151
|
Rachkeeree A, Kantadoung K, Suksathan R, Puangpradab R, Page PA, Sommano SR. Nutritional Compositions and Phytochemical Properties of the Edible Flowers from Selected Zingiberaceae Found in Thailand. Front Nutr 2018; 5:3. [PMID: 29450200 PMCID: PMC5799243 DOI: 10.3389/fnut.2018.00003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
The nutritional compositions and phytochemical properties of eight edible flowers of the ginger family (Zingiberaceae) commonly found in Thailand are reported herein. The plant genera investigated were Zingiber (Ginger, Phlai Dam, Krathue), Hedychium (two morphological filament forms), Curcuma (Ao), Etlingera (Torch ginger), Amomum (Chi Kuk), and Alpinia (Galangal), which are eaten fresh or cooked as ingredients in the preparation of many Thai dishes. The proximate compositions (moisture, ash, fiber, protein, fat, and carbohydrate contents) varied among the different genera. The plants sampled were generally low in fat content (<1%), which contributed as little as 30% of the total caloric energy. Edible plant parts contained substantially high amounts of potassium (max. 737.21 mg/100 g), calcium (max. 140.15 mg/100 g), and iron (~0.32 mg/100 g). Among the tested samples, torch ginger had the highest vitamin C content (1.05 mg/100 g), total phenolic and total flavonoid contents, as well as 2,2-diphenyl-1-picrylhydrazyl activity. On the other hand, the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assay suggested that Hedychium species possessed the highest antioxidant activity (~5.38 mg TEAC/g extract). Our results prove that edible plants of the Zingiberaceae family found in Thailand are rich sources of potentially important nutrients.
Collapse
Affiliation(s)
- Apinya Rachkeeree
- Queen Sirikit Botanic Garden, The Botanical Garden Organization, Chiang Mai, Thailand
| | - Kuttiga Kantadoung
- Queen Sirikit Botanic Garden, The Botanical Garden Organization, Chiang Mai, Thailand
| | - Ratchuporn Suksathan
- Queen Sirikit Botanic Garden, The Botanical Garden Organization, Chiang Mai, Thailand
| | | | - Paul Alexander Page
- Plant Bioactive Compound Laboratory, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
152
|
Cavaleri F. Presenting a New Standard Drug Model for Turmeric and Its Prized Extract, Curcumin. Int J Inflam 2018; 2018:5023429. [PMID: 29568482 PMCID: PMC5820622 DOI: 10.1155/2018/5023429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023] Open
Abstract
Various parts of the turmeric plant have been used as medicinal treatment for various conditions from ulcers and arthritis to cardiovascular disease and neuroinflammation. The rhizome's curcumin extract is the most studied active constituent, which exhibits an expansive polypharmacology with influence on many key inflammatory markers. Despite the expansive reports of curcucmin's therapeutic value, clinical reliability and research repeatability with curcumin treatment are still poor. The pharmacology must be better understood and reliably mapped if curcumin is to be accepted and used in modern medical applications. Although the polypharmacology of this extract has been considered, in mainstream medicine, to be a drawback, a perspective change reveals a comprehensive and even synergistic shaping of the NF-kB pathway, including transactivation. Much of the inconsistent research data and unreliable clinical outcomes may be due to a lack of standardization which also pervades research standard samples. The possibility of other well-known curcumin by-products contributing in the polypharmacology is also discussed. A new flowchart of crosstalk in transduction pathways that lead to shaping of nuclear NF-kB transactivation is generated and a new calibration or standardization protocol for the extract is proposed which could lead to more consistent data extraction and improved reliability in therapy.
Collapse
Affiliation(s)
- Franco Cavaleri
- Biologic Pharmamedical Research, 688-2397 King George Blvd., White Rock, BC, Canada V4A7E9
| |
Collapse
|
153
|
Abe K, Misaka T. Food functionality research as a new national project in special reference to improvement of cognitive and locomotive abilities. Biosci Biotechnol Biochem 2018; 82:573-583. [PMID: 29316856 DOI: 10.1080/09168451.2017.1412249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Japan, where a super-aging society is realized, we are most concerned about healthy longevity, which would ascertain the wellness of people by improving their quality of life (QOL). In 2014, the Cabinet Office proposed a strategic innovation promotion programme, launching a national project for the development of the agricultural-forestry-fisheries food products with new functionalities for the next generation. In addition to focusing on a conventional prevention of lifestyle-associated metabolic syndromes, the project targets the scientific evidence of the activation of brain cognitive ability and the improvement of bodily locomotive function. The project also involves the analysis of the foods-sports interrelation of chronic importance, and the development of devices for the verification of QOL-associated maintenance of homeostasis. In this review, we provide an overview of these studies, with special reference to cognition as a case of the gut-brain axis which the author is particularly interested in.
Collapse
Affiliation(s)
- Keiko Abe
- a Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan.,b Group for Food Functionality Assessment , Kanagawa Institute of Industrial Science and Technology (KISTEC) , Kawasaki , Japan
| | - Takumi Misaka
- a Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
154
|
Freyssin A, Page G, Fauconneau B, Rioux Bilan A. Natural polyphenols effects on protein aggregates in Alzheimer's and Parkinson's prion-like diseases. Neural Regen Res 2018; 13:955-961. [PMID: 29926816 PMCID: PMC6022479 DOI: 10.4103/1673-5374.233432] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's and Parkinson's diseases are the most common neurodegenerative diseases. They are characterized by protein aggregates and so can be considered as prion-like disease. The major components of these deposits are amyloid peptide and tau for Alzheimer's disease, α-synuclein and synphilin-1 for Parkinson's disease. Drugs currently proposed to treat these pathologies do not prevent neurodegenerative processes and are mainly symptomatic therapies. Molecules inducing inhibition of aggregation or disaggregation of these proteins could have beneficial effects, especially if they have other beneficial effects for these diseases. Thus, several natural polyphenols, which have antioxidative, anti-inflammatory and neuroprotective properties, have been largely studied, for their effects on protein aggregates found in these diseases, notably in vitro. In this article, we propose to review the significant papers concerning the role of polyphenols on aggregation and disaggregation of amyloid peptide, tau, α-synuclein, synphilin-1, suggesting that these compounds could be useful in the treatments in Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Aline Freyssin
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| | - Guylène Page
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| | - Bernard Fauconneau
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| | - Agnès Rioux Bilan
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| |
Collapse
|
155
|
Mocan A, Zengin G, Simirgiotis M, Schafberg M, Mollica A, Vodnar DC, Crişan G, Rohn S. Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: phytochemical characterization, biological profile, and computational studies. J Enzyme Inhib Med Chem 2017; 32:153-168. [PMID: 28095717 PMCID: PMC6009880 DOI: 10.1080/14756366.2016.1243535] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 02/03/2023] Open
Abstract
Goji (Lycium barbarum L.) leaves are emphasized as a functional tea or as dietary supplements. The phenolic compound profile, antioxidant, enzyme inhibitory, antimicrobial, and antimutagenic activities of leaf extracts from two selected cultivars in comparison with wild-growing plants have been evaluated. HPLC-DAD/ESI-ToF-MS analysis revealed the presence of phenolic acids and flavonoids with chlorogenic acid and rutin being the dominant compounds in the cultivated plants, whereas rutin and kaempeferol-3-O-rutinoside for wild growing ones. In particular, cv. Erma contained the highest amount of chlorogenic acid and showed a strong tyrosinase-inhibitory effect. Staphylococcus aureus, Listeria monocytogenes, and Penicillium funiculosum were the most sensitive strains when exposed to extracts from cultivated plants. Antimutagenic activity was evaluated by Ames' test. The tested extracts provided high protection against mutagenicity induced by 2-anthramine (2-AA) to Salmonella typhimurium strains TA 98 and TA 100 (max. inhibition (%) 88% and 74.2%, respectively). Overall, Goji leaves are a rich source of bioactive compounds with functional properties that need further risk/benefit evaluation when used in foods or health-promoting formulations.
Collapse
Affiliation(s)
- Andrei Mocan
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Michaela Schafberg
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Adriano Mollica
- Department of Pharmacy, University "G. d’Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Dan C. Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Gianina Crişan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| |
Collapse
|
156
|
Cornejo A, Aguilar Sandoval F, Caballero L, Machuca L, Muñoz P, Caballero J, Perry G, Ardiles A, Areche C, Melo F. Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 32:945-953. [PMID: 28701064 PMCID: PMC6009890 DOI: 10.1080/14756366.2017.1347783] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/13/2017] [Accepted: 06/23/2017] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease is a common tauopathy where fibril formation and aggregates are the hallmark of the disease. Efforts targeting amyloid-β plaques have succeeded to remove plaques but failed in clinical trials to improve cognition; thus, the current therapeutic strategy is at preventing tau aggregation. Here, we demonstrated that four phenolic diterpenoids and rosmarinic acid inhibit fibrillization. Since, rosmarinic acid was the most active compound, we observe morphological changes in atomic force microscopy images after treatment. Hence, rosmarinic acid leads to a decrease in amide regions I and III, indicating that rosmarinic acid prevents β-sheet assembly. Molecular docking study inside the steric zipper model of the hexapeptide 306VQIVYK311 involved in fibrillization and β sheet formation, suggests that rosmarinic acid binds to the steric zipper with similar chemical interactions with respect to those observed for orange G, a known pharmacofore for amyloid.
Collapse
Affiliation(s)
- Alberto Cornejo
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Felipe Aguilar Sandoval
- Departamento de Física, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago, Chile
| | - Leonardo Caballero
- Departamento de Física, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago, Chile
| | - Luis Machuca
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Patricio Muñoz
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Julio Caballero
- Centro bioinformático y modelamiento molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alejandro Ardiles
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco Melo
- Departamento de Física, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
157
|
Concise synthesis of the bioactive natural polyhydroxynaphthoate parvinaphthol B via Hauser-Kraus annulation. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
158
|
Bahri S, Ben Ali R, Gasmi K, Mlika M, Fazaa S, Ksouri R, Serairi R, Jameleddine S, Shlyonsky V. Prophylactic and curative effect of rosemary leaves extract in a bleomycin model of pulmonary fibrosis. PHARMACEUTICAL BIOLOGY 2017; 55:462-471. [PMID: 28093019 PMCID: PMC6130597 DOI: 10.1080/13880209.2016.1247881] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/22/2016] [Accepted: 10/09/2016] [Indexed: 06/01/2023]
Abstract
CONTEXT Pulmonary fibrosis is a devastating disease without effective treatment. Rosemary is appreciated since ancient times for its medicinal properties, while biomolecules originated from the plant have an antioxidant and antifibrotic effect. OBJECTIVE The effects of Rosmarinus officinalis L. (Lamiaceae) leaves extract (RO) on bleomycin-induced lung fibrosis were investigated. MATERIALS AND METHODS Male Wistar rats were given a single dose of bleomycin (BLM, 4 mg/kg, intratracheal), while RO (75 mg/kg, intraperitoneal) was administered 3 days later and continued for 4 weeks (BLM/RO1-curative group). Alternatively, RO was administered 2 weeks before BLM and continued 15 days thereafter (BLM/RO2-prophylactic group). Antioxidant activities of RO and lung tissues were studied by standard methods. Histological staining revealed lung architecture and collagen deposition. RO was characterized for its polyphenol content and by high-performance liquid chromatography. RESULTS RO polyphenol content was 60.52 mg/g of dry weight, carnosic and rosmarinic acids being major components (6.886 and 2.351 mg/g). Antioxidant effect of RO (DPPH and FRAP assay) expressed as IC50 values were 2.23 μg/mL and 0.074 μg/mL, respectively. In BLM/RO1 and BLM/RO2 lung architecture was less compromised compared to BLM, which was reflected in lower fibrosis score (2.33 ± 0.33 and 1.8 ± 0.32 vs 3.7 ± 0.3). Malondialdehyde levels were attenuated (141% and 108% vs 258% of normal value). Catalase and glutathione-S-transferase activities were normalized (103% and 117% vs 59%, 85% and 69% vs 23%, respectively). DISCUSSION AND CONCLUSION RO has a protective effect against BLM-induced oxidative stress and lung fibrosis due to its phenolic compounds.
Collapse
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Physiopathology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Ridha Ben Ali
- Laboratory of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Khaoula Gasmi
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mona Mlika
- Laboratory of Anatomy and Pathology, Abderhaman Mami Hospital, Ariana, Tunisia
| | - Saloua Fazaa
- Laboratory of Physiology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Riadh Ksouri
- Laboratory of Eco-Process and Valorization of Aromatic and Medicinal Plants, Center for Biotechnology, Technopole Borj Cédria (CBBC), Tunis, Tunisia
| | - Raja Serairi
- Laboratory of Physiology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
- High School of Health Sciences, Tunis, Tunisia
| | - Saloua Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Vadim Shlyonsky
- Laboratory of Physiopathology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
159
|
Taguchi R, Hatayama K, Takahashi T, Hayashi T, Sato Y, Sato D, Ohta K, Nakano H, Seki C, Endo Y, Tokuraku K, Uwai K. Structure-activity relations of rosmarinic acid derivatives for the amyloid β aggregation inhibition and antioxidant properties. Eur J Med Chem 2017; 138:1066-1075. [PMID: 28759879 DOI: 10.1016/j.ejmech.2017.07.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/20/2017] [Accepted: 07/16/2017] [Indexed: 12/19/2022]
Abstract
Amyloid-β aggregation inhibitors are expected to be therapeutic or prophylactic agents for Alzheimer's disease. Rosmarinic acid, which is one of the main aggregation inhibitors derived from Lamiaceae, was employed as a lead compound and its 25 derivatives were synthesized. In this study, the structure-activity relations of rosmarinic acid derivatives for the amyloid-β aggregation inhibitory effect (MSHTS assay), antioxidant properties, and xanthine oxidase inhibition were evaluated. Among the tested compounds, compounds 16d and 19 were found to the most potent amyloid aggregation inhibitors. The SAR revealed that the necessity of the presence of the phenolic hydroxyl on one side of the molecule as well as the lipophilicity of the entire molecule. The importance of these structural properties was also supported by docking simulations.
Collapse
Affiliation(s)
- Riho Taguchi
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Koki Hatayama
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Tomohito Takahashi
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Takafumi Hayashi
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yuki Sato
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Daisuke Sato
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Kiminori Ohta
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Hiroto Nakano
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Chigusa Seki
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Yasuyuki Endo
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Kiyotaka Tokuraku
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Koji Uwai
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan.
| |
Collapse
|
160
|
Kantar-Gok D, Hidisoglu E, Er H, Acun AD, Olgar Y, Yargıcoglu P. Changes of auditory event-related potentials in ovariectomized rats injected with d-galactose: Protective role of rosmarinic acid. Neurotoxicology 2017; 62:64-74. [PMID: 28501655 DOI: 10.1016/j.neuro.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/10/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022]
Abstract
Rosmarinic acid (RA), which has multiple bioactive properties, might be a useful agent for protecting central nervous system against age related alterations. In this context, the purpose of the present study was to investigate possible protective effects of RA on mismatch negativity (MMN) component of auditory event-related potentials (AERPs) as an indicator of auditory discrimination and echoic memory in the ovariectomized (OVX) rats injected with d-galactose combined with neurochemical and histological analyses. Ninety female Wistar rats were randomly divided into six groups: sham control (S); RA-treated (R); OVX (O); OVX+RA-treated (OR); OVX+d-galactose-treated (OD); OVX+d-galactose+RA-treated (ODR). Eight weeks later, MMN responses were recorded using the oddball condition. An amplitude reduction of some components of AERPs was observed due to ovariectomy with or without d-galactose administiration and these reduction patterns were diverse for different electrode locations. MMN amplitudes were significantly lower over temporal and right frontal locations in the O and OD groups versus the S and R groups, which was accompanied by increased thiobarbituric acid reactive substances (TBARS) and hydroxy-2-nonenal (4-HNE) levels. RA treatment significantly increased AERP/MMN amplitudes and lowered the TBARS/4-HNE levels in the OR and ODR groups versus the O and OD groups, respectively. Our findings support the potential benefit of RA in the prevention of auditory distortion related to the estrogen deficiency and d-galactose administration at least partly by antioxidant actions.
Collapse
Affiliation(s)
- Deniz Kantar-Gok
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Enis Hidisoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Hakan Er
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Alev Duygu Acun
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Piraye Yargıcoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey.
| |
Collapse
|
161
|
Alzheimer's disease as oligomeropathy. Neurochem Int 2017; 119:57-70. [PMID: 28821400 DOI: 10.1016/j.neuint.2017.08.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/30/2017] [Accepted: 08/13/2017] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder and is characterized by pathological aggregates of amyloid β-protein (Aβ) and tau protein. On the basis of genetic evidence, biochemical data, and animal models, Aβ has been suggested to be responsible for the pathogenesis of AD (the amyloid hypothesis). Aβ molecules tend to aggregate to form oligomers, protofibrils, and mature fibrils. Although mature fibrils in the final stage have been thought to be the cause of AD pathogenesis, recent studies using synthetic Aβ peptides, a cell culture model, Aβ precursor protein transgenic mice models, and human samples, such as cerebrospinal fluids and postmortem brains of AD patients, suggest that pre-fibrillar forms (oligomers of Aβ) are more deleterious than are extracellular fibril forms. Based on this recent evidence showing that oligomers have a central role in the pathogenesis of AD, the term "oligomeropathy" could be used to define AD and other protein-misfolding diseases. In this review, I discuss recent developments in the "oligomer hypothesis" including our research findings regarding the pathogenesis of AD.
Collapse
|
162
|
Dietary Modulation of Oxidative Stress in Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18071583. [PMID: 28753984 PMCID: PMC5536070 DOI: 10.3390/ijms18071583] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Cells generate unpaired electrons, typically via oxygen- or nitrogen-based by-products during normal cellular respiration and under stressed situations. These pro-oxidant molecules are highly unstable and may oxidize surrounding cellular macromolecules. Under normal conditions, the reactive oxygen or nitrogen species can be beneficial to cell survival and function by destroying and degrading pathogens or antigens. However, excessive generation and accumulation of the reactive pro-oxidant species over time can damage proteins, lipids, carbohydrates, and nucleic acids. Over time, this oxidative stress can contribute to a range of aging-related degenerative diseases such as cancer, diabetes, macular degeneration, and Alzheimer’s, and Parkinson’s diseases. It is well accepted that natural compounds, including vitamins A, C, and E, β-carotene, and minerals found in fruits and vegetables are powerful anti-oxidants that offer health benefits against several different oxidative stress induced degenerative diseases, including Alzheimer’s disease (AD). There is increasing interest in developing anti-oxidative therapeutics to prevent AD. There are contradictory and inconsistent reports on the possible benefits of anti-oxidative supplements; however, fruits and vegetables enriched with multiple anti-oxidants (e.g., flavonoids and polyphenols) and minerals may be highly effective in attenuating the harmful effects of oxidative stress. As the physiological activation of either protective or destructive pro-oxidant behavior remains relatively unclear, it is not straightforward to relate the efficacy of dietary anti-oxidants in disease prevention. Here, we review oxidative stress mediated toxicity associated with AD and highlight the modulatory roles of natural dietary anti-oxidants in preventing AD.
Collapse
|
163
|
Rui Y, Tong L, Cheng J, Wang G, Qin L, Wan Z. Rosmarinic acid suppresses adipogenesis, lipolysis in 3T3-L1 adipocytes, lipopolysaccharide-stimulated tumor necrosis factor-α secretion in macrophages, and inflammatory mediators in 3T3-L1 adipocytes. Food Nutr Res 2017; 61:1330096. [PMID: 28659738 PMCID: PMC5475298 DOI: 10.1080/16546628.2017.1330096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/05/2017] [Indexed: 12/26/2022] Open
Abstract
Background: Rosmarinic acid (RA) is a natural phenol carboxylic acid with many promising biological effects. It may be a suitable candidate for improving obesity-related adipose tissue dysfunction. Objective: We aimed to investigate the therapeutic use of RA as an anti-obesity agent by measuring its effects on adipogenesis, lipolysis, and messenger RNA (mRNA) expression of major adipokines in 3T3-L1 adipocytes; and its effects on lipopolysaccharide (LPS)-induced tumor necrosis factor-α (TNF-α) secretion in macrophages and inflammatory mediators in 3T3-L1 adipocytes incubated with macrophage-conditioned medium (MCM). Methods: 3T3-L1 preadipocytes were used to explore how RA affects adipogenesis, as well as the involvement of phosphorylated extracellular signal-regulated kinase-1/2 (p-ERK1/2) and mothers against decapentaplegic homolog 3 (p-Smad3). 3T3-L1 preadipocytes were also differentiated into mature adipocytes to explore how RA affects basal and isoproterenol- and forskolin-stimulated lipolysis; and how RA affects key adipokines’ mRNA expression. RAW 264.7 macrophages were stimulated with LPS in the absence or presence of RA to explore RA’s effects on TNF-α secretion. MCM was collected and 3T3-L1 adipocytes were incubated with MCM to explore RA’s effects on interleukin-6 (IL-6), IL-1β, monocyte chemoattractant protein-1 (MCP-1), and RANTES mRNA expression. Results: During the preadipocyte differentiation process, RA suppressed peroxisome proliferator-activated receptor-γ and CCAAT/enhancer binding protein-α, and activated p-ERK1/2 and p-Smad3; inhibition of adipogenesis by RA was partially restored following treatment with p-ERK1/2 and p-Smad3 inhibitors. In mature adipocytes, RA inhibited basal lipolysis; phosphodiesterase-3 inhibitor reversed this. RA also inhibited isoproterenol- and forskolin-stimulated glycerol and free fatty acid release, and the phosphorylation of hormone-sensitive lipase and perilipin. RA had no effects on leptin, adiponectin, resistin, or visfatin mRNA expression. RA suppressed TNF-α mRNA expression and secretion in LPS-stimulated RAW 264.7 macrophages; and reduced LPS-MCM-induced IL-6, IL-1β, MCP-1, and RANTES mRNA expression in 3T3-L1 adipocytes. Conclusions: RA exerts inhibitory effects on adipogenesis, lipolysis, and inflammation. RA could be a promising natural product for improving adipose mobilization in obesity.
Collapse
Affiliation(s)
- Yehua Rui
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, PR China
| | - Lingxia Tong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Jinbo Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, PR China
| | - Guiping Wang
- Laboratory Animal Center, Soochow University, Suzhou, PR China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, PR China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, PR China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, PR China
| |
Collapse
|
164
|
Neuroprotective Effect of Fagopyrum dibotrys Extract against Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3294586. [PMID: 28512499 PMCID: PMC5415668 DOI: 10.1155/2017/3294586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/12/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023]
Abstract
Accumulated evidence suggests that polyphenolic antioxidants present in herbs play important roles in prevention of AD; the molecular mechanisms behind neuroprotective actions rely on the phenols through different effects on the amyloid-aggregation pathway. Fagopyrum dibotrys is a traditional herbal medicine which contains high quantity phenols. In present study, we investigate the beneficial pharmacological actions of Fagopyrum dibotrys extract in the APP/PS1 transgenic mouse mode; meanwhile, effects of the FDE on the fibrillation and cytotoxicity of Aβ peptide were evaluated in vitro. After 9-month treatment, FDE exhibited multifunctional properties on Aβ-related pathologies, which cleaned Aβ deposits in the brain and decreased Aβ burden in the plasma, inhibited microhaemorrhage, and reduced reactive microglia in APP/PS1 transgenic mice and also promoted Aβ fibrils disaggregation and inhibited neurotoxicity induced by Aβ in SH-SY5Y cells. These results highlighted that FDE is an AD type pathology modulator with therapeutic potential against AD.
Collapse
|
165
|
Omar SH. Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomed Pharmacother 2017; 89:396-413. [DOI: 10.1016/j.biopha.2017.02.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 02/01/2023] Open
|
166
|
Siddique YH, Ali F. Protective effect of nordihydroguaiaretic acid (NDGA) on the transgenic Drosophila model of Alzheimer's disease. Chem Biol Interact 2017; 269:59-66. [DOI: 10.1016/j.cbi.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/26/2017] [Accepted: 04/05/2017] [Indexed: 01/07/2023]
|
167
|
Velander P, Wu L, Henderson F, Zhang S, Bevan DR, Xu B. Natural product-based amyloid inhibitors. Biochem Pharmacol 2017; 139:40-55. [PMID: 28390938 DOI: 10.1016/j.bcp.2017.04.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 11/26/2022]
Abstract
Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned.
Collapse
Affiliation(s)
- Paul Velander
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Frances Henderson
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David R Bevan
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Translational Obesity Research Center, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
168
|
Espargaró A, Ginex T, Vadell MDM, Busquets MA, Estelrich J, Muñoz-Torrero D, Luque FJ, Sabate R. Combined in Vitro Cell-Based/in Silico Screening of Naturally Occurring Flavonoids and Phenolic Compounds as Potential Anti-Alzheimer Drugs. JOURNAL OF NATURAL PRODUCTS 2017; 80:278-289. [PMID: 28128562 DOI: 10.1021/acs.jnatprod.6b00643] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in people over 65 years. One of the major culprits in AD is the self-aggregation of amyloid-β peptide (Aβ), which has stimulated the search for small molecules able to inhibit Aβ aggregation. In this context, we recently reported a simple, but effective in vitro cell-based assay to evaluate the potential antiaggregation activity of putative Aβ aggregation inhibitors. In this work this assay was used together with docking and molecular dynamics simulations to analyze the anti-Aβ aggregation activity of several naturally occurring flavonoids and phenolic compounds. The results showed that rosmarinic acid, melatonin, and o-vanillin displayed zero or low inhibitory capacity, curcumin was found to have an intermediate inhibitory potency, and apigenin and quercetin showed potent antiaggregation activity. Finally, the suitability of the combined in vitro cell-based/in silico approach to distinguish between active and inactive compounds was further assessed for an additional set of flavonols and dihydroflavonols.
Collapse
Affiliation(s)
- Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| | - Tiziana Ginex
- Department of Nutrition, Food Sciences, and Gastronomy, School of Pharmacy and Institute of Biomedicine, Campus Torribera, University of Barcelona , Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Maria Del Mar Vadell
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| | - Maria A Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| | - Joan Estelrich
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), School of Pharmacy, and Institute of Biomedicine (IBUB), University of Barcelona , E-08028, Barcelona, Spain
| | - F Javier Luque
- Department of Nutrition, Food Sciences, and Gastronomy, School of Pharmacy and Institute of Biomedicine, Campus Torribera, University of Barcelona , Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| |
Collapse
|
169
|
The Effect of Polyphenols on Protein Degradation Pathways: Implications for Neuroprotection. Molecules 2017; 22:molecules22010159. [PMID: 28106854 PMCID: PMC6155800 DOI: 10.3390/molecules22010159] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/02/2017] [Accepted: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
Human neurodegenerative diseases are accompanied by accumulation of heavily oxidized and aggregated proteins. However, the exact molecular reason is not fully elucidated yet. Insufficient cellular protein quality control is thought to play an important role in accumulating covalently oxidized misfolded proteins. Pharmacologically active polyphenols and their derivatives exhibit potential for preventive and therapeutic purposes against protein aggregation during neurodegeneration. Although these compounds act on various biochemical pathways, their role in stabilizing the protein degradation machinery at different stages may be an attractive therapeutical strategy to halt the accumulation of misfolded proteins. This review evaluates and discusses the existing scientific literature on the effect of polyphenols on three major protein degradation pathways: chaperone-mediated autophagy, the proteasome and macroautophagy. The results of these studies demonstrate that phenolic compounds are able to influence the major protein degradation pathways at different levels.
Collapse
|
170
|
Song Y, Kim HD, Lee MK, Hong IH, Won CK, Bai HW, Lee SS, Lee S, Chung BY, Cho JH. Maysin and Its Flavonoid Derivative from Centipedegrass Attenuates Amyloid Plaques by Inducting Humoral Immune Response with Th2 Skewed Cytokine Response in the Tg (APPswe, PS1dE9) Alzheimer's Mouse Model. PLoS One 2017; 12:e0169509. [PMID: 28072821 PMCID: PMC5224976 DOI: 10.1371/journal.pone.0169509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 12/18/2016] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a slow, progressive neurodegenerative disease and the most common type of dementia in the elderly. The etiology of AD and its underlying mechanism are still not clear. In a previous study, we found that an ethyl acetate extract of Centipedegrass (CG) (i.e., EA-CG) contained 4 types of Maysin derivatives, including Luteolin, Isoorientin, Rhamnosylisoorientin, and Derhamnosylmaysin, and showed protective effects against Amyloid beta (Aβ) by inhibiting oligomeric Aβ in cellular and in vitro models. Here, we examined the preventative effects of EA-CG treatment on the Aβ burden in the Tg (Mo/Hu APPswe PS1dE9) AD mouse model. We have investigated the EA-CG efficacy as novel anti-AD likely preventing amyloid plaques using immunofluorescence staining to visually analyze Aβ40/42 and fibril formation with Thioflavin-S or 6E10 which are the profile of immunoreactivity against epitope Aβ1–16 or neuritic plaque, the quantitation of humoral immune response against Aβ, and the inflammatory cytokine responses (Th1 and Th2) using ELISA and QRT-PCR. To minimize the toxicity of the extracted CG, we addressed the liver toxicity in response to the CG extract treatment in Tg mice using relevant markers, such as aspartate aminotransferase (AST)/ alanine aminotransferase (ALT) measurements in serum. The EA-CG extract significantly reduced the Aβ burden, the concentration of soluble Aβ40/42 protein, and fibril formation in the hippocampus and cortex of the Tg mice treated with EA-CG (50 mg/kg BW/day) for 6 months compared with the Tg mice treated with a normal diet. Additionally, the profile of anti-inflammatory cytokines revealed that the levels of Th2 (interleukin-4 (IL-4) and interleukin-10 (IL-10)) cytokines are more significantly increased than Th1 (interferon-γ (IFN-γ), interleukin-2(IL-2)) in the sera. These results suggest that the EA-CG fraction induces IL-4/IL-10-dependent anti-inflammatory cytokines (Th2) rather than pro-inflammatory cytokines (Th1), which are driven by IL-2/IFN-γ. With regard to the immune response, EA-CG induced an immunoglobulin IgG and IgM response against the EA-CG treatment in the Tg mice. Furthermore, EA-CG significantly ameliorated the level of soluble Aβ42 and Aβ40. Similarly, we observed that the fibril formation was also decreased by EA-CG treatment in the hippocampus and cortex after quantitative analysis with Thioflavin-S staining in the Tg brain tissues. Taken together, our findings suggested that Maysin and its derivative flavonoid compounds in the EA-CG fraction might be beneficial therapeutic treatments or alternative preventative measures to adjuvant for boosting humoral and cellular include immune response and anti-inflammation which may lead to amyloid plaque accumulation in Alzheimer’s patients’ brains.
Collapse
Affiliation(s)
- Yuno Song
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Hong-Duck Kim
- Department of Environmental Health Science, New York Medical College, Valhalla, New York, United States of America
| | - Min-Kwon Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Il-Hwa Hong
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Chung-Kil Won
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Hyoung-Woo Bai
- Advanced Radiation Technology Institute, Korea Atomic Energy Institute, Jeongeup, Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Institute, Jeongeup, Korea
| | - SungBeom Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Institute, Jeongeup, Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Institute, Jeongeup, Korea
- * E-mail: (JHC); (BYC)
| | - Jae-Hyeon Cho
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
- * E-mail: (JHC); (BYC)
| |
Collapse
|
171
|
Lu N, Bernardo EL, Tippayadarapanich C, Takagaki M, Kagawa N, Yamori W. Growth and Accumulation of Secondary Metabolites in Perilla as Affected by Photosynthetic Photon Flux Density and Electrical Conductivity of the Nutrient Solution. FRONTIERS IN PLANT SCIENCE 2017; 8:708. [PMID: 28523012 PMCID: PMC5416839 DOI: 10.3389/fpls.2017.00708] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/18/2017] [Indexed: 05/08/2023]
Abstract
The global demand for medicinal plants is increasing. The quality of plants grown outdoors, however, is difficult to control. Myriad environmental factors influence plant growth and directly impact biosynthetic pathways, thus affecting the secondary metabolism of bioactive compounds. Plant factories use artificial lighting to increase the quality of medicinal plants and stabilize production. Photosynthetic photon flux density (PPFD) and electrical conductivity (EC) of nutrient solutions are two important factors that substantially influence perilla (Perilla frutescens, Labiatae) plant growth and quality. To identify suitable levels of PPFD and EC for perilla plants grown in a plant factory, the growth, photosynthesis, and accumulation of secondary metabolites in red and green perilla plants were measured at PPFD values of 100, 200, and 300 μmol m-2 s-1 in nutrient solutions with EC values of 1.0, 2.0, and 3.0 dS m-1. The results showed significant interactive effects between PPFD and EC for both the fresh and dry weights of green perilla, but not for red perilla. The fresh and dry weights of shoots and leafy areas were affected more by EC than by PPFD in green perilla, whereas they were affected more by PPFD than by EC in red perilla. Leaf net photosynthetic rates were increased as PPFD increased in both perilla varieties, regardless of EC. The perillaldehyde concentration (mg g-1) in red perilla was unaffected by the treatments, but accumulation in plants (mg per plant) was significantly enhanced as the weight of dry leaves increased. Perillaldehyde concentrations in green perilla showed significant differences between combinations of the highest PPFD with the highest EC and the lowest PPFD with the lowest EC. Rosmarinic acid concentration (mg g-1) was increased in a combination of low EC and high PPFD conditions. Optimal cultivation conditions of red and green perilla in plant factory will be discussed in terms of plant growth and contents of medicinal ingredients.
Collapse
Affiliation(s)
- Na Lu
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
| | - Emmanuel L. Bernardo
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
- Masikhay MicroPlants NurseryLos Baños, Philippines
| | - Chayanit Tippayadarapanich
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
- Department of Horticulture, Faculty of Agriculture, Kasetsart UniversityBangkok, Thailand
| | - Michiko Takagaki
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
| | - Natsuko Kagawa
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
- *Correspondence: Wataru Yamori, Natsuko Kagawa,
| | - Wataru Yamori
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
- Department of Biological Sciences, Graduate School of Science, University of TokyoTokyo, Japan
- *Correspondence: Wataru Yamori, Natsuko Kagawa,
| |
Collapse
|
172
|
Xu Y, Han S, Lei K, Chang X, Wang K, Li Z, Liu J. Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells. Eur J Cancer Prev 2016; 25:481-489. [PMID: 26340059 DOI: 10.1097/cej.0000000000000205] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Warburg effect, glycolytic production of ATP under aerobic conditions, is found to be a universal feature of most cancer cells. Our study was aimed to determine whether rosmarinic acid (RA) had the anti-Warburg effect activity against colorectal carcinoma. Furthermore, the mechanism for the anti-Warburg effect by RA would be investigated. In our study, we found that RA suppressed glucose consumption and lactate generation in colorectal carcinoma cells; meanwhile, RA inhibited the expression of transcription factor hypoxia-inducible factor-1α (HIF-1α) that affects the glycolytic pathway. Chronic inflammation is a key promoting factor of the Warburg effect. As we supposed, the present study also showed that RA could not only repress proinflammatory cytokines using enzyme-linked immunosorbent assay but it could also suppress microRNAs related to inflammation by real-time PCR. Therefore, we proposed that RA may inhibit the Warburg effect by suppressing the inflammatory response of colorectal carcinoma cells. Recent studies have provided evidence that miR-155 was an important mediator between inflammation and carcinogenesis. We further showed that miR-155 acted to repress the Warburg effect through the mechanism of inactivating the IL-6/STAT3 pathway. Above all, RA might be a potential therapeutic agent against colorectal carcinoma.
Collapse
Affiliation(s)
- Yichun Xu
- aState Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology bLaboratory of Integrative Medicine Surgery cDepartment of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou dDepartment of Clinical Pharmacy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
173
|
Mechanisms for the inhibition of amyloid aggregation by small ligands. Biosci Rep 2016; 36:BSR20160101. [PMID: 27512096 PMCID: PMC5041158 DOI: 10.1042/bsr20160101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 12/14/2022] Open
Abstract
This work investigates by biochemical, biophysical and MD techniques the opposite anti-amyloid properties of resveratrol and rosmarinic acid on the aggregation of hen egg white lysozyme (HEWL). Differences in association energy and contact maps were found that explain the different behaviours. The formation of amyloid aggregates is the hallmark of systemic and neurodegenerative disorders, also known as amyloidoses. Many proteins have been found to aggregate into amyloid-like fibrils and this process is recognized as a general tendency of polypeptides. Lysozyme, an antibacterial protein, is a well-studied model since it is associated in human with systemic amyloidosis and that is widely available from chicken eggs (HEWL, hen egg white lysozyme). In the present study we investigated the mechanism of interaction of aggregating HEWL with rosmarinic acid and resveratrol, that we verified to be effective and ineffective, respectively, in inhibiting aggregate formation. We used a multidisciplinary strategy to characterize such effects, combining biochemical and biophysical methods with molecular dynamics (MD) simulations on the HEWL peptide 49–64 to gain insights into the mechanisms and energy variations associated to amyloid formation and inhibition. MD revealed that neither resveratrol nor rosmarinic acid were able to compete with the initial formation of the β-sheet structure. We then tested the association of two β-sheets, representing the model of an amyloid core structure. MD showed that rosmarinic acid displayed an interaction energy and a contact map comparable to that of sheet pairings. On the contrary, resveratrol association energy was found to be much lower and its contact map largely different than that of sheet pairings. The overall characterization elucidated a possible mechanism explaining why, in this model, resveratrol is inactive in blocking fibril formation, whereas rosmarinic acid is instead a powerful inhibitor.
Collapse
|
174
|
Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci Rep 2016; 6:34027. [PMID: 27658445 PMCID: PMC5034326 DOI: 10.1038/srep34027] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
In plants from temperate climates such as Arabidopsis thaliana low, non-freezing temperatures lead to increased freezing tolerance in a process termed cold acclimation. This process is accompanied by massive changes in gene expression and in the content of primary metabolites and lipids. In addition, most flavonols and anthocyanins accumulate upon cold exposure, along with most transcripts encoding transcription factors and enzymes of the flavonoid biosynthetic pathway. However, no evidence for a functional role of flavonoids in plant freezing tolerance has been shown. Here, we present a comprehensive analysis using qRT-PCR for transcript, LC-MS for flavonoid and GC-MS for primary metabolite measurements, and an electrolyte leakage assay to determine freezing tolerance of 20 mutant lines in two Arabidopsis accessions that are affected in different steps of the flavonoid biosynthetic pathway. This analysis provides evidence for a functional role of flavonoids in plant cold acclimation. The accumulation of flavonoids in the activation tagging mutant line pap1-D improved, while reduced flavonoid content in different knock-out mutants impaired leaf freezing tolerance. Analysis of the different knock-out mutants suggests redundancy of flavonoid structures, as the lack of flavonols or anthocyanins could be compensated by other compound classes.
Collapse
Affiliation(s)
- Elisa Schulz
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Dirk K. Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| |
Collapse
|
175
|
Ferrari E, Benassi R, Saladini M, Orteca G, Gazova Z, Siposova K. In vitro study on potential pharmacological activity of curcumin analogues and their copper complexes. Chem Biol Drug Des 2016; 89:411-419. [PMID: 27569739 DOI: 10.1111/cbdd.12847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/27/2022]
Abstract
Curcumin and its derivatives have attracted great interest in the prevention and treatment of Alzheimer's disease, thanks both to the ability to hinder the formation of amyloid-beta (Aβ) aggregates and the ability to bind Cu (II) ion. In this article, we explore the ability of curcumin derivatives of K2T series to affect amyloid Aβ1-40 aggregation. These derivatives were obtained by introducing the t-butyl ester group through a methylenic spacer on the central carbon atom of the β-diketo moiety of curcumin frame. The studied curcuminoids were demonstrated to inhibit Aβ1-40 fibrillization at substoichiometric concentrations with IC50 value near that of curcumin. In addition, the antioxidant properties and DNA interaction of their Cu(II) complexes is evaluated. The structure of Cu(II)-K2T31 complex is also proposed on the basis of DFT calculation.
Collapse
Affiliation(s)
- Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Rois Benassi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Saladini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orteca
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics Slovak Academy of Sciences, Kosice, Slovakia
| | - Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics Slovak Academy of Sciences, Kosice, Slovakia
| |
Collapse
|
176
|
Mocan A, Zengin G, Crişan G, Mollica A. Enzymatic assays and molecular modeling studies of Schisandra chinensis lignans and phenolics from fruit and leaf extracts. J Enzyme Inhib Med Chem 2016; 31:200-210. [DOI: 10.1080/14756366.2016.1222585] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Andrei Mocan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania,
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey, and
| | - Gianina Crişan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania,
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
177
|
Tooyama I, Yanagisawa D, Taguchi H, Kato T, Hirao K, Shirai N, Sogabe T, Ibrahim NF, Inubushi T, Morikawa S. Amyloid imaging using fluorine-19 magnetic resonance imaging ((19)F-MRI). Ageing Res Rev 2016; 30:85-94. [PMID: 26772439 DOI: 10.1016/j.arr.2015.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 01/22/2023]
Abstract
The formation of senile plaques followed by the deposition of amyloid-β is the earliest pathological change in Alzheimer's disease. Thus, the detection of senile plaques remains the most important early diagnostic indicator of Alzheimer's disease. Amyloid imaging is a noninvasive technique for visualizing senile plaques in the brains of Alzheimer's patients using positron emission tomography (PET) or magnetic resonance imaging (MRI). Because fluorine-19 ((19)F) displays an intense nuclear magnetic resonance signal and is almost non-existent in the body, targets are detected with a higher signal-to-noise ratio using appropriate fluorinated contrast agents. The recent introduction of high-field MRI allows us to detect amyloid depositions in the brain of living mouse using (19)F-MRI. So far, at least three probes have been reported to detect amyloid deposition in the brain of transgenic mouse models of Alzheimer's disease; (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), 1,7-bis(4'-hydroxy-3'-trifluoromethoxyphenyl)-4-methoxycarbonylethyl-1,6-heptadiene3,5-dione (FMeC1, Shiga-Y5) and 6-(3',6',9',15',18',21'-heptaoxa-23',23',23'-trifluorotricosanyloxy)-2-(4'-dimethylaminostyryl)benzoxazole (XP7, Shiga-X22). This review presents the recent advances in amyloid imaging using (19)F-MRI, including our own studies.
Collapse
Affiliation(s)
- Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Hiroyasu Taguchi
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Tomoko Kato
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan; Biomedical MR Science Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Koichi Hirao
- Northeastern Industrial Research Center of Shiga Prefecture, 27-39 Mitsuya Motomachi, Nagahama 526-0024, Japan
| | - Nobuaki Shirai
- Northeastern Industrial Research Center of Shiga Prefecture, 27-39 Mitsuya Motomachi, Nagahama 526-0024, Japan
| | - Takayuki Sogabe
- Otsuka Pharmaceutical Co., Ltd, 224-18 Hiraishi Ebisuno, Kawauchi-cho 771-0182, Japan
| | - Nor Faeizah Ibrahim
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan; Universiti Kebangsaan Malaysia, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Toshiro Inubushi
- Biomedical MR Science Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Shigehiro Morikawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan; Biomedical MR Science Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
| |
Collapse
|
178
|
Molecular Approaches to Genetically Improve the Accumulation of Health-Promoting Secondary Metabolites in Staple Crops-A Case Study: The Lipoxygenase-B1 Genes and Regulation of the Carotenoid Content in Pasta Products. Int J Mol Sci 2016; 17:ijms17071177. [PMID: 27455242 PMCID: PMC4964548 DOI: 10.3390/ijms17071177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023] Open
Abstract
Secondary metabolites, also known as phytochemicals, represent a large subset of plant molecules that include compounds with health-promoting effects. Indeed, a number of epidemiological studies have shown that, when taken regularly and in adequate amounts, these molecules can have long-term beneficial effects on human health, through reduction of the incidence of degenerative diseases, such as cardiovascular diseases, obesity, diabetes, and cancer. As the dietary intake of these phytochemicals is often inadequate, various strategies are in use to improve their content in staple crops, and the end-products thereof. One of the most effective strategies is crop improvement through genetic approaches, as this is the only way to generate new cultivars in which the high accumulation of a given phytochemical is stably fixed. Efforts to genetically improve quality traits are rapidly evolving, from classical breeding to molecular-assisted approaches; these require sound understanding of the molecular bases underlying the traits, to identify the genes/alleles that control them. This can be achieved through global analysis of the metabolic pathway responsible for phytochemical accumulation, to identify the link between phytochemical content and the activities of key enzymes that regulate the metabolic pathway, and between the key enzymes and their encoding genes/alleles. Once these have been identified, they can be used as markers for selection of new improved genotypes through biotechnological approaches. This review provides an overview of the major health-promoting properties shown to be associated with the dietary intake of phytochemicals, and describes how molecular approaches provide means for improving the health quality of edible crops. Finally, a case study is illustrated, of the identification in durum wheat of the Lipoxygenase-B1 genes that control the final carotenoid content in semolina-based foods, such as pasta products.
Collapse
|
179
|
Niu L, Liu L, Xi W, Han Q, Li Q, Yu Y, Huang Q, Qu F, Xu M, Li Y, Du H, Yang R, Cramer J, Gothelf KV, Dong M, Besenbacher F, Zeng Q, Wang C, Wei G, Yang Y. Synergistic Inhibitory Effect of Peptide-Organic Coassemblies on Amyloid Aggregation. ACS NANO 2016; 10:4143-4153. [PMID: 26982522 DOI: 10.1021/acsnano.5b07396] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inhibition of amyloid aggregation is important for developing potential therapeutic strategies of amyloid-related diseases. Herein, we report that the inhibition effect of a pristine peptide motif (KLVFF) can be significantly improved by introducing a terminal regulatory moiety (terpyridine). The molecular-level observations by using scanning tunneling microscopy reveal stoichiometry-dependent polymorphism of the coassembly structures, which originates from the terminal interactions of peptide with organic modulator moieties and can be attributed to the secondary structures of peptides and conformations of the organic molecules. Furthermore, the polymorphism of the peptide-organic coassemblies is shown to be correlated to distinctively different inhibition effects on amyloid-β 42 (Aβ42) aggregations and cytotoxicity.
Collapse
Affiliation(s)
- Lin Niu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Lei Liu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- Institute for Advanced Materials, Jiangsu University , Jiangsu 212013, China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University , Shanghai 200433, China
| | - Qiusen Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Qiang Li
- Interdisciplinary Nanoscience Center (iNANO), Center for DNA Nanotechnology (CDNA), Aarhus University , DK-8000 Aarhus C, Denmark
| | - Yue Yu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Qunxing Huang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Fuyang Qu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Meng Xu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Yibao Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Huiwen Du
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Rong Yang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Jacob Cramer
- Interdisciplinary Nanoscience Center (iNANO), Center for DNA Nanotechnology (CDNA), Aarhus University , DK-8000 Aarhus C, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO), Center for DNA Nanotechnology (CDNA), Aarhus University , DK-8000 Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Center for DNA Nanotechnology (CDNA), Aarhus University , DK-8000 Aarhus C, Denmark
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Center for DNA Nanotechnology (CDNA), Aarhus University , DK-8000 Aarhus C, Denmark
| | - Qingdao Zeng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Chen Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University , Shanghai 200433, China
| | - Yanlian Yang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| |
Collapse
|
180
|
Umeda T, Ono K, Sakai A, Yamashita M, Mizuguchi M, Klein WL, Yamada M, Mori H, Tomiyama T. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers. Brain 2016; 139:1568-86. [PMID: 27020329 DOI: 10.1093/brain/aww042] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 01/04/2016] [Indexed: 01/02/2023] Open
Abstract
Amyloid-β, tau, and α-synuclein, or more specifically their soluble oligomers, are the aetiologic molecules in Alzheimer's disease, tauopathies, and α-synucleinopathies, respectively. These proteins have been shown to interact to accelerate each other's pathology. Clinical studies of amyloid-β-targeting therapies in Alzheimer's disease have revealed that the treatments after disease onset have little benefit on patient cognition. These findings prompted us to explore a preventive medicine which is orally available, has few adverse effects, and is effective at reducing neurotoxic oligomers with a broad spectrum. We initially tested five candidate compounds: rifampicin, curcumin, epigallocatechin-3-gallate, myricetin, and scyllo-inositol, in cells expressing amyloid precursor protein (APP) with the Osaka (E693Δ) mutation, which promotes amyloid-β oligomerization. Among these compounds, rifampicin, a well-known antibiotic, showed the strongest activities against the accumulation and toxicity (i.e. cytochrome c release from mitochondria) of intracellular amyloid-β oligomers. Under cell-free conditions, rifampicin inhibited oligomer formation of amyloid-β, tau, and α-synuclein, indicating its broad spectrum. The inhibitory effects of rifampicin against amyloid-β and tau oligomers were evaluated in APPOSK mice (amyloid-β oligomer model), Tg2576 mice (Alzheimer's disease model), and tau609 mice (tauopathy model). When orally administered to 17-month-old APPOSK mice at 0.5 and 1 mg/day for 1 month, rifampicin reduced the accumulation of amyloid-β oligomers as well as tau hyperphosphorylation, synapse loss, and microglial activation in a dose-dependent manner. In the Morris water maze, rifampicin at 1 mg/day improved memory of the mice to a level similar to that in non-transgenic littermates. Rifampicin also inhibited cytochrome c release from the mitochondria and caspase 3 activation in the hippocampus. In 13-month-old Tg2576 mice, oral rifampicin at 0.5 mg/day for 1 month decreased amyloid-β oligomer accumulation, tau hyperphosphorylation, synapse loss, and microglial activation, but not amyloid deposition. Rifampicin treatment to 14-15-month-old tau609 mice at 0.5 and 1 mg/day for 1 month also reduced tau oligomer accumulation, tau hyperphosphorylation, synapse loss, and microglial activation in a dose-dependent fashion, and improved the memory almost completely at 1 mg/day. In addition, rifampicin decreased the level of p62/sequestosome-1 in the brain without affecting the increased levels of LC3 (microtubule-associated protein light chain 3) conversion, suggesting the restoration of autophagy-lysosomal function. Considering its prescribed dose and safety in humans, these results indicate that rifampicin could be a promising, ready-to-use medicine for the prevention of Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kenjiro Ono
- Department of Neurology and Neurobiology and Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ayumi Sakai
- Department of Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Minato Yamashita
- Department of Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mineyuki Mizuguchi
- Laboratory of Structual Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - William L Klein
- Department of Neurobiology, Weinberg College of Arts and Science, Northwestern University, Evanston, IL, USA
| | - Masahito Yamada
- Department of Neurology and Neurobiology and Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroshi Mori
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan Department of Clinical Neuroscience, Osaka City University Medical School, Osaka, Japan
| | - Takami Tomiyama
- Department of Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
181
|
Kim NY, Lee HY. Enhancement of Cognitive Functions by Aronia melanocarpa Elliot Through an Intermittent Ultrasonication Extraction Process. J Med Food 2016; 19:245-52. [DOI: 10.1089/jmf.2015.3519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nam Young Kim
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyeon Yong Lee
- Department of Food Science and Engineering, Seowon University, Chungju, Republic of Korea
| |
Collapse
|
182
|
Stockley CS. Wine consumption, cognitive function and dementias – A relationship? ACTA ACUST UNITED AC 2016. [DOI: 10.3233/nua-150055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
183
|
Yao L, Gu X, Song Q, Wang X, Huang M, Hu M, Hou L, Kang T, Chen J, Chen H, Gao X. Nanoformulated alpha-mangostin ameliorates Alzheimer's disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance. J Control Release 2016; 226:1-14. [PMID: 26836197 DOI: 10.1016/j.jconrel.2016.01.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is now representing one of the largest global healthcare challenges. However, an effective therapy is still lacking. Accumulation of amyloid-beta (Aβ) in the brain is supposed to trigger pathogenic cascades that eventually lead to AD. Therefore, Aβ clearance strategy is being actively pursued as a promising disease modifying therapy. Here, we found that α-mangostin (α-M), a polyphenolic xanthone derivative from mangosteen, up-regulated low density lipoprotein receptor (LDLR) expression in microglia and liver cells, and efficiently facilitated Aβ clearance. However, the in vivo application of α-M is limited due to its hydrophobic nature, poor aqueous solubility and stability, and thus low bioavailability and accumulation in the target organs. To overcome this limitation, α-M was encapsulated into the core of poly(ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles [NP(α-M)]. Such nanoencapsulation improved the biodistribution of α-M in both the brain and liver, enhanced the brain clearance of (125)I-radiolabeled Aβ1-42 in an LDLR-dependent manner, reduced Aβ deposition, attenuated neuroinflammatory responses, ameliorated neurologic changes and reversed behavioral deficits in AD model mice. These findings justified the concept that polyphenol-mediated modulation of LDLR expression might serve as a safe and efficient disease-modifying therapy for AD by accelerating Aβ clearance. It also demonstrated the powerful capacity of nanotechnology in modulating the biodistribution behavior of drug to improve its therapeutic efficacy in AD.
Collapse
Affiliation(s)
- Lei Yao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Xiao Gu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Qingxiang Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Xiaolin Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Meng Huang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Meng Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Lina Hou
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Ting Kang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Jun Chen
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China.
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China.
| |
Collapse
|
184
|
Park SK, Ratia K, Ba M, Valencik M, Liebman SW. Inhibition of Aβ 42 oligomerization in yeast by a PICALM ortholog and certain FDA approved drugs. MICROBIAL CELL 2016; 3:53-64. [PMID: 28357335 PMCID: PMC5349104 DOI: 10.15698/mic2016.02.476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The formation of small Aβ42 oligomers has been implicated as a toxic
species in Alzheimer disease (AD). In strong support of this hypothesis we found
that overexpression of Yap1802, the yeast ortholog of the human AD risk factor,
phosphatidylinositol binding clathrin assembly protein (PICALM), reduced
oligomerization of Aβ42 fused to a reporter in yeast. Thus we used
the Aβ42-reporter system to identify drugs that could be developed
into therapies that prevent or arrest AD. From a screen of 1,200 FDA approved
drugs and drug-like small compounds we identified 7 drugs that reduce
Aβ42 oligomerization in yeast: 3 antipsychotics (bromperidol,
haloperidol and azaperone), 2 anesthetics (pramoxine HCl and dyclonine HCl),
tamoxifen citrate, and minocycline HCl. Also, all 7 drugs caused Aβ42
to be less toxic to PC12 cells and to relieve toxicity of another yeast AD model
in which Aβ42 aggregates targeted to the secretory pathway are toxic.
Our results identify drugs that inhibit Aβ42 oligomers from forming
in yeast. It remains to be determined if these drugs inhibit Aβ42
oligomerization in mammals and could be developed as a therapeutic treatment for
AD.
Collapse
Affiliation(s)
- Sei-Kyoung Park
- Present address: Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, USA
| | - Kiira Ratia
- HTS facility, Research Resources Center, University of Illinois, Chicago, Chicago, IL 60612, USA
| | - Mariam Ba
- Present address: Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, USA
| | - Maria Valencik
- Present address: Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, USA
| | - Susan W Liebman
- Present address: Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, USA. ; Department of Biological Sciences, University of Illinois, Chicago, Chicago, IL 60607, USA
| |
Collapse
|
185
|
Thapa A, Jett SD, Chi EY. Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway. ACS Chem Neurosci 2016; 7:56-68. [PMID: 26529184 DOI: 10.1021/acschemneuro.5b00214] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The abnormal misfolding and aggregation of amyloid-β (Aβ) peptides into β-sheet enriched insoluble deposits initiates a cascade of events leading to pathological processes and culminating in cognitive decline in Alzheimer's disease (AD). In particular, soluble oligomeric/prefibrillar Aβ have been shown to be potent neurotoxins. The naturally occurring polyphenol curcumin has been shown to exert a neuroprotective effect against age-related neurodegenerative diseases such as AD. However, its protective mechanism remains unclear. In this study, we investigated the effects of curcumin on the aggregation of Aβ40 as well as Aβ40 aggregate induced neurotoxicity. Our results show that the curcumin does not inhibit Aβ fibril formation, but rather enriches the population of "off-pathway" soluble oligomers and prefibrillar aggregates that were nontoxic. Curcumin also exerted a nonspecific neuroprotective effect, reducing toxicities induced by a range of Aβ conformers, including monomeric, oligomeric, prefibrillar, and fibrillar Aβ. The neuroprotective effect is possibly membrane-mediated, as curcumin reduced the extent of cell membrane permeabilization induced by Aβ aggregates. Taken together, our study shows that curcumin exerts its neuroprotective effect against Aβ induced toxicity through at least two concerted pathways, modifying the Aβ aggregation pathway toward the formation of nontoxic aggregates and ameliorating Aβ-induced toxicity possibly through a nonspecific pathway.
Collapse
Affiliation(s)
- Arjun Thapa
- Department
of Chemical and Biological Engineering
and the Center for Biomedical Engineering, and ‡Department of Cell Biology
and Physiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Stephen D. Jett
- Department
of Chemical and Biological Engineering
and the Center for Biomedical Engineering, and ‡Department of Cell Biology
and Physiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eva Y. Chi
- Department
of Chemical and Biological Engineering
and the Center for Biomedical Engineering, and ‡Department of Cell Biology
and Physiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
186
|
Fonteles AA, de Souza CM, de Sousa Neves JC, Menezes APF, Santos do Carmo MR, Fernandes FDP, de Araújo PR, de Andrade GM. Rosmarinic acid prevents against memory deficits in ischemic mice. Behav Brain Res 2016; 297:91-103. [PMID: 26456521 DOI: 10.1016/j.bbr.2015.09.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 01/21/2023]
Abstract
Polyphenols have neuroprotective effects after brain ischemia. It has been demonstrated that rosmarinic acid (RA), a natural phenolic compound, possesses antioxidant and anti-inflammatory properties. To evaluate the effectiveness of RA against memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) mice were treated with RA (0.1, 1, and 20mg/kg/day, i.p. before ischemia and during 5 days). Animals were evaluated for locomotor activity and working memory 72 h after pMCAO, and spatial and recognition memories 96 h after pMCAO. In addition, in another set of experiments brain infarction, neurological deficit score and myeloperoxidase (MPO) activity were evaluates 24h after the pMCAO. Finally, immunohistochemistry, and western blot, and ELISA assay were used to analyze glial fibrillary acidic protein (GFAP), and synaptophysin (SYP) expression, and BDNF level, respectively. The working, spatial, and recognition memory deficits were significantly improved with RA treatment (20mg/kg). RA reduced infarct size and neurological deficits caused by acute ischemia. The mechanism for RA neuroprotection involved, neuronal loss suppression, and increase of synaptophysin expression, and increase of BDNF. Furthermore, the increase of MPO activity and GFAP immunireactivity were prevented in MCAO group treated with RA. These results suggest that RA exerts memory protective effects probably due to synaptogenic activity and anti-inflammatory action.
Collapse
Affiliation(s)
- Analu Aragão Fonteles
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Fortaleza, Brazil; Institute of Biomedicine of Brazilian Semi-Arid, Fortaleza, Brazil
| | - Carolina Melo de Souza
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Ana Paula Fontenele Menezes
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Francisco Diego Pinheiro Fernandes
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Patrícia Rodrigues de Araújo
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Geanne Matos de Andrade
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Fortaleza, Brazil; Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil; Institute of Biomedicine of Brazilian Semi-Arid, Fortaleza, Brazil.
| |
Collapse
|
187
|
Ramezani M, Darbandi N, Khodagholi F, Hashemi A. Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer's disease. Neural Regen Res 2016; 11:1976-1980. [PMID: 28197195 PMCID: PMC5270437 DOI: 10.4103/1673-5374.197141] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is currently no treatment for effectively slowing the progression of Alzheimer's disease, so early prevention is very important. Numerous studies have shown that flavonoids can improve memory impairment. The present study investigated the effects of myricetin, a member of the flavonoids, on intracerebroventricular streptozotocin induced neuronal loss and memory impairment in rat models of Alzheimer's disease. Myricetin at 5 or 10 mg/kg was intraperitoneally injected into rats over 21 days. Control rats were treated with 10 mL/kg saline. Behavioral test (the shuttle box test) was performed on day 22 to examine learning and memory in rats. Immediately after that, hematoxylin-eosin staining was performed to observe the morphological change in hippocampal CA3 pyramidal neurons. Myricetin greatly increased the number of hippocampal CA3 pyramidal neurons and improved learning and memory impairments in rats with Alzheimer's disease. These findings suggest that myricetin is beneficial for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Matin Ramezani
- Department of Biology, Faculty of Science, Arak University, Arak, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Darbandi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Hashemi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
188
|
Shan Y, Wang DD, Xu YX, Wang C, Cao L, Liu YS, Zhu CQ. Aging as a Precipitating Factor in Chronic Restraint Stress-Induced Tau Aggregation Pathology, and the Protective Effects of Rosmarinic Acid. J Alzheimers Dis 2016; 49:829-44. [PMID: 26577520 DOI: 10.3233/jad-150486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stress is an important risk factor of Alzheimer's disease (AD). It has been evidenced that stress could induce tau phosphorylation and increase tau insolubility in brain; however, little is known about the interactional effect of stress with aging on tauopathy. Therefore, we explored the effects of aging on stress-induced tauopathy and the potential mechanism in mouse model of chronic restraint stress (CRS). Here we found that in general, the level of phosphorylated tau (P-tau) was higher in brain of middle-aged mice than that in adult mice under physiological conditions. CRS-induced tau phosphorylation and its insolubility were more prominent in middle-aged mice. The increase of AT8-labeled insoluble P-tau was dramatic in middle-aged mice, which was highly ubiquitinated but did not form PHF structures. The levels of chaperones were relatively lower in middle-aged mice brain; CRS further reduced the expression, especially for HDJ2/HSP40. CRS also suppressed the expression of Pin1, the peptidylprolyl cis/trans isomerase, in middle-aged mice but not in adult mice. Downregulation of HSP40 or Pin1 caused an increase of transfected extraneous tau in 293 cells. Rosmarinic acid (RA) could effectively suppress the elevation of P-tau and insoluble P-tau formation induced by CRS, and reversed the abnormal changes of chaperones and Pin1 particularly in middle-aged mice. Taken together, our findings provided evidence that aging could be a promoting factor in stress-induced tauopathy, which was relevant with malregulation of chaperones and Pin1, and RA might be a promising beneficial agent for stress-induced tauopathy.
Collapse
|
189
|
Wu CF, Hong C, Klauck SM, Lin YL, Efferth T. Molecular mechanisms of rosmarinic acid from Salvia miltiorrhiza in acute lymphoblastic leukemia cells. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:55-68. [PMID: 26476154 DOI: 10.1016/j.jep.2015.10.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/18/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosmarinic acid (RA), a major hydrosoluble bioactive compound found in the Chinese medicinal herb, Salvia miltiorrhiza Bunge, which has been used in traditional Chinese medicine to treat various diseases, including cancer. However, the mechanisms have not been fully elucidated. AIM OF THE STUDY Guided by microarray hybridization and Ingenuity Pathway Analysis, we identified modes of action of rosmarinic acid (RA) isolated from S. miltiorrhiza on acute lymphoblastic leukemia cells. MATERIALS AND METHODS Microarray data were verified by independent methods: Real-time RT-PCR (mRNA expression), resazurin assay (cytotoxicity of RA towards parental CCRF-CEM, multidrug-resistant CEM/ADR5000 cells and normal lymphocytes), flow cytometry (cell cycle arrest, apoptosis, necroptosis, generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential (MMP)), single cell gel electrophoresis (DNA damage), molecular docking and gene promoter binding motif analysis (NFκB), Western blotting (nuclear NFκB translocation, PARP cleavage, caspase 3/7/9 expression), and fibronectin-based cell adhesion assay. RESULTS RA dose-dependently inhibited CCRF-CEM and CEM/ADR5000 cells, but caused less cytotoxicity towards normal lymphocytes. RA simultaneously induced apoptosis and necrosis, as shown by cell morphology and annexin V-PI assay. DNA damage was dose-dependently induced without ROS generation, which subsequently led to cell cycle arrest. RA-stimulated MMP dysfunction activated PARP-cleavage and caspase-independent apoptosis. In accordance with molecular docking and gene promoter binding motif analyses, p65 translocation from the cytosol to the nucleus was blocked by RA, indicating a mechanistic role of the NFκB pathway to explain RA's action. RA affected cellular movement as evaluated by ameliorating cell adhesion to fibronectin. CONCLUSIONS RA induced apoptosis and necrosis in a ROS-independent DNA damage and caspase-independent manner. These results may contribute to the rationale use of S. miltiorrhiza and RA in traditional medicine of leukemia.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Chunlan Hong
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sabine M Klauck
- Working Group Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yun-Lian Lin
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
190
|
Yanagisawa D, Taguchi H, Morikawa S, Kato T, Hirao K, Shirai N, Tooyama I. Novel curcumin derivatives as potent inhibitors of amyloid β aggregation. Biochem Biophys Rep 2015; 4:357-368. [PMID: 29124225 PMCID: PMC5669405 DOI: 10.1016/j.bbrep.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
Modulation of abnormal amyloid β (Aβ) aggregation is considered to be a potential therapeutic target for Alzheimer’s disease (AD). Recent in vitro and in vivo experiments suggest that inhibition of Aβ aggregation by curcumin would exert favorable effects for preventing or treating AD. We have previously synthesized a series of novel curcumin derivatives. In this study, we investigated the effects of our curcumin derivatives on Aβ aggregation and the cell toxicities of Aβ aggregates. According to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) profiles, 14 of 41 compounds showed a significant increase in the densities of the bands of Aβ (1–42) by incubation during the aggregation process relative to those of Aβ (1–42) prepared in the presence of the vehicle control. Of the 14 compounds, four compounds additionally reduced cell toxicity of the Aβ aggregates by incubation during the aggregation process. A significant positive correlation was observed between the cell viability and densities of the bands at ranges of 15–20, 20–37, 37–75, and 75–200 kDa in SDS-PAGE. On the basis of these results, we propose four curcumin derivatives with potential for preventing AD. These curcumin derivatives exhibited high inhibitory effects on Aβ aggregation and induced the formation of lower molecular size Aβ species that have weaker cell toxicity. These compounds may exert therapeutic effects on AD in future in vivo studies. We have synthesized a series of curcumin derivatives (called the Shiga-Y series). We propose 4 potential curcumin derivatives for preventing Alzheimer’s disease. These curcumin derivatives displayed a high inhibitory effect on Aβ aggregation. Lower-molecular-size Aβ aggregates formed with the compounds have reduced toxicity.
Collapse
Affiliation(s)
- Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Hiroyasu Taguchi
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Shigehiro Morikawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Tomoko Kato
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Koichi Hirao
- Northeastern Industrial Research Center of Shiga Prefecture, 27-39 Mitsuya Motomachi, Nagahama 526-0024, Japan
| | - Nobuaki Shirai
- Industrial Research Center of Shiga Prefecture, 232 Kamitoyama, Ritto 520-3004, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| |
Collapse
|
191
|
Biflavonoids as Potential Small Molecule Therapeutics for Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:55-77. [PMID: 26092626 DOI: 10.1007/978-3-319-18365-7_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flavonoids are naturally occurring phytochemicals found in a variety of fruits and vegetables and offer color, flavor, aroma, nutritional and health benefits. Flavonoids have been found to play a neuroprotective role by inhibiting and/or modifying the self-assembly of the amyloid-β (Aβ) peptide into oligomers and fibrils, which are linked to the pathogenesis of Alzheimer's disease. The neuroprotective efficacy of flavonoids has been found to strongly depend on their structure and functional groups. Flavonoids may exist in monomeric, as well as di-, tri-, tetra- or polymeric form through C-C or C-O-C linkages. It has been shown that flavonoids containing two or more units, e.g., biflavonoids, exert greater biological activity than their respective monoflavonoids. For instance, biflavonoids have the ability to distinctly alter Aβ aggregation and more effectively reduce the toxicity of Aβ oligomers compared to the monoflavonoid moieties. Although the molecular mechanisms remain to be elucidated, flavonoids have been shown to alter the Aβ aggregation pathway to yield non-toxic, unstructured Aβ aggregates, as well as directly exerting a neuroprotective effect to cells. In this chapter, we review biflavonoid-mediated Aβ aggregation and toxicity, and highlight the beneficial roles biflavonoids can potentially play in the prevention and treatment of Alzheimer's disease.
Collapse
|
192
|
Shariatizi S, Meratan AA, Ghasemi A, Nemat-Gorgani M. Inhibition of amyloid fibrillation and cytotoxicity of lysozyme fibrillation products by polyphenols. Int J Biol Macromol 2015; 80:95-106. [PMID: 26102331 DOI: 10.1016/j.ijbiomac.2015.06.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
Abstract
An increasing number of studies conducted under in vitro and in vivo conditions, have concluded that polyphenols, compounds frequently occurring in many herbs with antioxidant properties, prevent and reverse amyloid fibril formation. However, the mechanisms by which these natural products modulate the protein aggregation process are poorly understood. Herein, a range of techniques including thioflavin T (ThT) and ANS fluorescence assays, electron microscopy and circular dichroism have been employed to determine the efficacy of rosmarinic acid (RA) and resveratrol (Res) on the inhibition/reversion of fibrillogenesis and hindering cytotoxicity induced by protofibrils and amyloid fibrils of hen egg white lysozyme (HEWL). Results demonstrated that both polyphenols effectively inhibit fibrillogenesis and destabilize preformed fibrils of HEWL in a concentration-dependent manner. Cytotoxicity protection on PC12 cells was also observed using the MTT assay, ROS production assay, and phase-contrast microscopy. It is suggested that the mechanism underlying the inhibitory effects of RA and Res is to prevent hydrophobic interactions between HEWL amyloidogenic prefibrillar species, although additional studies is needed to elucidate the detailed mechanisms involved. A combination of antioxidative and anti-amyloidogenic properties of these molecules may provide them with the described neuroprotective capacities.
Collapse
Affiliation(s)
- Sajad Shariatizi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, 1417614411 Tehran, Iran
| | - Ali Akbar Meratan
- Department of Biotechnology, Ramin University of Agricultural and Natural Resources, Khouzestan, Iran.
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, 1417614411 Tehran, Iran
| | | |
Collapse
|
193
|
Chen GL, Chen SG, Xie YQ, Chen F, Zhao YY, Luo CX, Gao YQ. Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
194
|
Page M, Pacico N, Ourtioualous S, Deprez T, Koshibu K. Procognitive Compounds Promote Neurite Outgrowth. Pharmacology 2015; 96:131-6. [PMID: 26228694 DOI: 10.1159/000436974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/16/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS To this date, the only available drugs for treating Alzheimer's disease are cognitive enhancers, which may improve the cognitive function of patients for a few years while the disease continues to progress. As such, there are intense investigations to develop disease-modifying drugs to suppress progressive neurodegeneration. METHODS In this study, a range of procognitive compounds are tested in a primary neuronal culture to determine their relative potential for promoting neuritogenesis. RESULTS We report that donepezil, memantine, dimebon, Pre-084 and 4-IBP are neuritogenic while tacrine, rosemarinic acid, memoquin and a BACE1 inhibitor suppress neurite outgrowth of neurons. CONCLUSIONS The results of this study indicate that some procognitive compounds may possess a disease-modifying potential.
Collapse
Affiliation(s)
- Matthew Page
- Translational Bioinformatics, UCB Pharma SA, Slough, UK
| | | | | | | | | |
Collapse
|
195
|
Ferulic Acid: A Hope for Alzheimer's Disease Therapy from Plants. Nutrients 2015; 7:5764-82. [PMID: 26184304 PMCID: PMC4517023 DOI: 10.3390/nu7075246] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 06/26/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the deposition of extracellular amyloid-beta peptide (Aβ) and intracellular neurofibrillar tangles, associated with loss of neurons in the brain and consequent learning and memory deficits. Aβ is the major component of the senile plaques and is believed to play a central role in the development and progress of AD both in oligomer and fibril forms. Inhibition of the formation of Aβ fibrils as well as the destabilization of preformed Aβ in the Central Nervous System (CNS) would be an attractive therapeutic target for the treatment of AD. Moreover, a large number of studies indicate that oxidative stress and mitochondrial dysfunction may play an important role in AD and their suppression or reduction via antioxidant use could be a promising preventive or therapeutic intervention for AD patients. Many antioxidant compounds have been demonstrated to protect the brain from Aβ neurotoxicity. Ferulic acid (FA) is an antioxidant naturally present in plant cell walls with anti-inflammatory activities and it is able to act as a free radical scavenger. Here we present the role of FA as inhibitor or disaggregating agent of amyloid structures as well as its effects on biological models.
Collapse
|
196
|
Bu XL, Rao PPN, Wang YJ. Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery. Mol Neurobiol 2015; 53:3565-3575. [PMID: 26099310 DOI: 10.1007/s12035-015-9301-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/09/2015] [Indexed: 11/24/2022]
Abstract
Several plant-derived natural compounds are known to exhibit anti-amyloid aggregation activity which makes them attractive as potential therapies to treat Alzheimer's disease. The mechanisms of their anti-amyloid activity are not well known. In this regard, many natural compounds are known to exhibit direct binding to various amyloid species including oligomers and fibrils, which in turn can lead to conformational change in the beta-sheet assembly to form nontoxic aggregates. This review discusses the mechanism of anti-amyloid activity of 16 natural compounds and gives structural details on their direct binding interactions with amyloid aggregates. Our computational investigations show that the physicochemical properties of natural products do fit Lipinski's criteria and that catechol and catechol-type moieties present in natural compounds act as lysine site-specific inhibitors of amyloid aggregation. Based on these observations, we propose a structural template to design novel small molecules containing site-specific ring scaffolds, planar aromatic and nonaromatic linkers with suitably substituted hydrogen bond acceptors and donors. These studies will have significant implications in the design and development of novel amyloid aggregation inhibitors with superior metabolic stability and blood-brain barrier penetration as potential agents to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Xian-Le Bu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Praveen P N Rao
- School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
197
|
The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:352723. [PMID: 26171115 PMCID: PMC4485995 DOI: 10.1155/2015/352723] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The pathological hallmarks of AD are amyloid plaques [aggregates of amyloid-beta (Aβ)] and neurofibrillary tangles (aggregates of tau). Growing evidence suggests that tau accumulation is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than Aβ plaques. Oxidative stress is a prominent early event in the pathogenesis of AD and is therefore believed to contribute to tau hyperphosphorylation. Several studies have shown that the autophagic pathway in neurons is important under physiological and pathological conditions. Therefore, this pathway plays a crucial role for the degradation of endogenous soluble tau. However, the relationship between oxidative stress, tau protein hyperphosphorylation, autophagy dysregulation, and neuronal cell death in AD remains unclear. Here, we review the latest progress in AD, with a special emphasis on oxidative stress, tau hyperphosphorylation, and autophagy. We also discuss the relationship of these three factors in AD.
Collapse
|
198
|
Govindaraj J, Sorimuthu Pillai S. Rosmarinic acid modulates the antioxidant status and protects pancreatic tissues from glucolipotoxicity mediated oxidative stress in high-fat diet: streptozotocin-induced diabetic rats. Mol Cell Biochem 2015; 404:143-59. [PMID: 25735949 DOI: 10.1007/s11010-015-2374-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 12/21/2022]
Abstract
Persistent hyperglycemia and elevated levels of free fatty acids (FFA) contribute to oxidative stress, a proximate cause for the onset and progression of diabetes and its complications. The present study was hypothesized to evaluate the anti-diabetic potential of Rosmarinic acid (RA) during high-fat diet (HFD)-streptozotocin (STZ)-induced type 2 Diabetes (T2D) in wistar albino rats. Oral administration of RA (100 mg/kg b.w) significantly (p < 0.05) increased the insulin sensitivity index (ISI0,120), while the levels of blood glucose, HbA1c, advanced glycation end products (AGE), TNF-α, IL-1β, IL 6, NO, p-JNK, P38 MAPK and NF-κB were significantly reduced, with a concomitant elevation in the plasma insulin levels in diabetic rats. Furthermore, RA treatment significantly (p < 0.05) reduced the levels of triglycerides, FFA and cholesterol in serum, and reduced the levels of lipid peroxides, AOPP's and protein carbonyls in the plasma and pancreas of diabetic rats. The diminished activities of pancreatic superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) and the decreased levels of plasma ceruloplasmin, vitamin C, vitamin E and reduced glutathione (GSH) in diabetic rats were also significantly (p < 0.05) recovered upon RA treatment denoting its antioxidant potential which was confirmed by Nrf-2, hemeoxyenase (HO-1) levels. Histological, ultrastructural and immunohistochemical data demonstrate that oral administration of RA protects pancreatic β-cells from oxidative niche in HFD-STZ-induced experimental diabetes. Our findings suggest that the oral treatment with RA alleviates pancreatic β-cell dysfunction and glucolipotoxicity-mediated oxidative stress during HFD-STZ-induced T2DM, perhaps through its antioxidant potential.
Collapse
Affiliation(s)
- Jayanthy Govindaraj
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600 025, Tamilnadu, India
| | | |
Collapse
|
199
|
Noguchi-Shinohara M, Ono K, Hamaguchi T, Iwasa K, Nagai T, Kobayashi S, Nakamura H, Yamada M. Pharmacokinetics, Safety and Tolerability of Melissa officinalis Extract which Contained Rosmarinic Acid in Healthy Individuals: A Randomized Controlled Trial. PLoS One 2015; 10:e0126422. [PMID: 25978046 PMCID: PMC4433273 DOI: 10.1371/journal.pone.0126422] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to evaluate the safety, tolerability and pharmacokinetics of single dose of Melissa officinalis extract which contained rosmarinic acid, including food-effects in healthy individuals. A total of eleven healthy individuals were randomly assigned to treatment arms in the two studies [Study 1 (fasted state) and Study 2 (fed state)]. Rosmarinic acid in serum was measured by a coulometric detection method using High-Performance Liquid Chromatography electrochemical detector. The serum concentration of total rosmarinic acid peaked at 1 hour after administration of Melissa officinalis extract containing 500mg rosmarinic acid in fasted state, with a maximum serum concentration 162.20 nmol/ L. The area under the curve for intact rosmarinic acid was calculated from the serum concentration-time profile to be 832.13 nmol • hour/ L. Food intake increases area under the curve and delayed time at which the maximum serum concentration. Rosmarinic acid supplementation did not affect liver, kidney, or blood cell function parameters. No adverse event was reported by any of the participants due to the study treatment. Single dose of Melissa officinalis extract containing 500 mg rosmarinic acid appears to be safe and tolerable in healthy individuals. Food intake increased the exposure of rosmarinic acid and delayed absorption of rosmarinic acid in healthy individuals.
Collapse
Affiliation(s)
- Moeko Noguchi-Shinohara
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuo Iwasa
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Toshitada Nagai
- Department of Food and Life-Science, Takasaki University of Health and Welfare, Gunma, Japan
| | - Shoko Kobayashi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nakamura
- Department of Environmental and Preventive Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
200
|
di Gesso JL, Kerr JS, Zhang Q, Raheem S, Yalamanchili SK, O'Hagan D, Kay CD, O'Connell MA. Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes. Mol Nutr Food Res 2015; 59:1143-54. [PMID: 25801720 PMCID: PMC4973837 DOI: 10.1002/mnfr.201400799] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/16/2015] [Accepted: 03/12/2015] [Indexed: 11/12/2022]
Abstract
Scope Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti‐inflammatory effects of flavonoid metabolites relative to their precursor structures. Methods and results Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1–10 μM) were screened for their ability to reduce LPS‐induced tumor necrosis factor‐α (TNF‐α) secretion in THP‐1 monocytes. One micromolar peonidin‐3‐glucoside, cyanidin‐3‐glucoside, and the metabolites isovanillic acid (IVA), IVA‐glucuronide, vanillic acid‐glucuronide, protocatechuic acid‐3‐sulfate, and benzoic acid‐sulfate significantly reduced TNF‐α secretion when in isolation, while there was no effect on TNF‐α mRNA expression. Four combinations of metabolites that included 4‐hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF‐α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS‐induced IL‐1β and IL‐10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL‐1β secretion but none of the flavonoids or metabolites significantly modified IL‐10 secretion. Conclusion This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites.
Collapse
Affiliation(s)
- Jessica L di Gesso
- School of Pharmacy, University of East Anglia, Norwich, UK.,Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Jason S Kerr
- School of Pharmacy, University of East Anglia, Norwich, UK.,Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Qingzhi Zhang
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Saki Raheem
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | | | - David O'Hagan
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Colin D Kay
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|