151
|
Sun CC, Lai YN, Wang WH, Xu XM, Li XQ, Wang H, Zheng JY, Zheng JQ. Metformin Ameliorates Gestational Diabetes Mellitus-Induced Endothelial Dysfunction via Downregulation of p65 and Upregulation of Nrf2. Front Pharmacol 2020; 11:575390. [PMID: 33162888 PMCID: PMC7581851 DOI: 10.3389/fphar.2020.575390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023] Open
Abstract
Gestational diabetes mellitus (GDM) causes oxidative stress in mothers and infants and causes vascular endothelial dysfunction, which is a key factor for maternal and fetal cardiovascular diseases in the later stage of GDM, seriously threatening the life and health of mothers and infants. Nowadays, metformin (MET) has been discovered to improve endothelial function, but studies regarding the mechanism of MET improving endothelial cell function and alleviating endothelial function under hyperglycemia are still extremely limited. We aimed to investigate whether MET exerts its protective role against hyperglycemia-induced endothelial dysfunction through p65 and Nrf2. In our studies, applying cell migration assay and tube formation assay, we observed an obvious improvement of endothelial function under MET-treated, as characterized by that MET accelerated GDM-attenuated migration and angiogenesis of HUVECs. And ELISA assay results uncovered that Nrf2 expression level was decreased in GDM placenta, HVUECs and maternal serum comparing with normal group, however activation Nrf2 largely ameliorated tube formation under hyperglycemic condition. Furthermore, MET elevated the Nrf2 expression level and the level of nuclear Nrf2 accumulation in hyperglycemic HUVECs. Besides, preliminary evidence predicted that Nrf2 expression was modulated by transcription factor p65, which was increased in GDM peripheral blood, placenta and HUVECs, and suppression of p65 could recover GDM-induced suppression of angiogenesis. In addition, we also confirmed MET restores the GDM-induced angiogenesis impairment may via downregulation of p65 and upregulation of Nrf2. Taken together, the endothelial protective effect of MET under GDM (HG) conditions could be partly attributed to its role in downregulating p65 and upregulating Nrf2.
Collapse
Affiliation(s)
- Cong Cong Sun
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Ya Nan Lai
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Wen Huan Wang
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Xiao Min Xu
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Xiao Qing Li
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Hai Wang
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Jia Yong Zheng
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Jian Qiong Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| |
Collapse
|
152
|
Cadegiani FA. Repurposing existing drugs for COVID-19: an endocrinology perspective. BMC Endocr Disord 2020; 20:149. [PMID: 32993622 PMCID: PMC7523486 DOI: 10.1186/s12902-020-00626-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) is a multi-systemic infection caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that has become a pandemic. Although its prevailing symptoms include anosmia, ageusia, dry couch, fever, shortness of brief, arthralgia, myalgia, and fatigue, regional and methodological assessments vary, leading to heterogeneous clinical descriptions of COVID-19. Aging, uncontrolled diabetes, hypertension, obesity, and exposure to androgens have been correlated with worse prognosis in COVID-19. Abnormalities in the renin-angiotensin-aldosterone system (RAAS), angiotensin-converting enzyme-2 (ACE2) and the androgen-driven transmembrane serine protease 2 (TMPRSS2) have been elicited as key modulators of SARS-CoV-2. MAIN TEXT While safe and effective therapies for COVID-19 lack, the current moment of pandemic urges for therapeutic options. Existing drugs should be preferred over novel ones for clinical testing due to four inherent characteristics: 1. Well-established long-term safety profile, known risks and contraindications; 2. More accurate predictions of clinical effects; 3. Familiarity of clinical management; and 4. Affordable costs for public health systems. In the context of the key modulators of SARS-CoV-2 infectivity, endocrine targets have become central as candidates for COVID-19. The only endocrine or endocrine-related drug class with already existing emerging evidence for COVID-19 is the glucocorticoids, particularly for the use of dexamethasone for severely affected patients. Other drugs that are more likely to present clinical effects despite the lack of specific evidence for COVID-19 include anti-androgens (spironolactone, eplerenone, finasteride and dutasteride), statins, N-acetyl cysteine (NAC), ACE inhibitors (ACEi), angiotensin receptor blockers (ARB), and direct TMPRSS-2 inhibitors (nafamostat and camostat). Several other candidates show less consistent plausibility. In common, except for dexamethasone, all candidates have no evidence for COVID-19, and clinical trials are needed. CONCLUSION While dexamethasone may reduce mortality in severely ill patients with COVID-19, in the absence of evidence of any specific drug for mild-to-moderate COVID-19, researchers should consider testing existing drugs due to their favorable safety, familiarity, and cost profile. However, except for dexamethasone in severe COVID-19, drug treatments for COVID-19 patients must be restricted to clinical research studies until efficacy has been extensively proven, with favorable outcomes in terms of reduction in hospitalization, mechanical ventilation, and death.
Collapse
Affiliation(s)
- Flavio A Cadegiani
- Adrenal and Hypertension Unit, Division of Endocrinology and Metabolism, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Pedro de Toledo 781 - 13th floor, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
153
|
Role of metformin in various pathologies: state-of-the-art microcapsules for improving its pharmacokinetics. Ther Deliv 2020; 11:733-753. [PMID: 32967584 DOI: 10.4155/tde-2020-0102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metformin was originally derived from a botanical ancestry and became the most prescribed, first-line therapy for Type 2 diabetes in most countries. In the last century, metformin was discovered twice for its antiglycemic properties in addition to its antimalarial and anti-influenza effects. Metformin exhibits flip-flop pharmacokinetics with limited oral bioavailability. This review outlines metformin pharmacokinetics, pharmacodynamics and recent advances in polymeric particulate delivery systems as a potential tool to target metformin delivery to specific tissues/organs. This interesting biguanide is being rediscovered this century for multiple clinical indications as anticancer, anti-aging, anti-inflammatory, anti-Alzheimer's and much more. Microparticulate delivery systems of metformin may improve its oral bioavailability and optimize the therapeutic goals expected.
Collapse
|
154
|
Spehar K, Pan A, Beerman I. Restoring aged stem cell functionality: Current progress and future directions. Stem Cells 2020; 38:1060-1077. [PMID: 32473067 PMCID: PMC7483369 DOI: 10.1002/stem.3234] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
Stem cell dysfunction is a hallmark of aging, associated with the decline of physical and cognitive abilities of humans and other mammals [Cell 2013;153:1194]. Therefore, it has become an active area of research within the aging and stem cell fields, and various techniques have been employed to mitigate the decline of stem cell function both in vitro and in vivo. While some techniques developed in model organisms are not directly translatable to humans, others show promise in becoming clinically relevant to delay or even mitigate negative phenotypes associated with aging. This review focuses on diet, treatment, and small molecule interventions that provide evidence of functional improvement in at least one type of aged adult stem cell.
Collapse
Affiliation(s)
- Kevin Spehar
- Epigenetics and Stem Cell Aging Unit, Translational Gerontology Branch, National Institute on Aging, NIH, BRC, Baltimore, Maryland
| | - Andrew Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Isabel Beerman
- Epigenetics and Stem Cell Aging Unit, Translational Gerontology Branch, National Institute on Aging, NIH, BRC, Baltimore, Maryland
| |
Collapse
|
155
|
Association between clinical outcomes and metformin use in adults with sickle cell disease and diabetes mellitus. Blood Adv 2020; 3:3297-3306. [PMID: 31698459 DOI: 10.1182/bloodadvances.2019000838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
Metformin was recently found to increase fetal hemoglobin, which is protective in sickle cell disease (SCD). We tested the hypothesis that, among adults with SCD and diabetes mellitus (DM), metformin use is associated with fewer adverse SCD clinical outcomes and lower health care utilization. This is a retrospective cohort study using the MarketScan Medicaid claims database for 2006 to 2016, comparing metformin users and nonusers. Patients on hydroxyurea, insulin, or iron chelation were excluded. Main outcomes included annual rates of all-cause inpatient encounters, all-cause emergency department (ED) encounters, inpatient and ED encounters with SCD codes, vaso-occlusive episodes (VOEs), strokes, acute chest syndrome (ACS), avascular necrosis (AVN), and gallstones. Of 457 adults (median age [interquartile range], 43 years [33-52 years]; 72% female), 142 (31%) were treated with metformin. Adjusted for age, sex, and Charlson Comorbidity Index, metformin users had significantly lower rate ratios of all-cause inpatient encounters (0.68; 95% confidence interval [CI], 0.52-0.88; P < .01), inpatient encounters with SCD codes (0.45; 95% CI, 0.30-0.66; P < .01), ED encounters with SCD codes (0.34; 95% CI, 0.21-0.54; P < .01), VOE (0.22; 95% CI, 0.12-0.41; P < .01), ACS (0.17; 95% CI, 0.05-0.60; P = .01), and AVN (0.30; 95% CI, 0.11-0.87; P = .03). A subgroup analysis of 54 enrollees preinitiation and postinitiation of metformin did not indicate significant changes in rates of clinical events. Metformin was associated with significantly fewer inpatient and ED SCD encounters in adults with SCD and DM; however, confounding of underlying SCD severity cannot be excluded.
Collapse
|
156
|
Chen X, Guo H, Qiu L, Zhang C, Deng Q, Leng Q. Immunomodulatory and Antiviral Activity of Metformin and Its Potential Implications in Treating Coronavirus Disease 2019 and Lung Injury. Front Immunol 2020; 11:2056. [PMID: 32973814 PMCID: PMC7461864 DOI: 10.3389/fimmu.2020.02056] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19), a disease which causes severe lung injury and multiple organ damage, presents an urgent need for new drugs. The case severity and fatality of COVID-19 are associated with excessive inflammation, namely, a cytokine storm. Metformin, a widely used drug to treat type 2 diabetes (T2D) mellitus and metabolic syndrome, has immunomodulatory activity that reduces the production of proinflammatory cytokines using macrophages and causes the formation of neutrophil extracellular traps (NETs). Metformin also inhibits the cytokine production of pathogenic Th1 and Th17 cells. Importantly, treatment with metformin alleviates various lung injuries in preclinical animal models. In addition, a recent proteomic study revealed that metformin has the potential to directly inhibit SARS-CoV-2 infection. Furthermore, retrospective clinical studies have revealed that metformin treatment reduces the mortality of T2D with COVID-19. Therefore, metformin has the potential to be repurposed to treat patients with COVID-19 at risk of developing severe illness. This review summarizes the immune pathogenesis of SARS-CoV-2 and addresses the effects of metformin on inhibiting cytokine storms and preventing SARS-CoV-2 infection, as well as its side effects.
Collapse
Affiliation(s)
- Xianyang Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Huifang Guo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Li Qiu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chengdong Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Qiang Deng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qibin Leng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
157
|
Kuhla A, Brichmann E, Rühlmann C, Thiele R, Meuth L, Vollmar B. Metformin Therapy Aggravates Neurodegenerative Processes in ApoE-/- Mice. J Alzheimers Dis 2020; 68:1415-1427. [PMID: 30909226 DOI: 10.3233/jad-181017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epidemiological studies suggest that individuals with diabetes mellitus are at greater risk of developing Alzheimer's disease. A well-known insulin-sensitizing drug and the most widely prescribed oral medication for diabetes is metformin. There is evidence that metformin acts in a neuroprotective manner via the AMPK/mTOR pathway by inhibiting the tau phosphorylation. In addition, it is known that metformin upregulates Fgf21, which in turn activates the AMPK/mTOR pathway and mediates neuroprotection. Thus, metformin-induced Fgf21 release may be involved in AMPK/mTOR activation. However, some studies reported that metformin causes cognition impairment. Due to the controversial data on the neuroprotective properties of metformin, we treated Apolipoprotein E deficient (ApoE- /-) mice, a mouse model of tauopathy, with metformin for 18 weeks. Metformin-treated mice revealed increased expression of lipogenic genes, i.e., lxrα and srebp1c. In line with this, metformin caused an increase in plasma triglyceride leading to enhanced gliosis as indicated by an increase of GFAP-positive cells. Although the systemic Fgf21 concentration was increased, metformin did not activate the FgfR1c/AMPK/mTOR pathway suggesting a Fgf21-resistant state. Further, metformin-treated mice showed increased tau phosphorylation and reduced numbers of NeuN-and PSD95-positive cells. Thus, metformin-associated lipogenesis as well as inflammation aggravated neurodegenerative processes in ApoE- /- mice. Consequently, this study supports previous observations showing that metformin causes impairment of cognition.
Collapse
Affiliation(s)
- Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Elaine Brichmann
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Claire Rühlmann
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Robin Thiele
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Lou Meuth
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
158
|
Nesci V, Russo E, Arcidiacono B, Citraro R, Tallarico M, Constanti A, Brunetti A, De Sarro G, Leo A. Metabolic Alterations Predispose to Seizure Development in High-Fat Diet-Treated Mice: the Role of Metformin. Mol Neurobiol 2020; 57:4778-4789. [PMID: 32785826 DOI: 10.1007/s12035-020-02062-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
The link between epilepsy and type 2 diabetes (T2DM) and/or metabolic syndrome (MetS) has been poorly investigated. Therefore, we tested whether a high-fat diet (HFD), inducing insulin-resistant diabetes and obesity in mice, would increase susceptibility to develop generalized seizures induced by pentylentetrazole (PTZ) kindling. Furthermore, molecular mechanisms linked to glucose brain transport and the effects of the T2DM antidiabetic drug metformin were also studied along with neuropsychiatric comorbidities. To this aim, two sets of experiments were performed in CD1 mice, in which we firstly evaluated the HFD effects on some metabolic and behavioral parameters in order to have a baseline reference for kindling experiments assessed in the second section of our protocol. We detected that HFD predisposes towards seizure development in the PTZ-kindling model and this was linked to a reduction in glucose transporter-1 (GLUT-1) expression as observed in GLUT-1 deficiency syndrome in humans but accompanied by a compensatory increase in expression of GLUT-3. While we confirmed that HFD induced neuropsychiatric alterations in the treated mice, it did not change the development of kindling comorbidities. Furthermore, we propose that the beneficial effects of metformin we observed towards seizure development are related to a normalization of both GLUT-1 and GLUT-3 expression levels. Overall, our results support the hypothesis that an altered glycometabolic profile could play a pro-epileptic role in human patients. We therefore recommend that MetS or T2DM should be constantly monitored and possibly avoided in patients with epilepsy, since they could further aggravate this latter condition.
Collapse
Affiliation(s)
- Valentina Nesci
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100, Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100, Catanzaro, Italy. .,C.I.S.-Interdepartmental Services Centre of Veterinary for Human and Animal Health, Magna Graecia University of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy.
| | - Biagio Arcidiacono
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100, Catanzaro, Italy
| | - Martina Tallarico
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100, Catanzaro, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London, UK
| | - Antonio Brunetti
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100, Catanzaro, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100, Catanzaro, Italy
| | - Antonio Leo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100, Catanzaro, Italy
| |
Collapse
|
159
|
An overview on alumina-silica-based aerogels. Adv Colloid Interface Sci 2020; 282:102189. [PMID: 32593008 DOI: 10.1016/j.cis.2020.102189] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/15/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023]
Abstract
Silica aerogels are remarkable materials with excellent physicochemical properties, such as high porosity and surface area, along with low density and thermal conductivity. In addition to their outstanding properties, these materials are quite interesting due to the possibility to change their chemistry according to intended applications. However, they also show some disadvantages, like low mechanical strength and poor dimensional stability under high temperatures (above 600 °C). Although these aerogels are frequently used as thermal insulators, for high temperature environments some of their properties need to be improved. The mixing with other ceramic thermally resistant phases is a viable approach. Thus, this work presents an overview on alumina-silica-based aerogels, describing their synthesis, processing and properties. The improvement on their properties will be discussed as a function of the amount of refractory phase (alumina) in the silica matrix. The introduction of the alumina phase makes them stable until 1200-1400 °C, maintaining low values of thermal conductivity at very high temperature (below 81 mW m-1 K-1). Finally, a brief survey on the most promising applications of these materials is presented, with several examples. In catalysis, alumina-silica aerogels have shown equivalent performance when compared to reference catalysts. In the field of thermal insulation, these materials show great potential, especially in high temperatures environments, due to their thermal dimensional stability and inherent low thermal conductivity. As adsorbents, higher stability and adsorption capacity were obtained with the incorporation of the alumina phase in silica aerogels, and these materials can be reused for repeated adsorption/desorption cycles. Indeed, a significant improvement of the aerogel performance by the synergetic effect of combining silica and alumina phases is usually obtained, supporting the expectation of the extension of their fields of application.
Collapse
|
160
|
Zhou Z, Wang C, Li M, Lan Q, Yu C, Yu G, Xia Y, Chen H, Zhang X. In Vitro Dissolution and In Vivo Bioequivalence Evaluation of Two Metformin Extended-Release Tablets. Clin Pharmacol Drug Dev 2020; 10:414-419. [PMID: 32706921 DOI: 10.1002/cpdd.857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 11/07/2022]
Abstract
The objective of the present study was to evaluate the bioequivalence between generic and branded metformin extended-release (ER) tablets in Chinese subjects. We tested bioequivalence in vitro and in vivo using a comparative dissolution study and a comparative pharmacokinetic trial. Safety assessments were conducted throughout the entire trial period. The dissolution profiles of the generic formulation expressed obvious extended-release properties, similar to those of the branded formulation (f2 > 60.0%). Consistent with the result of the in vitro study, no remarkable differences were found in terms of pharmacokinetic profiles between generic and branded formulations. The 90% confidence intervals of Ln AUC0-36 h , Ln AUC0-∞ , and Ln Cmax from generic formulation versus branded formulation were 91.4% to 105.0%, 91.3% to 104.7%, and 101.2% to 119.4%, respectively. During the entire trial period, 4 subjects experienced 11 adverse events. All these were mild and spontaneously resolved. The results obtained from the present study suggest that the generic and branded metformin ER tablets were bioequivalent in Chinese subjects.
Collapse
Affiliation(s)
- Ziye Zhou
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chenxiang Wang
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Min Li
- Office of Drug Clinical Trial Institution, First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qin Lan
- Office of Drug Clinical Trial Institution, First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chao Yu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Guoxin Yu
- Haili Pharmaceutical Co., Ltd, Hainan, China
| | - Yan Xia
- Leeway Biological Technology Co., Ltd, Jiangsu, China
| | - Huafang Chen
- Office of Drug Clinical Trial Institution, First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiuhua Zhang
- Office of Drug Clinical Trial Institution, First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
161
|
Eslami SS, Jafari D, Montazeri H, Sadeghizadeh M, Tarighi P. Combination of Curcumin and Metformin Inhibits Cell Growth and Induces Apoptosis without Affecting the Cell Cycle in LNCaP Prostate Cancer Cell Line. Nutr Cancer 2020; 73:1026-1039. [PMID: 32657143 DOI: 10.1080/01635581.2020.1783327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Side effects and chemotherapy resistance, demand new therapeutics with minimal side effects. Here, we investigated the combined effect of curcumin and metformin on the LNCaP prostate cancer cell line. LNCaP cells were treated with curcumin, metformin, and their combination at different concentrations. Cell viability was assessed by MTT assay and expression of Bax, Bcl-2, mTOR, hTERT, PUMA, p53 and p21 genes was analyzed by real-time PCR. Apoptosis and cell cycle were assessed by flow cytometry. Our results revealed that the viability of cells treated with curcumin, metformin, and their combination was significantly (P < 0.05) reduced with increasing the concentration and prolonging the treatment time. Meanwhile, the combination showed a synergistic effect within 48 h. In the curcumin treated group, the expression of Bcl-2 and hTERT genes diminished. In the metformin treated group, the expression of Bax and PUMA genes was enhanced while the expression of Bcl-2, hTERT, mTOR, and p53 genes declined. Although all treatments induced apoptosis, the combination of curcumin and metformin showed the maximum level of apoptosis, cytotoxicity, and expression of Bax gene. The combination of curcumin and metformin showed synergistic effects within 48 h. This combination could be a potential therapeutic candidate for prostate cancer to be further investigated.
Collapse
Affiliation(s)
- Seyed Sadegh Eslami
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Montazeri
- School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
162
|
Al Kattar S, Jurjus R, Pinon A, Leger DY, Jurjus A, Boukarim C, Diab-Assaf M, Liagre B. Metformin and Probiotics in the Crosstalk between Colitis-Associated Colorectal Cancer and Diabetes in Mice. Cancers (Basel) 2020; 12:1857. [PMID: 32664279 PMCID: PMC7408863 DOI: 10.3390/cancers12071857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
The co-occurrence of colorectal cancer (CRC) and diabetes mellitus along with inflammation and dismicrobism has been frequently reported. Several studies shed light on the antioncogenic potential of metformin on colorectal carcinogenesis. This study aimed to demonstrate that metformin in association with probiotics acts in a synergic effect in breaking the crosstalk, thus inhibiting CRC progression, improving diabetes, and reducing inflammation. Ninety-six male Balb/c mice, 6-8 weeks old, were divided into 16 control and experimental groups to assess the effect of the different treatments and combinations at the clinical, histological, and molecular levels. Metformin and probiotics showed beneficial outcomes on CRC and diabetes, alone and most importantly in combination. Their effects were exerted by inhibiting the inflammatory process whereby a downregulation of IL-6 and TNF-α as well as oxidative stress were depicted. The characterization of the effects of probiotics and metformin on CRC and diabetes sheds light on the role of inflammation and microbiota in this crosstalk. Deciphering the downstream signaling pathways elicited by these compounds will help in developing new effective targeted treatment modalities.
Collapse
Affiliation(s)
- Sahar Al Kattar
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges, 2 Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France; (S.A.K.); (A.P.); (D.Y.L.)
- Doctoral School of Sciences and Technology, Lebanese University, Hadath 99000, Lebanon;
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Aline Pinon
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges, 2 Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France; (S.A.K.); (A.P.); (D.Y.L.)
| | - David Yannick Leger
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges, 2 Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France; (S.A.K.); (A.P.); (D.Y.L.)
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Chawki Boukarim
- Department of Chemistry, Faculty of Sciences III, Lebanese University, Mont Michel Ras Maska, El Koura 826, Lebanon;
| | - Mona Diab-Assaf
- Doctoral School of Sciences and Technology, Lebanese University, Hadath 99000, Lebanon;
| | - Bertrand Liagre
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges, 2 Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France; (S.A.K.); (A.P.); (D.Y.L.)
| |
Collapse
|
163
|
Liu CY, Chang TC, Lin SH, Wu ST, Cha TL, Tsao CW. Metformin Ameliorates Testicular Function and Spermatogenesis in Male Mice with High-Fat and High-Cholesterol Diet-Induced Obesity. Nutrients 2020; 12:nu12071932. [PMID: 32610645 PMCID: PMC7400492 DOI: 10.3390/nu12071932] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate the effects of metformin supplementation on metabolic dysfunction, testicular antioxidant capacity, apoptosis, inflammation and spermatogenesis in male mice with high-fat and high-cholesterol diet-induced obesity. Forty male C57BL/6 mice were fed a normal diet (NC group, n = 10) or a high-fat and high-cholesterol diet (HFC group, n = 30) for 24 weeks, and mice randomly chosen from the HFC group were later treated with metformin for the final 8 weeks of HFC feeding (HFC + Met group, n = 15). Compared with the HFC group, the obese mice supplemented with metformin exhibited improved blood cholesterol, glucose and insulin resistance. The HFC group diminishes in the sperm motility and normal sperm morphology, while the poorer maturity of testicular spermatogenesis was improved by metformin treatment. The HFC group exhibited a higher estradiol level and a lower 17β-HSD protein expression. Further analyses showed that metformin treatment increased the activities of superoxide dismutase, catalase and glutathione peroxidase and reduced lipid peroxidation. Nevertheless, both the HFC and HFC + Met groups exhibited increased expressions of apoptosis and inflammation proteins in the testis. Metformin treatment ameliorated obesity-induced poor testicular spermatogenesis and semen quality through increasing the testosterone level and antioxidant capacity.
Collapse
Affiliation(s)
- Chin-Yu Liu
- Department of Nutritional Science, Fu Jen Catholic University, Taipei 242, Taiwan; (C.-Y.L.); (T.-C.C.)
| | - Ting-Chia Chang
- Department of Nutritional Science, Fu Jen Catholic University, Taipei 242, Taiwan; (C.-Y.L.); (T.-C.C.)
| | - Shyh-Hsiang Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan;
- Master of Program of Food Safety, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (S.-T.W.); (T.-L.C.)
| | - Tai-Lung Cha
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (S.-T.W.); (T.-L.C.)
| | - Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (S.-T.W.); (T.-L.C.)
- Correspondence:
| |
Collapse
|
164
|
Glintborg D, Andersen M. Medical treatment and comorbidity in polycystic ovary syndrome: An updated review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coemr.2020.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
165
|
Vesa CM, Popa L, Popa AR, Rus M, Zaha AA, Bungau S, Tit DM, Corb Aron RA, Zaha DC. Current Data Regarding the Relationship between Type 2 Diabetes Mellitus and Cardiovascular Risk Factors. Diagnostics (Basel) 2020; 10:E314. [PMID: 32429441 PMCID: PMC7277953 DOI: 10.3390/diagnostics10050314] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Reducing cardiovascular risk (CVR) is the main focus of diabetes mellitus (DM) management nowadays. Complex pathogenic mechanisms that are the subject of this review lead to early and severe atherosclerosis in DM patients. Although it is not a cardiovascular disease equivalent at the moment of diagnosis, DM subjects are affected by numerous cardiovascular complications, such as acute coronary syndrome, stroke, or peripheral artery disease, as the disease duration increases. Therefore, early therapeutic intervention is mandatory and recent guidelines focus on intensive CVR factor management: hyperglycaemia, hypertension, and dyslipidaemia. Most important, the appearance of oral or injectable antidiabetic medication such as SGLT-2 inhibitors or GLP-1 agonists has proven that an antidiabetic drug not only reduces glycaemia, but also reduces CVR by complex mechanisms. A profound understanding of intimate mechanisms that generate atherosclerosis in DM and ways to inhibit or delay them are of the utmost importance in a society where cardiovascular morbidity and mortality are predominant.
Collapse
Affiliation(s)
- Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.M.V.); (R.A.C.A.); (D.C.Z.)
| | - Loredana Popa
- Department II of Internal Medicine, Clinical County Emergency Hospital of Oradea, 410169 Oradea; Romania; (L.P.); (A.R.P.); (M.R.)
| | - Amorin Remus Popa
- Department II of Internal Medicine, Clinical County Emergency Hospital of Oradea, 410169 Oradea; Romania; (L.P.); (A.R.P.); (M.R.)
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Marius Rus
- Department II of Internal Medicine, Clinical County Emergency Hospital of Oradea, 410169 Oradea; Romania; (L.P.); (A.R.P.); (M.R.)
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Andreea Atena Zaha
- Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj Napoca, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Raluca Anca Corb Aron
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.M.V.); (R.A.C.A.); (D.C.Z.)
| | - Dana Carmen Zaha
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.M.V.); (R.A.C.A.); (D.C.Z.)
| |
Collapse
|
166
|
Zhao B, Luo J, Yu T, Zhou L, Lv H, Shang P. Anticancer mechanisms of metformin: A review of the current evidence. Life Sci 2020; 254:117717. [PMID: 32339541 DOI: 10.1016/j.lfs.2020.117717] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
Metformin, a US Food and Drug Administration-approved "star" drug used for diabetes mellitus type 2, has become a topic of increasing interest to researchers due to its anti-neoplastic effects. Growing evidence has demonstrated that metformin may be a promising chemotherapeutic agent, and several clinical trials of metformin use in cancer treatment are ongoing. However, the anti-neoplastic effects of metformin and its underlying mechanisms have not been fully elucidated. In this review, we present the newest findings on the anticancer activities of metformin, and highlight its diverse anticancer mechanisms. Several clinical trials, as well as the limitations of the current evidence are also demonstrated. This review explores the crucial roles of metformin and provides supporting evidence for the repurposing of metformin as a treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jie Luo
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tongyao Yu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Liangfu Zhou
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Huanhuan Lv
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
167
|
Chen Y, Shan X, Luo C, He Z. Emerging nanoparticulate drug delivery systems
of metformin. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00480-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
168
|
Miao ZF, Adkins-Threats M, Burclaff JR, Osaki LH, Sun JX, Kefalov Y, He Z, Wang ZN, Mills JC. A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation. Cell Stem Cell 2020; 26:910-925.e6. [PMID: 32243780 DOI: 10.1016/j.stem.2020.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Cellular metabolism plays important functions in dictating stem cell behaviors, although its role in stomach epithelial homeostasis has not been evaluated in depth. Here, we show that the energy sensor AMP kinase (AMPK) governs gastric epithelial progenitor differentiation. Administering the AMPK activator metformin decreases epithelial progenitor proliferation and increases acid-secreting parietal cells (PCs) in mice and organoids. AMPK activation targets Krüppel-like factor 4 (KLF4), known to govern progenitor proliferation and PC fate choice, and PGC1α, which we show controls PC maturation after their specification. PC-specific deletion of AMPKα or PGC1α causes defective PC maturation, which could not be rescued by metformin. However, metformin treatment still increases KLF4 levels and suppresses progenitor proliferation. Thus, AMPK activates KLF4 in progenitors to reduce self-renewal and promote PC fate, whereas AMPK-PGC1α activation within the PC lineage promotes maturation, providing a potential suggestion for why metformin increases acid secretion and reduces gastric cancer risk in humans.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Mahliyah Adkins-Threats
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph R Burclaff
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Luciana H Osaki
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing-Xu Sun
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Yan Kefalov
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zheng He
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
169
|
Shikuma CM, Chew GM, Kohorn L, Souza SA, Chow D, SahBandar IN, Park EY, Hanks N, Gangcuangco LMA, Gerschenson M, Ndhlovu LC. Short Communication: Metformin Reduces CD4 T Cell Exhaustion in HIV-Infected Adults on Suppressive Antiretroviral Therapy. AIDS Res Hum Retroviruses 2020; 36:303-305. [PMID: 31731885 DOI: 10.1089/aid.2019.0078] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Increased negative immune checkpoint receptors (NCR) on T cells are linked to T cell exhaustion, dysfunctional effector responses, and HIV viral persistence. Metformin, an oral hypoglycemic agent used for diabetes, may have previously unrecognized beneficial immunologic effects. Using cryopreserved blood from a 24-week pilot study involving 12 virally suppressed HIV-infected individuals randomized 1:1 to metformin versus observation (OBS), we assessed change in the frequencies of T cell activation (CD38+HLA-DR+) and NCR [programmed cell death protein 1 (PD1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and T cell mucin-domain containing-3 (TIM3)]. No differences in 24-week change were seen between arms in CD4 or CD8 T cells, in the CD4/CD8 ratio, or in activated (CD38+HLA-DR+) CD4 or CD8 T cells. However, metformin over 24 weeks led to decreases compared with OBS in single PD1+ (percent decrease: -9.6% vs. 7.5%, p = .015), in dual PD1+TIGIT+ (-15.0% vs. 10.4%, p = .002), and in triple PD1+TIGIT+TIM3+ (-24.0% vs. 8.1%, p = .041) CD4 T cells. Metformin led to no changes in CD8 T cell NCR frequencies. Metformin decreases the frequency of PD1+, PD1+TIGIT+, and PD1+TIGIT+TIM3+ expressing CD4 T cells. This may have relevance to HIV cure strategies and to efforts to mitigate the risk of chronic complications of HIV.
Collapse
Affiliation(s)
- Cecilia M. Shikuma
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii - Manoa, Honolulu, Hawaii
| | - Glen M. Chew
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii - Manoa, Honolulu, Hawaii
| | - Lindsay Kohorn
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii - Manoa, Honolulu, Hawaii
| | - Scott A. Souza
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii - Manoa, Honolulu, Hawaii
| | - Dominic Chow
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii - Manoa, Honolulu, Hawaii
| | - Ivo Novita SahBandar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii - Manoa, Honolulu, Hawaii
| | - Eun-Young Park
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii - Manoa, Honolulu, Hawaii
| | - Nancy Hanks
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii - Manoa, Honolulu, Hawaii
| | - Louie Mar A. Gangcuangco
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii - Manoa, Honolulu, Hawaii
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii - Manoa, Honolulu, Hawaii
| | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii - Manoa, Honolulu, Hawaii
| |
Collapse
|
170
|
Obrenovich M, Tabrez S, Siddiqui B, McCloskey B, Perry G. The Microbiota-Gut-Brain Axis-Heart Shunt Part II: Prosaic Foods and the Brain-Heart Connection in Alzheimer Disease. Microorganisms 2020; 8:E493. [PMID: 32244373 PMCID: PMC7232206 DOI: 10.3390/microorganisms8040493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
There is a strong cerebrovascular component to brain aging, Alzheimer disease, and vascular dementia. Foods, common drugs, and the polyphenolic compounds contained in wine modulate health both directly and through the gut microbiota. This observation and novel findings centered on nutrition, biochemistry, and metabolism, as well as the newer insights we gain into the microbiota-gut-brain axis, now lead us to propose a shunt to this classic triad, which involves the heart and cerebrovascular systems. The French paradox and prosaic foods, as they relate to the microbiota-gut-brain axis and neurodegenerative diseases, are discussed in this manuscript, which is the second part of a two-part series of concept papers addressing the notion that the microbiota and host liver metabolism all play roles in brain and heart health.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA;
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Departments of Chemistry and Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bushra Siddiqui
- North East Ohio College of Medicine, Rootstown, OH 44272, USA;
| | - Benjamin McCloskey
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA;
| | - George Perry
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
171
|
Metformin and trimetazidine ameliorate diabetes-induced cognitive impediment in status epileptic rats. Epilepsy Behav 2020; 104:106893. [PMID: 32000097 DOI: 10.1016/j.yebeh.2019.106893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
Abstract
Patients with diabetes and epilepsy are more prone to cognitive impairment, dementia, and even Alzheimer's disease. Diabetes-induced inflammatory process is one of the main contributing factors; however, the impact on seizure is not clear. The current study is aimed to examine the role of metformin and trimetazidine in the reduction of neuronal damage caused by inflammatory mediators and apoptotic factors in diabetic epileptic rodent model. Diabetic epileptic rats received orally either metformin (100 mg/kg) or trimetazidine (10 mg/kg) for 3 weeks exhibited reduced cognitive function and ameliorated the disturbed brain neurotransmission. Besides, they improved both the inflammatory status and the histopathologic alterations. Administration of metformin or trimetazidine ameliorated the deterioration in cognitive function in Morris water maze (MWM) and reduced seizure score. Furthermore, brain neurotransmitters glutamate and γ-aminobutyric acid (GABA) were reverted back to their normal values. Both treatments reduced the rise in inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), apoptotic markers nuclear factor-κB (NF-κB) and caspase-3, and improved the pathological photomicrograph of the hippocampus of diabetic epileptic rats. Such effects were closely correlated to the observed increase in the adenosine triphosphate and adenosine diphosphate (ATP/ADP) ratio and reduction of death-associated protein (DAP) and mammalian target of rapamycin (mTOR). In conclusion, the current study shed light on the potential neuroprotective role of metformin and trimetazidine in the amelioration of cognitive function via hindering inflammatory processes in diabetic epileptic rats.
Collapse
|
172
|
Ginsenoside Rg1 and the control of inflammation implications for the therapy of type 2 diabetes: A review of scientific findings and call for further research. Pharmacol Res 2020; 152:104630. [DOI: 10.1016/j.phrs.2020.104630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/30/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
|
173
|
Metformin Mitigates Nickel-Elicited Angiopoietin-Like Protein 4 Expression via HIF-1α for Lung Tumorigenesis. Int J Mol Sci 2020; 21:ijms21020619. [PMID: 31963541 PMCID: PMC7014330 DOI: 10.3390/ijms21020619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
Nickel (Ni), which is a carcinogenic workplace hazard, increases the risk of lung cancer. Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine that is involved in both angiogenesis and metastasis, but its role in lung cancer is still not clear. In this study, we assessed the role of ANGPTL4 in lung carcinogenesis under nickel exposure and investigated the effects of the antidiabetic drug metformin on ANGPTL4 expression and lung cancer chemoprevention. Our results showed that ANGPTL4 is increased in NiCl2-treated lung cells in a dose- and time-course manner. The expression of ANGPTL4 and HIF-1α induced by NiCl2 were significantly repressed after metformin treatment. The downregulation of HIF-1α expression by ROS savenger and HIF-1α inhibitor or knockdown by lentiviral shRNA infection diminished NiCl2-activated ANGPTL4 expression. Chromatin immunoprecipitation and the luciferase assay revealed that NiCl2-induced HIF-1α hypoxia response element interactions activate ANGPTL4 expression, which is then inhibited by metformin. In conclusion, the increased presence of ANGPTL4 due to HIF-1α accumulation that is caused by nickel in lung cells may be one mechanism by which nickel exposure contributes to lung cancer progression. Additionally, metformin has the ability to prevent NiCl2-induced ANGPTL4 through inhibiting HIF-1α expression and its binding activity. These results provide evidence that metformin in oncology therapeutics could be a beneficial chemopreventive agent.
Collapse
|
174
|
Albai O, Timar B, Paun DL, Sima A, Roman D, Timar R. Metformin Treatment: A Potential Cause of Megaloblastic Anemia in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:3873-3878. [PMID: 33116733 PMCID: PMC7586010 DOI: 10.2147/dmso.s270393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Vitamin B12 (cobalamin) deficiency is a frequent cause of megaloblastic anemia, manifested through various symptoms. Screening for this deficiency can be justified in case of patients with one or more risk factors present from the following: gastric resections, inflammatory bowel disease, use of metformin over a prolonged period of time, administration of proton pump inhibitors or H2 histamine receptor blockers for more than 12 months and in case of adults over 75 years of age. One method of determining vitamin B12 deficiency is measuring its serum levels, as well as performing measurements of serum levels of methylmalonic acid and homocysteine levels, which experience an increase in the early stages of vitamin B12 deficiency. CLINICAL CASE We bring to your attention, the case of a 62 years old patient diagnosed with Type 2 Diabetes Mellitus in 2015 that presented in the emergency room in October 2019 with an altered general condition, nausea, vomiting, abdominal pain, palpitation, and dyspnea. Treatment with metformin was initiated from the diagnosis of Type 2 Diabetes Mellitus, four years before. Investigations established the diagnosis of megaloblastic anemia by vitamin B12 deficiency. The symptoms disappeared after the injection of vitamin B12. CONCLUSION Periodical dosing of vitamin B12 should be performed in the case of patients with Type 2 Diabetes Mellitus treated with metformin, especially if they associate anemia and/or peripheral diabetic polyneuropathy.
Collapse
Affiliation(s)
- Oana Albai
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Diabetes and Metabolic Diseases, “Pius Brinzeu” Emergency Hospital, Timisoara, Romania
| | - Bogdan Timar
- Department of Diabetes and Metabolic Diseases, “Pius Brinzeu” Emergency Hospital, Timisoara, Romania
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Correspondence: Bogdan Timar “Victor Babes“ University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara300041, RomaniaTel +40741528093 Email
| | - Diana Loreta Paun
- Department of Public Health, Associate Professor in the Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, Bucuresti, Romania
| | - Alexandra Sima
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Diabetes and Metabolic Diseases, “Pius Brinzeu” Emergency Hospital, Timisoara, Romania
| | - Deiana Roman
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Diabetes and Metabolic Diseases, “Pius Brinzeu” Emergency Hospital, Timisoara, Romania
| | - Romulus Timar
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Diabetes and Metabolic Diseases, “Pius Brinzeu” Emergency Hospital, Timisoara, Romania
| |
Collapse
|
175
|
Gökçay Canpolat A, Şahin M. Glucose Lowering Treatment Modalities of Type 2 Diabetes Mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:7-27. [PMID: 32200500 DOI: 10.1007/5584_2020_516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter gives an overview of present knowledge and clinical aspects of antidiabetic drugs according to the recently available research evidence and clinical expertise.Many agents are acting on eight groups of pathophysiological mechanisms, which is commonly called as "Ominous Octet" by DeFronzo. The muscle, liver and β-cell, the fat cell, gastrointestinal tract, α-cell, kidney, and brain play essential roles in the development of glucose intolerance in type 2 diabetic individuals (Defronzo, Diabetes 58:773-795, 2009).A treatment paradigm shift is seen in the initiation of anti-hyperglycemic agents from old friends (meglitinides or sulphonylürea) to newer agents effecting on GLP-1 RA or SGLT-2 inhibitors. It is mostly about the other protective positive effects of these agents for kidney, heart, etc. Although there are concerns for the long term safety profiles; they are used widely around the World. The delivery of patient-centered care, facilitating medication adherence, the importance of weight loss in obese patients, the importance of co-morbid conditions are the mainstays of selecting the optimal agent.
Collapse
Affiliation(s)
- Asena Gökçay Canpolat
- Department of Endocrinology and Metabolism, Ankara University School of Medicine, Ankara, Turkey
| | - Mustafa Şahin
- Department of Endocrinology and Metabolism, Ankara University School of Medicine, Ankara, Turkey.
| |
Collapse
|
176
|
Bardovskyi R, Grytsai O, Ronco C, Benhida R. Synthesis and characterization of new heterocycles related to aryl[e][1,3]diazepinediones. rearrangement to 2,4-diamino-1,3,5-triazine derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj01229g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Divergence-oriented synthesis of new heterocycles relevant for medicinal chemistry.
Collapse
Affiliation(s)
| | - Oleksandr Grytsai
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR7272
- Nice
- France
| | - Cyril Ronco
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR7272
- Nice
- France
| | - Rachid Benhida
- Université Côte d’Azur
- CNRS
- Institut de Chimie de Nice UMR7272
- Nice
- France
| |
Collapse
|
177
|
M. Khalil R, Ebeid A, Fayed H, Abd-Elhady S. Metformin: New Insights into Alzheimer Disease Protection. ASIAN JOURNAL OF BIOCHEMISTRY 2019; 15:21-27. [DOI: 10.3923/ajb.2020.21.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
178
|
Emerging neuroprotective effect of metformin in Parkinson's disease: A molecular crosstalk. Pharmacol Res 2019; 152:104593. [PMID: 31843673 DOI: 10.1016/j.phrs.2019.104593] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and Lewy pathology. PD is a major concern of today's aging population and has emerged as a global health burden. Despite the rapid advances in PD research over the past decades, the gold standard therapy provides only symptomatic relief and fails to halt disease progression. Therefore, exploring novel disease-modifying therapeutic strategies is highly demanded. Metformin, which is currently used as a first-line therapy for type 2 diabetes mellitus (T2DM), has recently demonstrated to exert a neuroprotective role in several neurodegenerative disorders including PD, both in vitro and in vivo. In this review, we explore the neuroprotective potential of metformin based on emerging evidence from pre-clinical and clinical studies. Regarding the underlying molecular mechanisms, metformin has been shown to inhibit α-synuclein (SNCA) phosphorylation and aggregation, prevent mitochondrial dysfunction, attenuate oxidative stress, modulate autophagy mainly via AMP-activated protein kinase (AMPK) activation, as well as prevent neurodegeneration and neuroinflammation. Overall, the neuroprotective effects of metformin in PD pathogenesis present a novel promising therapeutic strategy that might overcome the limitations of current PD treatment.
Collapse
|
179
|
Riazi K, Raman M, Taylor L, Swain MG, Shaheen AA. Dietary Patterns and Components in Nonalcoholic Fatty Liver Disease (NAFLD): What Key Messages Can Health Care Providers Offer? Nutrients 2019; 11:E2878. [PMID: 31779112 PMCID: PMC6950597 DOI: 10.3390/nu11122878] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a rising epidemic worldwide and will be the leading cause of cirrhosis, hepatocellular carcinoma, and liver transplant within the next decade. NAFLD is considered as the hepatic manifestation of metabolic syndrome. Behaviors, such as a sedentary lifestyle and consuming a Western diet, have led to substantial challenges in managing NAFLD patients. With no curative pharmaceutical therapies, lifestyle modifications, including dietary changes and exercise, that ultimately lead to weight loss remain the only effective therapy for NAFLD. Multiple diets, including low-carbohydrate, low-fat, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean (MD) diets, have been evaluated. NAFLD patients have shown better outcomes with a modified diet, such as the MD diet, where patients are encouraged to increase the consumption of fruits and vegetables, whole grains, and olive oil. It is increasingly clear that a personalized approach to managing NAFLD patients, based on their preferences and needs, should be implemented. In our review, we cover NAFLD management, with a specific focus on dietary patterns and their components. We emphasize the successful approaches highlighted in recent studies to provide recommendations that health care providers could apply in managing their NAFLD patients.
Collapse
Affiliation(s)
- Kiarash Riazi
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, AB T2N 4Z6, Canada; (K.R.); (M.R.); (L.T.); (M.G.S.)
| | - Maitreyi Raman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, AB T2N 4Z6, Canada; (K.R.); (M.R.); (L.T.); (M.G.S.)
| | - Lorian Taylor
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, AB T2N 4Z6, Canada; (K.R.); (M.R.); (L.T.); (M.G.S.)
| | - Mark G. Swain
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, AB T2N 4Z6, Canada; (K.R.); (M.R.); (L.T.); (M.G.S.)
| | - Abdel Aziz Shaheen
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, AB T2N 4Z6, Canada; (K.R.); (M.R.); (L.T.); (M.G.S.)
- Community Health Sciences, O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
180
|
Zhu A, Teng Y, Ge D, Zhang X, Hu M, Yao X. Role of metformin in treatment of patients with chronic obstructive pulmonary disease: a systematic review. J Thorac Dis 2019; 11:4371-4378. [PMID: 31737323 PMCID: PMC6837976 DOI: 10.21037/jtd.2019.09.84] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/28/2019] [Indexed: 02/05/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is commonly associated with type 2 diabetes mellitus (T2DM). Metformin is a first-line treatment for most patients with T2DM, and may have antiaging, antioxidant, and anti-tumour effects. A few published studies report the use of metformin for the treatment of COPD in patients with or without T2DM, but the results are inconsistent. This study aimed to confirm the effectiveness and safety of metformin as a treatment option in patients with COPD. We performed a systematic search of PubMed, EMBASE, and the Cochrane database from their starting date to December 2017. Randomised controlled trials (RCTs), controlled clinical trials, and retrospective researches reporting the use of metformin for treating patients with COPD were identified. We included a total of six articles (involving 3,467 participants) and found that metformin may benefit patients with COPD and T2DM by improving health status and symptoms, hospitalisations, and mortality. There was no effect on patients with COPD without T2DM. Metformin causes minimal increases in plasma lactate concentrations without lactic acidosis and has little impact on blood glucose and minor adverse events. Metformin is safe and effective for treating COPD in patients with concomitant T2DM.
Collapse
Affiliation(s)
- Ailing Zhu
- Department of Respiratory Medicine, Nanjing Meishan Hospital, Nanjing 210039, China
| | - Yue Teng
- Department of Respiratory Medicine, Jiangsu Province Cancer Hospital, Nanjing 210009, China
| | - Dehai Ge
- Department of Respiratory Medicine, Nanjing Meishan Hospital, Nanjing 210039, China
| | - Xiujian Zhang
- Department of Respiratory Medicine, Nanjing Meishan Hospital, Nanjing 210039, China
| | - Manman Hu
- Department of Respiratory Medicine, Nanjing Meishan Hospital, Nanjing 210039, China
| | - Xin Yao
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
181
|
Morotti E, Giovanni Artini P, Persico N, Battaglia C. Metformin metabolic and vascular effects in overweight/moderately obese hyperinsulinemic PCOS patients treated with contraceptive vaginal ring: a pilot study. Gynecol Endocrinol 2019; 35:854-861. [PMID: 31081406 DOI: 10.1080/09513590.2019.1613361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of this pilot study was to assess how metformin, associated with a contraceptive vaginal ring, may influence lipid and carbohydrate metabolism, fat distribution, and surrogate markers of arterial function. Among 62 patients, 25 were treated with vaginal ring plus metformin and 37 women with only vaginal ring. The effects were assessed after 6 months. The patients were submitted to evaluation of lipid and carbohydrate metabolism; extended view ultrasonographic evaluation of fat distribution; Doppler analysis of ophthalmic artery; brachial artery flow-mediated vasodilatation; oral glucose tolerance test. After 6 months, the body mass index and waist/hip ratio resulted significantly better in patients who associated metformin to vaginal ring. The fasting glucose, insulin, and glucose/insulin ratio, HOMA-IR, glucose, and insulin AUC 120 were significantly improved in metformin group. The ultrasonographic fat analysis resulted significantly better after metformin. The ophthalmic artery PI significantly improved in metformin group. The brachial artery vasodilation was better in metformin treated patients. In conclusion, metformin, associated with vaginal ring, improves the insulin and carbohydrate metabolism, reduces the body weight and android fat distribution. This, associated with the significant improvements of surrogate markers of arterial function, may be responsible of possible cardiovascular and cerebrovascular protective effects.
Collapse
Affiliation(s)
- Elena Morotti
- Department of Obstetrics and Gynecology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Cesare Battaglia
- Department of Obstetrics and Gynecology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
182
|
Malekpour-Dehkordi Z, Teimourian S, Nourbakhsh M, Naghiaee Y, Sharifi R, Mohiti-Ardakani J. Metformin reduces fibrosis factors in insulin resistant and hypertrophied adipocyte via integrin/ERK, collagen VI, apoptosis, and necrosis reduction. Life Sci 2019; 233:116682. [DOI: 10.1016/j.lfs.2019.116682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/21/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
|
183
|
Diabetes drugs in the fight against Alzheimer's disease. Ageing Res Rev 2019; 54:100936. [PMID: 31330313 DOI: 10.1016/j.arr.2019.100936] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, particularly in old age subjects. Hyperinsulinemia and insulin resistance, which are known as pathophysiological features of Type 2 Diabetes Mellitus (T2DM), have also been demonstrated to have a significant impact on cognitive impairment. Studies have shown that an altered insulin pathway may interact with amyloid-β protein deposition and tau protein phosphorylation, both leading factors for AD development. Drugs used for T2DM treatment from insulin and metformin through dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 receptor agonists may represent a promising approach to fight AD. With this review from animal to human studies, we aim at responding to the reasons why drugs for diabetes may represent potential treatments for AD.
Collapse
|
184
|
Wang Z, Guo J, Han X, Xue M, Wang W, Mi L, Sheng Y, Ma C, Wu J, Wu X. Metformin represses the pathophysiology of AAA by suppressing the activation of PI3K/AKT/mTOR/autophagy pathway in ApoE -/- mice. Cell Biosci 2019; 9:68. [PMID: 31467666 PMCID: PMC6712653 DOI: 10.1186/s13578-019-0332-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background The protective effect of metformin (MET) on abdominal aortic aneurysm (AAA) has been reported. However, the related mechanism is still poor understood. In this study, we deeply investigated the role of metformin in AAA pathophysiology. Methods Angiotensin II (Ang-II) was used to construct the AAA model in ApoE−/− mice. The related mechanism was explored using Western blot and quantitative real time PCR (qRT-PCR). We also observed the morphological changes in the abdominal aorta and the influence of metformin on biological behaviors of rat abdominal aortic VSMCs. Results The PI3K/AKT/mTOR pathway was activated in aneurysmal wall tissues of AAA patients and rat model. Treatment with metformin inhibited the breakage and preserved the elastin structure of the aorta, the loss of collagen, and the apoptosis of aortic cells. In addition, metformin significantly suppressed the activation of the PI3K/AKT/mToR pathway and decreased the mRNA and protein levels of LC3B and Beclin1, which were induced by Ang-II. Moreover, PI3K inhibitors enhanced the effect of metformin while PI3K agonists largely reversed this effect. Interestingly, the cell proliferation, apoptosis, migration and autophagy of vascular smooth muscle cells (VSMCs) induced by Ang-II were also decreased following metformin treatment. PI3K inhibitors and agonists strengthened and weakened the effects of metformin in VSMCs, respectively. Conclusions Metformin represses the pathophysiology of AAA by inhibiting the activation of PI3K/AKT/mTOR/autophagy pathway. This repression may be useful as a new therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Zhu Wang
- 1Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing Wu Wei Qi Road, Jinan, 250021 Shandong China.,2Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Jingjing Guo
- 3Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Xinqiang Han
- 2Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Ming Xue
- 4Department of Interventional Radiology, Weihai Municipal Hospital, Weihai, 264200 Shandong China
| | - Wenming Wang
- 2Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Lei Mi
- Department of General Surgery, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Yuguo Sheng
- 2Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Chao Ma
- 2Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Jian Wu
- 2Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Xuejun Wu
- 1Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing Wu Wei Qi Road, Jinan, 250021 Shandong China
| |
Collapse
|
185
|
Hong Y, Lee S, Won S. The preventive effect of metformin on progression of benign prostate hyperplasia: A nationwide population-based cohort study in Korea. PLoS One 2019; 14:e0219394. [PMID: 31323022 PMCID: PMC6641083 DOI: 10.1371/journal.pone.0219394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/21/2019] [Indexed: 11/18/2022] Open
Abstract
Metformin, a first-line treatment for type 2 diabetes mellitus (T2DM), has recently been recognized for its pleotropic anti-proliferative, anti-cancer, and anti-aging effects. Contrary to the studies characterizing metformin effects in prostate cancer, little is known about these effects in BPH progression. With the Sample Cohort DB data during 2007 and 2017 from the Health Insurance Review and Assessment Service (HIRA) in South Korea, we investigated the preventative effect of metformin on BPH progression. The study population consisted of 211,648 BPH naïve patients that were diagnosed with BPH in 2009 and a follow-up occurrence of prostatectomy until 2017 that was defined as progression of BPH. These patients were divided into three treatment groups: without T2DM, T2DM without metformin, and T2DM with metformin. The hazard ratio in the T2DM with metformin group was 0.86 for prostatectomy compared to the group without T2DM (CI = 0.77-0.96, P value = 0.007) after adjusting for confounding factors such as age, comorbidity, residential area, level of hospital, and category of BPH medications. The T2DM with high-dose metformin group had a significantly lower risk of prostatectomy with hazard ratio of 0.76 (CI = 0.62-0.92, P value = 0.005) in stratified analysis. Our results suggest that metformin may improve BPH progression based on the reduced risk of prostatectomy, although T2DM effects on BPH were unclear. Future observational studies and prospective trials are needed to confirm the effects of metformin on BPH progression.
Collapse
Affiliation(s)
- Yehee Hong
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Sanghun Lee
- Department of Medical Consilience, Graduate School, Dankook University, Yongin, South Korea
- * E-mail: (SW); (SL)
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
- Interdisciplinary Program for Bioinformatics, College of Natural Science, Seoul National University, Seoul, South Korea
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
- * E-mail: (SW); (SL)
| |
Collapse
|
186
|
Machini WBS, Fernandes IPG, Oliveira‐Brett AM. Antidiabetic Drug Metformin Oxidation and
in situ
Interaction with dsDNA Using a dsDNA‐electrochemical Biosensor. ELECTROANAL 2019. [DOI: 10.1002/elan.201900162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- W. B. S. Machini
- Department of Chemistry, Faculty of Science and TechnologyUniversity of Coimbra 3004-535 Coimbra Portugal
| | - I. P. G. Fernandes
- Department of Chemistry, Faculty of Science and TechnologyUniversity of Coimbra 3004-535 Coimbra Portugal
| | - A. M. Oliveira‐Brett
- Department of Chemistry, Faculty of Science and TechnologyUniversity of Coimbra 3004-535 Coimbra Portugal
| |
Collapse
|
187
|
Krysiak R, Szkróbka W, Okopień B. The Impact of Ethinyl Estradiol on Metformin Action on Prolactin Levels in Women with Hyperprolactinemia. Exp Clin Endocrinol Diabetes 2019; 129:22-28. [DOI: 10.1055/a-0921-6420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Background Metformin reduced prolactin levels only in women with hyperprolactinemia.
Objective The purpose of this case-control study was to compare metformin action on lactoctrope function between women receiving oral contraceptive pills and women not using hormonal contraception.
Methods The study included two groups of matched women with elevated prolactin levels and new-onset prediabetes or diabetes. The first group consisted of 20 women using oral contraceptive pills for at least 12 months before entering the study, while the second group included 20 patients not using any hormonal contraception. Over the whole study period, all women were treated with metformin (1.7–3 g daily). Circulating levels of glucose, insulin, prolactin, thyrotropin, free thyroid hormones, adrenocorticotropic hormone, gonadotropins and insulin-like growth factor-1 were measured at the beginning and at the end of the study (16 weeks later).
Results Thirty-eight patients completed the study. Metformin reduced plasma glucose levels and improved insulin sensitivity but the latter effect was stronger in women receiving oral contraceptive pills than in women not using any contraception. Although metformin treatment decreased plasma prolactin levels in both study groups, this effect was stronger in women taking oral contraceptive pills. Only in this group of women, metformin increased plasma luteinizing hormone levels. The changes in plasma prolactin correlated with their baseline insulin sensitivity and the effect of metformin on insulin sensitivity. Metformin did not affect plasma levels of thyrotropin, free thyroxine, free triiodothyronine, follicle-stimulating hormone, adrenocorticotropic hormone and insulin-like growth factor-1.
Conclusions The obtained results suggest that the effect of metformin on overactive lactotropes depends on estrogen levels.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Witold Szkróbka
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
188
|
Peter JS, Shalini M, Giridharan R, Basha KS, Lavinya UB, Evan Prince S. Administration of coenzyme Q10 to a diabetic rat model: changes in biochemical, antioxidant, and histopathological indicators. Int J Diabetes Dev Ctries 2019. [DOI: 10.1007/s13410-019-00752-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
189
|
Tseng CH. Metformin reduces risk of benign nodular goiter in patients with type 2 diabetes mellitus. Eur J Endocrinol 2019; 180:365-372. [PMID: 30986765 DOI: 10.1530/eje-19-0133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 01/14/2023]
Abstract
Background Whether metformin might affect the risk of benign nodular goiter in patients with type 2 diabetes mellitus has not been investigated. Methods Patients with new-onset type 2 diabetes mellitus during 1999-2005 were enrolled from Taiwan's National Health Insurance database. Analyses were conducted in a propensity score matched-pairs of 20,048 ever users and 20,048 never users of metformin. The patients were followed until December 31, 2011, for the incidence of benign nodular goiter. Hazard ratios were estimated by Cox regression incorporated with the inverse probability of treatment weighting using the propensity score. Results Among the never users and ever users of metformin, 392 and 221 cases were diagnosed of benign nodular goiter during follow-up, with incidence of 457.88 and 242.45 per 100,000 person-years, respectively. The overall hazard ratio for ever versus never users was 0.527 (95% confidence interval: 0.447-0.621). When cumulative duration of metformin therapy was divided into tertiles, the hazard ratios for the first (<25.3 months), second (25.3-57.3 months) and third (>57.3 months) tertiles were 0.815 (0.643-1.034), 0.648 (0.517-0.812) and 0.255 (0.187-0.348), respectively. Sensitivity analyses estimating the overall hazard ratios for patients enrolled in each specific year from 1999 to 2005 consistently showed a lower risk of benign nodular goiter among users of metformin. Conclusion Metformin use is associated with a lower risk of benign nodular goiter in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
190
|
Cheki M, Ghasemi MS, Rezaei Rashnoudi A, Erfani Majd N. Metformin attenuates cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells. Drug Chem Toxicol 2019; 44:386-393. [PMID: 31072151 DOI: 10.1080/01480545.2019.1609024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metformin is widely used as an oral hypoglycemic drug in the management of type 2 diabetes mellitus. This study evaluated the possible protective effects of metformin against cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells. Two different doses of metformin (50 and 100 mg/kg b.w.) were administered orally to experimental animals for seven consecutive days. On the seventh day, the rats were exposed to cisplatin (5 mg/kg, i.p.) 1 h after the last oral metformin administration. Rats in the control group were treated orally with 10 ml/kg PBS for 7 consecutive days and a single intraperitoneal injection of saline (0.9%) on the 7th day. The antagonistic effects of metformin against cisplatin were evaluated using micronucleus assay, reactive oxygen species (ROS) level analysis, hematological analysis, and flow cytometry. Treatment with 50 and 100 mg/kg metformin before cisplatin injection produced a significant reduction in the frequencies of micronucleated polychromatic erythrocytes (MnPCEs) and micronucleated normochromatic erythrocytes (MnNCEs) 24 h after cisplatin treatment with a corresponding increase in the PCE/(PCE + NCE) ratio. Moreover, metformin markedly elevated the levels of both red and white blood cells in peripheral blood and decreased the percentage of apoptotic cells and the ROS level in bone marrow cells of rats treated with cisplatin. The data suggest that metformin has potential chemoprotective properties in rat bone marrow after cisplatin treatment, which support its candidature as a potential chemoprotective agent for cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Mohsen Cheki
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sadegh Ghasemi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Naeem Erfani Majd
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
191
|
Lei XW, Li Q, Zhang JZ, Zhang YM, Liu Y, Yang KH. The Protective Roles of Folic Acid in Preventing Diabetic Retinopathy Are Potentially Associated with Suppressions on Angiogenesis, Inflammation, and Oxidative Stress. Ophthalmic Res 2019; 62:80-92. [PMID: 31018207 DOI: 10.1159/000499020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/20/2019] [Indexed: 11/19/2022]
Abstract
This study aimed to evaluate the therapeutic effect of folic acid (FA) on diabetic retinopathy (DR) in a genetic mouse model of obese type 2 diabetes mellitus (T2D). C57BL/KsJ-db/db (db/db) T2D mice were divided into control, FA, metformin (MET), and FA plus MET groups (n = 10/group). Serum levels of glucose, glycated hemoglobin, and insulin were determined weekly. The retinal thickness was measured using optical coherence tomography (OCT) at 4 weeks after treatments. The retinal expression and serum levels of vascular formation, inflammation, and oxidative stress-associated molecules were examined. Our results demonstrated that FA, but not MET, played a protective role against retinal thinning in the early stage of DR in db/db mice, although FA did not exhibit antihyperglycemic effect. In addition, retinal expression and serum levels of a panel of molecules associated with angiogenesis (CD31 and VEGFR), inflammation (IL-1β and NLRP3), and oxidative stress (3-NT, 4-HNE, Vav2, and NOX4) were significantly downregulated in FA-treated diabetic mice compared with those in saline-treated controls. Furthermore, the serum level of homocysteine was also markedly decreased following FA treatments. These findings suggest that through potential suppressions on angiogenesis, inflammation, and oxidative stress, FA may serve as a potential therapeutic agent against DR.
Collapse
Affiliation(s)
- Xun-Wen Lei
- The First Hospital of Lanzhou University, Lanzhou, China, .,The First Clinical Medical College of Lanzhou University, Lanzhou, China, .,Evidence-Based Medicine Center, School of Basic Medical Sciences of Lanzhou University, Lanzhou, China,
| | - Qiang Li
- The First Hospital of Lanzhou University, Lanzhou, China.,The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jin-Zhi Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yue-Mei Zhang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Yang Liu
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Ke-Hu Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Evidence-Based Medicine Center, School of Basic Medical Sciences of Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| |
Collapse
|
192
|
Tseng CH. Metformin and risk of chronic obstructive pulmonary disease in diabetes patients. DIABETES & METABOLISM 2019; 45:184-190. [PMID: 29804817 DOI: 10.1016/j.diabet.2018.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/28/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE This study aimed to investigate whether metformin can affect risk of chronic obstructive pulmonary disease (COPD) in type 2 diabetes (T2D) patients. METHODS T2D patients newly diagnosed during 1999-2005 were enrolled from the reimbursement database of Taiwan's National Health Insurance system and followed up to 31 December 2011. Analyses were conducted in an unmatched cohort (92,272 ever-users and 10,697 never-users of metformin) and a propensity score (PS) matched pair cohort (10,697 ever-users and 10,697 never-users). Cox regression incorporated into the inverse probability of treatment weighting using the PS was used to estimate hazard ratios (HRs). RESULTS In the unmatched cohort, 2573 never-users and 13,840 ever-users developed COPD with respective incidences of 5994.64 and 3393.19 per 100,000 person-years. The overall HR was 0.560 (95% confidence interval [CI]: 0.537-0.584). HRs for the first (<25.27months), second (25.27-55.97months) and third (>55.97months) tertiles of cumulative duration were 1.021 (0.975-1.070), 0.575 (0.548-0.603) and 0.265 (0.252-0.280), respectively. Analyses of the matched cohort showed an overall HR of 0.643 (0.605-0.682), with HRs of 1.212 (1.122-1.309), 0.631 (0.578-0.689) and 0.305 (0.273-0.340) for the respective tertiles. CONCLUSION A reduced risk of COPD is observed in metformin users with T2D.
Collapse
Affiliation(s)
- C-H Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China; Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China; Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan, Republic of China.
| |
Collapse
|
193
|
Kanigur Sultuybek G, Soydas T, Yenmis G. NF-κB as the mediator of metformin's effect on ageing and ageing-related diseases. Clin Exp Pharmacol Physiol 2019; 46:413-422. [PMID: 30754072 DOI: 10.1111/1440-1681.13073] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
Abstract
Ageing can be defined as the progressive failure of repair and maintenance systems with a consequent accumulation of cellular damage in nucleic acids, proteins, and lipids. These various types of damage promote ageing by driving cellular senescence and apoptosis. The nuclear factor-kappa B (NF-kB) pathway is one of the key mediators of ageing and this pathway is activated by genotoxic, oxidative and inflammatory stress, and regulates expression of cytokines, growth factors, and genes that regulate apoptosis, cell-cycle progression, and inflammation. Therefore, NF-kB is increased in a variety of tissues with ageing, thus the inhibition of NF-kB leads to delayed onset of ageing-related symptoms and pathologies such as diabetes, atherosclerosis, and cancer. Metformin is often used as an anti-diabetic medication in type 2 diabetes throughout the world and appears to be a potential anti-ageing agent. Owing to its antioxidant, anticancer, cardio-protective and anti-inflammatory properties, metformin has become a potential candidate drug, improving in the context of ageing and ageing-related diseases. An inappropriate NF-kB activation is associated with diseases and pathologic conditions which can impair the activity of genes involved in cell senescence, apoptosis, immunity, and inflammation. Metformin, inhibiting the expression of NF-kB gene, eliminates the susceptibility to common diseases. This review underlines the pleiotropic effects of metformin in ageing and different ageing-related diseases and attributes its effects to the modulation of NF-kB.
Collapse
Affiliation(s)
- Gönül Kanigur Sultuybek
- Medical Faculty, Department of Medical Biology and Genetics, Istanbul Aydin University, Istanbul, Turkey
| | - Tugba Soydas
- Medical Faculty, Department of Medical Biology and Genetics, Istanbul Aydin University, Istanbul, Turkey.,Cerrahpasa Faculty of Medicine, Department of Medical Biology, Istanbul University, Istanbul, Turkey
| | - Guven Yenmis
- Acıbadem Healthcare Services, Labgen Genetic Diagnosis Center, Istanbul, Turkey.,Department of Child Development, Institute of Health Sciences, Istanbul Bilgi University, Istanbul, Turkey
| |
Collapse
|
194
|
Chin-Hsiao T. Metformin and the Risk of Dementia in Type 2 Diabetes Patients. Aging Dis 2019; 10:37-48. [PMID: 30705766 PMCID: PMC6345339 DOI: 10.14336/ad.2017.1202] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/02/2017] [Indexed: 12/26/2022] Open
Abstract
This retrospective cohort study investigated dementia risk associated with metformin use in type 2 diabetes patients by using the reimbursement database of the Taiwan's National Health Insurance. The patients had new-onset diabetes during 1999-2005 and were followed up until December 31, 2011. An unmatched cohort of 147,729 ever users and 15,676 never users of metformin were identified, and a matched-pair cohort of 15,676 ever users and 15,676 never users was created by propensity score (PS). Hazard ratios were estimated by Cox regression incorporated with the inverse probability of treatment weighting using PS. Results showed that in the unmatched cohort, 713 never users and 3943 ever users developed dementia with respective incidence of 1029.20 and 570.03 per 100,000 person-years. The overall hazard ratio was 0.550 (95% confidence interval: 0.508-0.596). The hazard ratio for the first (<27.0 months), second (27.0-58.1 months) and third (>58.1 months) tertile of cumulative duration of metformin therapy was 0.975 (0.893-1.066), 0.554 (0.506-0.607) and 0.286 (0.259-0.315), respectively. Analyses in the matched cohort showed an overall hazard ratio of 0.707 (0.632-0.791) and the hazard ratio for the respective tertile was 1.279 (1.100-1.488), 0.704 (0.598-0.829) and 0.387 (0.320-0.468). In conclusion, metformin use is associated with a reduced dementia risk.
Collapse
Affiliation(s)
- Tseng Chin-Hsiao
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
195
|
Mendes TDC, Simon A, Menezes JCV, Pinto EC, Cabral LM, de Sousa VP. Development of USP Apparatus 3 Dissolution Method with IVIVC for Extended Release Tablets of Metformin Hydrochloride and Development of a Generic Formulation. Chem Pharm Bull (Tokyo) 2019; 67:23-31. [DOI: 10.1248/cpb.c18-00579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Alice Simon
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | | | - Eduardo Costa Pinto
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | - Valeria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro
| |
Collapse
|
196
|
Verdoia M, Pergolini P, Rolla R, Ceccon C, Caputo M, Aimaretti G, Suryapranata H, De Luca G. Use of Metformin and Platelet Reactivity in Diabetic Patients Treated with Dual Antiplatelet Therapy. Exp Clin Endocrinol Diabetes 2018; 129:43-49. [PMID: 30497083 DOI: 10.1055/a-0787-1382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Enhanced platelet reactivity represents one of the major determinants of cardiovascular risk among diabetic patients. The aim of the present study was to evaluate the impact of metformin use on platelet reactivity in diabetic patients receiving dual antiplatelet therapy (DAPT). METHODS We included diabetic patients treated with DAPT after an acute coronary syndrome or percutaneous coronary intervention. Platelet reactivity was assessed at 30-90 days by Multiple-electrode aggregometry. In an additional cohort of diabetic patients naïve to antiplatelet therapy, we assessed platelet reactivity by light transmission aggregometry, surface expression of P-selectin and plasma concentration of Thromboxane B2 (TxB2). RESULTS We included 219 diabetic patients, 117 (53.4%) treated with metformin. Metformin was associated with younger age (p=0.03), male gender (p=0.02), lower rate of hypertension (p=0.04), active smoker (p=0.002), previous MI (p<0.001) renal failure (p<0.001), fibrinogen (p<0.001) and C-reactive protein (p=0.04), larger use of diuretics (p=0.04) calcium antagonists (p=0.05), better glycemic control (p<0.001) and higher haemoglobin (p=0.003). The prevalence of HAPR did not significantly differ according to hypoglycemic treatment (p=0.73; adjusted OR[95%CI]=5.63[0.42-76], p=0.19). Moreover, no impact of metformin was observed for HRPR (p=0.77; adjusted OR[95%CI]=1.15[0.55-2.4], p=0.71). Among an additional cohort of 42 diabetic patients naïve to antiplatelet therapy, we confirmed no impact of metformin or insulin on aggregation. CONCLUSIONS Our study found no apparent association in diabetic patients treated with DAPT, between the use of metformin and platelet reactivity or the rate of HPR.
Collapse
Affiliation(s)
- Monica Verdoia
- Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Patrizia Pergolini
- Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Roberta Rolla
- Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Claudia Ceccon
- Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Marina Caputo
- Department of Diabetology, Eastern Piedmont University, Novara, Italy
| | | | | | - Giuseppe De Luca
- Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| |
Collapse
|
197
|
Effect of metformin exposure on growth and photosynthetic performance in the unicellular freshwater chlorophyte, Chlorella vulgaris. PLoS One 2018; 13:e0207041. [PMID: 30419044 PMCID: PMC6231646 DOI: 10.1371/journal.pone.0207041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/23/2018] [Indexed: 02/02/2023] Open
Abstract
Many pharmaceuticals have negative effects on biota when released into the environment. For example, recent work has shown that the commonly prescribed antidiabetic drug, metformin (N,N-dimethylbiguanide), has endocrine disrupting effects on fish. However, effects of metformin on aquatic primary producers are poorly known. We exposed cultured isolates of a freshwater chlorophyte, Chlorella vulgaris, to a range of metformin concentrations (0–767.9 mg L-1) to test the hypothesis that exposure negatively affects photosynthesis and growth. A cessation of growth, increase in non-photochemical quenching (NPQ, NPQmax), and reduced electron transport rate (ETR) were observed 24 h after exposure to a metformin concentration of 767.8 mg L-1 (4.6 mM). By 48 h, photosynthetic efficiency of photosystem II (Fv/Fm), α, the initial slope of the ETR-irradiance curve, and Ek (minimum irradiance required to saturate photosynthesis) were reduced. At a lower concentration (76.8 mg L-1), negative effects on photosynthesis (increase in NPQ, decrease in ETR) were delayed, occurring between 72 and 96 h. No negative effects on photosynthesis were observed at an exposure concentration of 1.5 mg L-1. It is likely that metformin impairs photosynthesis either through downstream effects from inhibition of complex I of the electron transport chain or via activation of the enzyme, SnRK1 (sucrose non-fermenting-related kinase 1), which acts as a cellular energy regulator in plants and algae and is an ortholog of the mammalian target of metformin, AMPK (5' adenosine monophosphate-activated protein kinase).
Collapse
|
198
|
Li M, Fang H, Hu J. Apelin‑13 ameliorates metabolic and cardiovascular disorders in a rat model of type 2 diabetes with a high‑fat diet. Mol Med Rep 2018; 18:5784-5790. [PMID: 30387843 DOI: 10.3892/mmr.2018.9607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/19/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Meng Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Huijuan Fang
- Department of Cadre Ward, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Jian Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
199
|
Dehghani A, Karatas H, Can A, Erdemli E, Yemisci M, Eren-Kocak E, Dalkara T. Nuclear expansion and pore opening are instant signs of neuronal hypoxia and can identify poorly fixed brains. Sci Rep 2018; 8:14770. [PMID: 30282977 PMCID: PMC6170374 DOI: 10.1038/s41598-018-32878-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
The initial phase of neuronal death is not well characterized. Here, we show that expansion of the nuclear membrane without losing its integrity along with peripheralization of chromatin are immediate signs of neuronal injury. Importantly, these changes can be identified with commonly used nuclear stains and used as markers of poor perfusion-fixation. Although frozen sections are widely used, no markers are available to ensure that the observed changes were not confounded by perfusion-induced hypoxia/ischemia. Moreover, HMGB1 was immediately released and p53 translocated to mitochondria in hypoxic/ischemic neurons, whereas nuclear pore complex inhibitors prevented the nuclear changes, identifying novel neuroprotection targets.
Collapse
Affiliation(s)
- Anisa Dehghani
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, 06100, Turkey
| | - Hulya Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, 06100, Turkey
| | - Alp Can
- Ankara University, School of Medicine, Department of Histology and Embryology, Ankara, 06100, Turkey
| | - Esra Erdemli
- Ankara University, School of Medicine, Department of Histology and Embryology, Ankara, 06100, Turkey
| | - Muge Yemisci
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, 06100, Turkey.,Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, 06100, Turkey
| | - Emine Eren-Kocak
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, 06100, Turkey.,Hacettepe University, Faculty of Medicine, Department of Psychiatry, Ankara, 06100, Turkey
| | - Turgay Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, 06100, Turkey. .,Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, 06100, Turkey.
| |
Collapse
|
200
|
Piskovatska V, Stefanyshyn N, Storey KB, Vaiserman AM, Lushchak O. Metformin as a geroprotector: experimental and clinical evidence. Biogerontology 2018; 20:33-48. [PMID: 30255224 DOI: 10.1007/s10522-018-9773-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Apart from being a safe, effective and globally affordable glucose-lowering agent for the treatment of diabetes, metformin has earned much credit in recent years as a potential anti-aging formula. It has been shown to significantly increase lifespan and delay the onset of age-associated decline in several experimental models. The current review summarizes advances in clinical research on the potential role of metformin in the field of geroprotection, highlighting findings from pre-clinical studies on known and putative mechanisms behind its beneficial properties. A growing body of evidence from clinical trials demonstrates that metformin can effectively reduce the risk of many age-related diseases and conditions, including cardiometabolic disorders, neurodegeneration, cancer, chronic inflammation, and frailty. Metformin also holds promise as a drug that could be repurposed for chemoprevention or adjuvant therapy for certain cancer types. Moreover, due to the ability of metformin to induce autophagy by activation of AMPK, it is regarded as a potential hormesis-inducing agent with healthspan-promoting and pro-longevity properties. Long-term intake of metformin is associated with low risk of adverse events; however, well-designed clinical trials are still warranted to enable potential use of this therapeutic agent as a geroprotector.
Collapse
Affiliation(s)
- Veronika Piskovatska
- Clinic for Heart Surgery, University Clinic of the Martin Luther University, Halle, Germany
| | - Nadiya Stefanyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | | | | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.
| |
Collapse
|