151
|
He WT, Ji X, He W, Dellicour S, Wang S, Li G, Zhang L, Gilbert M, Zhu H, Xing G, Veit M, Huang Z, Han GZ, Huang Y, Suchard MA, Baele G, Lemey P, Su S. Genomic Epidemiology, Evolution, and Transmission Dynamics of Porcine Deltacoronavirus. Mol Biol Evol 2020; 37:2641-2654. [PMID: 32407507 PMCID: PMC7454817 DOI: 10.1093/molbev/msaa117] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown once again that coronavirus (CoV) in animals are potential sources for epidemics in humans. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen of swine with a worldwide distribution. Here, we implemented and described an approach to analyze the epidemiology of PDCoV following its emergence in the pig population. We performed an integrated analysis of full genome sequence data from 21 newly sequenced viruses, along with comprehensive epidemiological surveillance data collected globally over the last 15 years. We found four distinct phylogenetic lineages of PDCoV, which differ in their geographic circulation patterns. Interestingly, we identified more frequent intra- and interlineage recombination and higher virus genetic diversity in the Chinese lineages compared with the USA lineage where pigs are raised in different farming systems and ecological environments. Most recombination breakpoints are located in the ORF1ab gene rather than in genes encoding structural proteins. We also identified five amino acids under positive selection in the spike protein suggesting a role for adaptive evolution. According to structural mapping, three positively selected sites are located in the N-terminal domain of the S1 subunit, which is the most likely involved in binding to a carbohydrate receptor, whereas the other two are located in or near the fusion peptide of the S2 subunit and thus might affect membrane fusion. Finally, our phylogeographic investigations highlighted notable South-North transmission as well as frequent long-distance dispersal events in China that could implicate human-mediated transmission. Our findings provide new insights into the evolution and dispersal of PDCoV that contribute to our understanding of the critical factors involved in CoVs emergence.
Collapse
Affiliation(s)
- Wan-Ting He
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiang Ji
- Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA.,Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA.,Department of Mathematics, Tulane University, New Orleans, LA
| | - Wei He
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium.,Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Shilei Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gairu Li
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Letian Zhang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Henan Zhu
- Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA.,Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA
| | - Gang Xing
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin, Germany
| | - Zhen Huang
- Zhengzhou New Channel Agricultural Technology Co., Ltd, Zhengzhou, Henan, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yaowei Huang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Marc A Suchard
- Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA.,Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
152
|
De Carli S, Wolf JM, Gräf T, Lehmann FKM, Fonseca ASK, Canal CW, Lunge VR, Ikuta N. Genotypic characterization and molecular evolution of avian reovirus in poultry flocks from Brazil. Avian Pathol 2020; 49:611-620. [PMID: 32746617 DOI: 10.1080/03079457.2020.1804528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Avian reovirus (ARV) is one of the main causes of infectious arthritis/tenosynovitis and malabsorption syndrome (MAS) in poultry. ARVs have been disseminated in Brazilian poultry flocks in the last years. This study aimed to genotype ARVs and to evaluate the molecular evolution of the more frequent ARV lineages detected in Brazilian poultry-producing farms. A total of 100 poultry flocks with clinical signs of tenosynovitis/MAS, from all Brazilian poultry-producing regions were positive for ARV by PCR. Seventeen bird tissues were submitted to cell culture and ARV RNA detection/genotyping by two PCRs. The phylogenetic classification was based on σC gene alignment using a dataset with other Brazilian and worldwide ARVs sequences. ARVs were specifically detected by both PCRs from the 17 cell cultures, and σC gene partial fragments were sequenced. All these sequences were aligned with a total of 451 ARV σC gene data available in GenBank. Phylogenetic analysis demonstrated five well-defined clusters that were classified into lineages I, II, III, IV, and V. Three lineages could be further divided into sub-lineages: I (I vaccine, Ia, Ib), II (IIa, IIb, IIc) and IV (IVa and IVb). Brazilian ARVs were from four lineages/sub-lineages: Ib (48.2%), IIb (22.2%), III (3.7%) and V (25.9%). The Bayesian analysis demonstrated that the most frequent sub-lineage Ib emerged in the world around 1968 and it was introduced into Brazil in 2010, with increasing spread soon after. In conclusion, four different ARV lineages are circulating in Brazilian poultry flocks, all associated with clinical diseases. RESEARCH HIGHLIGHTS One-hundred ARV-positive flocks were detected in all main poultry-producing regions from Brazil. A large dataset of 468 S1 sequences was constructed and divided ARVs into five lineages. Four lineages/sub-lineages (Ib, IIb, III and V) were detected in commercial poultry flocks from Brazil. Brazilian lineages shared a low identity with the commercial vaccine lineage (I vaccine). Sub-lineage Ib emerged around 1968 and was introduced into Brazil in 2010.
Collapse
Affiliation(s)
- Silvia De Carli
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonas Michel Wolf
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | - Tiago Gräf
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Fernanda K M Lehmann
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | | | - Cláudio W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vagner R Lunge
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Simbios Biotecnologia, Cachoeirinha, Brazil
| | - Nilo Ikuta
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Simbios Biotecnologia, Cachoeirinha, Brazil
| |
Collapse
|
153
|
Clark JJ, Gilray J, Orton RJ, Baird M, Wilkie G, Filipe ADS, Johnson N, McInnes CJ, Kohl A, Biek R. Population genomics of louping ill virus provide new insights into the evolution of tick-borne flaviviruses. PLoS Negl Trop Dis 2020; 14:e0008133. [PMID: 32925939 PMCID: PMC7515184 DOI: 10.1371/journal.pntd.0008133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/24/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The emergence and spread of tick-borne arboviruses pose an increased challenge to human and animal health. In Europe this is demonstrated by the increasingly wide distribution of tick-borne encephalitis virus (TBEV, Flavivirus, Flaviviridae), which has recently been found in the United Kingdom (UK). However, much less is known about other tick-borne flaviviruses (TBFV), such as the closely related louping ill virus (LIV), an animal pathogen which is endemic to the UK and Ireland, but which has been detected in other parts of Europe including Scandinavia and Russia. The emergence and potential spatial overlap of these viruses necessitates improved understanding of LIV genomic diversity, geographic spread and evolutionary history. We sequenced a virus archive composed of 22 LIV isolates which had been sampled throughout the UK over a period of over 80 years. Combining this dataset with published virus sequences, we detected no sign of recombination and found low diversity and limited evidence for positive selection in the LIV genome. Phylogenetic analysis provided evidence of geographic clustering as well as long-distance movement, including movement events that appear recent. However, despite genomic data and an 80-year time span, we found that the data contained insufficient temporal signal to reliably estimate a molecular clock rate for LIV. Additional analyses revealed that this also applied to TBEV, albeit to a lesser extent, pointing to a general problem with phylogenetic dating for TBFV. The 22 LIV genomes generated during this study provide a more reliable LIV phylogeny, improving our knowledge of the evolution of tick-borne flaviviruses. Our inability to estimate a molecular clock rate for both LIV and TBEV suggests that temporal calibration of tick-borne flavivirus evolution should be interpreted with caution and highlight a unique aspect of these viruses which may be explained by their reliance on tick vectors. Tick-borne pathogens represent a major emerging threat to public health and in recent years have been expanding into new areas. LIV is a neglected virus endemic to the UK and Ireland (though it has been detected in Scandinavia and Russia) which is closely related to the major human pathogen TBEV, but predominantly causes disease in sheep and grouse. The recent detection of TBEV in the UK, which has also emerged elsewhere in Europe, requires more detailed understanding of the spread and sequence diversity of LIV. This could be important for diagnosis and vaccination, but also to improve our understanding of the evolution and emergence of these tick-borne viruses. Here we describe the sequencing of 22 LIV isolates which have been sampled from several host species across the past century. We have utilised this dataset to investigate the evolutionary pressures that LIV is subjected to and have explored the evolution of LIV using phylogenetic analysis. Crucially we were unable to estimate a reliable molecular clock rate for LIV and found that this problem also extends to a larger phylogeny of TBEV sequences. This work highlights a previously unknown caveat of tick-borne flavivirus evolutionary analysis which may be important for understanding the evolution of these important pathogens.
Collapse
Affiliation(s)
- Jordan J. Clark
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Moredun Research Institute, Edinburgh, United Kingdom
- * E-mail: (JC); (RB)
| | - Janice Gilray
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Margaret Baird
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- Faculty of Health and Medical Science, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine - University of Glasgow, Glasgow, United Kingdom
- * E-mail: (JC); (RB)
| |
Collapse
|
154
|
Mwatuni FM, Nyende AB, Njuguna J, Xiong Z, Machuka E, Stomeo F. Occurrence, genetic diversity, and recombination of maize lethal necrosis disease-causing viruses in Kenya. Virus Res 2020; 286:198081. [PMID: 32663481 PMCID: PMC7450272 DOI: 10.1016/j.virusres.2020.198081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/20/2020] [Accepted: 06/27/2020] [Indexed: 11/22/2022]
Abstract
Maize is the most important food crop in Kenya accounting for more than 51 % of all staples grown in the country. Out of Kenya's 5.3 million ha total crops area, more than 2.1 million ha is occupied by maize which translates to 40 % of all crops area. However, with the emergence of maize lethal necrosis (MLN) disease in 2011, the average yields plummeted to all-time lows with severely affected counties recording 90-100% yield loss in 2013 and 2014. The disease is mainly caused by Maize chlorotic mottle virus (MCMV) in combination with Sugarcane mosaic virus (SCMV) or other potyviruses. In this study, a country-wide survey was carried out to assess the MLN causing viruses in Kenya, their distribution, genetic diversity, and recombination. The causative viruses of MLN were determined by RT-PCR using virus-specific primers and DAS-ELISA. Next-generation sequencing (NGS) data was generated, viral sequences identified, genetic diversity of MLN viruses was determined, and recombination was evaluated. MCMV and SCMV were detected in all the maize growing regions at varying levels of incidence, and severity while MaYMV, a polerovirus was detected in some samples through NGS. However, there were some samples in this study where only MCMV was detected with severe MLN symptoms. SCMV Sequences were highly diverse while MCMV sequences exhibited low variability. Potential recombination events were detected only in SCMV explaining the elevated level of diversity and associated risk of this virus in Kenya and the eastern Africa region.
Collapse
Affiliation(s)
- Francis M Mwatuni
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041 - 00621, Nairobi, Kenya; Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00100, Nairobi, Kenya; Kenya Plant Health Inspectorate Service(KEPHIS), P.O. Box 49592-00100, Nairobi, Kenya.
| | - Aggrey Bernard Nyende
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00100, Nairobi, Kenya
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA - ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya
| | | | - Eunice Machuka
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA - ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya
| | - Francesca Stomeo
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA - ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya
| |
Collapse
|
155
|
Kozakiewicz CP, Burridge CP, Funk WC, Craft ME, Crooks KR, Fisher RN, Fountain‐Jones NM, Jennings MK, Kraberger SJ, Lee JS, Lyren LM, Riley SPD, Serieys LEK, VandeWoude S, Carver S. Does the virus cross the road? Viral phylogeographic patterns among bobcat populations reflect a history of urban development. Evol Appl 2020; 13:1806-1817. [PMID: 32908587 PMCID: PMC7463333 DOI: 10.1111/eva.12927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Urban development has major impacts on connectivity among wildlife populations and is thus likely an important factor shaping pathogen transmission in wildlife. However, most investigations of wildlife diseases in urban areas focus on prevalence and infection risk rather than potential effects of urbanization on transmission itself. Feline immunodeficiency virus (FIV) is a directly transmitted retrovirus that infects many felid species and can be used as a model for studying pathogen transmission at landscape scales. We investigated phylogenetic relationships among FIV isolates sampled from five bobcat (Lynx rufus) populations in coastal southern California that appear isolated due to major highways and dense urban development. Divergence dates among FIV phylogenetic lineages in several cases reflected historical urban growth and construction of major highways. We found strong FIV phylogeographic structure among three host populations north-west of Los Angeles, largely coincident with host genetic structure. In contrast, relatively little FIV phylogeographic structure existed among two genetically distinct host populations south-east of Los Angeles. Rates of FIV transfer among host populations did not vary significantly, with the lack of phylogenetic structure south-east of Los Angeles unlikely to reflect frequent contemporary transmission among populations. Our results indicate that major barriers to host gene flow can also act as barriers to pathogen spread, suggesting potentially reduced susceptibility of fragmented populations to novel directly transmitted pathogens. Infrequent exchange of FIV among host populations suggests that populations would best be managed as distinct units in the event of a severe disease outbreak. Phylogeographic inference of pathogen transmission is useful for estimating the ability of geographic barriers to constrain disease spread and can provide insights into contemporary and historical drivers of host population connectivity.
Collapse
Affiliation(s)
| | | | - W. Chris Funk
- Department of BiologyColorado State UniversityFort CollinsCOUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCOUSA
| | - Meggan E. Craft
- Department of Veterinary Population MedicineUniversity of MinnesotaSt PaulMNUSA
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCOUSA
| | - Robert N. Fisher
- Western Ecological Research CenterU.S. Geological SurveySan DiegoCAUSA
| | | | | | - Simona J. Kraberger
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsCOUSA
| | - Justin S. Lee
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsCOUSA
| | - Lisa M. Lyren
- Western Ecological Research CenterU.S. Geological SurveyThousand OaksCAUSA
| | - Seth P. D. Riley
- National Park ServiceSanta Monica Mountains National Recreation AreaThousand OaksCAUSA
| | - Laurel E. K. Serieys
- Department of Environmental StudiesUniversity of California Santa CruzSanta CruzCAUSA
- Institute for Communities and Wildlife in AfricaBiological SciencesUniversity of Cape TownCape TownSouth Africa
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsCOUSA
| | - Scott Carver
- School of Natural SciencesUniversity of TasmaniaHobartTASAustralia
| |
Collapse
|
156
|
Green KJ, Funke CN, Chojnacky J, Alvarez-Quinto RA, Ochoa JB, Quito-Avila DF, Karasev AV. Potato Virus Y (PVY) Isolates from Solanum betaceum Represent Three Novel Recombinants Within the PVY N Strain Group and Are Unable to Systemically Spread in Potato. PHYTOPATHOLOGY 2020; 110:1588-1596. [PMID: 32370660 DOI: 10.1094/phyto-04-20-0111-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tamarillo, or tree tomato (Solanum betaceum), is a perennial small tree or shrub species cultivated in subtropical areas for fresh fruit and juice production. In Ecuador, tamarillo orchards are affected by several viruses, with one previously identified as potato virus Y (PVY); however, the specific strain composition of PVY in tamarillo was not determined. In 2015 and 2016, eight tamarillo plants exhibiting symptoms of leaf drop, mosaic, and mottled fruit were sampled near Tumbaco and Quito, Ecuador. These tamarillo PVY isolates were able to systemically infect tobacco, Nicotiana benthamiana, naranjilla, and tamarillo. Seven of the eight PVY isolates from tamarillo exhibited N-serotype, while one of the PVY isolates studied, Tam15, had no identifiable serotype. One isolate, Tam17, had N-serotype but produced asymptomatic systemic infection in tobacco. In tamarillo, four tamarillo isolates induced mosaic and slight growth retardation and were unable to systemically infect pepper or potato. Tamarillo, on the other hand, was unable to support systemic infection of PVY isolates belonging to the PVYO and PVYEu-N strains. The whole genomes of eight PVY isolates were sequenced from a series of overlapping RT-PCR fragments. Phylogenetically, tamarillo PVY isolates were found to belong to the large PVYN lineage, in a new tamarillo clade. Recombination analysis revealed that these tamarillo PVY isolates represent at least three novel recombinant types not reported before. The combination of the biological and molecular properties found in these eight PVY isolates suggested the existence of a new tamarillo strain of PVY that may have coevolved with S. betaceum.
Collapse
Affiliation(s)
| | | | | | - Robert A Alvarez-Quinto
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Jose B Ochoa
- Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Quito, Ecuador
| | - Diego F Quito-Avila
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Alexander V Karasev
- Department of EPPN, University of Idaho, Moscow, ID
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID
| |
Collapse
|
157
|
Green KJ, Quintero-Ferrer A, Chikh-Ali M, Jones RAC, Karasev AV. Genetic Diversity of Nine Non-Recombinant Potato virus Y Isolates From Three Biological Strain Groups: Historical and Geographical Insights. PLANT DISEASE 2020; 104:2317-2323. [PMID: 32692623 DOI: 10.1094/pdis-02-20-0294-sc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Potato virus Y (PVY) isolates from potato currently exist as a complex of six biologically defined strain groups all containing nonrecombinant isolates and at least 14 recombinant minor phylogroups. Recent studies on eight historical UK potato PVY isolates preserved since 1984 found only nonrecombinants. Here, four of five PVY isolates from cultivated potato or wild Solanum spp. collected recently in Australia, Mexico, and the U.S.A. were typed by inoculation to tobacco plants and/or serological testing using monoclonal antibodies. Next, these five modern isolates and four additional historical UK isolates belonging to biological strain groups PVYC, PVYZ, or PVYN obtained from cultivated potato in 1943 to 1984 were sequenced. None of the nine complete PVY genomes obtained were recombinants. Phylogenetic analysis revealed that the four historical UK isolates were in minor phylogroups PVYC1 (YC-R), PVYO-O (YZ-CM1), PVYNA-N (YN-M), or PVYEu-N (YN-RM), Australian isolate YO-BL2 was in minor phylogroup PVYO-O5, and both Mexican isolate YN-Mex43 and U.S.A. isolates YN-MT12_Oth288, YN-MT12_Oth295, and YN-WWAA150131G42 were in minor phylogroup PVYEu-N. When combined, these new findings and those from the eight historical UK isolates sequenced earlier provide important historical insights concerning the diversity of early PVY populations in Europe and the appearance of recombinants in that part of the world. They and four recent Australian isolates sequenced earlier also provide geographical insights about the geographical distribution and diversity of PVY populations in Australia and North America.
Collapse
Affiliation(s)
- Kelsie J Green
- Department of EPPN, University of Idaho, Moscow, ID, U.S.A
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, U.S.A
| | | | | | - Roger A C Jones
- Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| | - Alexander V Karasev
- Department of EPPN, University of Idaho, Moscow, ID, U.S.A
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, U.S.A
| |
Collapse
|
158
|
Sharma V, Mobeen F, Prakash T. In silico functional and evolutionary analyses of rubber oxygenases (RoxA and RoxB). 3 Biotech 2020; 10:376. [PMID: 32802718 PMCID: PMC7406594 DOI: 10.1007/s13205-020-02371-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/28/2020] [Indexed: 12/01/2022] Open
Abstract
The study presents an in silico identification of poly (cis-1,4-isoprene) cleaving enzymes, viz., RoxA and RoxB in bacteria, followed by their functional and evolutionary exploration using comparative genomics. The orthologs of these proteins were found to be restricted to Gram-negative beta-, gamma-, and delta-proteobacteria. Toward the evolutionary propagation, the RoxA and RoxB genes were predicted to have evolved via a common interclass route of horizontal gene transfer in the phylum Proteobacteria (delta → gamma → beta). Besides, recombination, mutation, and gene conversion were also detected in both the genes leading to their diversification. Further, the differential selective pressure is predicted to be operating on entire RoxA and RoxB genes such that the former is diversifying further, whereas the latter is evolving to reduce its genetic diversity. However, the structurally and functionally important sites/residues of these genes were found to be preventing changes implying their evolutionary conservation. Further, the phylogenetic analysis demonstrated a sharp split between the RoxA and RoxB orthologs and indicated the emergence of their variant as another type of putative rubber oxygenase (RoxC) in the class Gammaproteobacteria. A detailed in silico analysis of the signature motifs and residues of Rox sequences exhibited important differences as well as similarities among the RoxA, RoxB, and putative RoxC sequences. Although RoxC appears to be a hybrid of RoxA and RoxB, the signature motifs and residues of RoxC are more similar to RoxB.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005 Himachal Pradesh India
| | - Fauzul Mobeen
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005 Himachal Pradesh India
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005 Himachal Pradesh India
| |
Collapse
|
159
|
Serpentoviruses: More than Respiratory Pathogens. J Virol 2020; 94:JVI.00649-20. [PMID: 32641481 DOI: 10.1128/jvi.00649-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022] Open
Abstract
In recent years, nidoviruses have emerged as important respiratory pathogens of reptiles, affecting captive python populations. In pythons, nidovirus (recently reclassified as serpentovirus) infection induces an inflammation of the upper respiratory and alimentary tract which can develop into a severe, often fatal proliferative pneumonia. We observed pyogranulomatous and fibrinonecrotic lesions in organ systems other than the respiratory tract during full postmortem examinations on 30 serpentovirus reverse transcription-PCR (RT-PCR)-positive pythons of varying species originating from Switzerland and Spain. The observations prompted us to study whether this not yet reported wider distribution of lesions is associated with previously unknown serpentoviruses or changes in the serpentovirus genome. RT-PCR and inoculation of Morelia viridis cell cultures served to recruit the cases and obtain virus isolates. Immunohistochemistry and immunofluorescence staining against serpentovirus nucleoprotein demonstrated that the virus infects not only a broad spectrum of epithelia (respiratory and alimentary epithelium, hepatocytes, renal tubules, pancreatic ducts, etc.), but also intravascular monocytes, intralesional macrophages, and endothelial cells. With next-generation sequencing we obtained a full-length genome for a novel serpentovirus species circulating in Switzerland. Analysis of viral genomes recovered from pythons showing serpentovirus infection-associated respiratory or systemic disease did not reveal sequence association to phenotypes; however, functional studies with different strains are needed to confirm this observation. The results indicate that serpentoviruses have a broad cell and tissue tropism, further suggesting that the course of infection could vary and involve lesions in a broad spectrum of tissues and organ systems as a consequence of monocyte-mediated viral systemic spread.IMPORTANCE During the last years, python nidoviruses (now reclassified as serpentoviruses) have become a primary cause of fatal disease in pythons. Serpentoviruses represent a threat to captive snake collections, as they spread rapidly and can be associated with high morbidity and mortality. Our study indicates that, different from previous evidence, the viruses do not only affect the respiratory tract, but can spread in the entire body with blood monocytes, have a broad spectrum of target cells, and can induce a variety of lesions. Nidovirales is an order of animal and human viruses that comprises important zoonotic pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2. Serpentoviruses belong to the same order as the above-mentioned human viruses and show similar characteristics (rapid spread, respiratory and gastrointestinal tropism, etc.). The present study confirms the relevance of natural animal diseases to better understand the complexity of viruses of the order Nidovirales.
Collapse
|
160
|
Mühlemann B, Vinner L, Margaryan A, Wilhelmson H, de la Fuente Castro C, Allentoft ME, de Barros Damgaard P, Hansen AJ, Holtsmark Nielsen S, Strand LM, Bill J, Buzhilova A, Pushkina T, Falys C, Khartanovich V, Moiseyev V, Jørkov MLS, Østergaard Sørensen P, Magnusson Y, Gustin I, Schroeder H, Sutter G, Smith GL, Drosten C, Fouchier RAM, Smith DJ, Willerslev E, Jones TC, Sikora M. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science 2020; 369:369/6502/eaaw8977. [PMID: 32703849 DOI: 10.1126/science.aaw8977] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/13/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
Smallpox, one of the most devastating human diseases, killed between 300 million and 500 million people in the 20th century alone. We recovered viral sequences from 13 northern European individuals, including 11 dated to ~600-1050 CE, overlapping the Viking Age, and reconstructed near-complete variola virus genomes for four of them. The samples predate the earliest confirmed smallpox cases by ~1000 years, and the sequences reveal a now-extinct sister clade of the modern variola viruses that were in circulation before the eradication of smallpox. We date the most recent common ancestor of variola virus to ~1700 years ago. Distinct patterns of gene inactivation in the four near-complete sequences show that different evolutionary paths of genotypic host adaptation resulted in variola viruses that circulated widely among humans.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.,Institute of Virology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Center for Infection Research (DZIF), Associated Partner Site, Berlin, Germany
| | - Lasse Vinner
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Ashot Margaryan
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark.,Institute of Molecular Biology, National Academy of Sciences of Armenia, 0014 Yerevan, Armenia
| | - Helene Wilhelmson
- Department of Archaeology and Ancient History, Lund University, 221 00 Lund, Sweden.,Sydsvensk Arkeologi AB, 291 22 Kristianstad, Sweden
| | | | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark.,Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, 6102 Perth, WA, Australia
| | - Peter de Barros Damgaard
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Anders Johannes Hansen
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Sofie Holtsmark Nielsen
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Lisa Mariann Strand
- Department of Archaeology and Cultural History, Norwegian University of Science and Technology University Museum, 7491 Trondheim, Norway
| | - Jan Bill
- Museum of Cultural History, University of Oslo, 0130 Oslo, Norway
| | - Alexandra Buzhilova
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow 125009, Russian Federation
| | - Tamara Pushkina
- Department of Archaeology, Faculty of History, Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Ceri Falys
- Thames Valley Archaeological Services, Reading RG1 5NR, UK
| | - Valeri Khartanovich
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russian Federation
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russian Federation
| | - Marie Louise Schjellerup Jørkov
- Laboratory of Biological Anthropology, Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | - Ingrid Gustin
- Department of Archaeology and Ancient History, Lund University, 221 00 Lund, Sweden
| | - Hannes Schroeder
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU University of Munich, 80539 Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Center for Infection Research (DZIF), Associated Partner Site, Berlin, Germany
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Centre, 3015 CN Rotterdam, Netherlands
| | - Derek J Smith
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark. .,Lundbeck Foundation GeoGenetics Center, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.,Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense M, Denmark
| | - Terry C Jones
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK. .,Institute of Virology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Center for Infection Research (DZIF), Associated Partner Site, Berlin, Germany
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark.
| |
Collapse
|
161
|
Long J, Wei Y, Tao X, He P, Xu J, Wu X, Zhu W, Chen K, Yang Z. Representative Genotyping, Recombination and Evolutionary Dynamics Analysis of TSA56 Gene Segment of Orientia tsutsugamushi. Front Cell Infect Microbiol 2020; 10:383. [PMID: 32903648 PMCID: PMC7438794 DOI: 10.3389/fcimb.2020.00383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022] Open
Abstract
Scrub typhus is a zoonotic disease caused by Orientia tsutsugamushi (O. tsutsugamushi). Orientia tsutsugamushi has various genotypes and more new strains with difference in sequences increasingly appeared. Whether the accurateness of one special nested PCR method which amplifies segment instead of entire open reading frame (ORF) sequence meets the current work of identifying new strains and classifying genotypes remains to be confirmed. And the origins and evolution of this organism have not been thoroughly elucidated. Accordingly, in this study, segments and the entire ORF of the 56-kDa type-specific antigen (TSA56) gene of O. tsutsugamushi were collected, including 209 clinically isolated strains in Guangzhou, China from 2012 to 2016 and 139 reference strains worldwide. By performing phylogenetic analysis, we proved that the accurateness of the particular PCR method which almost met detection need. This re-grouping result showed that segments perfectly represented and identified strains of Karp, Boryong, Gilliam, TA763, Kawasaki and part of Kato genotype, and this accuracy is not restricted by region and time. Sequence diversification of Shimokoshi and some Kato strains made their genotyping need to consider entire ORF sequences, but their weak recognition might not be due to recombination. The frequent genetic recombination and high point mutations contributed to genetic diversification of the TSA56 gene. Major overlapping regions of most recombination events occurred between strains of the same genotype, especially Karp and Kato genotype. And cross-genotype overlapping events occurred between Karp and Boryong/Gilliam/TA763/Kato, Kato and Kawasaki/Gilliam/TA686, Boryong and TA686, and Gilliam and Kawasaki. But Segment has quite low recombination frequency and stable mutation trend from 1943 to 2016. So segment is a relatively conserved part of the TSA56 ORF as for its stable trend of genetic diversity, and it may anchor and represent the entire TSA56 ORF gene. And genetic diversity is rejected as one potential reason for the increased incidence of scrub typhus. But an occasional recombination event created an unrecognized genotype which might be due to the breakage of VD II and AD II. Additionally, strains in Guangzhou were homologous and Karp genotype was detected as a dominant.
Collapse
Affiliation(s)
- Jiali Long
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yuehong Wei
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xia Tao
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Peng He
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jianmin Xu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xinwei Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Kuncai Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
162
|
Mackie J, Higgins E, Chambers GA, Tesoriero L, Aldaoud R, Kelly G, Kinoti WM, Rodoni BC, Constable FE. Genome Analysis of Melon Necrotic Spot Virus Incursions and Seed Interceptions in Australia. PLANT DISEASE 2020; 104:1969-1978. [PMID: 32484421 DOI: 10.1094/pdis-04-19-0846-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Melon necrotic spot virus (MNSV) was detected in field-grown Cucumis melo (rockmelon) and Citrullus lanatus (watermelon) plants in the Sunraysia district of New South Wales and Victoria, Australia, in 2012, 2013, and 2016, and in two watermelon seed lots tested at the Australian border in 2016. High-throughput sequencing was used to generate near full-length genomes of six isolates detected during the incursions and seed testing. Phylogenetic analysis of the genomes suggests that there have been at least two incursions of MNSV into Australia and none of the field isolates were the same as the isolates detected in seeds. The analysis indicated that one watermelon field sample (L10), the Victorian rockmelon field sample, and two seed interception samples may have European origins. The results showed that two isolates (L8 and L9) from watermelon were divergent from the type MNSV strain (MNSV-GA, D12536.2) and had 99% nucleotide identity to two MNSV isolates from human stool collected in the United States (KY124135.1, KY124136.1). These isolates also had high nucleotide pairwise identity (96%) to a partial sequence from a Spanish MNSV isolate (KT962848.1). The analysis supported the identification of three previously described MNSV genotype groups: EU-LA, Japan melon, and Japan watermelon. To account for the greater diversity of hosts and geographic regions of the MNSV isolates used in this study, it is suggested that the genotype groups EU-LA, Japan melon, and Japan watermelon be renamed to groups I, II, and III, respectively. The divergent isolates L8 and L9 from this study and the stool isolates from the United States formed a fourth genotype group, group IV. Soil collected from the site of the Victorian rockmelon MNSV outbreak was found to contain viable MNSV and the virus vector, a chytrid fungus, Olpidium bornovanus (Sahtiyanci) Karling, 18 months after the initial MNSV detection. This is a first report of O. bornovanus from soil sampled from an MNSV-contaminated site in Australia.
Collapse
Affiliation(s)
- Joanne Mackie
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Ellena Higgins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Grant A Chambers
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Len Tesoriero
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Ramez Aldaoud
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Geoff Kelly
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Wycliff M Kinoti
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Brendan C Rodoni
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Fiona E Constable
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| |
Collapse
|
163
|
Varela APM, Loiko MR, Andrade JDS, Tochetto C, Cibulski SP, Lima DA, Weber MN, Roehe PM, Mayer FQ. Complete genome characterization of porcine circovirus 3 recovered from wild boars in Southern Brazil. Transbound Emerg Dis 2020; 68:240-247. [PMID: 32530113 DOI: 10.1111/tbed.13679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/07/2020] [Accepted: 06/05/2020] [Indexed: 02/03/2023]
Abstract
In the present study, the complete nucleotide sequence of porcine circovirus 3 (PCV3) recovered from wild boars lymph nodes is described. The full genome was named PCV3-wb/Br/RS and comprises 2,000 nucleotides with two open reading frames (ORFs) with a stem-loop motif in intergenic region. The ORFs are oriented in opposite directions and encode the putative capsid (Cap) and replicase (Rep) proteins. Based on amino acid motif analysis, PCV3-wb/Br/RS as well as most of the sequences from wild boars are classified as PCV3b. Phylogenetic analysis including 97 PCV3 sequences available in databases showed that the PCV3-wb/Br/RS genome is more closely related to genomes recovered in Spain, China, Germany and Denmark. Phylogenetic inferences among PCV3-wb/Br/RS and other circoviruses confirmed that these seem to have a most recent common ancestor with bat-associated circoviruses. In addition, PCV3 infection was investigated by real-time PCR in a cohort of 80 wild boars in Southern Brazil. A total of 29 animals (36.3%) were PCV3-positive leading the conclusion that PCV3 is circulating in the wild boar population in Southern Brazil. The role played by PCV3-like infections in wild boars and the risk these could pose to commercial swine production within that region remains to be further investigated.
Collapse
Affiliation(s)
- Ana Paula Muterle Varela
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Márcia Regina Loiko
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliana da Silva Andrade
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Caroline Tochetto
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Paulo Cibulski
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diane Alves Lima
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Matheus Nunes Weber
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| |
Collapse
|
164
|
Cibulski S, Weber MN, de Sales Lima FE, Lima DAD, Fernandes Dos Santos H, Teixeira TF, Varela APM, Tochetto C, Mayer FQ, Roehe PM. Viral metagenomics in Brazilian Pekin ducks identifies two gyrovirus, including a new species, and the potentially pathogenic duck circovirus. Virology 2020; 548:101-108. [PMID: 32838930 DOI: 10.1016/j.virol.2020.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 01/01/2023]
Abstract
Viral metagenomics coupled to high-throughput sequencing has provided a powerful tool for large-scale detection of known and unknown viruses associated to distinct hosts and environments. Using this approach, known and novel viruses have been characterized from sylvatic and commercial avian hosts, increasing our understanding of the viral diversity in these species. In the present work we applied an exploratory viral metagenomics on organs (spleen, liver and bursa of Fabricious) of Pekin ducks from Southern Brazil. The virome contained sequences related to a known duck pathogen (duck circovirus) and a number of other circular ssDNA viruses. Additionally, we detected avian gyrovirus 9 (to date detected only in human feces) and one new avian gyrovirus species, to which is proposed the name avian gyrovirus 13 (GyV13). This study is expected to contribute to the knowledge of the viral diversity in Pekin ducks.
Collapse
Affiliation(s)
- Samuel Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil.
| | - Matheus Nunes Weber
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Francisco Esmaile de Sales Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diane Alves de Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Helton Fernandes Dos Santos
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Muterle Varela
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Tochetto
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
165
|
Identification of Reptarenaviruses, Hartmaniviruses, and a Novel Chuvirus in Captive Native Brazilian Boa Constrictors with Boid Inclusion Body Disease. J Virol 2020; 94:JVI.00001-20. [PMID: 32238580 DOI: 10.1128/jvi.00001-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/20/2020] [Indexed: 01/03/2023] Open
Abstract
Boid inclusion body disease (BIBD) is a transmissible viral disease of captive snakes that causes severe losses in snake collections worldwide. It is caused by reptarenavirus infection, which can persist over several years without overt signs but is generally associated with the eventual death of the affected snakes. Thus far, reports have confirmed the existence of reptarenaviruses in captive snakes in North America, Europe, Asia, and Australia, but there is no evidence that it also occurs in wild snakes. BIBD affects boa species within the subfamily Boinae and pythons in the family Pythonidae, the habitats of which do not naturally overlap. Here, we studied Brazilian captive snakes with BIBD using a metatranscriptomic approach, and we report the identification of novel reptarenaviruses, hartmaniviruses, and a new species in the family Chuviridae The reptarenavirus L segments identified are divergent enough to represent six novel species, while we found only a single novel reptarenavirus S segment. Until now, hartmaniviruses had been identified only in European captive boas with BIBD, and the present results increase the number of known hartmaniviruses from four to six. The newly identified chuvirus showed 38.4%, 40.9%, and 48.1% amino acid identity to the nucleoprotein, glycoprotein, and RNA-dependent RNA polymerase, respectively, of its closest relative, Guangdong red-banded snake chuvirus-like virus. Although we cannot rule out the possibility that the found viruses originated from imported snakes, the results suggest that the viruses could circulate in indigenous snake populations.IMPORTANCE Boid inclusion body disease (BIBD), caused by reptarenavirus infection, affects captive snake populations worldwide, but the reservoir hosts of reptarenaviruses remain unknown. Here, we report the identification of novel reptarenaviruses, hartmaniviruses, and a chuvirus in captive Brazilian boas with BIBD. Three of the four snakes studied showed coinfection with all three viruses, and one of the snakes harbored three novel reptarenavirus L segments and one novel S segment. The samples originated from collections with Brazilian indigenous snakes only, which could indicate that these viruses circulate in wild snakes. The findings could further indicate that boid snakes are the natural reservoir of reptarena- and hartmaniviruses commonly found in captive snakes. The snakes infected with the novel chuvirus all suffered from BIBD; it is therefore not possible to comment on its potential pathogenicity and contribution to the observed changes in the present case material.
Collapse
|
166
|
He Z, Dong Z, Gan H. Genetic changes and host adaptability in sugarcane mosaic virus based on complete genome sequences. Mol Phylogenet Evol 2020; 149:106848. [PMID: 32380283 DOI: 10.1016/j.ympev.2020.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sugarcane mosaic virus (SCMV), a member of the genus Potyvirus in the family Potyviridae, is an important pathogen that causes mosaic diseases in maize, sugarcane, canna and other graminaceous species worldwide. Previously, several reports have showed the genetic variation and population structure of SCMV. However, the evolutionary dynamics, synonymous codon usage pattern and adaptive evolution of the virus is unclear. In this study, we performed comprehensive analyses of phylodynamics, composition bias and codon usage of SCMV using 108 complete genomic sequences. Our phylogenetic analysis found six host- and geographically confined phylogenetic lineages within the SCMV non-recombinant isolates. We found a relatively stable and conserved genomic composition with a lower codon usage choice in the SCMV protein coding sequences. Mutation pressure and natural selection have shaped the codon usage patterns of the SCMV protein coding sequences with natural selection being the dominant factor. The codon adaptation index (CAI), relative codon deoptimization index (RCDI) and similarity index (SiD) analyses revealed a stronger correlation between SCMV and maize than between SCMV and sugarcane or canna. Our study is the first to evaluate the codon usage pattern of SCMV based on complete sequences and may provide a better understanding of the origin of SCMV and its evolutionary patterns for future research.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China.
| | - Zhuozhuo Dong
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Haifeng Gan
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| |
Collapse
|
167
|
Liu Y, Jia L, Su B, Li H, Li Z, Han J, Zhang Y, Zhang T, Li T, Wu H, Li J, Li L. The Genetic Diversity of HIV-1 Quasispecies Within Primary Infected Individuals. AIDS Res Hum Retroviruses 2020; 36:440-449. [PMID: 31766855 DOI: 10.1089/aid.2019.0242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HIV has remarkable genetic diversity among populations. The diversity has critical impacts on transmission, immune escape, pathogenesis, and clinical management. HIV-1 diversity originates from frequent mutation and recombination during reverse transcription. This work focuses on the quasispecies genetic dynamics within individuals with primary infections. Eleven men who have sex with men from the Beijing PRIMO Clinical Cohort were identified as primary infection and had three or four series of their anticoagulant blood samples collected. Viral RNA was extracted and amplified using single-genome amplification. Products of the gp120 gene that met single-genome amplification requirements were sequenced. Subtype assortment of all collected sequences was performed using both the jumping profile hidden Markov model (jpHMM) and REGA. Quasispecies diversity at each time was estimated using Mega 6. Intrapatient recombination was analyzed using RDP4. According to the Fiebig classification system, YA-81 belongs to stage III and YA-113 belongs to stage IV. The other samples are all associated with the infection stage of V/VI. YA113 had a dual infection with subtype B and a new unique recombinant form involving CRF01_AE and C. The other eight were infected with CRF01_AE, one was infected with B/C recombinant, and the last one with B. Of the 10 single infections, 8 were caused by 1 founder virus. They all displayed a sharp increase of quasispecies diversity during the sampling times. Two were caused by at least two founder viruses. The diversity of these strains starts at a significantly high level and is followed by a relatively steady trend. Critically, the separate subtypes YA113-B and YA113-CRF01_AE/C both showed a similar trend to those infected by a single founder virus. Recombination analysis revealed that 5 of 11 cases underwent detectable intrapatient recombination. These findings indicate that tracing the dynamics of HIV-1 quasispecies during early infection may be relevant and valuable for understanding pathways of viral diversification and immune escape.
Collapse
Affiliation(s)
- Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhen Li
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu Zhang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
168
|
Fontenele RS, Salywon AM, Majure LC, Cobb IN, Bhaskara A, Avalos-Calleros JA, Argüello-Astorga GR, Schmidlin K, Khalifeh A, Smith K, Schreck J, Lund MC, Köhler M, Wojciechowski MF, Hodgson WC, Puente-Martinez R, Van Doorslaer K, Kumari S, Vernière C, Filloux D, Roumagnac P, Lefeuvre P, Ribeiro SG, Kraberger S, Martin DP, Varsani A. A Novel Divergent Geminivirus Identified in Asymptomatic New World Cactaceae Plants. Viruses 2020; 12:E398. [PMID: 32260283 PMCID: PMC7232249 DOI: 10.3390/v12040398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cactaceae comprise a diverse and iconic group of flowering plants which are almost exclusively indigenous to the New World. The wide variety of growth forms found amongst the cacti have led to the trafficking of many species throughout the world as ornamentals. Despite the evolution and physiological properties of these plants having been extensively studied, little research has focused on cactus-associated viral communities. While only single-stranded RNA viruses had ever been reported in cacti, here we report the discovery of cactus-infecting single-stranded DNA viruses. These viruses all apparently belong to a single divergent species of the family Geminiviridae and have been tentatively named Opuntia virus 1 (OpV1). A total of 79 apparently complete OpV1 genomes were recovered from 31 different cactus plants (belonging to 20 different cactus species from both the Cactoideae and Opuntioideae clades) and from nine cactus-feeding cochineal insects (Dactylopius sp.) sampled in the USA and Mexico. These 79 OpV1 genomes all share > 78.4% nucleotide identity with one another and < 64.9% identity with previously characterized geminiviruses. Collectively, the OpV1 genomes display evidence of frequent recombination, with some genomes displaying up to five recombinant regions. In one case, recombinant regions span ~40% of the genome. We demonstrate that an infectious clone of an OpV1 genome can replicate in Nicotiana benthamiana and Opuntia microdasys. In addition to expanding the inventory of viruses that are known to infect cacti, the OpV1 group is so distantly related to other known geminiviruses that it likely represents a new geminivirus genus. It remains to be determined whether, like its cactus hosts, its geographical distribution spans the globe.
Collapse
Affiliation(s)
- Rafaela S. Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Andrew M. Salywon
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
| | - Lucas C. Majure
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Ilaria N. Cobb
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amulya Bhaskara
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- Center for Research in Engineering, Science and Technology, Paradise Valley High School, 3950 E Bell Rd, Phoenix, AZ 85032, USA
| | - Jesús A. Avalos-Calleros
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., Mexico; (J.A.A.-C.); (G.R.A.-A.)
| | - Gerardo R. Argüello-Astorga
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., Mexico; (J.A.A.-C.); (G.R.A.-A.)
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Anthony Khalifeh
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Kendal Smith
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Joshua Schreck
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Matias Köhler
- Departamento de BotânicaPrograma de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501970, Brazil;
| | | | - Wendy C. Hodgson
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
| | - Raul Puente-Martinez
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, and UA Cancer Center, University of Arizona, Tucson, AZ 85721, USA;
| | - Safaa Kumari
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol Station, Beqa’a, Zahle, Lebanon;
| | - Christian Vernière
- CIRAD, BGPI, 34398 Montpellier, France; (C.V.); (D.F.); (P.R.)
- BGPI, INRAE, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France
| | - Denis Filloux
- CIRAD, BGPI, 34398 Montpellier, France; (C.V.); (D.F.); (P.R.)
- BGPI, INRAE, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France
| | - Philippe Roumagnac
- CIRAD, BGPI, 34398 Montpellier, France; (C.V.); (D.F.); (P.R.)
- BGPI, INRAE, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France
| | | | - Simone G. Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, CEP 70770-917, Brazil;
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
| | - Darren P. Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa;
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
169
|
Zhao B, Zhang X, Li B, Du P, Shi L, Dong Y, Gao X, Sha W, Zhang H. Evolution of major histocompatibility complex class I genes in the sable Martes zibellina (Carnivora, Mustelidae). Ecol Evol 2020; 10:3439-3449. [PMID: 32274000 PMCID: PMC7141072 DOI: 10.1002/ece3.6140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 11/10/2022] Open
Abstract
The molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immune response among vertebrates. We investigated the molecular evolution of MHC class I genes in the sable Martes zibellina. We isolated 26 MHC class I sequences, including 12 putatively functional sequences and 14 pseudogene sequences, from 24 individuals from two geographic areas of northeast China. The number of putatively functional sequences found in a single individual ranged from one to five, which might be at least 1-3 loci. We found that both balancing selection and recombination contribute to evolution of MHC class I genes in M. zibellina. In addition, we identified a candidate nonclassical MHC class I lineage in Carnivora, which may have preceded the divergence (about 52-57 Mya) of Caniformia and Feliformia. This may contribute to further understanding of the origin and evolution of nonclassical MHC class I genes. Our study provides important immune information of MHC for M. zibellina, as well as other carnivores.
Collapse
Affiliation(s)
- Baojun Zhao
- College of Life Science Qufu Normal University Qufu China
| | - Xue Zhang
- College of Life Science Qufu Normal University Qufu China
| | - Bo Li
- College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - Pengfei Du
- College of Life Science Qufu Normal University Qufu China
| | - Lupeng Shi
- College of Life Science Qufu Normal University Qufu China
| | - Yuehuan Dong
- College of Life Science Qufu Normal University Qufu China
| | - Xiaodong Gao
- College of Life Science Qufu Normal University Qufu China
| | - Weilai Sha
- College of Life Science Qufu Normal University Qufu China
| | - Honghai Zhang
- College of Life Science Qufu Normal University Qufu China
| |
Collapse
|
170
|
Maejima K, Hashimoto M, Hagiwara‐Komoda Y, Miyazaki A, Nishikawa M, Tokuda R, Kumita K, Maruyama N, Namba S, Yamaji Y. Intra-strain biological and epidemiological characterization of plum pox virus. MOLECULAR PLANT PATHOLOGY 2020; 21:475-488. [PMID: 31978272 PMCID: PMC7060144 DOI: 10.1111/mpp.12908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 05/21/2023]
Abstract
Plum pox virus (PPV) is one of the most important plant viruses causing serious economic losses. Thus far, strain typing based on the definition of 10 monophyletic strains with partially differentiable biological properties has been the sole approach used for epidemiological characterization of PPV. However, elucidating the genetic determinants underlying intra-strain biological variation among populations or isolates remains a relevant but unexamined aspect of the epidemiology of the virus. In this study, based on complete nucleotide sequence information of 210 Japanese and 47 non-Japanese isolates of the PPV-Dideron (D) strain, we identified five positively selected sites in the PPV-D genome. Among them, molecular studies showed that amino acid substitutions at position 2,635 in viral replicase correlate with viral titre and competitiveness at the systemic level, suggesting that amino acid position 2,635 is involved in aphid transmission efficiency and symptom severity. Estimation of ancestral genome sequences indicated that substitutions at amino acid position 2,635 were reversible and peculiar to one of two genetically distinct PPV-D populations in Japan. The reversible amino acid evolution probably contributes to the dissemination of the virus population. This study provides the first genomic insight into the evolutionary epidemiology of PPV based on intra-strain biological variation ascribed to positive selection.
Collapse
Affiliation(s)
- Kensaku Maejima
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Masayoshi Hashimoto
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yuka Hagiwara‐Komoda
- Department of Sustainable AgricultureCollege of Agriculture, Food and Environment SciencesRakuno Gakuen UniversityEbetsuHokkaidoJapan
| | - Akio Miyazaki
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Masanobu Nishikawa
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Ryosuke Tokuda
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kohei Kumita
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Noriko Maruyama
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Shigetou Namba
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
171
|
He W, Auclert LZ, Zhai X, Wong G, Zhang C, Zhu H, Xing G, Wang S, He W, Li K, Wang L, Han GZ, Veit M, Zhou J, Su S. Interspecies Transmission, Genetic Diversity, and Evolutionary Dynamics of Pseudorabies Virus. J Infect Dis 2020; 219:1705-1715. [PMID: 30590733 DOI: 10.1093/infdis/jiy731] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/22/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) causes Aujeszky's disease in pigs and can be transmitted to other mammals, including humans. In the current study, we systematically studied the interspecies transmission and evolutionary history of PRV. METHODS We performed comprehensive analysis on the phylodynamics, selection, and structural biology to summarize the phylogenetic and adaptive evolution of PRV based on all available full-length and major glycoprotein sequences. RESULTS PRV can be divided into 2 main clades with frequent interclade and intraclade recombination. Clade 2.2 (variant PRV) is currently the most prevalent genotype worldwide, and most commonly involved in cross-species transmission events (including humans). We also found that the population size of clade 2.2 has increased since 2011, and the effective reproduction number was >1 from 2011 to 2016, indicating that PRV may be still circulating in swine herds and is still a risk in relation with cross-species transmission in China. Of note, we identified amino acid sites in some important glycoproteins gB, gC, gD, and gE that may be associated with PRV adaptation to new hosts and immune escape to vaccines. CONCLUSIONS Our study provides important genetic insight into the interspecies transmission and evolution of PRV within and between different hosts that warrant additional surveillance.
Collapse
Affiliation(s)
- Wanting He
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | | | - Xiaofeng Zhai
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Gary Wong
- College of Life Sciences, Nanjing Normal University, Hangzhou.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Cheng Zhang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Henan Zhu
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Gang Xing
- Key laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou
| | - Shilei Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Wei He
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Kemang Li
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Liang Wang
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Guan-Zhu Han
- Institut Pasteur of Shanghai, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Germany
| | - Jiyong Zhou
- Key laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| |
Collapse
|
172
|
Genomic epidemiological characteristics of dengue fever in Guangdong province, China from 2013 to 2017. PLoS Negl Trop Dis 2020; 14:e0008049. [PMID: 32126080 PMCID: PMC7053713 DOI: 10.1371/journal.pntd.0008049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/11/2020] [Indexed: 12/02/2022] Open
Abstract
Dengue fever, a mosquito-borne viral disease in humans, has been endemic in many Southeast Asian countries. Since its first outbreak in 1978 in Foshan, Guangdong province, China, dengue has been continually epidemic in recent years in Guangdong, which raised the concern whether dengue infection is endemic in Guangdong. In this study, we performed phylogenetic, recombinant, and nucleotide variation analyses of 114 complete genome sequences of dengue virus serotypes 1–4 (DENV1-4) collected from 2013 to 2017 in 18 of 21 cities of Guangdong. Phylogenetic analyses revealed that DENV sequences did not form a single cluster, indicating that dengue fever was not endemic in Guangdong, although DENV1-4 co-circulated in Guangdong. Twenty intra-serotype recombinant isolates involving DENV1-4 were detected, but no inter-serotype recombinant events were identified in this study. Additionally, the most recombinant events were detected simultaneously in the gene NS3 of DENV1-4. Nucleotide variation analyses showed that no significant intra-serotype differences were observed, whereas more significant inter-subtype differences were discovered in non-structural genes than in structural genes. Our investigation will facilitate the understanding of the current prevalent status of dengue fever in Guangdong and contribute to designing more effective preventive and control strategies for dengue infection. In 1978, dengue fever was first reported in Guangdong province, China, and this has been continuously prevalent in Guangdong in recent years. This is responsible for the heavy burden on the control of dengue, and raises the concern about whether dengue outbreaks have become endemic in Guangdong. Previous studies based on single E gene or few full-length genome sequences were inconclusive. In this study, we sequenced 114 DENV complete genomes of DENV1-4 obtained from 2013 to 2017 in Guangdong and further analyzed the epidemiological and molecular characteristics. Phylogenetic analyses revealed that dengue fever was not endemic in Guangdong, which was indirectly supported by results of our recombination analyses. Nucleotide variation analyses indicated that purification selection shaped dengue virus population. Our investigation will facilitate the development of more effective epidemiological surveillance strategies for dengue infection.
Collapse
|
173
|
Mumo NN, Mamati GE, Ateka EM, Rimberia FK, Asudi GO, Boykin LM, Machuka EM, Njuguna JN, Pelle R, Stomeo F. Metagenomic Analysis of Plant Viruses Associated With Papaya Ringspot Disease in Carica papaya L. in Kenya. Front Microbiol 2020; 11:205. [PMID: 32194518 PMCID: PMC7064807 DOI: 10.3389/fmicb.2020.00205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/29/2020] [Indexed: 11/17/2022] Open
Abstract
Carica papaya L. is an important fruit crop grown by small- and large-scale farmers in Kenya for local and export markets. However, its production is constrained by papaya ringspot disease (PRSD). The disease is believed to be caused by papaya ringspot virus (PRSV). Previous attempts to detect PRSV in papaya plants showing PRSD symptoms, using enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR) procedures with primers specific to PRSV, have not yielded conclusive results. Therefore, the nature of viruses responsible for PRSD was elucidated in papaya leaves collected from 22 counties through Illumina MiSeq next-generation sequencing (NGS) and validated by RT-PCR and Sanger sequencing. Viruses were detected in 38 out of the 48 leaf samples sequenced. Sequence analysis revealed the presence of four viruses: a Potyvirus named Moroccan watermelon mosaic virus (MWMV) and three viruses belonging to the genus Carlavirus. The Carlaviruses include cowpea mild mottle virus (CpMMV) and two putative Carlaviruses-closely related but distinct from cucumber vein-clearing virus (CuVCV) with amino acid and nucleotide sequence identities of 75.7-78.1 and 63.6-67.6%, respectively, in the coat protein genes. In reference to typical symptoms observed in the infected plants, the two putative Carlaviruses were named papaya mottle-associated virus (PaMV) and papaya mild mottle-associated virus (PaMMV). Surprisingly, and in contrast to previous studies conducted in other parts of world, PRSV was not detected. The majority of the viruses were detected as single viral infections, while a few were found to be infecting alongside another virus (for example, MWMV and PaMV). Furthermore, the NGS and RT-PCR analysis identified MWMV as being strongly associated with ringspot symptoms in infected papaya fruits. This study has provided the first complete genome sequences of these viruses isolated from papaya in Kenya, together with primers for their detection-thus proving to be an important step towards the design of long-term, sustainable disease management strategies.
Collapse
Affiliation(s)
- Naomi Nzilani Mumo
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - George Edward Mamati
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Elijah Miinda Ateka
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Fredah K. Rimberia
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - George Ochieng’ Asudi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
- Department of Plant Physiology, Faculty of Bioscience, Matthias-Schleiden-Institute, Friedrich Schiller University Jena, Jena, Germany
| | - Laura M. Boykin
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Eunice M. Machuka
- Biosciences Eastern and Central Africa-International Livestock Research Institute Hub, Nairobi, Kenya
| | - Joyce Njoki Njuguna
- Biosciences Eastern and Central Africa-International Livestock Research Institute Hub, Nairobi, Kenya
| | - Roger Pelle
- Biosciences Eastern and Central Africa-International Livestock Research Institute Hub, Nairobi, Kenya
| | - Francesca Stomeo
- Biosciences Eastern and Central Africa-International Livestock Research Institute Hub, Nairobi, Kenya
| |
Collapse
|
174
|
Phylogenetics, Genomic Recombination, and NSP2 Polymorphic Patterns of Porcine Reproductive and Respiratory Syndrome Virus in China and the United States in 2014-2018. J Virol 2020; 94:JVI.01813-19. [PMID: 31896589 DOI: 10.1128/jvi.01813-19] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 01/03/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen that affects the pig industry, is a highly genetically diverse RNA virus. However, the phylogenetic and genomic recombination properties of this virus have not been completely elucidated. In this study, comparative analyses of all available genomic sequences of North American (NA)-type PRRSVs (n = 355, including 138 PRRSV genomes sequenced in this study) in China and the United States during 2014-2018 revealed a high frequency of interlineage recombination hot spots in nonstructural protein 9 (NSP9) and the GP2 to GP3 regions. Lineage 1 (L1) PRRSV was found to be susceptible to recombination among PRRSVs both in China and the United States. The recombinant major parent between the 1991-2013 data and the 2014-2018 data showed a trend from complex to simple. The major recombination pattern changed from an L8 to L1 backbone during 2014-2018 for Chinese PRRSVs, whereas L1 was always the major backbone for US PRRSVs. Intralineage recombination hot spots were not as concentrated as interlineage recombination hot spots. In the two main clades with differential diversity in L1, NADC30-like PRRSVs are undergoing a decrease in population genetic diversity, NADC34-like PRRSVs have been relatively stable in population genetic diversity for years. Systematic analyses of insertion and deletion (indel) polymorphisms of NSP2 divided PRRSVs into 25 patterns, which could generate novel references for the classification of PRRSVs. The results of this study contribute to a deeper understanding of the recombination of PRRSVs and indicate the need for coordinated epidemiological investigations among countries.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant swine diseases. However, the phylogenetic and genomic recombination properties of the PRRS virus (PRRSV) have not been completely elucidated. In this study, we systematically compared differences in the lineage distribution, recombination, NSP2 polymorphisms, and evolutionary dynamics between North American (NA)-type PRRSVs in China and in the United States. Strikingly, we found high frequency of interlineage recombination hot spots in nonstructural protein 9 (NSP9) and in the GP2 to GP3 region. Also, intralineage recombination hot spots were scattered across the genome between Chinese and US strains. Furthermore, we proposed novel methods based on NSP2 indel patterns for the classification of PRRSVs. Evolutionary dynamics analysis revealed that NADC30-like PRRSVs are undergoing a decrease in population genetic diversity, suggesting that a dominant population may occur and cause an outbreak. Our findings offer important insights into the recombination of PRRSVs and suggest the need for coordinated international epidemiological investigations.
Collapse
|
175
|
Kinoti WM, Nancarrow N, Dann A, Rodoni BC, Constable FE. Updating the Quarantine Status of Prunus Infecting Viruses in Australia. Viruses 2020; 12:v12020246. [PMID: 32102210 PMCID: PMC7077234 DOI: 10.3390/v12020246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
One hundred Prunus trees, including almond (P. dulcis), apricot (P. armeniaca), nectarine (P. persica var. nucipersica), peach (P. persica), plum (P. domestica), purple leaf plum (P. cerasifera) and sweet cherry (P. avium), were selected from growing regions Australia-wide and tested for the presence of 34 viruses and three viroids using species-specific reverse transcription-polymerase chain reaction (RT-PCR) or polymerase chain reaction (PCR) tests. In addition, the samples were tested using some virus family or genus-based RT-PCR tests. The following viruses were detected: Apple chlorotic leaf spot virus (ACLSV) (13/100), Apple mosaic virus (ApMV) (1/100), Cherry green ring mottle virus (CGRMV) (4/100), Cherry necrotic rusty mottle virus (CNRMV) (2/100), Cherry virus A (CVA) (14/100), Little cherry virus 2 (LChV2) (3/100), Plum bark necrosis stem pitting associated virus (PBNSPaV) (4/100), Prune dwarf virus (PDV) (3/100), Prunus necrotic ringspot virus (PNRSV) (52/100), Hop stunt viroid (HSVd) (9/100) and Peach latent mosaic viroid (PLMVd) (6/100). The results showed that PNRSV is widespread in Prunus trees in Australia. Metagenomic high-throughput sequencing (HTS) and bioinformatics analysis were used to characterise the genomes of some viruses that were detected by RT-PCR tests and Apricot latent virus (ApLV), Apricot vein clearing associated virus (AVCaV), Asian Prunus Virus 2 (APV2) and Nectarine stem pitting-associated virus (NSPaV) were also detected. This is the first report of ApLV, APV2, CGRMV, CNRNV, LChV1, LChV2, NSPaV and PBNSPaV occurring in Australia. It is also the first report of ASGV infecting Prunus species in Australia, although it is known to infect other plant species including pome fruit and citrus.
Collapse
Affiliation(s)
- Wycliff M. Kinoti
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- Correspondence:
| | | | - Alison Dann
- Plant Biosecurity and Diagnostic Branch, Bioisecurity Tasmania, Hobart, TAS 7001, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Fiona E. Constable
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| |
Collapse
|
176
|
Orton JP, Morales M, Fontenele RS, Schmidlin K, Kraberger S, Leavitt DJ, Webster TH, Wilson MA, Kusumi K, Dolby GA, Varsani A. Virus Discovery in Desert Tortoise Fecal Samples: Novel Circular Single-Stranded DNA Viruses. Viruses 2020; 12:v12020143. [PMID: 31991902 PMCID: PMC7077246 DOI: 10.3390/v12020143] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/25/2022] Open
Abstract
The Sonoran Desert tortoise Gopherus morafkai is adapted to the desert, and plays an important ecological role in this environment. There is limited information on the viral diversity associated with tortoises (family Testudinidae), and to date no DNA virus has been identified associated with these animals. This study aimed to assess the diversity of DNA viruses associated with the Sonoran Desert tortoise by sampling their fecal matter. A viral metagenomics approach was used to identify the DNA viruses in fecal samples from wild Sonoran Desert tortoises in Arizona, USA. In total, 156 novel single-stranded DNA viruses were identified from 40 fecal samples. Those belonged to two known viral families, the Genomoviridae (n = 27) and Microviridae (n = 119). In addition, 10 genomes were recovered that belong to the unclassified group of circular-replication associated protein encoding single-stranded (CRESS) DNA virus and five circular molecules encoding viral-like proteins.
Collapse
Affiliation(s)
- Joseph P. Orton
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
| | - Matheo Morales
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
| | - Rafaela S. Fontenele
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA;
| | - Kara Schmidlin
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA;
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA;
| | - Daniel J. Leavitt
- Natural Resources Program, Naval Facilities Engineering Command-Navy Region Southwest, San Diego, CA 92101, USA, USA;
| | - Timothy H. Webster
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
| | - Greer A. Dolby
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
- Correspondence: (G.A.D.); (A.V.); Tel.: +1-480-965-7456 (G.A.D.); +1-480-727-2093 (A.V.)
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA;
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: (G.A.D.); (A.V.); Tel.: +1-480-965-7456 (G.A.D.); +1-480-727-2093 (A.V.)
| |
Collapse
|
177
|
Multilocus data reveal deep phylogenetic relationships and intercontinental biogeography of the Eurasian-North American genus Corylus (Betulaceae). Mol Phylogenet Evol 2020; 142:106658. [DOI: 10.1016/j.ympev.2019.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
|
178
|
Roy A, Stone AL, Otero-Colina G, Wei G, Brlansky RH, Ochoa R, Bauchan G, Schneider WL, Nakhla MK, Hartung JS. Reassortment of Genome Segments Creates Stable Lineages Among Strains of Orchid Fleck Virus Infecting Citrus in Mexico. PHYTOPATHOLOGY 2020; 110:106-120. [PMID: 31600117 DOI: 10.1094/phyto-07-19-0253-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The genus Dichorhavirus contains viruses with bipartite, negative-sense, single-stranded RNA genomes that are transmitted by flat mites to hosts that include orchids, coffee, the genus Clerodendrum, and citrus. A dichorhavirus infecting citrus in Mexico is classified as a citrus strain of orchid fleck virus (OFV-Cit). We previously used RNA sequencing technologies on OFV-Cit samples from Mexico to develop an OFV-Cit-specific reverse transcription PCR (RT-PCR) assay. During assay validation, OFV-Cit-specific RT-PCR failed to produce an amplicon from some samples with clear symptoms of OFV-Cit. Characterization of this virus revealed that dichorhavirus-like particles were found in the nucleus. High-throughput sequencing of small RNAs from these citrus plants revealed a novel citrus strain of OFV, OFV-Cit2. Sequence comparisons with known orchid and citrus strains of OFV showed variation in the protein products encoded by genome segment 1 (RNA1). Strains of OFV clustered together based on host of origin, whether orchid or citrus, and were clearly separated from other dichorhaviruses described from infected citrus in Brazil. The variation in RNA1 between the original (now OFV-Cit1) and the new (OFV-Cit2) strain was not observed with genome segment 2 (RNA2), but instead, a common RNA2 molecule was shared among strains of OFV-Cit1 and -Cit2, a situation strikingly similar to OFV infecting orchids. We also collected mites at the affected groves, identified them as Brevipalpus californicus sensu stricto, and confirmed that they were infected by OFV-Cit1 or with both OFV-Cit1 and -Cit2. OFV-Cit1 and -Cit2 have coexisted at the same site in Toliman, Queretaro, Mexico since 2012. OFV strain-specific diagnostic tests were developed.
Collapse
Affiliation(s)
- Avijit Roy
- U.S. Department of Agriculture-APHIS PPQ S&T, Beltsville, MD 20705, U.S.A
| | - Andrew L Stone
- Foreign Disease Weed Science Research Unit, U.S. Department of Agriculture-Agriculture Research Service, Ft. Detrick, MD 21702, U.S.A
| | - Gabriel Otero-Colina
- Colegio de Postgraduados, Campus Montecillo, Texcoco, Edo. de Mex. CP56230, Mexico
| | - Gang Wei
- U.S. Department of Agriculture-APHIS PPQ S&T, Beltsville, MD 20705, U.S.A
| | | | - Ronald Ochoa
- U.S. Department of Agriculture-Agriculture Research Service, Beltsville, MD 20705, U.S.A
| | - Gary Bauchan
- U.S. Department of Agriculture-Agriculture Research Service, Beltsville, MD 20705, U.S.A
| | | | - Mark K Nakhla
- U.S. Department of Agriculture-APHIS PPQ S&T, Beltsville, MD 20705, U.S.A
| | - John S Hartung
- U.S. Department of Agriculture-Agriculture Research Service, Beltsville, MD 20705, U.S.A
| |
Collapse
|
179
|
Limited Intrahost Diversity and Background Evolution Accompany 40 Years of Canine Parvovirus Host Adaptation and Spread. J Virol 2019; 94:JVI.01162-19. [PMID: 31619551 DOI: 10.1128/jvi.01162-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022] Open
Abstract
Canine parvovirus (CPV) is a highly successful pathogen that has sustained pandemic circulation in dogs for more than 40 years. Here, integrating full-genome and deep-sequencing analyses, structural information, and in vitro experimentation, we describe the macro- and microscale features that accompany CPV's evolutionary success. Despite 40 years of viral evolution, all CPV variants are more than ∼99% identical in nucleotide sequence, with only a limited number (<40) of substitutions becoming fixed or widespread during this time. Notably, most substitutions in the major capsid protein (VP2) gene are nonsynonymous, altering amino acid residues that fall within, or adjacent to, the overlapping receptor footprint or antigenic regions, suggesting that natural selection has channeled much of CPV evolution. Among the limited number of variable sites, CPV genomes exhibit complex patterns of variation that include parallel evolution, reversion, and recombination, compromising phylogenetic inference. At the intrahost level, deep sequencing of viral DNA in original clinical samples from dogs and other host species sampled between 1978 and 2018 revealed few subconsensus single nucleotide variants (SNVs) above ∼0.5%, and experimental passages demonstrate that substantial preexisting genetic variation is not necessarily required for rapid host receptor-driven adaptation. Together, these findings suggest that although CPV is capable of rapid host adaptation, a relatively low mutation rate, pleiotropy, and/or a lack of selective challenges since its initial emergence have inhibited the long-term accumulation of genetic diversity. Hence, continuously high levels of inter- and intrahost diversity are not necessarily required for virus host adaptation.IMPORTANCE Rapid mutation rates and correspondingly high levels of intra- and interhost diversity are often cited as key features of viruses with the capacity for emergence and sustained transmission in a new host species. However, most of this information comes from studies of RNA viruses, with relatively little known about evolutionary processes in viruses with single-stranded DNA (ssDNA) genomes. Here, we provide a unique model of virus evolution, integrating both long-term global-scale and short-term intrahost evolutionary processes of an ssDNA virus that emerged to cause a pandemic in a new host animal. Our analysis reveals that successful host jumping and sustained transmission does not necessarily depend on a high level of intrahost diversity nor result in the continued accumulation of high levels of long-term evolution change. These findings indicate that all aspects of the biology and ecology of a virus are relevant when considering their adaptability.
Collapse
|
180
|
Crocodilepox Virus Evolutionary Genomics Supports Observed Poxvirus Infection Dynamics on Saltwater Crocodile ( Crocodylus porosus). Viruses 2019; 11:v11121116. [PMID: 31810339 PMCID: PMC6950651 DOI: 10.3390/v11121116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/04/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Saltwater crocodilepox virus (SwCRV), belonging to the genus Crocodylidpoxvirus, are large DNA viruses posing an economic risk to Australian saltwater crocodile (Crocodylus porosus) farms by extending production times. Although poxvirus-like particles and sequences have been confirmed, their infection dynamics, inter-farm genetic variability and evolutionary relationships remain largely unknown. In this study, a poxvirus infection dynamics study was conducted on two C. porosus farms. One farm (Farm 2) showed twice the infection rate, and more concerningly, an increase in the number of early- to late-stage poxvirus lesions as crocodiles approached harvest size, reflecting the extended production periods observed on this farm. To determine if there was a genetic basis for this difference, 14 complete SwCRV genomes were isolated from lesions sourced from five Australian farms. They encompassed all the conserved genes when compared to the two previously reported SwCRV genomes and fell within three major clades. Farm 2′s SwCRV sequences were distributed across all three clades, highlighting the likely mode of inter-farm transmission. Twenty-four recombination events were detected, with one recombination event resulting in consistent fragmentation of the P4c gene in the majority of the Farm 2 SwCRV isolates. Further investigation into the evolution of poxvirus infection in farmed crocodiles may offer valuable insights in evolution of this viral family and afford the opportunity to obtain crucial information into natural viral selection processes in an in vivo setting.
Collapse
|
181
|
Schachner A, Gonzalez G, Endler L, Ito K, Hess M. Fowl Adenovirus (FAdV) Recombination with Intertypic Crossovers in Genomes of FAdV-D and FAdV-E, Displaying Hybrid Serological Phenotypes. Viruses 2019; 11:v11121094. [PMID: 31779121 PMCID: PMC6950264 DOI: 10.3390/v11121094] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022] Open
Abstract
After analyzing 27 new genomes from fowl adenovirus (FAdV) field isolates and so-far unsequenced prototypes, we report the first evidence for recombination in FAdVs. Recombination was confined to species FAdV-D and FAdV-E, accommodating the largest number of, and the intraspecies-wise most differentiated, types. The majority of detected events occurred in FAdV-E, involving segments with parental origin of all constitutive types. Together with the diversity of breakpoints, this suggests widespread recombination in this species. With possible constraints through species-specific genes and diversification patterns, the recombinogenic potential of FAdVs attains particular interest for inclusion body hepatitis (IBH), an important disease in chickens, caused by types from the recombination-prone species. Autonomously evolving, recombinant segments were associated with major sites under positive selection, among them the capsid protein hexon and fiber genes, the right-terminal ORFs 19, 25, and the ORF20/20A family. The observed mosaicism in genes indicated as targets of adaptive pressures points toward an immune evasion strategy. Intertypic hexon/fiber-recombinants demonstrated hybrid neutralization profiles, retrospectively explaining reported controversies on reference strains B3-A, T8-A, and X11-A. Furthermore, cross-neutralization supported sequence-based evidence for interdomain recombination in fiber and contributed to a tentatively new type. Overall, our findings challenge the purported uniformity of types responsible for IBH, urging more complete identification strategies for FAdVs. Finally, important consequences arise for in vivo studies investigating cross-protection against IBH.
Collapse
Affiliation(s)
- Anna Schachner
- Christian Doppler Laboratory for Innovative Poultry Vaccines, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-25077-4727
| | - Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (G.G.); (K.I.)
| | - Lukas Endler
- Bioinformatics and Biostatistics Platform, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (G.G.); (K.I.)
| | - Michael Hess
- Christian Doppler Laboratory for Innovative Poultry Vaccines, University of Veterinary Medicine, 1210 Vienna, Austria;
- University Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
182
|
Phage Transduction is Involved in the Intergeneric Spread of Antibiotic Resistance-Associated bla CTX-M, mel, and tetM Loci in Natural Populations of Some Human and Animal Bacterial Pathogens. Curr Microbiol 2019; 77:185-193. [PMID: 31754824 DOI: 10.1007/s00284-019-01817-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The horizontal genetic transfer (HGT) of antibiotic resistance genes (ARGs) mediated by species-specific bacteriophages contributes to the emergence of antibiotic-resistant strains in natural populations of human and animal bacterial pathogens posing a significant threat to global public health. However, it is unclear and needs to be determined whether polyvalent bacteriophages play any role in the intergeneric transmission of ARGs. In this study, we examined the genome sequences of 2239 bacteriophages from different sources for the presence of ARGs. The identified ARG-carrying bacteriophages were then analyzed by PHACTS, PHAST, and HostPhinder programs to determine their lifestyles, genes coding for bacterial cell lysis, recombinases, and a spectrum of their potential host species, respectively. We employed the SplitsTree, RDP4 and SimPlot software packages in recombination tests to identify HGT events of ARGs between these bacteriophages and bacteria. In our analyses, some ARG-carrying bacteriophages exhibited temperate and/or polyvalent patterns. The bootstrap values (97-100) for the SplitsTree-generated parallelograms, fit values (97-100) for splits networks, Phi P values (< 10-17 to 3.9 × 10-16), RDP4 P values (≤ 7.8 × 10-03), and the SimPlot results, provided strong statistical evidence for the phage transduction events of blaCTX-M, mel, and tetM loci on inter-species level. These events involved several host species such as Escherichia coli, Salmonella enterica, Shigella sonnei, Streptococcus pneumoniae and Bacillus coagulans. HGT of mel loci between Erysipelothrix and Streptococcus phages were also detected. These results firmly suggest that certain bacteriophages possibly with temperate properties induce the intergeneric dissemination of blaCTX-M, mel and tetM in the above species.
Collapse
|
183
|
Genetic structure of Mycoplasma ovipneumoniae informs pathogen spillover dynamics between domestic and wild Caprinae in the western United States. Sci Rep 2019; 9:15318. [PMID: 31653889 PMCID: PMC6814754 DOI: 10.1038/s41598-019-51444-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/30/2019] [Indexed: 01/24/2023] Open
Abstract
Spillover diseases have significant consequences for human and animal health, as well as wildlife conservation. We examined spillover and transmission of the pneumonia-associated bacterium Mycoplasma ovipneumoniae in domestic sheep, domestic goats, bighorn sheep, and mountain goats across the western United States using 594 isolates, collected from 1984 to 2017. Our results indicate high genetic diversity of M. ovipneumoniae strains within domestic sheep, whereas only one or a few strains tend to circulate in most populations of bighorn sheep or mountain goats. These data suggest domestic sheep are a reservoir, while the few spillovers to bighorn sheep and mountain goats can persist for extended periods. Domestic goat strains form a distinct clade from those in domestic sheep, and strains from both clades are found in bighorn sheep. The genetic structure of domestic sheep strains could not be explained by geography, whereas some strains are spatially clustered and shared among proximate bighorn sheep populations, supporting pathogen establishment and spread following spillover. These data suggest that the ability to predict M. ovipneumoniae spillover into wildlife populations may remain a challenge given the high strain diversity in domestic sheep and need for more comprehensive pathogen surveillance.
Collapse
|
184
|
Vázquez ML. Molecular evolution of the internal transcribed spacers in red oaks (Quercus sect. Lobatae). Comput Biol Chem 2019; 83:107117. [PMID: 31581032 DOI: 10.1016/j.compbiolchem.2019.107117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
Previous studies of the Internal Transcribed Spacers of the nuclear ribosomal DNA (ITS) in sections Quercus (white oaks), Protobalanus (intermediate or golden cup oaks), Cerris (Cerris oaks), and Ilex (Ilex oaks) suggest that ITS regions undergo full concerted evolution in oaks; however, ITS evolution patterns in red oaks (section Lobatae) are unknown due to scant representation in published work. To determine whether full concerted evolution occurs in red oaks, the purpose of this study was to examine ITS sequences from 40 red oak species. The results show incomplete concerted evolution and the presence of three ITS ribotypes of lengths 505, 609, 601 bp, hereafter referred to as ITS-S (small), I ITS-M (medium), and ITS-L (large), respectively. Thirty species had only one ribotype (ITS-M), nine species had two ribotypes (different combinations of ITS-L, ITS-M, and ITS-S), and only one species had all three ribotypes. Furthermore, examination of these three ribotypes showed that only ITS-M is putatively functional and ITS-L and ITS-S are pseudogenes. Bayesian analysis strongly supported (100%) two pseudogenes clades but provided weak support for the monophyly of a putative functional clade (ITS-M); moreover, within the "functional" clade, species relationships were uncertain and, in most cases, sequences from the same species failed to group together. The results of the current study suggest that ITS may not be appropriate for phylogeny reconstruction of red oaks due to low levels of interspecific variation and incomplete concerted evolution.
Collapse
Affiliation(s)
- M Lucía Vázquez
- Biology Department, University of Illinois Springfield, One University Plaza, Springfield, IL, 62794-9243, USA.
| |
Collapse
|
185
|
Jeon HB, Won H, Suk HY. Polymorphism of MHC class IIB in an acheilognathid species, Rhodeus sinensis shaped by historical selection and recombination. BMC Genet 2019; 20:74. [PMID: 31519169 PMCID: PMC6743125 DOI: 10.1186/s12863-019-0775-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rhodeus sinensis is a bitterling species occurring throughout the numerous freshwater systems on the East Asia. Here, we analyzed the diversity of the MHC class IIB (DAB) genes from this species, which may offer meaningful insights into evolutionary processes in this species as well as other bitterlings. RESULTS Using cDNA and gDNA samples from 50 individuals, we discovered classical 140 allelic sequences that could be allocated into either DAB1 (Rhsi-DAB1) or DAB3 (Rhsi-DAB3). DAB sequences completely lacking the intron, but identical or similar to Rhsi-DAB1, were also discovered from our gDNA samples, and this intron loss likely originated from the retrotransposition events of processed mDNA. The β1 domain was the most polymorphic in both Rhsi-DAB1 and -DAB3. Putative peptide biding residues (PBRs) in Rhsi-DAB1, but not in Rhsi-DAB3, exhibited a significant dN/dS, presumably indicating that different selection pressures have acted on those two DABs. Recombination between different alleles seemed to have contributed to the increase of diversity in Rhsi-DABs. Upon phylogenetic analysis, Rhsi-DAB1 and -DAB3 formed independent clusters. Several alleles from other species of Cypriniformes were embedded in the clade of Rhsi-DAB1, whereas Rhsi-DAB3 clustered with alleles from the wider range of taxa (Cyprinodontiformes), indicating that these two Rhsi-DABs have taken different historical paths. CONCLUSIONS A great deal of MHC class IIB allelic diversity was found in R. sinensis, and gene duplication, selection and recombination may have contributed to this diversity. Based on our data, it is presumed that such historical processes have commonly or differently acted on the polymorphism of Rhsi-DAB1 and -DAB3.
Collapse
Affiliation(s)
- Hyung-Bae Jeon
- Department of Life Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do 38541 South Korea
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec H4B 1R6 Canada
| | - Hari Won
- Department of Life Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do 38541 South Korea
| | - Ho Young Suk
- Department of Life Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do 38541 South Korea
| |
Collapse
|
186
|
Li K, Yan S, Wang N, He W, Guan H, He C, Wang Z, Lu M, He W, Ye R, Veit M, Su S. Emergence and adaptive evolution of Nipah virus. Transbound Emerg Dis 2019; 67:121-132. [PMID: 31408582 PMCID: PMC7168560 DOI: 10.1111/tbed.13330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022]
Abstract
Since its first emergence in 1998 in Malaysia, Nipah virus (NiV) has become a great threat to domestic animals and humans. Sporadic outbreaks associated with human-to-human transmission caused hundreds of human fatalities. Here, we collected all available NiV sequences and combined phylogenetics, molecular selection, structural biology and receptor analysis to study the emergence and adaptive evolution of NiV. NiV can be divided into two main lineages including the Bangladesh and Malaysia lineages. We formly confirmed a significant association with geography which is probably the result of long-term evolution of NiV in local bat population. The two NiV lineages differ in many amino acids; one change in the fusion protein might be involved in its activation via binding to the G protein. We also identified adaptive and positively selected sites in many viral proteins. In the receptor-binding G protein, we found that sites 384, 386 and especially 498 of G protein might modulate receptor-binding affinity and thus contribute to the host jump from bats to humans via the adaption to bind the human ephrin-B2 receptor. We also found that site 1645 in the connector domain of L was positive selected and involved in adaptive evolution; this site might add methyl groups to the cap structure present at the 5'-end of the RNA and thus modulate its activity. This study provides insight to assist the design of early detection methods for NiV to assess its epidemic potential in humans.
Collapse
Affiliation(s)
- Kemang Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shiyu Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ningning Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wanting He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haifei Guan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengxi He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhixue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rui Ye
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin, Germany
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
187
|
Harl J, Himmel T, Valkiūnas G, Weissenböck H. The nuclear 18S ribosomal DNAs of avian haemosporidian parasites. Malar J 2019; 18:305. [PMID: 31481072 PMCID: PMC6724295 DOI: 10.1186/s12936-019-2940-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/27/2019] [Indexed: 01/19/2023] Open
Abstract
Background Plasmodium species feature only four to eight nuclear ribosomal units on different chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants originate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during different developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species. Methods Almost the entire 18S rDNAs of avian haemosporidians belonging to the genera Plasmodium (7), Haemoproteus (9), and Leucocytozoon (16) were obtained by PCR, molecular cloning, and sequencing ten clones each. Phylogenetic trees were calculated and sequence patterns were analysed and compared to those of simian and rodent malaria species. A section of the mitochondrial CytB was also sequenced. Results Sequence patterns in most avian Plasmodium species were similar to those in the mammalian parasites with most species featuring two distinct 18S rDNA sequence clusters. Distinct 18S variants were also found in Haemoproteus tartakovskyi and the three Leucocytozoon species, whereas the other species featured sets of similar haplotypes. The 18S rDNA GC-contents of the Leucocytozoon toddi complex and the subgenus Parahaemoproteus were extremely high with 49.3% and 44.9%, respectively. The 18S sequences of several species from all three genera showed chimeric features, thus indicating recombination. Conclusion Gene duplication events leading to two diverged main sequence clusters happened independently in at least six out of seven avian Plasmodium species, thus supporting evolution according to a birth-and-death model like proposed for the ribosomal units of simian and rodent Plasmodium species. Patterns were similar in the 18S rDNAs of the Leucocytozoon toddi complex and Haemoproteus tartakovskyi. However, the 18S rDNAs of the other species seem to evolve in concerted fashion like in most eukaryotes, but the presence of chimeric variants indicates that the ribosomal units rather evolve in a semi-concerted manner. The new data may provide a basis for studies testing whether differential expression of distinct 18S rDNA also occurs in avian Plasmodium species and related haemosporidian parasites.
Collapse
Affiliation(s)
- Josef Harl
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Tanja Himmel
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria
| | | | - Herbert Weissenböck
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
188
|
Zhang WL, Zhang HL, Xu H, Tang YD, Leng CL, Peng JM, Wang Q, An TQ, Cai XH, Fan JH, Tian ZJ. Two novel recombinant porcine reproductive and respiratory syndrome viruses belong to sublineage 3.5 originating from sublineage 3.2. Transbound Emerg Dis 2019; 66:2592-2600. [PMID: 31379138 DOI: 10.1111/tbed.13320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/17/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an agent of porcine reproductive and respiratory syndrome (PRRS), which causes substantial economic losses to the swine industry. PRRSV displays rapid variation, and five lineages coexist in mainland China. Lineage 3 PRRSVs emerged in mainland China in 2005 and prevailed in southern China after 2010. In the present study, two lineage 3 PRRSV strains, which are named SD110-1608 and SDWH27-1710, were isolated from northern China in 2017. To explore the characteristics and origins of the two strains, we divided lineage 3 into five sublineages (3.1-3.5) based on 146 open reading frame (ORF) 5 sequences. Both strains and the strains isolated from mainland China were classified into sublineage 3.5. Lineage 3 PRRSVs isolated from Taiwan and Hong Kong were classified into sublineages 3.1-3.3 and sublineage 3.4, respectively. Recombination analysis revealed that SD110-1608 and SDWH27-1710 were derived from recombination of QYYZ (major parent strain) and JXA1 (minor parent strain). Sequence alignment showed that SD110-1608 and SDWH27-1710 shared a 36-aa insertion in Nsp2 with QYYZ isolated from Guangdong Province in 2010. Based on the evolutionary relationship among GP2a, GP3, GP4, GP5 and N proteins between sublineages 3.2 (FJ-1) and 3.5 (FJFS), we speculated that sublineage 3.5 (mainland China) originated from sublineage 3.2 (Taiwan, China). This study provides important information regarding the classification and transmission of lineage 3 PRRSVs.
Collapse
Affiliation(s)
- Wen-Li Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hong-Liang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao-Liang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Jin-Mei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong-Qing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing-Hui Fan
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
189
|
Evolutionary Dynamics of the Lineage 2 West Nile Virus That Caused the Largest European Epidemic: Italy 2011-2018. Viruses 2019; 11:v11090814. [PMID: 31484295 PMCID: PMC6784286 DOI: 10.3390/v11090814] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023] Open
Abstract
Lineage 2 West Nile virus (WNV) caused a vast epidemic in Europe in 2018, with the highest incidence being recorded in Italy. To reconstruct the evolutionary dynamics and epidemiological history of the virus in Italy, 53 envelope gene and 26 complete genome sequences obtained from human and animal samples were characterised by means of next-generation sequencing. Phylogenetic analysis revealed two Italian strains originating between 2010 and 2012: clade A, which apparently became extinct in 2013–2014, and clade B, which was responsible for the 2018 epidemic. The mean genetic distances in clade B increased over time and with the distance between sampling locations. Bayesian birth-death and coalescent skyline plots of the clade B showed that the effective number of infections and the effective reproduction number (Re) increased between 2015 and 2018. Our data suggest that WNV-2 entered Italy in 2011 as a result of one or a few penetration events. Clade B differentiated mainly as a result of genetic drift and purifying selection, leading to the appearance of multiple locally circulating sub-clades for different times. Phylodynamic analysis showed a current expansion of the infection among reservoir birds and/or vectors.
Collapse
|
190
|
Claverie S, Ouattara A, Hoareau M, Filloux D, Varsani A, Roumagnac P, Martin DP, Lett JM, Lefeuvre P. Exploring the diversity of Poaceae-infecting mastreviruses on Reunion Island using a viral metagenomics-based approach. Sci Rep 2019; 9:12716. [PMID: 31481704 PMCID: PMC6722101 DOI: 10.1038/s41598-019-49134-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023] Open
Abstract
Mostly found in Africa and its surrounding islands, African streak viruses (AfSV) represent the largest group of known mastreviruses. Of the thirteen AfSV species that are known to infect either cultivated or wild Poaceae plant species, six have been identified on Reunion Island. To better characterize AfSV diversity on this island, we undertook a survey of a small agroecosystem using a new metagenomics-based approach involving rolling circle amplification with random PCR amplification tagging (RCA-RA-PCR), high-throughput sequencing (Illumina HiSeq) and the mastrevirus reads classification using phylogenetic placement. Mastreviruses that likely belong to three new species were discovered and full genome sequences of these were determined by Sanger sequencing. The geminivirus-focused metagenomics approach we applied in this study was useful in both the detection of known and novel mastreviruses. The results confirm that Reunion Island is indeed a hotspot of AfSV diversity and that many of the mastrevirus species have likely been introduced multiple times. Applying a similar approach in other natural and agricultural environments should yield sufficient detail on the composition and diversity of geminivirus communities to precipitate major advances in our understanding of the ecology and the evolutionary history of this important group of viruses.
Collapse
Affiliation(s)
- Sohini Claverie
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France.,Université de La Réunion, UMR PVBMT, Pôle de Protection des Plantes, 7 Chemin de l'IRAT, Saint-Pierre, 97410, France
| | - Alassane Ouattara
- INERA, 01 BP 476, Ouagadougou 01, Burkina Faso.,Laboratoire Biosciences, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | | | - Denis Filloux
- CIRAD, UMR BGPI, F-34398, Montpellier, France.,BGPI, Université de Montpellier, INRA, CIRAD, Montpellier SupAgro, F-34398, Montpellier, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001, USA.,Structural Biology Research Unit, Departement of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Philippe Roumagnac
- CIRAD, UMR BGPI, F-34398, Montpellier, France.,BGPI, Université de Montpellier, INRA, CIRAD, Montpellier SupAgro, F-34398, Montpellier, France
| | - Darren P Martin
- Computational Biology Division, Departement of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | | | | |
Collapse
|
191
|
Qurkhuli T, Schwensow N, Brändel SD, Tschapka M, Sommer S. Can extreme MHC class I diversity be a feature of a wide geographic range? The example of Seba's short-tailed bat (Carollia perspicillata). Immunogenetics 2019; 71:575-587. [PMID: 31520134 PMCID: PMC7079943 DOI: 10.1007/s00251-019-01128-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
The major histocompatibility complex (MHC) is one of the most diverse genetic regions under pathogen-driven selection because of its central role in antigen binding and immunity. The highest MHC variability, both in terms of the number of individual alleles and gene copies, has so far been found in passerine birds; this is probably attributable to passerine adaptation to both a wide geographic range and a diverse array of habitats. If extraordinary high MHC variation and duplication rates are adaptive features under selection during the evolution of ecologically and taxonomically diverse species, then similarly diverse MHC architectures should be found in bats. Bats are an extremely species-rich mammalian group that is globally widely distributed. Many bat species roost in multitudinous groups and have high contact rates with pathogens, conspecifics, and allospecifics. We have characterized the MHC class I diversity in 116 Panamanian Seba's short-tailed bats (Carollia perspicillata), a widely distributed, generalist, neotropical species. We have detected a remarkable individual and population-level diversity of MHC class I genes, with between seven and 22 alleles and a unique genotype in each individual. This diversity is comparable with that reported in passerine birds and, in both taxonomic groups, further variability has evolved through length polymorphisms. Our findings support the hypothesis that, for species with a geographically broader range, high MHC class I variability is particularly adaptive. Investigation of the details of the underlying adaptive processes and the role of the high MHC diversity in pathogen resistance are important next steps for a better understanding of the role of bats in viral evolution and as carriers of several deadly zoonotic viruses.
Collapse
Affiliation(s)
- Tamar Qurkhuli
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Nina Schwensow
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Stefan Dominik Brändel
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panamá, República de Panamá
| | - Marco Tschapka
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panamá, República de Panamá
| | - Simone Sommer
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
192
|
Hajizadeh M, Gibbs AJ, Amirnia F, Glasa M. The global phylogeny o f Plum pox virus is emerging. J Gen Virol 2019; 100:1457-1468. [PMID: 31418674 DOI: 10.1099/jgv.0.001308] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The 206 complete genomic sequences of Plum pox virus in GenBank (January 2019) were downloaded. Their main open reading frames (ORF)s were compared by phylogenetic and population genetic methods. All fell into the nine previously recognized strain clusters; the PPV-Rec and PPV-T strain ORFs were all recombinants, whereas most of those in the PPV-C, PPV-CR, PPV-CV, PPV-D, PPV-EA, PPV-M and PPV-W strain clusters were not. The strain clusters ranged in size from 2 (PPV-CV and PPV-EA) to 74 (PPV-D). The isolates of eight of the nine strains came solely from Europe and the Levant (with an exception resulting from a quarantine breach), but many PPV-D strain isolates also came from east and south Asia and the Americas. The estimated time to the most recent common ancestor (TMRCA) of all 134 non-recombinant ORFs was 820 (865-775) BCE. Most strain populations were only a few decades old, and had small intra-strain, but large inter-strain, differences; strain PPV-W was the oldest. Eurasia is clearly the 'centre of emergence' of PPV and the several PPV-D strain populations found elsewhere only show evidence of gene flow with Europe, so have come from separate introductions from Europe. All ORFs and their individual genes show evidence of strong negative selection, except the positively selected pipo gene of the recently migrant populations. The possible ancient origins of PPV are discussed.
Collapse
Affiliation(s)
- Mohammad Hajizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Adrian J Gibbs
- Emeritus Faculty Australian National University, Canberra, Australia
| | - Fahimeh Amirnia
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Miroslav Glasa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
193
|
Analysis of Synonymous Codon Usage Bias in Potato Virus M and Its Adaption to Hosts. Viruses 2019; 11:v11080752. [PMID: 31416257 PMCID: PMC6722529 DOI: 10.3390/v11080752] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Potato virus M (PVM) is a member of the genus Carlavirus of the family Betaflexviridae and causes large economic losses of nightshade crops. Several previous studies have elucidated the population structure, evolutionary timescale and adaptive evolution of PVM. However, the synonymous codon usage pattern of PVM remains unclear. In this study, we performed comprehensive analyses of the codon usage and composition of PVM based on 152 nucleotide sequences of the coat protein (CP) gene and 125 sequences of the cysteine-rich nucleic acid binding protein (NABP) gene. We observed that the PVM CP and NABP coding sequences were GC-and AU-rich, respectively, whereas U- and G-ending codons were preferred in the PVM CP and NABP coding sequences. The lower codon usage of the PVM CP and NABP coding sequences indicated a relatively stable and conserved genomic composition. Natural selection and mutation pressure shaped the codon usage patterns of PVM, with natural selection being the most important factor. The codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of PVM was to pepino, followed by tomato and potato. Moreover, similarity Index (SiD) analysis showed that pepino had a greater impact on PVM than tomato and potato. Our study is the first attempt to evaluate the codon usage pattern of the PVM CP and NABP genes to better understand the evolutionary changes of a carlavirus.
Collapse
|
194
|
Tian X, Wu H, Zhou R. Molecular evolution of human adenovirus type 16 through multiple recombination events. Virus Genes 2019; 55:769-778. [PMID: 31385187 DOI: 10.1007/s11262-019-01698-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
Human mastadenoviruses (HAdVs) are non-enveloped, double-stranded DNA viruses that are comprised of more than 85 types classified within seven species (A-G) based on genomics. All HAdV prototypes and many newly defined type genomes have been completely sequenced and are available. Computational analyses of the prototypes and newly emergent HAdV strains provide insights into the evolutionary history and molecular adaptation of HAdV. Most types of HAdV-B are important pathogens causing severe respiratory infections or urinary tract infections and are well characterized. However, HAdV-16 of the B1 subspecies has rarely been reported and its genome is poorly characterized. In this study, bioinformatics analysis, based on genome sequences obtained in GenBank, suggested that HAdV-16, a prototype HAdV-B species, evolved from multiple intertypic recombination events. HAdV-16 genome contains the hexon loop 1 to loop 2 region from HAdV-E4, the partial hexon conserved region 4 (C4) from the subspecies HAdV-B2, genome region 30,897-33,384 containing the fiber gene from SAdV-35, and other genomic parts from the subspecies HAdV-B1. Moreover, analysis of sequence similarity with HAdV-E4 LI, LII, and SAdV-36 strains demonstrated the recombination events happened rather early. Further, amino acid sequence alignment indicated that the amino acid variations occurred in hypervariable regions (HVRs). Especially, the major difference in HVR7, which contains the critical neutralization epitope of HAdV-E4, between HAdV-16 and HAdV-E4 might explain the low level of cross-neutralization between these strains. Our findings promote better understanding on HAdV evolution, predicting newly emergent HAdV strains, and developing novel HAdV vectors.
Collapse
Affiliation(s)
- Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
195
|
Genetic diversity and evolutionary dynamics of dengue isolates from India. Virusdisease 2019; 30:354-359. [PMID: 31803801 DOI: 10.1007/s13337-019-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022] Open
Abstract
Dengue virus (DENV) is the mosquito borne virus which causes Dengue Haemorrhagic Fever and Dengue Shock Syndrome. It consists of four distinct serotypes (DENV 1-4). DENV 1, 3 and 4 were classified into five genotypes (GI-GV), where as DENV-2 belongs to American and Cosmopolitan genotypes. Dengue virus is most prevalent in south and Southeast Asia including India. This study was initiated to study the genetic diversity and evolution among the Dengue isolates in India. Pairwise comparison of amino acid sequences among the serotypes has shown that DENV-3 is having less sequence diversity compared to other serotypes having differences in their amino acid numbers. We have analyzed the 50 Indian strains and 19 of those strains have been identified as recombinant strains by using RDP4 package, which are then excluded for future selection. Episodic positive selection of DENV was obtained using MEME with P value is ≤ 5. Positive selection on several codons was used to correlate the genetic diversity between serotypes. This study clearly established that diversity of amino acids and inter genotypic recombination of strains are the major cause for antigenicity variation and evolution of DENV within India.
Collapse
|
196
|
Sarker S, Das S, Ghorashi SA, Forwood JK, Raidal SR. Pigeon circoviruses from feral pigeons in Australia demonstrate extensive recombination and genetic admixture with other circoviruses. Avian Pathol 2019; 48:512-520. [PMID: 31199167 DOI: 10.1080/03079457.2019.1629391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Like other avian circovirus species, Pigeon circovirus (PiCV) is known to be genetically diverse with a relatively small circular single-stranded DNA genome of 2 kb that encodes for a capsid protein (Cap) and a replication initiator protein (Rep). Recent paleoviral evidence hints towards a probable Gondwanan origin of avian circoviruses, paralleling the evolution and dispersal of their hosts. Limited availability of PiCV genome sequence data in Australia has hindered phylogeographic studies in this species, so we screened clinically normal rock doves (Columba livia) in regional New South Wales, and demonstrated a high prevalence (76%) of PiCV infection by PCR. We also recovered 12 complete novel PiCV genomes and phylogenetic analyses revealed that PiCV circulating in Australian feral pigeons formed two strongly supported monophyletic clades. One clade resided with PiCV genomes from Poland, Australia, United Kingdom, Belgium, China, and Japan, and another basal clade was more closely related to PiCV genomes from Poland. A novel more distantly-related PiCV rep gene formed a solitary clade with weak posterior support. So we further analysed all selected partial rep gene sequences to demonstrate a likely naturally occurring spillover infection from a passerine circovirus candidate. The findings suggest that there is a high degree of genetic variation within PiCV in Columbiformes with potential greater admixture between avian circoviruses within Australia than previously known. RESEARCH HIGHLIGHTS Confirmed high prevalence rate of PiCV circulating in Australian wild pigeons. Highlighted extensive recombination events within Australian PiCV. Demonstrated a likely naturally occurring spillover infection from a passerine circovirus candidate.
Collapse
Affiliation(s)
- Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University , Melbourne , Australia.,School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - Shubhagata Das
- School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - Seyed A Ghorashi
- School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia.,Veterinary Diagnostic Laboratory, Charles Sturt University , Wagga Wagga , Australia
| |
Collapse
|
197
|
Zanella L, Riquelme I, Buchegger K, Abanto M, Ili C, Brebi P. A reliable Epstein-Barr Virus classification based on phylogenomic and population analyses. Sci Rep 2019; 9:9829. [PMID: 31285478 PMCID: PMC6614506 DOI: 10.1038/s41598-019-45986-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) infects more than 90% of the human population, playing a key role in the origin and progression of malignant and non-malignant diseases. Many attempts have been made to classify EBV according to clinical or epidemiological information; however, these classifications show frequent incongruences. For instance, they use a small subset of genes for sorting strains but fail to consider the enormous genomic variability and abundant recombinant regions present in the EBV genome. These could lead to diversity overestimation, alter the tree topology and misinterpret viral types when classified, therefore, a reliable EBV phylogenetic classification is needed to minimize recombination signals. Recombination events occur 2.5-times more often than mutation events, suggesting that recombination has a much stronger impact than mutation in EBV genomic diversity, detected within common ancestral node positions. The Hierarchical Bayesian Analysis of Population Structure (hierBAPS) resulted in the differentiation of 12 EBV populations showed seven monophyletic and five paraphyletic. The populations identified were related to geographic location, of which three populations (EBV-p1/Asia/GC, EBV-p2/Asia II/Tumors and EBV-p4/China/NPC) were related to tumor development. Therefore, we proposed a new consistent and non-simplistic EBV classification, beneficial in minimizing the recombination signal in the phylogeny reconstruction, investigating geography relationship and even infer associations to human diseases. These EBV classifications could also be useful in developing diagnostic applications or defining which strains need epidemiological surveillance.
Collapse
Affiliation(s)
- Louise Zanella
- Laboratory of Integrative Biology (LIBi), Universidad de La Frontera, Temuco, Chile.,Center for Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile.,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Kurt Buchegger
- Laboratory of Integrative Biology (LIBi), Universidad de La Frontera, Temuco, Chile.,Center for Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile.,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Michel Abanto
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Universidad de La Frontera, Temuco, Chile. .,Center for Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile. .,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Universidad de La Frontera, Temuco, Chile. .,Center for Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile. .,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
198
|
Yuen LKW, Littlejohn M, Duchêne S, Edwards R, Bukulatjpi S, Binks P, Jackson K, Davies J, Davis JS, Tong SYC, Locarnini S. Tracing Ancient Human Migrations into Sahul Using Hepatitis B Virus Genomes. Mol Biol Evol 2019; 36:942-954. [PMID: 30856252 DOI: 10.1093/molbev/msz021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The entry point and timing of ancient human migration into continental Sahul (the combined landmass of Australia, New Guinea, and Tasmania) are subject to debate. Unique strains of hepatitis B virus (HBV) are endemic among modern-day Australian Aboriginals (HBV/C4) and Indigenous Melanesians (HBV/C3). We postulated that HBV genomes could be used to infer human population movements because the main HBV transmission route in endemic populations is via mother-to-child for genotypes B and C infections. Phylogenetic and phylogeographic analyses of HBV genomes inferred the origin of HBV/C4 to be >59 thousand years ago (ka) (95% HPD: 34-85 ka), and most likely to have occurred on the Sunda Shelf (southeast extension of the continental shelf of Southeast Asia). Our analysis further suggested an age of >51 ka (95% Highest Posterior Density (HPD): 36-67 ka) for the most recent common ancestor of HBV/C4 in Australia, correlating with the arrival time of anatomically modern humans into Australia, with the entry point suggested along a southern route via Timor. While we also inferred the origin of HBC/C3 to be on the Sunda Shelf, our analyses suggested that it was carried into Melanesia by Indigenous Melanesians who migrated through New Guinea north of the highlands. These findings reveal that HBV genomes can be used to infer ancient human population movements.
Collapse
Affiliation(s)
- Lilly K W Yuen
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, at the Doherty Institute, Melbourne, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, at the Doherty Institute, Melbourne, Australia
| | - Sebastián Duchêne
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Rosalind Edwards
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, at the Doherty Institute, Melbourne, Australia
| | - Sarah Bukulatjpi
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,Ngalkanbuy Clinic, Galiwin'ku, Australia
| | - Paula Binks
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Kathy Jackson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, at the Doherty Institute, Melbourne, Australia
| | - Jane Davies
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Australia
| | - Joshua S Davis
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,John Hunter Hospital, Newcastle, Australia
| | - Steven Y C Tong
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Australia.,Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Doherty Institute, Melbourne, Australia
| | - Stephen Locarnini
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, at the Doherty Institute, Melbourne, Australia
| |
Collapse
|
199
|
Fuentes S, Jones RAC, Matsuoka H, Ohshima K, Kreuze J, Gibbs AJ. Potato virus Y; the Andean connection. Virus Evol 2019; 5:vez037. [PMID: 31559020 PMCID: PMC6755682 DOI: 10.1093/ve/vez037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Potato virus Y (PVY) causes disease in potatoes and other solanaceous crops. The appearance of its necrogenic strains in the 1980s made it the most economically important virus of potatoes. We report the isolation and genomic sequences of 32 Peruvian isolates of PVY which, together with 428 published PVY genomic sequences, gave an alignment of 460 sequences. Of these 190 (41%) were non-recombinant, and 162 of these provided a dated phylogeny, that corresponds well with the likely history of PVY, and show that PVY originated in South America which is where potatoes were first domesticated. The most basal divergences of the PVY population produced the N and C: O phylogroups; the origin of the N phylogroup is clearly Andean, but that of the O and C phylogroups is unknown, although they may have been first to establish in European crops. The current PVY population originated around 156 CE. PVY was probably first taken from South America to Europe in the 16th century in tubers. Most of the present PVY diversity emerged in the second half of the 19th century, after the Phytophthora infestans epidemics of the mid-19th century destroyed the European crop and stimulated potato breeding. Imported breeding lines were shared, and there was no quarantine. The early O population was joined later by N phylogroup isolates and their recombinants generated the R1 and R2 populations of damaging necrogenic strains. Our dating study has confirmed that human activity has dominated the phylodynamics of PVY for the last two millennia.
Collapse
Affiliation(s)
- Segundo Fuentes
- Crop and System Sciences Division, International Potato Center (CIP), Apartado 1558, Lima 12, Peru
| | - Roger A C Jones
- Crop and System Sciences Division, International Potato Center (CIP), Apartado 1558, Lima 12, Peru
- Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA
| | - Hiroki Matsuoka
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA, Australia
| | - Kazusato Ohshima
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA, Australia
| | - Jan Kreuze
- Crop and System Sciences Division, International Potato Center (CIP), Apartado 1558, Lima 12, Peru
| | - Adrian J Gibbs
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga, Japan
| |
Collapse
|
200
|
Fribourg CE, Gibbs AJ, Adams IP, Boonham N, Jones RAC. Biological and Molecular Properties of Wild potato mosaic virus Isolates from Pepino ( Solanum muricatum). PLANT DISEASE 2019; 103:1746-1756. [PMID: 31082318 DOI: 10.1094/pdis-12-18-2164-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In 1976, a virus with flexuous, filamentous virions typical of the family Potyviridae was isolated from symptomatic pepino (Solanum muricatum) plants growing in two valleys in Peru's coastal desert region. In 2014, a virus with similar-shaped virions was isolated from asymptomatic fruits obtained from pepino plants growing in six coastal valleys and a valley in Peru's Andean highlands. Both were identified subsequently as Wild potato mosaic virus (WPMV) by serology or high-throughput sequencing (HTS). The symptoms caused by two old and seven new isolates from pepino were examined in indicator plants. Infected solanaceous hosts varied considerably in their sensitivities to infection and individual isolates varied greatly in virulence. All seven new isolates caused quick death of infected Nicotiana benthamiana plants and more than half of them killed infected plants of Physalis floridana and S. chancayense. These three species were the most sensitive to infection. The most virulent isolate was found to be BA because it killed five of eight solanaceous host species whereas CA was the least severe because it only killed N. benthamiana. Using HTS, complete genomic sequences of six isolates were obtained, with one isolate (FE) showing evidence of recombination. The distances between individual WPMV isolates in phylogenetic trees and the geographical distances between their collection sites were found to be unrelated. The individual WPMV isolates displayed nucleotide sequence identities of 80.9-99.8%, whereas the most closely related virus, Potato virus V (PVV), was around 75% identical to WPMV. WPMV, PVV, and Peru tomato virus formed clusters of similar phylogenetic diversity, and were found to be distinct but related viruses within the overall Potato virus Y lineage. WPMV infection seems widespread and of likely economic significance to pepino producers in Peru's coastal valleys. Because it constitutes the fifth virus found infecting pepino and this crop is entirely vegetatively propagated, development of healthy pepino stock programs is advocated.
Collapse
Affiliation(s)
- Cesar E Fribourg
- 1 Departamento de Fitopatologia, Universidad Nacional Agraria, La Molina, Lima, Peru
| | - Adrian J Gibbs
- 2 Emeritus Faculty, Australian National University, Canberra, ACT, Australia
| | | | - Neil Boonham
- 4 Institute for Agrifood Research Innovations, Newcastle University, Newcastle upon Tyne, U.K
| | - Roger A C Jones
- 5 Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia, and Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA, Australia
| |
Collapse
|