151
|
A molecular surveillance reveals the prevalence of Vibrio cholerae O139 isolates in China from 1993 to 2012. J Clin Microbiol 2014; 52:1146-52. [PMID: 24452176 DOI: 10.1128/jcm.03354-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae serogroup O139 was first identified in 1992 in India and Bangladesh, in association with major epidemics of cholera in both countries; cases were noted shortly thereafter in China. We characterized 211 V. cholerae O139 isolates that were isolated at multiple sites in China between 1993 and 2012 from patients (n = 92) and the environment (n = 119). Among clinical isolates, 88 (95.7%) of 92 were toxigenic, compared with 47 (39.5%) of 119 environmental isolates. Toxigenic isolates carried the El Tor CTX prophage and toxin-coregulated pilus A gene (tcpA), as well as the Vibrio seventh pandemic island I (VSP-I) and VSP-II. Among a subset of 42 toxigenic isolates screened by multilocus sequence typing (MLST), all were in the same sequence type as a clinical isolate (MO45) from the original Indian outbreak. Nontoxigenic isolates, in contrast, generally lacked VSP-I and -II, and fell within 13 additional sequence types in two clonal complexes distinct from the toxigenic isolates. In further pulsed-field gel electrophoresis (PFGE) (with NotI digestion) studies, toxigenic isolates formed 60 pulsotypes clustered in one group, while the nontoxigenic isolates formed 43 pulsotypes which clustered into 3 different groups. Our data suggest that toxigenic O139 isolates from widely divergent geographic locations, while showing some diversity, have maintained a relatively tight clonal structure across a 20-year time span. Nontoxigenic isolates, in contrast, exhibited greater diversity, with multiple clonal lineages, than did their toxigenic counterparts.
Collapse
|
152
|
Walimbe AM, Lotankar M, Cecilia D, Cherian SS. Global phylogeography of Dengue type 1 and 2 viruses reveals the role of India. INFECTION GENETICS AND EVOLUTION 2014; 22:30-9. [PMID: 24418211 DOI: 10.1016/j.meegid.2014.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 01/02/2023]
Abstract
Patterns in virus dispersal and epidemiology of viral diseases can be revealed by phylogeographic studies. Currently knowledge about phylogeography of Dengue virus (DENV) Types 1 and 2 is limited. We carried out the phylogeographic analyses for DENV-1 and DENV-2, by the Bayesian Markov Chain Monte Carlo (MCMC) approach, with emphasis on Indian isolates in relation to the global evolutionary dynamics of the viruses. More than 250 E-gene sequences of each virus, available in GenBank, were used for the analyses. The study was focused on understanding the most likely geographical origin for the major genotypes and sub-lineages of DENV-1/DENV-2 and also the possible pathways in the dispersal of the virus. The results showed that for DENV-1, Southeast Asia was the most likely geographical origin and India was determined to be the ancestral location of the Cosmopolitan genotype circulating in India, Sri Lanka, West and East Africa, Caribbean region, East and Southeast Asia. For DENV-2, the ancestral source could not be precisely inferred. Further, in spite of the earliest isolate from Trinidad-1953 of the American genotype, it was depicted that India may have been the probable ancestor of this genotype. India was also determined to be the ancestral location of a subgroup of the Cosmopolitan genotype. It was noted that DENV-1 and DENV-2 were introduced into India during 1940s and 1910s respectively. Subsequently, dispersal of both the viruses between India and different regions including West, East and Central Africa, Southeast and East Asia and Caribbean was inferred. Overall, the current study provides insight into the spatial as well as temporal dynamics of dengue virus serotypes 1 and 2.
Collapse
Affiliation(s)
- Atul M Walimbe
- Bioinformatics and Data Management Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune 411001, Maharashtra, India.
| | - Mrunalini Lotankar
- Bioinformatics and Data Management Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune 411001, Maharashtra, India.
| | - D Cecilia
- Dengue Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune 411001, Maharashtra, India.
| | - Sarah S Cherian
- Bioinformatics and Data Management Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune 411001, Maharashtra, India.
| |
Collapse
|
153
|
Parameswaran P, Liu Y, Roskin KM, Jackson KKL, Dixit VP, Lee JY, Artiles KL, Zompi S, Vargas MJ, Simen BB, Hanczaruk B, McGowan KR, Tariq MA, Pourmand N, Koller D, Balmaseda A, Boyd SD, Harris E, Fire AZ. Convergent antibody signatures in human dengue. Cell Host Microbe 2013; 13:691-700. [PMID: 23768493 DOI: 10.1016/j.chom.2013.05.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/03/2013] [Accepted: 04/30/2013] [Indexed: 01/05/2023]
Abstract
Dengue is the most prevalent mosquito-borne viral disease in humans, and the lack of early prognostics, vaccines, and therapeutics contributes to immense disease burden. To identify patterns that could be used for sequence-based monitoring of the antibody response to dengue, we examined antibody heavy-chain gene rearrangements in longitudinal peripheral blood samples from 60 dengue patients. Comparing signatures between acute dengue, postrecovery, and healthy samples, we found increased expansion of B cell clones in acute dengue patients, with higher overall clonality in secondary infection. Additionally, we observed consistent antibody sequence features in acute dengue in the highly variable major antigen-binding determinant, complementarity-determining region 3 (CDR3), with specific CDR3 sequences highly enriched in acute samples compared to postrecovery, healthy, or non-dengue samples. Dengue thus provides a striking example of a human viral infection where convergent immune signatures can be identified in multiple individuals. Such signatures could facilitate surveillance of immunological memory in communities.
Collapse
Affiliation(s)
- Poornima Parameswaran
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Evolution of dengue in Sri Lanka-changes in the virus, vector, and climate. Int J Infect Dis 2013; 19:6-12. [PMID: 24334026 DOI: 10.1016/j.ijid.2013.10.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/18/2013] [Indexed: 11/20/2022] Open
Abstract
Despite the presence of dengue in Sri Lanka since the early 1960s, dengue has become a major public health issue, with a high morbidity and mortality. Aedes aegypti and Aedes albopictus are the vectors responsible for the transmission of dengue viruses (DENV). The four DENV serotypes (1, 2, 3, and 4) have been co-circulating in Sri Lanka for more than 30 years. The new genotype of DENV-1 has replaced an old genotype, and new clades of DENV-3 genotype III have replaced older clades. The emergence of new clades of DENV-3 in the recent past coincided with an abrupt increase in the number of dengue fever (DF)/dengue hemorrhagic fever (DHF) cases, implicating this serotype in severe epidemics. Climatic factors play a pivotal role in the epidemiological pattern of DF/DHF in terms of the number of cases, severity of illness, shifts in affected age groups, and the expansion of spread from urban to rural areas. There is a regular incidence of DF/DHF throughout the year, with the highest incidence during the rainy months. To reduce the morbidity and mortality associated with DF/DHF, it is important to implement effective vector control programs in the country. The economic impact of DF/DHF results from the expenditure on DF/DHF critical care units in several hospitals and the cost of case management.
Collapse
|
155
|
Tsai JJ, Chokephaibulkit K, Chen PC, Liu LT, Hsiao HM, Lo YC, Perng GC. Role of cognitive parameters in dengue hemorrhagic fever and dengue shock syndrome. J Biomed Sci 2013; 20:88. [PMID: 24305068 PMCID: PMC4174897 DOI: 10.1186/1423-0127-20-88] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/26/2013] [Indexed: 01/10/2023] Open
Abstract
Dengue is becoming recognized as one of the most important vector-borne human diseases. It is predominant in tropical and subtropical zones but its geographical distribution is progressively expanding, making it an escalating global health problem of today. Dengue presents with spectrum of clinical manifestations, ranging from asymptomatic, undifferentiated mild fever, dengue fever (DF), to dengue hemorrhagic fever (DHF) with or without shock (DSS), a life-threatening illness characterized by plasma leakage due to increased vascular permeability. Currently, there are no antiviral modalities or vaccines available to treat and prevent dengue. Supportive care with close monitoring is the standard clinical practice. The mechanisms leading to DHF/DSS remains poorly understood. Multiple factors have been attributed to the pathological mechanism, but only a couple of these hypotheses are popular in scientific circles. The current discussion focuses on underappreciated factors, temperature, natural IgM, and endotoxin, which may be critical components playing roles in dengue pathogenesis.
Collapse
Affiliation(s)
- Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
156
|
Sjatha F, Takizawa Y, Kotaki T, Yamanaka A, Konishi E. Comparison of infection-neutralizing and -enhancing antibody balance induced by two distinct genotype strains of dengue virus type 1 or 3 DNA vaccines in mice. Microbes Infect 2013; 15:828-36. [DOI: 10.1016/j.micinf.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/14/2013] [Accepted: 07/24/2013] [Indexed: 12/30/2022]
|
157
|
Yamashita A, Sasaki T, Kurosu T, Yasunaga T, Ikuta K. Origin and distribution of divergent dengue virus: novel database construction and phylogenetic analyses. Future Virol 2013. [DOI: 10.2217/fvl.13.99] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dengue virus (DENV), a mosquito-borne agent that exists as four serotypes (DENV-1–4), induces dengue illness. DENV has a positive-sense, ssRNA genome of approximately 11 kb that encodes a capsid protein, a premembrane protein and an envelope glycoprotein, in addition to seven nonstructural proteins. These individual genes show sequence variations that can be analyzed phylogenetically to yield several genotypes within each serotype. Here, the sequences of individual DENV genes were collected and used to construct a novel DENV database. This database was then used to characterize the evolution of individual genotypes in several countries. Interestingly, the database provided evidence for recombination between two or three different genotypes to yield new genotypes. This novel database will be available on the internet and is expected to be highly useful for dengue genetic studies, including phylogenetic analyses.
Collapse
Affiliation(s)
- Akifumi Yamashita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tadahiro Sasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Kurosu
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Teruo Yasunaga
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuyoshi Ikuta
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
158
|
Bäck AT, Lundkvist A. Dengue viruses - an overview. Infect Ecol Epidemiol 2013; 3:19839. [PMID: 24003364 PMCID: PMC3759171 DOI: 10.3402/iee.v3i0.19839] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 07/11/2013] [Accepted: 07/16/2013] [Indexed: 12/11/2022] Open
Abstract
Dengue viruses (DENVs) cause the most common arthropod-borne viral disease in man with 50-100 million infections per year. Because of the lack of a vaccine and antiviral drugs, the sole measure of control is limiting the Aedes mosquito vectors. DENV infection can be asymptomatic or a self-limited, acute febrile disease ranging in severity. The classical form of dengue fever (DF) is characterized by high fever, headache, stomach ache, rash, myalgia, and arthralgia. Severe dengue, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) are accompanied by thrombocytopenia, vascular leakage, and hypotension. DSS, which can be fatal, is characterized by systemic shock. Despite intensive research, the underlying mechanisms causing severe dengue is still not well understood partly due to the lack of appropriate animal models of infection and disease. However, even though it is clear that both viral and host factors play important roles in the course of infection, a fundamental knowledge gap still remains to be filled regarding host cell tropism, crucial host immune response mechanisms, and viral markers for virulence.
Collapse
Affiliation(s)
- Anne Tuiskunen Bäck
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden ; Swedish Institute for Communicable Disease Control, Solna, Sweden ; Swedish International Development Cooperation Agency, Unit for Research Cooperation, Stockholm, Sweden
| | | |
Collapse
|
159
|
Sessions OM, Khan K, Hou Y, Meltzer E, Quam M, Schwartz E, Gubler DJ, Wilder-Smith A. Exploring the origin and potential for spread of the 2013 dengue outbreak in Luanda, Angola. Glob Health Action 2013; 6:21822. [PMID: 23911088 PMCID: PMC3733016 DOI: 10.3402/gha.v6i0.21822] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Dengue in Africa is underreported. Simultaneous reports of travellers with dengue returning from Luanda, Angola, to six countries on four continents suggest that a major dengue outbreak is currently occurring in Angola, South West Africa. METHODS To identify the origin of the imported dengue virus, we sequenced the virus from Angola and investigated the interconnectivity via air travel between dengue-endemic countries and Angola. RESULTS AND CONCLUSION Our analyses show that the Angola outbreak was most likely caused by an endemic virus strain that had been circulating in West Africa for many years. We also show that Portugal and South Africa are most likely at the highest risk of importation of dengue from Angola due to the large number of air passengers between Angola and these countries.
Collapse
|
160
|
An explosive epidemic of DENV-3 in Cairns, Australia. PLoS One 2013; 8:e68137. [PMID: 23874522 PMCID: PMC3712959 DOI: 10.1371/journal.pone.0068137] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
From November 2008-May 2009 Cairns Queensland Australia was struck by an explosive epidemic of DENV-3 that exceeded the capacity of highly skilled dengue control team to control it. We describe the environmental, virological and entomological factors associated with this outbreak to better understand the circumstances leading to its occurrence. Patient interviews, serological results and viral sequencing strongly suggest that the imported index case was infected in Kalimantan, Indonesia. A delay in notification of 27 days from importation of the index case until Queensland Health was notified of dengue transmission allowed the virus to amplify and spread unchecked through November 2008. Unseasonably warm weather, with daily mean temperatures exceeding 30°C, occurred in late November and would have shortened the extrinsic incubation period of the virus and enhanced transmission. Analysis of case movements early in the outbreak indicated that the total incubation period was as low as 9–11 days. This was supported by laboratory vector competence studies that found transmission by Aedes aegypti occurred within 5 days post exposure at 28°C. Effective vector competence rates calculated from these transmission studies indicate that early transmission contributed to the explosive dengue transmission observed in this outbreak. Collections from BG sentinel traps and double sticky ovitraps showed that large populations of the vector Ae. aegypti occurred in the transmission areas from November – December 2008. Finally, the seasonal movement of people around the Christmas holiday season enhanced the spread of DENV-3. These results suggest that a strain of DENV-3 with an unusually rapid transmission cycle was able to outpace vector control efforts, especially those reliant upon delayed action control such as lethal ovitraps.
Collapse
|
161
|
Luo L, Liang HY, Jing QL, He P, Yuan J, Di B, Bai ZJ, Wang YL, Zheng XL, Yang ZC. Molecular characterization of the envelope gene of dengue virus type 3 newly isolated in Guangzhou, China, during 2009–2010. Int J Infect Dis 2013; 17:e498-504. [DOI: 10.1016/j.ijid.2012.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 12/09/2012] [Accepted: 12/20/2012] [Indexed: 11/30/2022] Open
|
162
|
Dengue fever causing febrile neutropenia in children with acute lymphoblastic leukemia: An unknown entity. Hematol Oncol Stem Cell Ther 2013; 6:65-7. [DOI: 10.1016/j.hemonc.2013.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 11/17/2022] Open
|
163
|
Zamani N, Russell P, Lantz H, Hoeppner MP, Meadows JR, Vijay N, Mauceli E, di Palma F, Lindblad-Toh K, Jern P, Grabherr MG. Unsupervised genome-wide recognition of local relationship patterns. BMC Genomics 2013; 14:347. [PMID: 23706020 PMCID: PMC3669000 DOI: 10.1186/1471-2164-14-347] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 05/08/2013] [Indexed: 12/05/2022] Open
Abstract
Background Phenomena such as incomplete lineage sorting, horizontal gene transfer, gene duplication and subsequent sub- and neo-functionalisation can result in distinct local phylogenetic relationships that are discordant with species phylogeny. In order to assess the possible biological roles for these subdivisions, they must first be identified and characterised, preferably on a large scale and in an automated fashion. Results We developed Saguaro, a combination of a Hidden Markov Model (HMM) and a Self Organising Map (SOM), to characterise local phylogenetic relationships among aligned sequences using cacti, matrices of pair-wise distance measures. While the HMM determines the genomic boundaries from aligned sequences, the SOM hypothesises new cacti in an unsupervised and iterative fashion based on the regions that were modelled least well by existing cacti. After testing the software on simulated data, we demonstrate the utility of Saguaro by testing two different data sets: (i) 181 Dengue virus strains, and (ii) 5 primate genomes. Saguaro identifies regions under lineage-specific constraint for the first set, and genomic segments that we attribute to incomplete lineage sorting in the second dataset. Intriguingly for the primate data, Saguaro also classified an additional ~3% of the genome as most incompatible with the expected species phylogeny. A substantial fraction of these regions was found to overlap genes associated with both the innate and adaptive immune systems. Conclusions Saguaro detects distinct cacti describing local phylogenetic relationships without requiring any a priori hypotheses. We have successfully demonstrated Saguaro’s utility with two contrasting data sets, one containing many members with short sequences (Dengue viral strains: n = 181, genome size = 10,700 nt), and the other with few members but complex genomes (related primate species: n = 5, genome size = 3 Gb), suggesting that the software is applicable to a wide variety of experimental populations. Saguaro is written in C++, runs on the Linux operating system, and can be downloaded from http://saguarogw.sourceforge.net/.
Collapse
Affiliation(s)
- Neda Zamani
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Villabona-Arenas CJ, Zanotto PMDA. Worldwide spread of Dengue virus type 1. PLoS One 2013; 8:e62649. [PMID: 23675416 PMCID: PMC3652851 DOI: 10.1371/journal.pone.0062649] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/24/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND DENV-1 is one of the four viral serotypes that causes Dengue, the most common mosquito-borne viral disease of humans. The prevalence of these viruses has grown in recent decades and is now present in more than 100 countries. Limited studies document the spread of DENV-1 over the world despite its importance for human health. METHODOLOGY/PRINCIPAL FINDINGS We used representative DENV-1 envelope gene sequences to unravel the dynamics of viral diffusion under a Bayesian phylogeographic approach. Data included strains from 45 distinct geographic locations isolated from 1944 to 2009. The estimated mean rate of nucleotide substitution was 6.56 × 10⁻⁴ substitutions/site/year. The larger genotypes (I, IV and V) had a distinctive phylogenetic structure and since 1990 they experienced effective population size oscillations. Thailand and Indonesia represented the main sources of strains for neighboring countries. Besides, Asia broadcast lineages into the Americas and the Pacific region that diverged in isolation. Also, a transmission network analysis revealed the pivotal role of Indochina in the global diffusion of DENV-1 and of the Caribbean in the diffusion over the Americas. CONCLUSIONS/SIGNIFICANCE The study summarizes the spatiotemporal DENV-1 worldwide spread that may help disease control.
Collapse
Affiliation(s)
- Christian Julián Villabona-Arenas
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
165
|
St John AL, Abraham SN, Gubler DJ. Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis. Nat Rev Microbiol 2013; 11:420-6. [PMID: 23652323 DOI: 10.1038/nrmicro3030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dengue virus (DENV) is a human pathogen that causes severe and potentially fatal disease in millions of individuals each year. Immune-mediated pathology is thought to underlie many of the complications of DENV infection in humans, but the notable limitations of the available animal models have impeded our knowledge of the interactions between DENV and the immune system. In this Opinion article, we discuss some of the controversies in the field of dengue research relating to the interaction between DENV and the mammalian host. We highlight key barriers hindering our understanding of the molecular pathogenesis of DENV and offer suggestions for the most effective ways in which the role of the immune system in the protection from, and pathology of, DENV infection can be addressed experimentally.
Collapse
Affiliation(s)
- Ashley L St John
- Program in Emerging Infectious Diseases, Graduate Medical School, Duke-National University of Singapore, 8 College Road, 169857, Singapore
| | | | | |
Collapse
|
166
|
Costa VV, Fagundes CT, Souza DG, Teixeira MM. Inflammatory and innate immune responses in dengue infection: protection versus disease induction. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1950-61. [PMID: 23567637 DOI: 10.1016/j.ajpath.2013.02.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 01/28/2023]
Abstract
Dengue disease is a mosquito-borne viral disease of expanding geographical range and incidence. Infection by one of the four serotypes of dengue virus induces a spectrum of disease manifestations, ranging from asymptomatic to life-threatening Dengue hemorrhagic fever/dengue shock syndrome. Many efforts have been made to elucidate several aspects of dengue virus-induced disease, but the pathogenesis of disease is complex and remains unclear. Understanding the mechanisms involved in the early stages of infection is crucial to determine and develop safe therapeutics to prevent the severe outcomes of disease without interfering with control of infection. In this review, we discuss the dual role of the innate and inflammatory pathways activated during dengue disease in mediating both protection and exacerbation of disease. We show that some mediators involved in each of these responses differ substantially, suggesting that interfering in disease-associated immune pathways may represent a potential therapeutic opportunity for the treatment of severe dengue.
Collapse
Affiliation(s)
- Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
167
|
Tsai JJ, Liu LT, Chang K, Wang SH, Hsiao HM, Clark KB, Perng GC. The importance of hematopoietic progenitor cells in dengue. Ther Adv Hematol 2013; 3:59-71. [PMID: 23556112 DOI: 10.1177/2040620711417660] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Scientific investigations designed to better understand and assess the distinguishing clinical characteristics pave the way to a successful treatment for a disease. Since the peripheral blood is obtained easily, the most frequent type of investigation performed on infectious agents focuses on the hematological components of blood drawn from patients. Bone marrow aspirates, although somewhat more difficult to obtain, should be evaluated more frequently because they provide additional information, giving us a glimpse into the development of the disease. Understanding the distinct and unique changes in hematological components of the bone marrow induced by a particular pathogen or corresponding to a specific illness may be a valuable asset for the diagnosis and prognosis of disease. A good example of a pathogen that could be better evaluated with greater knowledge of the bone marrow is dengue, one of the most important public vector-borne human diseases. Owing to the multitude of clinical manifestations and the dynamic alterations of various blood components over time, this disease is one of the most difficult to prevent and treat in humans. Although large amounts of data have been generated in the literature, there remains a large gap between this information and its relevance for the purpose of patient care. While evaluating the cellular components in the circulated blood from ill patients provides us with valuable information about the pathogenesis of various pathogens, there are other players participating in the progression to disease. The goal of this review is to emphasize the importance of bone marrow hematopoietic progenitor cells in disease and to inspire other researchers to incorporate them into their investigations on dengue pathogenesis. It is anticipated that the knowledge derived from these investigations not only elicit original concepts on the pathogenesis of dengue but also foster a new way of thinking in terms of vaccine or therapeutic development to prevent and treat dengue.
Collapse
|
168
|
Kumar NP, Jayakumar PR, George K, Kamaraj T, Krishnamoorthy K, Sabesan S, Jambulingam P. Genetic characterization of dengue viruses prevalent in Kerala State, India. J Med Microbiol 2013; 62:545-552. [DOI: 10.1099/jmm.0.052696-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- N. Pradeep Kumar
- Vector Control Research Centre Field Station (ICMR), Kottayam 686 002, Kerala, India
| | - P. R. Jayakumar
- Government District Hospital, Kottayam 686 002, Kerala, India
| | - Kochurani George
- Vector Control Research Centre Field Station (ICMR), Kottayam 686 002, Kerala, India
| | - T. Kamaraj
- Kerala State Institute of Virology and Infectious Diseases, Alappuzha, Kerala, India
| | | | - S. Sabesan
- Vector Control Research Centre (ICMR), Puducherry 605 006, India
| | - P. Jambulingam
- Vector Control Research Centre (ICMR), Puducherry 605 006, India
| |
Collapse
|
169
|
Theethakaew C, Feil EJ, Castillo-Ramírez S, Aanensen DM, Suthienkul O, Neil DM, Davies RL. Genetic relationships of Vibrio parahaemolyticus isolates from clinical, human carrier, and environmental sources in Thailand, determined by multilocus sequence analysis. Appl Environ Microbiol 2013; 79:2358-70. [PMID: 23377932 PMCID: PMC3623249 DOI: 10.1128/aem.03067-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/21/2013] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a seafood-borne pathogenic bacterium that is a major cause of gastroenteritis worldwide. We investigated the genetic and evolutionary relationships of 101 V. parahaemolyticus isolates originating from clinical, human carrier, and various environmental and seafood production sources in Thailand using multilocus sequence analysis. The isolates were recovered from clinical samples (n = 15), healthy human carriers (n = 18), various types of fresh seafood (n = 18), frozen shrimp (n = 16), fresh-farmed shrimp tissue (n = 18), and shrimp farm water (n = 16). Phylogenetic analysis revealed a high degree of genetic diversity within the V. parahaemolyticus population, although isolates recovered from clinical samples and from farmed shrimp and water samples represented distinct clusters. The tight clustering of the clinical isolates suggests that disease-causing isolates are not a random sample of the environmental reservoir, although the source of infection remains unclear. Extensive serotypic diversity occurred among isolates representing the same sequence types and recovered from the same source at the same time. These findings suggest that the O- and K-antigen-encoding loci are subject to exceptionally high rates of recombination. There was also strong evidence of interspecies horizontal gene transfer and intragenic recombination involving the recA locus in a large proportion of isolates. As the majority of the intragenic recombinational exchanges involving recA occurred among clinical and carrier isolates, it is possible that the human intestinal tract serves as a potential reservoir of donor and recipient strains that is promoting horizontal DNA transfer, driving evolutionary change, and leading to the emergence of new, potentially pathogenic strains.
Collapse
Affiliation(s)
| | - Edward J. Feil
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - David M. Aanensen
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Hospital Campus, London, United Kingdom
| | - Orasa Suthienkul
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Douglas M. Neil
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
170
|
Faria NRDC, Nogueira RMR, de Filippis AMB, Simões JBS, Nogueira FDB, da Rocha Queiroz Lima M, dos Santos FB. Twenty years of DENV-2 activity in Brazil: molecular characterization and phylogeny of strains isolated from 1990 to 2010. PLoS Negl Trop Dis 2013; 7:e2095. [PMID: 23516646 PMCID: PMC3597488 DOI: 10.1371/journal.pntd.0002095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/22/2013] [Indexed: 11/18/2022] Open
Abstract
In Brazil, dengue has been a major public health problem since its introduction in the 1980s. Phylogenetic studies constitute a valuable tool to monitor the introduction and spread of viruses as well as to predict the potential epidemiological consequences of such events. Aiming to perform the molecular characterization and phylogenetic analysis of DENV-2 during twenty years of viral activity in the country, viral strains isolated from patients presenting different disease manifestations (n = 34), representing six states of the country, from 1990 to 2010, were sequenced. Partial genome sequencing (genes C/prM/M/E) was performed in 25 DENV-2 strains and full-length genome sequencing (coding region) was performed in 9 strains. The percentage of similarity among the DENV-2 strains in this study and reference strains available in Genbank identified two groups epidemiologically distinct: one represented by strains isolated from 1990 to 2003 and one from strains isolated from 2007 to 2010. No consistent differences were observed on the E gene from strains isolated from cases with different clinical manifestations analyzed, suggesting that if the disease severity has a genetic origin, it is not only due to the differences observed on the E gene. The results obtained by the DENV-2 full-length genome sequencing did not point out consistent differences related to a more severe disease either. The analysis based on the partial and/or complete genome sequencing has characterized the Brazilian DENV-2 strains as belonging to the Southeast Asian genotype, however a distinction of two Lineages within this genotype has been identified. It was established that strains circulating prior DENV-2 emergence (1990–2003) belong to Southeast Asian genotype, Lineage I and strains isolated after DENV-2 emergence in 2007 belong to Southeast Asian genotype, Lineage II. Furthermore, all DENV-2 strains analyzed presented an asparagine (N) in E390, previously identified as a probable genetic marker of virulence observed in DHF strains from Asian origin. The percentage of identity of the latter with the Dominican Republic strain isolated in 2001 combined to the percentage of divergence with the strains first introduced in the country in the 1990s suggests that those viruses did not evolve locally but were due to a new viral Lineage introduction in the country from the Caribbean. In Brazil, the first dengue haemorrhagic cases were reported after the DENV-2 introduction in Rio de Janeiro, which spread to other states in the country. Aiming to perform the molecular characterization and phylogenetic analysis of DENV-2 during twenty years of viral activity in the country, strains isolated from patients presenting different disease manifestations were sequenced. Phylogeny characterized the DENV-2 as belonging to the Southeast Asian genotype, however a distinction of two Lineages within this genotype has been identified. Furthermore, all strains presented an asparagine in E390, previously identified as a probable genetic marker of virulence. The results show a temporal circulation of genetically different viruses in Brazil, probably due to the introduction of a new viral lineage from the Caribbean, which lead to the re-emergence of this serotype after 2007, causing the most severe epidemic already described in the country.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Flavia Barreto dos Santos
- Flavivirus Laboratory, Oswaldo Cruz Institute, Manguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
171
|
Khan MA, Ellis EM, Tissera HA, Alvi MY, Rahman FF, Masud F, Chow A, Howe S, Dhanasekaran V, Ellis BR, Gubler DJ. Emergence and diversification of dengue 2 cosmopolitan genotype in Pakistan, 2011. PLoS One 2013; 8:e56391. [PMID: 23520453 PMCID: PMC3592868 DOI: 10.1371/journal.pone.0056391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022] Open
Abstract
Major dengue epidemics have been observed in the Indian subcontinent since the 1980s and have occurred with increased hospitalizations and mortality. In 2011, the first major epidemic of dengue occurred in Lahore, the second largest city in Pakistan, and resulted in 21,685 confirmed cases and 350 deaths. To investigate the possible viral causes for the increased epidemic activity, we determined the predominant serotype and characterized the viruses genetically. Of 50 patients carefully selected as probable dengue fever or dengue hemorrhagic fever, 34 were positive by virologic testing (i.e. PCR and/or virus isolation). DENV-2 was detected in 32 patients and DENV-1 in two. A total of 24 partial and three full DENV genomes were sequenced. Phylogenetic analyses of the capsid (C), pre-membrane (prM), and envelope genes comprising 2500 nucleotides in length indicated that all DENV-2 isolates in Pakistan since 2007 form a monophyletic lineage that is endemic in the country. These viruses were all of the cosmopolitan genotype (IV) and most closely related to viruses isolated in India and Sri Lanka in the past two decades. Phylogenetic analyses of data currently available in GenBank suggest that the Cosmopolitan genotype has diverged into two geographically distinct sub-lineages: sub-lineage IV-a has only been observed in Southeast Asia, China and Oceania, while IV-b is prevalent in the Indian subcontinent. These results highlight the increased diversity of dengue viruses as they spread geographically within the region.
Collapse
Affiliation(s)
- Mohammad A. Khan
- Services Institute of Medical Sciences, Services Hospital, Lahore, Pakistan
| | - Esther M. Ellis
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Mohammad Y. Alvi
- Services Institute of Medical Sciences, Services Hospital, Lahore, Pakistan
| | - Fatima F. Rahman
- Services Institute of Medical Sciences, Services Hospital, Lahore, Pakistan
| | - Faisal Masud
- Services Institute of Medical Sciences, Services Hospital, Lahore, Pakistan
| | - Angelia Chow
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Shiqin Howe
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Brett R. Ellis
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Duane J. Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail:
| |
Collapse
|
172
|
Pagni S, Fernandez-Sesma A. Evasion of the human innate immune system by dengue virus. Immunol Res 2013; 54:152-9. [PMID: 22569913 DOI: 10.1007/s12026-012-8334-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dengue virus is a worldwide health problem, with billions of people at risk annually. Dengue virus causes a spectrum of diseases, namely dengue fever, dengue hemorrhagic fever and dengue shock syndrome with the latter two being linked to death. Understanding how dengue is able to evade the immune system and cause enhanced severity of disease is the main topics of interest in the Fernandez-Sesma laboratory at Mount Sinai School of Medicine. Using primary human immune cells, our group investigates the contribution of dengue virus-specific proteins to the evasion of innate immunity by this virus and the host factors that the virus interacts with in order to evade immune recognition and to establish infection in humans. Here, we review recent findings from our group as well as published data from other groups regarding immune modulation by dengue virus.
Collapse
Affiliation(s)
- Sarah Pagni
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | | |
Collapse
|
173
|
Tripathi SK, Gupta P, Khare V, Chatterjee A, Kumar R, Khan MY, Dhole TN. Emergence of new lineage of Dengue virus 3 (genotype III) in Lucknow, India. IRANIAN JOURNAL OF MICROBIOLOGY 2013; 5:68-75. [PMID: 23466682 PMCID: PMC3577557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND OBJECTIVES Dengue has re-emerged as an important arboviral disease causing significant morbidity. It has become hyperendemic in the Indian subcontinent with all four known dengue serotypes circulating. MATERIALS AND METHODS Multiple sequence alignments and phylogenetic trees of DENV-3 were constructed to determine the extent of the isolated dengue virus genetic heterogeneity and phylogeny. RESULTS Sequencing and phylogenetic analysis of the C-prM gene junction revealed an active circulation of a new lineage of DENV-3 (genotype III) in this region of India. CONCLUSION Continuous epidemiological surveillance to monitor the incursion and spread of dengue virus genotypes in this region of India is needed.
Collapse
Affiliation(s)
- Sanjeev Kumar Tripathi
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Prashant Gupta
- Department of Microbiology, King George Medical University, Lucknow, India, Corresponding author: Dr. Prashant Gupta, Address: Department of Microbiology, King George Medical University, Lucknow, India. Mob: +941-5082806. E-mail:
| | - Vineeta Khare
- Department of Microbiology, Hind Institute of Medical Sciences, Barabanki, India
| | - Animesh Chatterjee
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Rashmi Kumar
- Department of Pediatrics, King George Medical University, Lucknow, India
| | - Mohammed Yahiya Khan
- Department of Biotechnology, Babasahib Bhimrao Ambedkar University, Lucknow, India
| | - Tapan N Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
174
|
Zhou Y, Austin SK, Fremont DH, Yount BL, Huynh JP, de Silva AM, Baric RS, Messer WB. The mechanism of differential neutralization of dengue serotype 3 strains by monoclonal antibody 8A1. Virology 2013; 439:57-64. [PMID: 23453578 DOI: 10.1016/j.virol.2013.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/27/2013] [Accepted: 01/30/2013] [Indexed: 11/16/2022]
Abstract
While previous studies have demonstrated that envelope (E) glycoprotein variation between dengue viruses (DENV) genotypes can influence antibody neutralization potency, the mechanisms of variable neutralization remain incompletely understood. Here we characterize epitope antibody interactions of a DENV-3 EDIII binding mouse mAb 8A1 which displays highly variable neutralizing activity against DENV-3 genotypes. Using a DENV-3 reverse genetics platform, we characterize ability of 8A1 to bind and neutralize naturally occurring DENV-3 E genotypic variant viruses. Introduction of single and multiple amino acid mutations into the parental clone background demonstrates that mutations at positions 301 and 383 on EDIII are responsible for 8A1 differential neutralization phenotypes. ELISA and surface plasmon resonance (SPR) studies indicate differences in binding are responsible for the variable neutralization. Variability at position 301 primarily determined binding difference through influencing antibody-EDIII dissociation rate. Our findings are relevant to many groups focusing on DENV EDIII as a vaccine target.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Dashtbani-Roozbehani A, Bakhshi B, Pourshafie MR. Genetic relatedness of clinical and environmental Vibrio cholerae isolates based on triple housekeeping gene analysis. Curr Microbiol 2013; 67:15-20. [PMID: 23397220 DOI: 10.1007/s00284-013-0324-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/15/2013] [Indexed: 11/25/2022]
Abstract
Sequence analysis of dnaE, hlyA, and asd housekeeping genes were used to determine the genetic relatedness of our collection of Vibrio cholerae isolated from patients and surface waters over a 5-year period in Iran. The results showed 41, 17, and 9 variable sites throughout the sequenced fragments of dnaE (837 bp), hlyA (495 bp), and asd (295 bp), respectively. The results from sequence typing showed that all our clinical isolates were grouped in the same cluster. Eleven genotypes were identified among the environmental isolates. One environmental isolate was found to be in close genetic relatedness with our clinical isolates. One V. cholerae isolate showed a single-locus variant in the dnaE. For each of the studied genetic loci 10, 7, and 7 sequence types were observed for dnaE, hlyA, and asd, respectively. Only asd sequence analysis could make the distinction between the classical and El Tor isolates which emphasizes on selection of housekeeping locus with better discrimination power for analysis of different groups of isolates. Overall, the results indicated that surface waters in Tehran are a pool of non-toxigenic V. cholerae strains which are rarely related to clinical toxigenic isolates. In addition, our results verified that housekeeping gene sequence analysis could be a suitable approach for determination of the relatedness between clinical and environmental V. cholerae isolates.
Collapse
|
176
|
Liang H, Luo L, Yang Z, Di B, Bai Z, He P, Jing Q, Zheng X. Re-emergence of dengue virus type 3 in Canton, China, 2009-2010, associated with multiple introductions through different geographical routes. PLoS One 2013; 8:e55353. [PMID: 23405138 PMCID: PMC3566136 DOI: 10.1371/journal.pone.0055353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022] Open
Abstract
Background Endemic dengue virus type 3 (DENV-3) infections have not been reported in Canton, China, since 1980. In March 2009, DENV-3 was isolated for the second time, occurring about 30 years after the previous circulation. In August, 3 other cases emerged. One much larger outbreak occurred again in 2010. To address the origin and particularly to determine whether the outbreaks were caused by the same viral genotype, we investigated the epidemiological and molecular characteristics of the introduction, spread and genetic microevolution of DENV-3 involved. Methodology/Principal Findings Three imported cases (index-1,2,3) separately traveled back from Vietnam, India and Tanzania, resulted in 1, 3 and 60 secondary autochthonous cases, respectively. In autochthonous cases, 64.6% positive in IgM anti-DENV and 18.6% in IgG from a total of 48 submitted serum samples, accompanied by 7 DENV-3 isolates. With 99.8%, 99.7%, and 100% envelope gene nucleotidic identity, 09/GZ/1081 from index-1 and endemic strain (09/GZ/1483) belonged to genotype V; 09/GZ/10616 from index-2 and endemic strains (09/GZ/11144 and 09/GZ/11194) belonged to genotype III Clade-A; and 10/GZ/4898 from index-3 and all four 2010 endemic DENV-3 strains belonged to genotype III Clade-B, respectively. Conclusions/Significance Both epidemiological and phylogenetic analyses showed that the 2010 outbreak of dengue was not a reemergence of the 2009 strain. Introductions of different genotypes following more than one route were important contributory factors for the 2009–2010 dengue epidemics/outbreaks in Canton. These findings underscore the importance of early detection and case management of imported case in preventing large-scale dengue epidemics among indigenous peoples of Canton.
Collapse
Affiliation(s)
- Huiying Liang
- Department of Primary Public Health, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
| | - Lei Luo
- Department of Communicable Disease Control and Prevention, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
| | - Zhicong Yang
- Department of Communicable Disease Control and Prevention, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
- * E-mail:
| | - Biao Di
- Department of Communicable Disease Control and Prevention, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
| | - Zhijun Bai
- Department of Communicable Disease Control and Prevention, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
| | - Peng He
- Department of Communicable Disease Control and Prevention, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
| | - Qinlong Jing
- Department of Communicable Disease Control and Prevention, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
| | - Xueli Zheng
- School of Public Health and Tropical Medicine, Southern Medical University, Canton, Guangdong Province, People’s Republic of China
| |
Collapse
|
177
|
Manakkadan A, Joseph I, Prasanna RR, Kunju RI, Kailas L, Sreekumar E. Lineage shift in Indian strains of Dengue virus serotype-3 (Genotype III), evidenced by detection of lineage IV strains in clinical cases from Kerala. Virol J 2013; 10:37. [PMID: 23360780 PMCID: PMC3598737 DOI: 10.1186/1743-422x-10-37] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/25/2013] [Indexed: 11/23/2022] Open
Abstract
Background Local epidemiology of Dengue is defined by the genetic diversity of the circulating Dengue virus (DENV) strains. This important information is not available for the virus strains from most parts of the Indian subcontinent. The present study focused on the genetic diversity of the serotype 3 DENV strains (DENV-3) from India. Results A total of 22 DENV-3 strains identified by reverse-transcription PCR analysis of serum samples from 709 patients were studied. These samples were collected over a period of 4 years (2008–2011) from dengue fever suspected patients from Kerala, a dengue endemic state in South India. Comparison of a 1740bp nucleotide sequence of the viral Capsid-Pre-membrane-Envelope coding region of our strains and previously reported DENV-3 strains from India, South Asia and South America revealed non-synonymous substitutions that were genotype III-specific as well as sporadic. Evidence of positive selection was detected in the I81 amino acid residue of the envelope protein. Out of the 22 samples, three had I81A and 18 had I81V substitutions. In the phylogenetic analysis by maximum likelihood method the strains from Kerala clustered in two different lineages (lineage III and IV) within genotype III clade of DENV-3 strains. The ten strains that belonged to lineage IV had a signature amino acid substitution T219A in the envelope protein. Interestingly, all these strains were found to be closely related to a Singapore strain GU370053 isolated in 2007. Conclusions Our study identifies for the first time the presence of lineage IV strains in the Indian subcontinent. Results indicate the possibility of a recent exotic introduction and also a shift from the existing lineage III strains to lineage IV. Lineage shifts in DENV-3 strains have been attributed to dramatic increase in disease severity in many parts of the world. Hence the present observation could be significant in terms of the clinical severity of future dengue cases in the region.
Collapse
Affiliation(s)
- Anoop Manakkadan
- Viral Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | | | | | | |
Collapse
|
178
|
Stine OC, Morris JG. Circulation and transmission of clones of Vibrio cholerae during cholera outbreaks. Curr Top Microbiol Immunol 2013; 379:181-93. [PMID: 24407776 DOI: 10.1007/82_2013_360] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cholera is still a major public health problem. The underlying bacterial pathogen Vibrio cholerae (V. cholerae) is evolving and some of its mutations have set the stage for outbreaks. After V. cholerae acquired the mobile elements VSP I & II, the El Tor pandemic began and spread across the tropics. The replacement of the O1 serotype encoding genes with the O139 encoding genes triggered an outbreak that swept across the Indian subcontinent. The sxt element generated a third selective sweep and most recently a fourth sweep was associated with the exchange of the El Tor ctx allele for a classical ctx allele in the El Tor background. In Kenya, variants of this fourth selective sweep have differentiated and become endemic residing in and emerging from environmental reservoirs. On a local level, studies in Bangladesh have revealed that outbreaks may arise from a nonrandom subset of the genetic lineages in the environment and as the population of the pathogen expands, many novel mutations may be found increasing the amount of genetic variation, a phenomenon known as a founder flush. In Haiti, after the initial invasion and expansion of V. cholerae in 2010, a second outbreak occurred in the winter of 2011-2012 driven by natural selection of specific mutations.
Collapse
Affiliation(s)
- O Colin Stine
- Department of Epidemiology and Public Health, University of Maryland, 596 Howard Hall, 660 W. Redwood St., Baltimore, MD, 21201, USA,
| | | |
Collapse
|
179
|
Sjatha F, Takizawa Y, Yamanaka A, Konishi E. Phylogenetic analysis of dengue virus types 1 and 3 isolated in Jakarta, Indonesia in 1988. INFECTION GENETICS AND EVOLUTION 2012; 12:1938-43. [DOI: 10.1016/j.meegid.2012.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 08/16/2012] [Accepted: 08/23/2012] [Indexed: 11/30/2022]
|
180
|
Chakravarti A, Chauhan MS, Kumar S, Ashraf A. Genotypic characterization of dengue virus strains circulating during 2007-2009 in New Delhi. Arch Virol 2012; 158:571-81. [DOI: 10.1007/s00705-012-1522-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/21/2012] [Indexed: 11/29/2022]
|
181
|
Andraud M, Hens N, Marais C, Beutels P. Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PLoS One 2012; 7:e49085. [PMID: 23139836 PMCID: PMC3490912 DOI: 10.1371/journal.pone.0049085] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/07/2012] [Indexed: 02/05/2023] Open
Abstract
Dengue is a vector-borne disease recognized as the major arbovirose with four immunologically distant dengue serotypes coexisting in many endemic areas. Several mathematical models have been developed to understand the transmission dynamics of dengue, including the role of cross-reactive antibodies for the four different dengue serotypes. We aimed to review deterministic models of dengue transmission, in order to summarize the evolution of insights for, and provided by, such models, and to identify important characteristics for future model development. We identified relevant publications using PubMed and ISI Web of Knowledge, focusing on mathematical deterministic models of dengue transmission. Model assumptions were systematically extracted from each reviewed model structure, and were linked with their underlying epidemiological concepts. After defining common terms in vector-borne disease modelling, we generally categorised fourty-two published models of interest into single serotype and multiserotype models. The multi-serotype models assumed either vector-host or direct host-to-host transmission (ignoring the vector component). For each approach, we discussed the underlying structural and parameter assumptions, threshold behaviour and the projected impact of interventions. In view of the expected availability of dengue vaccines, modelling approaches will increasingly focus on the effectiveness and cost-effectiveness of vaccination options. For this purpose, the level of representation of the vector and host populations seems pivotal. Since vector-host transmission models would be required for projections of combined vaccination and vector control interventions, we advocate their use as most relevant to advice health policy in the future. The limited understanding of the factors which influence dengue transmission as well as limited data availability remain important concerns when applying dengue models to real-world decision problems.
Collapse
Affiliation(s)
- Mathieu Andraud
- Centre for Health Economics Research and Modelling of Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerpen, Belgium.
| | | | | | | |
Collapse
|
182
|
de Araújo JMG, Bello G, Romero H, Nogueira RMR. Origin and evolution of dengue virus type 3 in Brazil. PLoS Negl Trop Dis 2012; 6:e1784. [PMID: 22970331 PMCID: PMC3435237 DOI: 10.1371/journal.pntd.0001784] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 07/04/2012] [Indexed: 11/17/2022] Open
Abstract
The incidence of dengue fever and dengue hemorrhagic fever in Brazil experienced a significant increase since the emergence of dengue virus type-3 (DENV-3) at the early 2000s. Despite the major public health concerns, there have been very few studies of the molecular epidemiology and time-scale of this DENV lineage in Brazil. In this study, we investigated the origin and dispersion dynamics of DENV-3 genotype III in Brazil by examining a large number (n = 107) of E gene sequences sampled between 2001 and 2009 from diverse Brazilian regions. These Brazilian sequences were combined with 457 DENV-3 genotype III E gene sequences from 29 countries around the world. Our phylogenetic analysis reveals that there have been at least four introductions of the DENV-3 genotype III in Brazil, as signified by the presence of four phylogenetically distinct lineages. Three lineages (BR-I, BR-II, and BR-III) were probably imported from the Lesser Antilles (Caribbean), while the fourth one (BR-IV) was probably introduced from Colombia or Venezuela. While lineages BR-I and BR-II succeeded in getting established and disseminated in Brazil and other countries from the Southern Cone, lineages BR-III and BR-IV were only detected in one single individual each from the North region. The phylogeographic analysis indicates that DENV-3 lineages BR-I and BR-II were most likely introduced into Brazil through the Southeast and North regions around 1999 (95% HPD: 1998–2000) and 2001 (95% HPD: 2000–2002), respectively. These findings show that importation of DENV-3 lineages from the Caribbean islands into Brazil seems to be relatively frequent. Our study further suggests that the North and Southeast Brazilian regions were the most important hubs of introduction and spread of DENV-3 lineages and deserve an intense epidemiological surveillance. Dengue is a major health problem in the tropics and the incidence of dengue fever and dengue hemorrhagic fever in Brazil experienced a significant increase since the emergence of dengue virus type-3 (DENV-3). In this study, the authors reconstruct the spatio-temporal dispersion pattern of the DENV-3 lineage that circulates in Brazil and the Americas. The authors found that DENV-3 outbreaks occurring in the American continent since the mid-1990s are the result of a single introduction of genotype III. The Central American countries and Mexico were the hubs of genotype III spread in the Americas, while the Caribbean region acted as a staging post between Central America/Mexico and South America. The authors estimate that there have been at least four introductions of the DENV-3 genotype III in Brazil, although only two of them succeeded in getting established and disseminating through the country. The Lesser Antilles (Caribbean) were the main source of DENV-3 viruses that arrived into Brazil,and the North and Southeast country regions seem to be most important hubs of introduction and dissemination of DENV-3 lineages. These findings offer important information to perform more effective surveillance programs to detect introduction and dispersal of new DENV lineages in Brazil.
Collapse
Affiliation(s)
- Josélio Maria Galvão de Araújo
- Laboratory of Molecular Biology for Infectious Diseases and Cancer, Federal University of Rio Grande do Norte, Natal, Brazil.
| | | | | | | |
Collapse
|
183
|
Patil JA, Cherian S, Walimbe AM, Bhagat A, Vallentyne J, Kakade M, Shah PS, Cecilia D. Influence of evolutionary events on the Indian subcontinent on the phylogeography of dengue type 3 and 4 viruses. INFECTION GENETICS AND EVOLUTION 2012; 12:1759-69. [PMID: 22890284 DOI: 10.1016/j.meegid.2012.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/12/2012] [Accepted: 07/15/2012] [Indexed: 11/19/2022]
Abstract
During 1960-80 dengue disease profile in India was mild despite circulation of all four serotypes of dengue virus (DENV). Increase in disease severity with a concomitant change in the population of DENV-1 and 2 have been reported since then. To determine population dynamics of DENV-3 and 4, the envelope (E) gene sequence was determined for 16 Indian isolates of DENV-3 and 11 of DENV-4 and analyzed together with 97 DENV-3 and 43 DENV-4 global sequences. All Indian DENV-3 isolates belonged to genotype III, lineages C, D, E and F. Lineage F was newly identified and represented non-circulating viruses. Three non-conservative amino acid changes in domain I, II & III were identified during the transition from lineages F/E, associated with mild disease, to A-D, associated with severe disease. For DENV-4, the current viruses clustered in genotype I, lineage C, whilst the isolates from 1960s formed the new genotype V. A 1979 Indian isolate of DENV-4 was found to be an inter-genotypic recombinant of Sri Lankan isolate (1978) of genotype I and Indian isolate (1961) of genotype V. The rates of nucleotide substitution and time to the most recent common ancestor (tMRCA) estimated for DENV-3 (1782-1934) and DENV-4 (1719-1931) were similar to earlier reports. However, the divergence time for genotype III of DENV-3, 1938-1963, was a more accurate estimate with the inclusion of Indian isolates from the 1960s. By phylogeographical analysis it was revealed that DENV-3 GIII viruses emerged from India and evolved through Sri Lanka whilst DENV-4 emerged and dispersed from India. The present study demonstrates the crucial role that India/Sri Lanka have played in the evolution and dispersion of the major genotypes, GIII of DENV-3 and GI of DENV-4 which are more virulent and show higher dissemination potential.
Collapse
Affiliation(s)
- J A Patil
- Dengue Group, National Institute of Virology, 20-A, Dr Ambedkar Road, PO Box No 11, Pune 411001, Maharashtra State, India
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Anoop M, Mathew AJ, Jayakumar B, Issac A, Nair S, Abraham R, Anupriya MG, Sreekumar E. Complete genome sequencing and evolutionary analysis of dengue virus serotype 1 isolates from an outbreak in Kerala, South India. Virus Genes 2012; 45:1-13. [PMID: 22729802 DOI: 10.1007/s11262-012-0756-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/05/2012] [Indexed: 11/26/2022]
Abstract
In this study, dengue virus (DENV) isolates from a localized, small-scale, non-seasonal dengue outbreak were genetically characterized. The outbreak occurred during the pre-monsoon months (April-May) in a medical college campus in Kerala, South India in 2009 affecting 76 people. Analysis of 39 viral RNA positive serum samples by a serotype specific reverse-transcription polymerase chain reaction identified dengue virus serotype 1 (DENV1) as the causative strain. Formation of a distinct genetic clade was revealed in the initial phylogenetic analysis using nucleotide sequences of a partial (303 bp) Capsid-Pre-membrane protein (C-PrM) coding region of 37 outbreak strains. The sequences of these strains clustered with that of the Genotype III DENV-1 strains from India, and 32 among them formed a single major sub-clade. Whole-genome sequencing (10,693 bp) of two strains (RGCB585/2009 and RGCB592/2009) selected from this major sub-clade, and subsequent phylogenetic analysis using the full-length coding region sequence showed that the sequences grouped with that of the isolates from Thailand (1980), Comoros (1993), Singapore (1993), and Brunei (2005) among the Indo-Pacific isolates. The sequences of the two strains had a nucleotide identity of 97-98 % and an amino acid identity of 98-99 % with these closely related strains. Maximum amino acid similarity was shown with the Singapore 8114/93 isolate (99.6 %). Four mutations-L46M in the capsid, D278N in the NS1, L123I, and L879S in the NS5 protein coding regions-were seen as signature substitutions uniformly in RGCB585/2009 and RGCB592/2009; in another isolate from Kerala (RGCB419/2008) and in the Brunei isolate (DS06-210505). These four isolates also had in common a 21-nucleotide deletion in the hyper-variable region of the 3'-non-translated region. This first report on the complete genome characterization of DENV-1 isolates from India reveals a dengue outbreak caused by a genetically different viral strain. The results point to the possibility of exotic introduction of these circulating viral strains in the region.
Collapse
Affiliation(s)
- M Anoop
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, 695014 Kerala, India
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Co-circulation of two genotypes of dengue virus serotype 3 in Guangzhou, China, 2009. Virol J 2012; 9:125. [PMID: 22721418 PMCID: PMC3463466 DOI: 10.1186/1743-422x-9-125] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 06/14/2012] [Indexed: 11/14/2022] Open
Abstract
Dengue is emerging as the most important mosquito borne viral disease in the world. In mainland China, sporadic and large outbreaks of dengue illness caused by the four serotypes of dengue virus (DENV-1 to DENV-4) have been well documented. Guangdong province is the major affected area in China, and DENV-1 has dominantly circulated in Guangdong for a long time. In this study, a family cluster of DENV-3 infection in Guangzhou was described. Three cases were diagnosed as dengue fever based on clinical manifestation, serological and RT-PCR assays. Two DENV-3 strains were isolated in C6/36 cells and the complete genome sequences were determined. Phylogenetic analysis revealed that the new DENV-3 isolates from the family cluster were grouped within genotype III. Considering the fact that several DENV-3 strains within genotype V were also identified in Guangzhou in 2009, at least two genotypes of DENV-3 co-circulated in Guangzhou. Careful investigation and virological analysis should be warranted in the future.
Collapse
|
186
|
Alfonso HL, Amarilla AA, Gonçalves PF, Barros MT, de Almeida FT, Silva TR, da Silva EV, Nunes MT, Vasconcelos PFC, Vieira DS, Batista WC, Bobadilla ML, Vazquez C, Moran M, Figueiredo LTM, Aquino VH. Phylogenetic relationship of dengue virus type 3 isolated in Brazil and Paraguay and global evolutionary divergence dynamics. Virol J 2012; 9:124. [PMID: 22716071 PMCID: PMC3494512 DOI: 10.1186/1743-422x-9-124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 05/31/2012] [Indexed: 11/10/2022] Open
Abstract
Background Dengue is the most important mosquito-borne viral disease worldwide. Dengue virus comprises four antigenically related viruses named dengue virus type 1 to 4 (DENV1-4). DENV-3 was re-introduced into the Americas in 1994 causing outbreaks in Nicaragua and Panama. DENV-3 was introduced in Brazil in 2000 and then spread to most of the Brazilian States, reaching the neighboring country, Paraguay in 2002. In this study, we have analyzed the phylogenetic relationship of DENV-3 isolated in Brazil and Paraguay with viruses isolated worldwide. We have also analyzed the evolutionary divergence dynamics of DENV-3 viruses. Results The entire open reading frame (ORF) of thirteen DENV-3 isolated in Brazil (n = 9) and Paraguay (n = 4) were sequenced for phylogenetic analysis. DENV-3 grouped into three main genotypes (I, II and III). Several internal clades were found within each genotype that we called lineage and sub-lineage. Viruses included in this study belong to genotype III and grouped together with viruses isolated in the Americas within the lineage III. The Brazilian viruses were further segregated into two different sub-lineage, A and B, and the Paraguayan into the sub-lineage B. All three genotypes showed internal grouping. The nucleotide divergence was in average 6.7% for genotypes, 2.7% for lineages and 1.5% for sub-lineages. Phylogenetic trees constructed with any of the protein gene sequences showed the same segregation of the DENV-3 in three genotypes. Conclusion Our results showed that two groups of DENV-3 genotypes III circulated in Brazil during 2002–2009, suggesting different events of introduction of the virus through different regions of the country. In Paraguay, only one group DENV-3 genotype III is circulating that is very closely related to the Brazilian viruses of sub-lineage B. Different degree of grouping can be observed for DENV-3 and each group showed a characteristic evolutionary divergence. Finally, we have observed that any protein gene sequence can be used to identify the virus genotype.
Collapse
Affiliation(s)
- Helda Liz Alfonso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Av, do Café s/n., 14040-903, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Malavige GN, McGowan S, Atukorale V, Salimi M, Peelawatta M, Fernando N, Jayaratne SD, Ogg G. Identification of serotype-specific T cell responses to highly conserved regions of the dengue viruses. Clin Exp Immunol 2012; 168:215-23. [PMID: 22471283 DOI: 10.1111/j.1365-2249.2012.04566.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Determining previous infecting dengue virus (DENV) serotypes has been difficult due to highly cross-reactive immune responses from previous DENV infections. Determining the correlates of serotype-specific immune responses would be crucial in understanding dengue transmission in the community and would also help to determine the correlates of protective immune responses. Therefore, we set out to define highly conserved, serotype-specific regions of the DENVs. Serotype-specific and highly conserved regions of the four DENV serotypes were identified using Basic Local Alignment Search Tool (BLAST) searches and custom perl scripts. Using ex-vivo and cultured enzyme-linked immunospot (ELISPOT) assays, we identified serotype-specific T cell epitopes within the four DENV serotypes in healthy adult donors from Sri Lanka. We identified T cell responses to 19 regions of the four DENV serotypes. Six peptides were from the NS2A region and four peptides were from the NS4A region. All immune donors responded to peptides of at least two DENV serotypes, suggesting that heterologous infection is common in Sri Lanka. Eight of 20 individuals responded to at least two peptides of DENV-4, despite this serotype not being implicated previously in any of the epidemics in Sri Lanka. The use of these regions to determine past and current infecting DENV serotypes will be of value to characterize further the dynamics of silent dengue transmission in the community. In addition, these T cell responses to these regions could be used to characterize DENV serotype-specific immune responses and thus possibly help us to understand the immune correlates of a protective immune response.
Collapse
Affiliation(s)
- G N Malavige
- Department of Microbiology, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Genome-wide patterns of intrahuman dengue virus diversity reveal associations with viral phylogenetic clade and interhost diversity. J Virol 2012; 86:8546-58. [PMID: 22647702 DOI: 10.1128/jvi.00736-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analogous to observations in RNA viruses such as human immunodeficiency virus, genetic variation associated with intrahost dengue virus (DENV) populations has been postulated to influence viral fitness and disease pathogenesis. Previous attempts to investigate intrahost genetic variation in DENV characterized only a few viral genes or a limited number of full-length genomes. We developed a whole-genome amplification approach coupled with deep sequencing to capture intrahost diversity across the entire coding region of DENV-2. Using this approach, we sequenced DENV-2 genomes from the serum of 22 Nicaraguan individuals with secondary DENV infection and captured ∼75% of the DENV genome in each sample (range, 40 to 98%). We identified and quantified variants using a highly sensitive and specific method and determined that the extent of diversity was considerably lower than previous estimates. Significant differences in intrahost diversity were detected between genes and also between antigenically distinct domains of the Envelope gene. Interestingly, a strong association was discerned between the extent of intrahost diversity in a few genes and viral clade identity. Additionally, the abundance of viral variants within a host, as well as the impact of viral mutations on amino acid encoding and predicted protein function, determined whether intrahost variants were observed at the interhost level in circulating Nicaraguan DENV-2 populations, strongly suggestive of purifying selection across transmission events. Our data illustrate the value of high-coverage genome-wide analysis of intrahost diversity for high-resolution mapping of the relationship between intrahost diversity and clinical, epidemiological, and virological parameters of viral infection.
Collapse
|
189
|
Tissera HA, Ooi EE, Gubler DJ, Tan Y, Logendra B, Wahala WMPB, de Silva AM, Abeysinghe MRN, Palihawadana P, Gunasena S, Tam CC, Amarasinghe A, Letson GW, Margolis HS, De Silva AD. New dengue virus type 1 genotype in Colombo, Sri Lanka. Emerg Infect Dis 2012; 17:2053-5. [PMID: 22099096 PMCID: PMC3310553 DOI: 10.3201/eid1711.101893] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The number of cases and severity of disease associated with dengue infection in Sri Lanka has been increasing since 1989, when the first epidemic of dengue hemorrhagic fever was recorded. We identified a new dengue virus 1 strain circulating in Sri Lanka that coincided with the 2009 dengue epidemic.
Collapse
|
190
|
Horwood PF, Collins D, Jonduo MH, Rosewell A, Dutta SR, Dagina R, Ropa B, Siba PM, Greenhill AR. Clonal origins of Vibrio cholerae O1 El Tor strains, Papua New Guinea, 2009-2011. Emerg Infect Dis 2012; 17:2063-5. [PMID: 22099099 PMCID: PMC3310576 DOI: 10.3201/eid1711.110782] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We used multilocus sequence typing and variable number tandem repeat analysis to determine the clonal origins of Vibrio cholerae O1 El Tor strains from an outbreak of cholera that began in 2009 in Papua New Guinea. The epidemic is ongoing, and transmission risk is elevated within the Pacific region.
Collapse
Affiliation(s)
- Paul F Horwood
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Affiliation(s)
- Cameron P Simmons
- Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | | | | | | |
Collapse
|
192
|
Machain-Williams C, Mammen MP, Zeidner NS, Beaty BJ, Prenni JE, Nisalak A, Blair CD. Association of human immune response to Aedes aegypti salivary proteins with dengue disease severity. Parasite Immunol 2012; 34:15-22. [PMID: 21995849 DOI: 10.1111/j.1365-3024.2011.01339.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dengue viruses (DENV; family Flaviviridae, genus Flavivirus) are transmitted by Aedes aegypti mosquitoes and can cause dengue fever (DF), a relatively benign disease, or more severe dengue haemorrhagic fever (DHF). Arthropod saliva contains proteins delivered into the bite wound that can modulate the host haemostatic and immune responses to facilitate the intake of a blood meal. The potential effects on DENV infection of previous exposure to Ae. aegypti salivary proteins have not been investigated. We collected Ae. aegypti saliva, concentrated the proteins and fractionated them by nondenaturing polyacrylamide gel electrophoresis (PAGE). By the use of immunoblots, we analysed reactivity with the mosquito salivary proteins (MSP) of sera from 96 Thai children diagnosed with secondary DENV infections leading either to DF or DHF, or with no DENV infection, and found that different proportions of each patient group had serum antibodies reactive to specific Ae. aegypti salivary proteins. Our results suggest that prior exposure to MSP might play a role in the outcome of DENV infection in humans.
Collapse
Affiliation(s)
- C Machain-Williams
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, CO, USA.
| | | | | | | | | | | | | |
Collapse
|
193
|
Bhatnagar J, Blau DM, Shieh WJ, Paddock CD, Drew C, Liu L, Jones T, Patel M, Zaki SR. Molecular detection and typing of dengue viruses from archived tissues of fatal cases by rt-PCR and sequencing: diagnostic and epidemiologic implications. Am J Trop Med Hyg 2012; 86:335-40. [PMID: 22302871 DOI: 10.4269/ajtmh.2012.11-0346] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Diagnosis of dengue virus (DENV) infection in fatal cases is challenging because of the frequent unavailability of blood or fresh tissues. For formalin-fixed, paraffin-embedded (FFPE) tissues immunohistochemistry (IHC) can be used; however, it may not be as sensitive and serotyping is not possible. The application of reverse transcription-polymerase chain reaction (RT-PCR) for the detection of DENV in FFPE tissues has been very limited. We evaluated FFPE autopsy tissues of 122 patients with suspected DENV infection by flavivirus and DENV RT-PCR, sequencing, and DENV IHC. The DENV was detected in 61 (50%) cases by RT-PCR or IHC. The RT-PCR and sequencing detected DENV in 60 (49%) cases (DENV-1 in 16, DENV-2 in 27, DENV-3 in 8, and DENV-4 in 6 cases). No serotype could be identified in three cases. The IHC detected DENV antigens in 50 (40%) cases. The RT-PCR using FFPE tissue improves detection of DENV in fatal cases and provides sequence information useful for typing and epidemiologic studies.
Collapse
Affiliation(s)
- Julu Bhatnagar
- Infectious Diseases Pathology Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Intra-genotypic variation of predominant genotype II strains of dengue type-3 virus isolated during different epidemics in Thailand from 1973 to 2001. Virus Genes 2012; 46:203-18. [PMID: 22411105 DOI: 10.1007/s11262-012-0720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 01/19/2012] [Indexed: 10/28/2022]
Abstract
The prevalence of all four dengue virus (DENV) serotypes has increased dramatically in recent years in many tropical and sub-tropical countries accompanied by an increase in genetic diversity within each serotype. This expansion in genetic diversity is expected to give rise to viruses with altered antigenicity, virulence, and transmissibility. We previously demonstrated the co-circulation of multiple DENV genotypes in Thailand and identified a predominant genotype for each serotype. In this study, we performed a comparative analysis of the complete genomic sequences of 28 DENV-3 predominant genotype II strains previously collected during different DENV-3 epidemics in Thailand from 1973 to 2001 with the goal to define mutations that might correlate with virulence, transmission frequency, and epidemiological impact. The results revealed (1) 37 amino acid and six nucleotide substitutions adopted and fixed in the virus genome after their initial substitutions over nearly 30-year-sampling period, (2) the presence of more amino acid and nucleotide substitutions in recent virus isolates compared with earlier isolates, (3) six amino acid substitutions in capsid (C), pre-membrane (prM), envelope (E), and nonstructural (NS) proteins NS4B and NS5, which appeared to be associated with periods of high DENV-3 epidemic activity, (4) the highest degree of conservation in C, NS2B and the 5'-untranslated region (UTR), and (5) the highest percentage of amino acid substitutions in NS2A protein.
Collapse
|
195
|
Messer WB, Yount B, Hacker KE, Donaldson EF, Huynh JP, de Silva AM, Baric RS. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization. PLoS Negl Trop Dis 2012; 6:e1486. [PMID: 22389731 PMCID: PMC3289595 DOI: 10.1371/journal.pntd.0001486] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/07/2011] [Indexed: 12/15/2022] Open
Abstract
Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I), Thailand 1995 (genotype II), Sri Lanka 1989 and Cuba 2002 (genotype III) and Puerto Rico 1977 (genotype IV). We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools described here are valuable for testing hypotheses on genetic determinants of DENV-3 immunopathogenesis.
Collapse
Affiliation(s)
- William B. Messer
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Boyd Yount
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kari E. Hacker
- Department of Microbiology and Immunology, and Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Eric F. Donaldson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeremy P. Huynh
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, and Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
196
|
Chakravarti A, Arora R, Luxemburger C. Fifty years of dengue in India. Trans R Soc Trop Med Hyg 2012; 106:273-82. [PMID: 22357401 DOI: 10.1016/j.trstmh.2011.12.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022] Open
Abstract
Dengue is the most important mosquito-borne, human viral disease in many tropical and sub-tropical areas. In India the disease has been essentially described in the form of case series. We reviewed the epidemiology of dengue in India to improve understanding of its evolution in the last 50 years and support the development of effective local prevention and control measures. Early outbreak reports showed a classic epidemic pattern of transmission with sporadic outbreaks, with low to moderate numbers of cases, usually localized to urban centres and neighbouring regions, but occasionally spreading and causing larger epidemics. Trends in recent decades include: larger and more frequent outbreaks; geographic expansion of endemic transmission; spread of the disease from urban to peri-urban and rural areas; an increasing proportion of severe cases and deaths; and progression to hyperendemicity, particularly in large urban areas. The global picture of dengue in India is currently that of a largely endemic country. Understanding demographic differences in infection rates and severity of dengue has important implications for the planning and implementation of effective public health prevention and control measures and targeting of future vaccination campaigns.
Collapse
Affiliation(s)
- Anita Chakravarti
- Maulana Azad Medical College, Bahadur Shah Zafar Marg, New Delhi, Delhi, 10002, India
| | | | | |
Collapse
|
197
|
IFN-γ production depends on IL-12 and IL-18 combined action and mediates host resistance to dengue virus infection in a nitric oxide-dependent manner. PLoS Negl Trop Dis 2011; 5:e1449. [PMID: 22206036 PMCID: PMC3243710 DOI: 10.1371/journal.pntd.0001449] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 11/06/2011] [Indexed: 12/22/2022] Open
Abstract
Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1–4). Severe dengue infection in humans is characterized by thrombocytopenia, increased vascular permeability, hemorrhage and shock. However, there is little information about host response to DENV infection. Here, mechanisms accounting for IFN-γ production and effector function during dengue disease were investigated in a murine model of DENV-2 infection. IFN-γ expression was greatly increased after infection of mice and its production was preceded by increase in IL-12 and IL-18 levels. In IFN-γ−/− mice, DENV-2-associated lethality, viral loads, thrombocytopenia, hemoconcentration, and liver injury were enhanced, when compared with wild type-infected mice. IL-12p40−/− and IL-18−/− infected-mice showed decreased IFN-γ production, which was accompanied by increased disease severity, higher viral loads and enhanced lethality. Blockade of IL-18 in infected IL-12p40−/− mice resulted in complete inhibition of IFN-γ production, greater DENV-2 replication, and enhanced disease manifestation, resembling the response seen in DENV-2-infected IFN-γ−/− mice. Reduced IFN-γ production was associated with diminished Nitric Oxide-synthase 2 (NOS2) expression and NOS2−/− mice had elevated lethality, more severe disease evolution and increased viral load after DENV-2 infection. Therefore, IL-12/IL-18-induced IFN-γ production and consequent NOS2 induction are of major importance to host resistance against DENV infection. Dengue fever and its severe forms, dengue hemorrhagic fever and dengue shock syndrome, are the most prevalent mosquito-borne diseases on Earth. It is caused by one of four serotypes of Dengue virus (DENV-1–4). At present, there are no vaccines or specific therapies for dengue and treatment is supportive. Host response to infection is also poorly understood. Here, using a DENV-2 strain that causes a disease that resembles the severe manifestations of Dengue in humans, we demonstrate that IFN-γ production is essential for the host to deal with infection. We have also shown that IFN-γ production during DENV infection is controlled by the cytokines IL-12 and IL-18. Finally, we show that one of the mechanisms triggered by IFN-γ during host response to DENV infection is the production of Nitric Oxide, an important virustatic metabolite. Mice deficient for each of these molecules present marked increase in DENV replication after infection and more severe disease. Altogether, this study demonstrates that the IL-12/IL-18-IFN-γ-NO axis plays a major role in host ability to deal with primary DENV infection. These data bear relevance to the understanding of antiviral immune responses during Dengue disease and may aid in the rational design of vaccines against DENV infection.
Collapse
|
198
|
Dengue-1 virus clade replacement in Thailand associated with enhanced mosquito transmission. J Virol 2011; 86:1853-61. [PMID: 22130539 DOI: 10.1128/jvi.06458-11] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue viruses (DENV) are characterized by extensive genetic diversity and can be organized in multiple, genetically distinct lineages that arise and die out on a regular basis in regions where dengue is endemic. A fundamental question for understanding DENV evolution is the relative extent to which stochastic processes (genetic drift) and natural selection acting on fitness differences among lineages contribute to lineage diversity and turnover. Here, we used a set of recently collected and archived low-passage DENV-1 isolates from Thailand to examine the role of mosquito vector-virus interactions in DENV evolution. By comparing the ability of 23 viruses isolated on different dates between 1985 and 2009 to be transmitted by a present-day Aedes aegypti population from Thailand, we found that a major clade replacement event in the mid-1990s was associated with virus isolates exhibiting increased titers in the vector's hemocoel, which is predicted to result in a higher probability of transmission. This finding is consistent with the hypothesis that selection for enhanced transmission by mosquitoes is a possible mechanism underlying major DENV clade replacement events. There was significant variation in transmission potential among isolates within each clade, indicating that in addition to vector-driven selection, other evolutionary forces act to maintain viral genetic diversity. We conclude that occasional adaptive processes involving the mosquito vector can drive major DENV lineage replacement events.
Collapse
|
199
|
Yamanaka A, Mulyatno KC, Susilowati H, Hendrianto E, Ginting AP, Sary DD, Rantam FA, Soegijanto S, Konishi E. Displacement of the predominant dengue virus from type 2 to type 1 with a subsequent genotype shift from IV to I in Surabaya, Indonesia 2008-2010. PLoS One 2011; 6:e27322. [PMID: 22087290 PMCID: PMC3210158 DOI: 10.1371/journal.pone.0027322] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/13/2011] [Indexed: 11/27/2022] Open
Abstract
Indonesia has annually experienced approximately 100,000 reported cases of dengue fever (DF) and dengue hemorrhagic fever (DHF) in recent years. However, epidemiological surveys of dengue viruses (DENVs) have been limited in this country. In Surabaya, the second largest city, a single report indicated that dengue virus type 2 (DENV2) was the predominant circulating virus in 2003–2005. We conducted three surveys in Surabaya during: (i) April 2007, (ii) June 2008 to April 2009, and (iii) September 2009 to December 2010. A total of 231 isolates were obtained from dengue patients and examined by PCR typing. We found that the predominant DENV shifted from type 2 to type 1 between October and November 2008. Another survey using wild-caught mosquitoes in April 2009 confirmed that dengue type 1 virus (DENV1) was the predominant type in Surabaya. Phylogenetic analyses of the nucleotide sequences of the complete envelope gene of DENV1 indicated that all 22 selected isolates in the second survey belonged to genotype IV and all 17 selected isolates in the third survey belonged to genotype I, indicating a genotype shift between April and September 2009. Furthermore, in December 2010, isolates were grouped into a new clade of DENV1 genotype I, suggesting clade shift between September and December 2010. According to statistics reported by the Surabaya Health Office, the proportion of DHF cases among the total number of dengue cases increased about three times after the type shift in 2008. In addition, the subsequent genotype shift in 2009 was associated with the increased number of total dengue cases. This indicates the need for continuous surveillance of circulating viruses to predict the risk of DHF and DF.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Fagundes CT, Costa VV, Cisalpino D, Souza DG, Teixeira MM. Therapeutic opportunities in dengue infection. Drug Dev Res 2011. [DOI: 10.1002/ddr.20455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|