PDS5 proteins regulate cohesin-mediated chromatin looping.
Collapse
Affiliation(s)
- Dingdang Yu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Guoyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji HospitalShanghaiChina
- Renji‐Med X Clinical Stem Cell Research Center, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuci Wang
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yining Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Risheng Lin
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Nanbo Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Ping Zhu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hang Liu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Tao Hu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Rui Feng
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji HospitalShanghaiChina
- Renji‐Med X Clinical Stem Cell Research Center, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fei Lan
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jiabin Cai
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Hao Chen
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
183
|
Liu S, Cao Y, Cui K, Tang Q, Zhao K. Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops. Nat Commun 2022; 13:6679. [PMID: 36335136 PMCID: PMC9637178 DOI: 10.1038/s41467-022-34276-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
The three-dimensional genomic structure plays a critical role in gene expression, cellular differentiation, and pathological conditions. It is pivotal to elucidate fine-scale chromatin architectures, especially interactions of regulatory elements, to understand the temporospatial regulation of gene expression. In this study, we report Hi-TrAC as a proximity ligation-free, robust, and sensitive technique to profile genome-wide chromatin interactions at high-resolution among regulatory elements. Hi-TrAC detects chromatin looping among accessible regions at single nucleosome resolution. With almost half-million identified loops, we reveal a comprehensive interaction network of regulatory elements across the genome. After integrating chromatin binding profiles of transcription factors, we discover that cohesin complex and CTCF are responsible for organizing long-range chromatin loops, related to domain formation; whereas ZNF143 and HCFC1 are involved in structuring short-range chromatin loops between regulatory elements, which directly regulate gene expression. Thus, we introduce a methodology to identify a delicate and comprehensive network of cis-regulatory elements, revealing the complexity and a division of labor of transcription factors in organizing chromatin loops for genome organization and gene expression.
Collapse
Affiliation(s)
- Shuai Liu
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Yaqiang Cao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Kairong Cui
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Qingsong Tang
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Keji Zhao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
184
|
Luppino JM, Field A, Nguyen SC, Park DS, Shah PP, Abdill RJ, Lan Y, Yunker R, Jain R, Adelman K, Joyce EF. Co-depletion of NIPBL and WAPL balance cohesin activity to correct gene misexpression. PLoS Genet 2022; 18:e1010528. [PMID: 36449519 PMCID: PMC9744307 DOI: 10.1371/journal.pgen.1010528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/12/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
The relationship between cohesin-mediated chromatin looping and gene expression remains unclear. NIPBL and WAPL are two opposing regulators of cohesin activity; depletion of either is associated with changes in both chromatin folding and transcription across a wide range of cell types. However, a direct comparison of their individual and combined effects on gene expression in the same cell type is lacking. We find that NIPBL or WAPL depletion in human HCT116 cells each alter the expression of ~2,000 genes, with only ~30% of the genes shared between the conditions. We find that clusters of differentially expressed genes within the same topologically associated domain (TAD) show coordinated misexpression, suggesting some genomic domains are especially sensitive to both more or less cohesin. Finally, co-depletion of NIPBL and WAPL restores the majority of gene misexpression as compared to either knockdown alone. A similar set of NIPBL-sensitive genes are rescued following CTCF co-depletion. Together, this indicates that altered transcription due to reduced cohesin activity can be functionally offset by removal of either its negative regulator (WAPL) or the physical barriers (CTCF) that restrict loop-extrusion events.
Collapse
Affiliation(s)
- Jennifer M. Luppino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew Field
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Boston, Massachusetts, United States of America
| | - Son C. Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel S. Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Parisha P. Shah
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard J. Abdill
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yemin Lan
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca Yunker
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rajan Jain
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Boston, Massachusetts, United States of America
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, United States of America
| | - Eric F. Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
185
|
Luppino JM, Field A, Nguyen SC, Park DS, Shah PP, Abdill RJ, Lan Y, Yunker R, Jain R, Adelman K, Joyce EF. Co-depletion of NIPBL and WAPL balance cohesin activity to correct gene misexpression. PLoS Genet 2022. [PMID: 36449519 DOI: 10.1101/2022.04.19.488785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The relationship between cohesin-mediated chromatin looping and gene expression remains unclear. NIPBL and WAPL are two opposing regulators of cohesin activity; depletion of either is associated with changes in both chromatin folding and transcription across a wide range of cell types. However, a direct comparison of their individual and combined effects on gene expression in the same cell type is lacking. We find that NIPBL or WAPL depletion in human HCT116 cells each alter the expression of ~2,000 genes, with only ~30% of the genes shared between the conditions. We find that clusters of differentially expressed genes within the same topologically associated domain (TAD) show coordinated misexpression, suggesting some genomic domains are especially sensitive to both more or less cohesin. Finally, co-depletion of NIPBL and WAPL restores the majority of gene misexpression as compared to either knockdown alone. A similar set of NIPBL-sensitive genes are rescued following CTCF co-depletion. Together, this indicates that altered transcription due to reduced cohesin activity can be functionally offset by removal of either its negative regulator (WAPL) or the physical barriers (CTCF) that restrict loop-extrusion events.
Collapse
Affiliation(s)
- Jennifer M Luppino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew Field
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Boston, Massachusetts, United States of America
| | - Son C Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel S Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Parisha P Shah
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard J Abdill
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yemin Lan
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca Yunker
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rajan Jain
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Boston, Massachusetts, United States of America
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, United States of America
| | - Eric F Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
186
|
Luan J, Vermunt MW, Syrett CM, Coté A, Tome JM, Zhang H, Huang A, Luppino JM, Keller CA, Giardine BM, Zhang S, Dunagin MC, Zhang Z, Joyce EF, Lis JT, Raj A, Hardison RC, Blobel GA. CTCF blocks antisense transcription initiation at divergent promoters. Nat Struct Mol Biol 2022; 29:1136-1144. [PMID: 36369346 DOI: 10.1101/2021.10.30.465508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2022] [Indexed: 05/26/2023]
Abstract
Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is not well understood. Here, by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters. Primary transcript RNA-FISH shows that CTCF lowers burst fraction but not burst intensity of uasTrx and that co-bursting of sense and antisense transcripts is disfavored. Genome editing, chromatin conformation studies and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its architectural function. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.
Collapse
Affiliation(s)
- Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Camille M Syrett
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Clarion Healthcare, LLC, Boston, MA, USA
| | - Allison Coté
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Shape Therapeutics Inc, Seattle, WA, USA
| | - Haoyue Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
187
|
Luan J, Vermunt MW, Syrett CM, Coté A, Tome JM, Zhang H, Huang A, Luppino JM, Keller CA, Giardine BM, Zhang S, Dunagin MC, Zhang Z, Joyce EF, Lis JT, Raj A, Hardison RC, Blobel GA. CTCF blocks antisense transcription initiation at divergent promoters. Nat Struct Mol Biol 2022; 29:1136-1144. [PMID: 36369346 PMCID: PMC10015438 DOI: 10.1038/s41594-022-00855-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2022] [Indexed: 11/13/2022]
Abstract
Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is not well understood. Here, by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters. Primary transcript RNA-FISH shows that CTCF lowers burst fraction but not burst intensity of uasTrx and that co-bursting of sense and antisense transcripts is disfavored. Genome editing, chromatin conformation studies and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its architectural function. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.
Collapse
Affiliation(s)
- Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Camille M Syrett
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Clarion Healthcare, LLC, Boston, MA, USA
| | - Allison Coté
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Shape Therapeutics Inc, Seattle, WA, USA
| | - Haoyue Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
188
|
Guo Y, Al-Jibury E, Garcia-Millan R, Ntagiantas K, King JWD, Nash AJ, Galjart N, Lenhard B, Rueckert D, Fisher AG, Pruessner G, Merkenschlager M. Chromatin jets define the properties of cohesin-driven in vivo loop extrusion. Mol Cell 2022; 82:3769-3780.e5. [PMID: 36182691 DOI: 10.1016/j.molcel.2022.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 01/01/2023]
Abstract
Complex genomes show intricate organization in three-dimensional (3D) nuclear space. Current models posit that cohesin extrudes loops to form self-interacting domains delimited by the DNA binding protein CTCF. Here, we describe and quantitatively characterize cohesin-propelled, jet-like chromatin contacts as landmarks of loop extrusion in quiescent mammalian lymphocytes. Experimental observations and polymer simulations indicate that narrow origins of loop extrusion favor jet formation. Unless constrained by CTCF, jets propagate symmetrically for 1-2 Mb, providing an estimate for the range of in vivo loop extrusion. Asymmetric CTCF binding deflects the angle of jet propagation as experimental evidence that cohesin-mediated loop extrusion can switch from bi- to unidirectional and is controlled independently in both directions. These data offer new insights into the physiological behavior of in vivo cohesin-mediated loop extrusion and further our understanding of the principles that underlie genome organization.
Collapse
Affiliation(s)
- Ya Guo
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; WLA Laboratories, Shanghai 201203, China
| | - Ediem Al-Jibury
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Department of Computing, Imperial College London, London SW7 2RH, UK
| | - Rosalba Garcia-Millan
- Department of Mathematics, Imperial College London, London SW7 2RH, UK; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK; St John's College, University of Cambridge, Cambridge CB2 1TP, UK
| | | | - James W D King
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Alex J Nash
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London SW7 2RH, UK; Chair for AI in Healthcare and Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Amanda G Fisher
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Gunnar Pruessner
- Department of Mathematics, Imperial College London, London SW7 2RH, UK.
| | - Matthias Merkenschlager
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
189
|
Guo Y, Wang GG. Modulation of the high-order chromatin structure by Polycomb complexes. Front Cell Dev Biol 2022; 10:1021658. [PMID: 36274840 PMCID: PMC9579376 DOI: 10.3389/fcell.2022.1021658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The multi-subunit Polycomb Repressive Complex (PRC) 1 and 2 act, either independently or synergistically, to maintain and enforce a repressive state of the target chromatin, thereby regulating the processes of cell lineage specification and organismal development. In recent years, deep sequencing-based and imaging-based technologies, especially those tailored for mapping three-dimensional (3D) chromatin organization and structure, have allowed a better understanding of the PRC complex-mediated long-range chromatin contacts and DNA looping. In this review, we review current advances as for how Polycomb complexes function to modulate and help define the high-order chromatin structure and topology, highlighting the multi-faceted roles of Polycomb proteins in gene and genome regulation.
Collapse
Affiliation(s)
- Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Yiran Guo, ; Gang Greg Wang,
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Yiran Guo, ; Gang Greg Wang,
| |
Collapse
|
190
|
Ectopic expression of meiotic cohesin generates chromosome instability in cancer cell line. Proc Natl Acad Sci U S A 2022; 119:e2204071119. [PMID: 36179046 PMCID: PMC9549395 DOI: 10.1073/pnas.2204071119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This work originated from mining of cancer genome data and proceeded to analyze the effects of ectopic expression of meiotic cohesins in mitotic cells in culture. In the process, apart from conclusively answering the question on mechanisms for RAD21L toxicity and its underrepresentation in tumor transcriptomes, we found an association of meiotic cohesin binding with BORIS/CTCFL sites in the normal testis. We also elucidated the patterns and outcomes of meiotic cohesin binding to chromosomes in model cell lines. Furthermore, we uncovered that RAD21L-based meiotic cohesin possesses a self-contained chromosome restructuring activity able to trigger sustainable but imperfect mitotic arrest leading to chromosomal instability. The discovered epigenomic and genetic mechanisms can be relevant to chromosome instability in cancer. Many tumors express meiotic genes that could potentially drive somatic chromosome instability. While germline cohesin subunits SMC1B, STAG3, and REC8 are widely expressed in many cancers, messenger RNA and protein for RAD21L subunit are expressed at very low levels. To elucidate the potential of meiotic cohesins to contribute to genome instability, their expression was investigated in human cell lines, predominately in DLD-1. While the induction of the REC8 complex resulted in a mild mitotic phenotype, the expression of the RAD21L complex produced an arrested but viable cell pool, thus providing a source of DNA damage, mitotic chromosome missegregation, sporadic polyteny, and altered gene expression. We also found that genomic binding profiles of ectopically expressed meiotic cohesin complexes were reminiscent of their corresponding specific binding patterns in testis. Furthermore, meiotic cohesins were found to localize to the same sites as BORIS/CTCFL, rather than CTCF sites normally associated with the somatic cohesin complex. These findings highlight the existence of a germline epigenomic memory that is conserved in cells that normally do not express meiotic genes. Our results reveal a mechanism of action by unduly expressed meiotic cohesins that potentially links them to aneuploidy and chromosomal mutations in affected cells.
Collapse
|
191
|
Finn EH, Misteli T. Nuclear position modulates long-range chromatin interactions. PLoS Genet 2022; 18:e1010451. [PMID: 36206323 PMCID: PMC9581366 DOI: 10.1371/journal.pgen.1010451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/19/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
The human genome is non-randomly organized within the cell nucleus. Spatial mapping of genome folding by biochemical methods and imaging has revealed extensive variation in locus interaction frequencies between cells in a population and between homologs within an individual cell. Commonly used mapping approaches typically examine either the relative position of genomic sites to each other or the position of individual loci relative to nuclear landmarks. Whether the frequency of specific chromatin-chromatin interactions is affected by where in the nuclear space a locus is located is unknown. Here, we have simultaneously mapped at the single cell level the interaction frequencies and radial position of more than a hundred locus pairs using high-throughput imaging to ask whether the location within the nucleus affects interaction frequency. We find strong enrichment of many interactions at specific radial positions. Position-dependency of interactions was cell-type specific, correlated with local chromatin type, and cell-type-specific enriched associations were marked by increased variability, sometimes without a significant decrease in mean spatial distance. These observations demonstrate that the folding of the chromatin fiber, which brings genomically distant loci into proximity, and the position of that chromatin fiber relative to nuclear landmarks, are closely linked.
Collapse
Affiliation(s)
- Elizabeth H. Finn
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
192
|
Liu Y, Dekker J. CTCF-CTCF loops and intra-TAD interactions show differential dependence on cohesin ring integrity. Nat Cell Biol 2022; 24:1516-1527. [PMID: 36202971 PMCID: PMC10174090 DOI: 10.1038/s41556-022-00992-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
The ring-like cohesin complex mediates sister-chromatid cohesion by encircling pairs of sister chromatids. Cohesin also extrudes loops along chromatids. Whether the two activities involve similar mechanisms of DNA engagement is not known. We implemented an experimental approach based on isolated nuclei carrying engineered cleavable RAD21 proteins to precisely control cohesin ring integrity so that its role in chromatin looping could be studied under defined experimental conditions. This approach allowed us to identify cohesin complexes with distinct biochemical, and possibly structural, properties that mediate different sets of chromatin loops. When RAD21 is cleaved and the cohesin ring is opened, cohesin complexes at CTCF sites are released from DNA and loops at these elements are lost. In contrast, cohesin-dependent loops within chromatin domains that are not anchored at pairs of CTCF sites are more resistant to RAD21 cleavage. The results show that the cohesin complex mediates loops in different ways depending on the genomic context and suggests that it undergoes structural changes as it dynamically extrudes and encounters CTCF sites.
Collapse
Affiliation(s)
- Yu Liu
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
193
|
Abstract
Genomic DNA is organized three-dimensionally in the nucleus as chromatin. Recent accumulating evidence has demonstrated that chromatin organizes into numerous dynamic domains in higher eukaryotic cells, which act as functional units of the genome. These compacted domains facilitate DNA replication and gene regulation. Undamaged chromatin is critical for healthy cells to function and divide. However, the cellular genome is constantly threatened by many sources of DNA damage (e.g., radiation). How do cells maintain their genome integrity when subjected to DNA damage? This chapter describes how the compact state of chromatin safeguards the genome from radiation damage and chemical attacks. Together with recent genomics data, our finding suggests that DNA compaction, such as chromatin domain formation, plays a critical role in maintaining genome integrity. But does the formation of such domains limit DNA accessibility inside the domain and hinder the recruitment of repair machinery to the damaged site(s) during DNA repair? To approach this issue, we first describe a sensitive imaging method to detect changes in chromatin states in living cells (single-nucleosome imaging/tracking). We then use this method to explain how cells can overcome potential recruiting difficulties; cells can decompact chromatin domains following DNA damage and temporarily increase chromatin motion (∼DNA accessibility) to perform efficient DNA repair. We also speculate on how chromatin compaction affects DNA damage-resistance in the clinical setting.
Collapse
Affiliation(s)
- Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan
| | - Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan.
| |
Collapse
|
194
|
Sun Y, Dotson GA, Muir LA, Ronquist S, Oravecz-Wilson K, Peltier D, Seike K, Li L, Meixner W, Rajapakse I, Reddy P. Rearrangement of T Cell genome architecture regulates GVHD. iScience 2022; 25:104846. [PMID: 36043052 PMCID: PMC9420521 DOI: 10.1016/j.isci.2022.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/10/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022] Open
Abstract
WAPL, cohesin's DNA release factor, regulates three-dimensional (3D) chromatin architecture. The 3D chromatin structure and its relevance to mature T cell functions is not well understood. We show that in vivo lymphopenic expansion, and alloantigen-driven proliferation, alters the 3D structure and function of the genome in mature T cells. Conditional deletion of WAPL, cohesin's DNA release factor, in T cells reduced long-range genomic interactions and altered chromatin A/B compartments and interactions within topologically associating domains (TADs) of the chromatin in T cells at baseline. WAPL deficiency in T cells reduced loop extensions, changed expression of cell cycling genes and reduced proliferation following in vitro and in vivo stimulation, and reduced severity of graft-versus-host disease (GVHD) following experimental allogeneic hematopoietic stem cell transplantation. These data collectively characterize 3D genomic architecture of T cells in vivo and demonstrate biological and clinical implications for its disruption by cohesin release factor WAPL.
Collapse
Affiliation(s)
- Yaping Sun
- 1Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Gabrielle A. Dotson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey A. Muir
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott Ronquist
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine Oravecz-Wilson
- 1Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Daniel Peltier
- 1Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Keisuke Seike
- 1Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Lu Li
- 1Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Walter Meixner
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Pavan Reddy
- 1Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| |
Collapse
|
195
|
Cohesin is required for long-range enhancer action at the Shh locus. Nat Struct Mol Biol 2022; 29:891-897. [PMID: 36097291 DOI: 10.1038/s41594-022-00821-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/20/2022] [Indexed: 11/08/2022]
Abstract
The regulatory landscapes of developmental genes in mammals can be complex, with enhancers spread over many hundreds of kilobases. It has been suggested that three-dimensional genome organization, particularly topologically associating domains formed by cohesin-mediated loop extrusion, is important for enhancers to act over such large genomic distances. By coupling acute protein degradation with synthetic activation by targeted transcription factor recruitment, here we show that cohesin, but not CTCF, is required for activation of the target gene Shh by distant enhancers in mouse embryonic stem cells. Cohesin is not required for activation directly at the promoter or by an enhancer located closer to the Shh gene. Our findings support the hypothesis that chromatin compaction via cohesin-mediated loop extrusion allows for genes to be activated by enhancers that are located many hundreds of kilobases away in the linear genome and suggests that cohesin is dispensable for enhancers located more proximally.
Collapse
|
196
|
Dehingia B, Milewska M, Janowski M, Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022; 23:e55146. [PMID: 35993175 PMCID: PMC9442299 DOI: 10.15252/embr.202255146] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
CCCTC-binding factor (CTCF) is an eleven zinc finger (ZF), multivalent transcriptional regulator, that recognizes numerous motifs thanks to the deployment of distinct combinations of its ZFs. The great majority of the ~50,000 genomic locations bound by the CTCF protein in a given cell type is intergenic, and a fraction of these sites overlaps with transcriptional enhancers. Furthermore, a proportion of the regions bound by CTCF intersect genes and promoters. This suggests multiple ways in which CTCF may impact gene expression. At promoters, CTCF can directly affect transcription. At more distal sites, CTCF may orchestrate interactions between regulatory elements and help separate eu- and heterochromatic areas in the genome, exerting a chromatin barrier function. In this review, we outline how CTCF contributes to the regulation of the three-dimensional structure of chromatin and the formation of chromatin domains. We discuss how CTCF binding and architectural functions are regulated. We examine the literature implicating CTCF in controlling gene expression in development and disease both by acting as an insulator and a factor facilitating regulatory elements to efficiently interact with each other in the nuclear space.
Collapse
Affiliation(s)
- Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Małgorzata Milewska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Marcin Janowski
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
197
|
The role of chromatin loop extrusion in antibody diversification. Nat Rev Immunol 2022; 22:550-566. [PMID: 35169260 PMCID: PMC9376198 DOI: 10.1038/s41577-022-00679-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Cohesin mediates chromatin loop formation across the genome by extruding chromatin between convergently oriented CTCF-binding elements. Recent studies indicate that cohesin-mediated loop extrusion in developing B cells presents immunoglobulin heavy chain (Igh) variable (V), diversity (D) and joining (J) gene segments to RAG endonuclease through a process referred to as RAG chromatin scanning. RAG initiates V(D)J recombinational joining of these gene segments to generate the large number of different Igh variable region exons that are required for immune responses to diverse pathogens. Antigen-activated mature B cells also use chromatin loop extrusion to mediate the synapsis, breakage and end joining of switch regions flanking Igh constant region exons during class-switch recombination, which allows for the expression of different antibody constant region isotypes that optimize the functions of antigen-specific antibodies to eliminate pathogens. Here, we review recent advances in our understanding of chromatin loop extrusion during V(D)J recombination and class-switch recombination at the Igh locus.
Collapse
|
198
|
van Schaik T, Liu NQ, Manzo SG, Peric-Hupkes D, de Wit E, van Steensel B. CTCF and cohesin promote focal detachment of DNA from the nuclear lamina. Genome Biol 2022; 23:185. [PMID: 36050765 PMCID: PMC9438259 DOI: 10.1186/s13059-022-02754-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/22/2022] [Indexed: 01/23/2023] Open
Abstract
Background Lamina-associated domains (LADs) are large genomic regions that are positioned at the nuclear lamina. It has remained largely unclear what drives the positioning and demarcation of LADs. Because the insulator protein CTCF is enriched at LAD borders, it was postulated that CTCF binding could position some LAD boundaries, possibly through its function in stalling cohesin and hence preventing cohesin invading into the LAD. To test this, we mapped genome–nuclear lamina interactions in mouse embryonic stem cells after rapid depletion of CTCF and other perturbations of cohesin dynamics. Results CTCF and cohesin contribute to a sharp transition in lamina interactions at LAD borders, while LADs are maintained after depletion of these proteins, also at borders marked by CTCF. CTCF and cohesin may thus reinforce LAD borders, but do not position these. CTCF binding sites within LADs are locally detached from the lamina and enriched for accessible DNA and active histone modifications. Remarkably, despite lamina positioning being strongly correlated with genome inactivity, this DNA remains accessible after the local detachment is lost following CTCF depletion. At a chromosomal scale, cohesin depletion and cohesin stabilization by depletion of the unloading factor WAPL quantitatively affect lamina interactions, indicative of perturbed chromosomal positioning in the nucleus. Finally, while H3K27me3 is locally enriched at CTCF-marked LAD borders, we find no evidence for an interplay between CTCF and H3K27me3 on lamina interactions. Conclusions These findings illustrate that CTCF and cohesin are not primary determinants of LAD patterns. Rather, these proteins locally modulate NL interactions. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02754-3.
Collapse
Affiliation(s)
- Tom van Schaik
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ning Qing Liu
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefano G Manzo
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daan Peric-Hupkes
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Present address: Annogen, Amsterdam, the Netherlands
| | - Elzo de Wit
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
199
|
Choudhary K, Itzkovich Z, Alonso-Perez E, Bishara H, Dunn B, Sherlock G, Kupiec M. S. cerevisiae Cells Can Grow without the Pds5 Cohesin Subunit. mBio 2022; 13:e0142022. [PMID: 35708277 PMCID: PMC9426526 DOI: 10.1128/mbio.01420-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
During DNA replication, the newly created sister chromatids are held together until their separation at anaphase. The cohesin complex is in charge of creating and maintaining sister chromatid cohesion (SCC) in all eukaryotes. In Saccharomyces cerevisiae cells, cohesin is composed of two elongated proteins, Smc1 and Smc3, bridged by the kleisin Mcd1/Scc1. The latter also acts as a scaffold for three additional proteins, Scc3/Irr1, Wpl1/Rad61, and Pds5. Although the HEAT-repeat protein Pds5 is essential for cohesion, its precise function is still debated. Deletion of the ELG1 gene, encoding a PCNA unloader, can partially suppress the temperature-sensitive pds5-1 allele, but not a complete deletion of PDS5. We carried out a genetic screen for high-copy-number suppressors and another for spontaneously arising mutants, allowing the survival of a pds5Δ elg1Δ strain. Our results show that cells remain viable in the absence of Pds5 provided that there is both an elevation in the level of Mcd1 (which can be due to mutations in the CLN2 gene, encoding a G1 cyclin), and an increase in the level of SUMO-modified PCNA on chromatin (caused by lack of PCNA unloading in elg1Δ mutants). The elevated SUMO-PCNA levels increase the recruitment of the Srs2 helicase, which evicts Rad51 molecules from the moving fork, creating single-stranded DNA (ssDNA) regions that serve as sites for increased cohesin loading and SCC establishment. Thus, our results delineate a double role for Pds5 in protecting the cohesin ring and interacting with the DNA replication machinery. IMPORTANCE Sister chromatid cohesion is vital for faithful chromosome segregation, chromosome folding into loops, and gene expression. A multisubunit protein complex known as cohesin holds the sister chromatids from S phase until the anaphase stage. In this study, we explore the function of the essential cohesin subunit Pds5 in the regulation of sister chromatid cohesion. We performed two independent genetic screens to bypass the function of the Pds5 protein. We observe that Pds5 protein is a cohesin stabilizer, and elevating the levels of Mcd1 protein along with SUMO-PCNA accumulation on chromatin can compensate for the loss of the PDS5 gene. In addition, Pds5 plays a role in coordinating the DNA replication and sister chromatid cohesion establishment. This work elucidates the function of cohesin subunit Pds5, the G1 cyclin Cln2, and replication factors PCNA, Elg1, and Srs2 in the proper regulation of sister chromatid cohesion.
Collapse
Affiliation(s)
- Karan Choudhary
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Ziv Itzkovich
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Elisa Alonso-Perez
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Hend Bishara
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Barbara Dunn
- Departments of Genetics, Stanford University, Stanford, California, USA
| | - Gavin Sherlock
- Departments of Genetics, Stanford University, Stanford, California, USA
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
200
|
Arruda NL, Bryan AF, Dowen JM. PDS5A and PDS5B differentially affect gene expression without altering cohesin localization across the genome. Epigenetics Chromatin 2022; 15:30. [PMID: 35986423 PMCID: PMC9392266 DOI: 10.1186/s13072-022-00463-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cohesin is an important structural regulator of the genome, regulating both three-dimensional genome organization and gene expression. The core cohesin trimer interacts with various HEAT repeat accessory subunits, yielding cohesin complexes of distinct compositions and potentially distinct functions. The roles of the two mutually exclusive HEAT repeat subunits PDS5A and PDS5B are not well understood. RESULTS Here, we determine that PDS5A and PDS5B have highly similar localization patterns across the mouse embryonic stem cell (mESC) genome and they show a strong overlap with other cohesin HEAT repeat accessory subunits, STAG1 and STAG2. Using CRISPR/Cas9 genome editing to generate individual stable knockout lines for PDS5A and PDS5B, we find that loss of one PDS5 subunit does not alter the distribution of the other PDS5 subunit, nor the core cohesin complex. Both PDS5A and PDS5B are required for proper gene expression, yet they display only partially overlapping effects on gene targets. Remarkably, gene expression following dual depletion of the PDS5 HEAT repeat proteins does not completely overlap the gene expression changes caused by dual depletion of the STAG HEAT repeat proteins, despite the overlapping genomic distribution of all four proteins. Furthermore, dual loss of PDS5A and PDS5B decreases cohesin association with NIPBL and WAPL, reduces SMC3 acetylation, and does not alter overall levels of cohesin on the genome. CONCLUSIONS This work reveals the importance of PDS5A and PDS5B for proper cohesin function. Loss of either subunit has little effect on cohesin localization across the genome yet PDS5A and PDS5B are differentially required for gene expression.
Collapse
Affiliation(s)
- Nicole L Arruda
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Audra F Bryan
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jill M Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|