151
|
Ramires LC, Santos GS, Ramires RP, da Fonseca LF, Jeyaraman M, Muthu S, Lana AV, Azzini G, Smith CS, Lana JF. The Association between Gut Microbiota and Osteoarthritis: Does the Disease Begin in the Gut? Int J Mol Sci 2022; 23:1494. [PMID: 35163417 PMCID: PMC8835947 DOI: 10.3390/ijms23031494] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Some say that all diseases begin in the gut. Interestingly, this concept is actually quite old, since it is attributed to the Ancient Greek physician Hippocrates, who proposed the hypothesis nearly 2500 years ago. The continuous breakthroughs in modern medicine have transformed our classic understanding of the gastrointestinal tract (GIT) and human health. Although the gut microbiota (GMB) has proven to be a core component of human health under standard metabolic conditions, there is now also a strong link connecting the composition and function of the GMB to the development of numerous diseases, especially the ones of musculoskeletal nature. The symbiotic microbes that reside in the gastrointestinal tract are very sensitive to biochemical stimuli and may respond in many different ways depending on the nature of these biological signals. Certain variables such as nutrition and physical modulation can either enhance or disrupt the equilibrium between the various species of gut microbes. In fact, fat-rich diets can cause dysbiosis, which decreases the number of protective bacteria and compromises the integrity of the epithelial barrier in the GIT. Overgrowth of pathogenic microbes then release higher quantities of toxic metabolites into the circulatory system, especially the pro-inflammatory cytokines detected in osteoarthritis (OA), thereby promoting inflammation and the initiation of many disease processes throughout the body. Although many studies link OA with GMB perturbations, further research is still needed.
Collapse
Affiliation(s)
- Luciano C. Ramires
- Department of Orthopaedics and Sports Medicine, Mãe de Deus Hospital, Porto Alegre 90110-270, RS, Brazil;
| | - Gabriel Silva Santos
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| | - Rafaela Pereira Ramires
- Department of Biology, Cellular, Molecular and Biomedical Science, Boise State University, 1910 W University Drive, Boise, ID 83725, USA;
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, SP, Brazil
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India;
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, Tamil Nadu, India;
| | - Anna Vitória Lana
- Department of Medicine, Max Planck University Center, Indaiatuba 13343-060, SP, Brazil;
| | - Gabriel Azzini
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| | - Curtis Scott Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 83703, USA;
| | - José Fábio Lana
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| |
Collapse
|
152
|
Vasilescu IM, Chifiriuc MC, Pircalabioru GG, Filip R, Bolocan A, Lazăr V, Diţu LM, Bleotu C. Gut Dysbiosis and Clostridioides difficile Infection in Neonates and Adults. Front Microbiol 2022; 12:651081. [PMID: 35126320 PMCID: PMC8810811 DOI: 10.3389/fmicb.2021.651081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we focus on gut microbiota profiles in infants and adults colonized (CDC) or infected (CDI) with Clostridioides difficile. After a short update on CDI epidemiology and pathology, we present the gut dysbiosis profiles associated with CDI in adults and infants, as well as the role of dysbiosis in C. difficile spores germination and multiplication. Both molecular and culturomic studies agree on a significant decrease of gut microbiota diversity and resilience in CDI, depletion of Firmicutes, Bacteroidetes, and Actinobacteria phyla and a high abundance of Proteobacteria, associated with low butyrogenic and high lactic acid-bacteria levels. In symptomatic cases, microbiota deviations are associated with high levels of inflammatory markers, such as calprotectin. In infants, colonization with Bifidobacteria that trigger a local anti-inflammatory response and abundance of Ruminococcus, together with lack of receptors for clostridial toxins and immunological factors (e.g., C. difficile toxins neutralizing antibodies) might explain the lack of clinical symptoms. Gut dysbiosis amelioration through administration of “biotics” or non-toxigenic C. difficile preparations and fecal microbiota transplantation proved to be very useful for the management of CDI.
Collapse
Affiliation(s)
- Iulia-Magdalena Vasilescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- INBI “Prof. Dr. Matei Balş” – National Institute for Infectious Diseases, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- *Correspondence: Mariana-Carmen Chifiriuc,
| | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Regional County Emergency Hospital, Suceava, Romania
| | - Alexandra Bolocan
- Department of General Surgery, University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Veronica Lazăr
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Lia-Mara Diţu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Ştefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| |
Collapse
|
153
|
Montero D, Rimoldi S, Torrecillas S, Rapp J, Moroni F, Herrera A, Gómez M, Fernández-Montero Á, Terova G. Impact of polypropylene microplastics and chemical pollutants on European sea bass (Dicentrarchus labrax) gut microbiota and health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150402. [PMID: 34818804 DOI: 10.1016/j.scitotenv.2021.150402] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 05/23/2023]
Abstract
Plastic pollution has become a global problem for marine ecosystems. Microplastics (MPs) are consumed by several marine organisms, including benthic and pelagic fish species that confuse them with food sources, thus contributing to bioaccumulation along the food chain. In addition to structural intestinal damage, ingestion of MPs represents a pathway for fish exposure to potentially hazardous chemicals, too. Most of them are endocrine disrupters, genotoxic or induce immune depression in fish. Accordingly, we assessed the combined toxicological effects of microplastics (MPs) and adsorbed pollutants by adding them to marine fish diet. European sea bass (Dicentrarchus labrax) juveniles were fed for 60 days with feeds containing polypropylene MPs, either virgin or contaminated with chemical pollutants (a blend of dichlorodiphenyldichloroethylene, chlorpyrifos, and benzophenone-3). The data demonstrated a synergic action of MPs and chemical pollutants to induce an inflammatory-like response in distal intestine of sea bass as shown by the up regulation of cytokine il-6 and tnf-α expression. Morphological analysis detected the presence of a focus of lymphocytes in anterior and posterior intestinal segments of fish fed with contaminants in the diet. With regard to microbiota, significant changes in bacterial species richness, beta diversity, and composition of gut microbiota were observed as a consequence of both pollutants and polluted MPs ingestion. These perturbations in gut microbial communities, including the reduction of beneficial lactic acid bacteria and the increase in potential pathogenic microorganism (Proteobacteria and Vibrionales), were undeniable signs of intestinal dysbiosis, which in turn confirmed the signs of inflammation caused by pollutants, especially when combined with MPs. The results obtained in this study provide, therefore, new insights into the potential risks of ingesting MPs as pollutant carriers in marine fish.
Collapse
Affiliation(s)
- Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, Spain
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, Spain
| | - Jorge Rapp
- Grupo de Ecofisiología de Organismos Marinos (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, Spain
| | - Federico Moroni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Alicia Herrera
- Grupo de Ecofisiología de Organismos Marinos (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, Spain
| | - May Gómez
- Grupo de Ecofisiología de Organismos Marinos (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, Spain
| | - Álvaro Fernández-Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, Spain
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy.
| |
Collapse
|
154
|
Diaz-Garrido N, Badia J, Baldomà L. Modulation of Dendritic Cells by Microbiota Extracellular Vesicles Influences the Cytokine Profile and Exosome Cargo. Nutrients 2022; 14:nu14020344. [PMID: 35057528 PMCID: PMC8778470 DOI: 10.3390/nu14020344] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Gut bacteria release extracellular vesicles (BEVs) as an intercellular communication mechanism that primes the host innate immune system. BEVs from E. coli activate dendritic cells (DCs) and subsequent T-cell responses in a strain-specific manner. The specific immunomodulatory effects were, in part, mediated by differential regulation of miRNAs. This study aimed to deepen understanding of the mechanisms of BEVs to drive specific immune responses by analyzing their impact on DC-secreted cytokines and exosomes. DCs were challenged with BEVs from probiotic and commensal E. coli strains. The ability of DC-secreted factors to activate T-cell responses was assessed by cytokine quantification in indirect DCs/naïve CD4+ T-cells co-cultures on Transwell supports. DC-exosomes were characterized in terms of costimulatory molecules and miRNAs cargo. In the absence of direct cellular contacts, DC-secreted factors triggered secretion of effector cytokines by T-cells with the same trend as direct DC/T-cell co-cultures. The main differences between the strains influenced the production of Th1- and Treg-specific cytokines. Exosomes released by BEV-activated DCs were enriched in surface proteins involved in antigen presentation and T-cell activation, but differed in the content of immune-related miRNA, depending on the origin of the BEVs. These differences were consistent with the derived immune responses.
Collapse
Affiliation(s)
- Natalia Diaz-Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Josefa Badia
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
- Correspondence:
| |
Collapse
|
155
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Guijarro LG, Lahera G, Monserrat J, Valls P, Mora F, Rodríguez-Jiménez R, Quintero J, Álvarez-Mon M. Gut Microbiota Metabolites in Major Depressive Disorder-Deep Insights into Their Pathophysiological Role and Potential Translational Applications. Metabolites 2022; 12:metabo12010050. [PMID: 35050172 PMCID: PMC8778125 DOI: 10.3390/metabo12010050] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem essential for the proper functioning of the organism, affecting the health and disease status of the individuals. There is continuous and bidirectional communication between gut microbiota and the host, conforming to a unique entity known as "holobiont". Among these crosstalk mechanisms, the gut microbiota synthesizes a broad spectrum of bioactive compounds or metabolites which exert pleiotropic effects on the human organism. Many of these microbial metabolites can cross the blood-brain barrier (BBB) or have significant effects on the brain, playing a key role in the so-called microbiota-gut-brain axis. An altered microbiota-gut-brain (MGB) axis is a major characteristic of many neuropsychiatric disorders, including major depressive disorder (MDD). Significative differences between gut eubiosis and dysbiosis in mental disorders like MDD with their different metabolite composition and concentrations are being discussed. In the present review, the main microbial metabolites (short-chain fatty acids -SCFAs-, bile acids, amino acids, tryptophan -trp- derivatives, and more), their signaling pathways and functions will be summarized to explain part of MDD pathophysiology. Conclusions from promising translational approaches related to microbial metabolome will be addressed in more depth to discuss their possible clinical value in the management of MDD patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Paula Valls
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
| | - Fernando Mora
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
156
|
Rawat P, Dhingra M, Kosta K, Das A. Microflora impacts immune system and its antitumor function. MICROBIAL CROSSTALK WITH IMMUNE SYSTEM 2022:177-205. [DOI: 10.1016/b978-0-323-96128-8.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
157
|
Shahrbaf MA, Hassan M, Vosough M. COVID-19 and hygiene hypothesis: increment of the inflammatory bowel diseases in next generation? Expert Rev Gastroenterol Hepatol 2022; 16:1-3. [PMID: 34919489 DOI: 10.1080/17474124.2022.2020647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Amin Shahrbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Research and Development Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
158
|
Wallenborn JT, Vonaesch P. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac010. [PMID: 35419206 PMCID: PMC8996373 DOI: 10.1093/gastro/goac010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
The intestinal microbiota plays a crucial role in health and changes in its composition are linked with major global human diseases. Fully understanding what shapes the human intestinal microbiota composition and knowing ways of modulating the composition are critical for promotion of life-course health, combating diseases, and reducing global health disparities. We aim to provide a foundation for understanding what shapes the human intestinal microbiota on an individual and global scale, and how interventions could utilize this information to promote life-course health and reduce global health disparities. We briefly review experiences within the first 1,000 days of life and how long-term exposures to environmental elements or geographic specific cultures have lasting impacts on the intestinal microbiota. We also discuss major public health threats linked to the intestinal microbiota, including antimicrobial resistance and disappearing microbial diversity due to globalization. In order to promote global health, we argue that the interplay of the larger ecosystem with intestinal microbiota research should be utilized for future research and urge for global efforts to conserve microbial diversity.
Collapse
Affiliation(s)
- Jordyn T Wallenborn
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore Campus UNIL-Sorge, Lausanne, Switzerland
- Corresponding author. Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland. Tel: +41-21-692-5600;
| |
Collapse
|
159
|
Pyle S. Human Gut Microbiota and the Influence of Probiotics, Prebiotics, and Micronutrients. COMPREHENSIVE GUT MICROBIOTA 2022:271-288. [DOI: 10.1016/b978-0-12-819265-8.00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
160
|
Kaur H, Ali SA. Probiotics and gut microbiota: mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct 2022; 13:7423-7447. [DOI: 10.1039/d2fo00911k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Consumption of probiotics as a useful functional food improves the host's wellbeing, and, when paired with prebiotics (indigestible dietary fibre/carbohydrate), often benefits the host through anaerobic fermentation.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, ICAR-NDRI, 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
161
|
Mahmud MR, Akter S, Tamanna SK, Mazumder L, Esti IZ, Banerjee S, Akter S, Hasan MR, Acharjee M, Hossain MS, Pirttilä AM. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 2022; 14:2096995. [PMID: 35866234 PMCID: PMC9311318 DOI: 10.1080/19490976.2022.2096995] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023] Open
Abstract
The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | | |
Collapse
|
162
|
Danenberg AH. The etiology of gut dysbiosis and its role in chronic disease. MICROBIOME, IMMUNITY, DIGESTIVE HEALTH AND NUTRITION 2022:71-91. [DOI: 10.1016/b978-0-12-822238-6.00020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
163
|
Corrêa PS, Jimenez CR, Mendes LW, Rymer C, Ray P, Gerdes L, da Silva VO, De Nadai Fernandes EA, Abdalla AL, Louvandini H. Taxonomy and Functional Diversity in the Fecal Microbiome of Beef Cattle Reared in Brazilian Traditional and Semi-Intensive Production Systems. Front Microbiol 2021; 12:768480. [PMID: 34956130 PMCID: PMC8692951 DOI: 10.3389/fmicb.2021.768480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
The importance of beef production for economy of Brazil and the growing demand for animal protein across the globe warrant an improvement in the beef production system. Although most attention has been on modulation of the rumen microbiome to improve ruminant production, the role of the lower gut microbiome in host health and nutrition remains relatively unexplored. This work aimed to investigate the taxonomy and functional variations in the fecal microbiome of Brazilian beef cattle reared in two different production systems using a metagenomic approach. Sixty male beef cattle from six farms representing semi-intensive (I, n = 2) and traditional (T, n = 4) Brazilian beef production systems were enrolled in the study. Shotgun sequencing was used to characterize taxonomic and functional composition and diversity of the microbiome in fecal samples collected from each animal. Fecal samples were analyzed for copper (Cu), lead (Pb), nitrogen (N), phosphorous (P), selenium (Se), and zinc (Zn) and stable isotopes of carbon (13C) and nitrogen (15N). The fecal microbiome was influenced by the beef production systems with greater functional and lower taxonomic diversity in beef cattle feces from I systems compared with that from T systems. The concentration of N, P, and Zn was higher in beef cattle feces from I systems compared with that from T systems and was associated with taxonomic and functional profile of fecal microbiome in I system, suggesting the role of fecal nutrients in shaping system-specific microbiome. Semi-intensive management practices led to a more complex but less connected fecal microbiome in beef cattle. The microbial community in beef cattle feces from I systems was characterized by greater abundance of beneficial bacteria (phylum Firmicutes and butyrate-producing bacteria family Lachnospiraceae and genera Anaerostipes, Blautia, Butyrivibrio, Eubacterium, Roseburia, and Ruminococcus). In addition, the fecal abundance of microbial genes related to immune system, nutrient metabolism, and energy production was greater in beef cattle raised under I systems compared with that under T systems. Findings of the current study suggest that semi-intensive management practices could facilitate the development of a healthier and more efficient fecal microbiome in beef cattle by driving an increase in the abundance of beneficial bacteria and functional genes.
Collapse
Affiliation(s)
- Patricia Spoto Corrêa
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Carolina Rodriguez Jimenez
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Lucas William Mendes
- Laboratory of Molecular Cell Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Caroline Rymer
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Luciana Gerdes
- Reference Laboratory on Classification and Evaluation of Animal Products, Institute of Zootechnics, Nova Odessa, Brazil
| | - Vagner Ovani da Silva
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | | | - Adibe Luiz Abdalla
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Helder Louvandini
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
164
|
Khadka S, Omura S, Sato F, Nishio K, Kakeya H, Tsunoda I. Curcumin β-D-Glucuronide Modulates an Autoimmune Model of Multiple Sclerosis with Altered Gut Microbiota in the Ileum and Feces. Front Cell Infect Microbiol 2021; 11:772962. [PMID: 34926318 PMCID: PMC8677657 DOI: 10.3389/fcimb.2021.772962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
We developed a prodrug type of curcumin, curcumin monoglucuronide (CMG), whose intravenous/intraperitoneal injection achieves a high serum concentration of free-form curcumin. Although curcumin has been reported to alter the gut microbiota and immune responses, it is unclear whether the altered microbiota could be associated with inflammation in immune-mediated diseases, such as multiple sclerosis (MS). We aimed to determine whether CMG administration could affect the gut microbiota at three anatomical sites (feces, ileal contents, and the ileal mucosa), leading to suppression of inflammation in the central nervous system (CNS) in an autoimmune model for MS, experimental autoimmune encephalomyelitis (EAE). We injected EAE mice with CMG, harvested the brains and spinal cords for histological analyses, and conducted microbiome analyses using 16S rRNA sequencing. CMG administration modulated EAE clinically and histologically, and altered overall microbiota compositions in feces and ileal contents, but not the ileal mucosa. Principal component analysis (PCA) of the microbiome showed that principal component (PC) 1 values in ileal contents, but not in feces, correlated with the clinical and histological EAE scores. On the other hand, when we analyzed the individual bacteria of the microbiota, the EAE scores correlated with significant increases in the relative abundance of two bacterial species at each anatomical site: Ruminococcus bromii and Blautia (Ruminococcus) gnavus in feces, Turicibacter sp. and Alistipes finegoldii in ileal contents, and Burkholderia spp. and Azoarcus spp. in the ileal mucosa. Therefore, CMG administration could alter the gut microbiota at the three different sites differentially in not only the overall gut microbiome compositions but also the abundance of individual bacteria, each of which was associated with modulation of neuroinflammation.
Collapse
Affiliation(s)
- Sundar Khadka
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
165
|
Colon cancer checks in when bile acids check out: the bile acid-nuclear receptor axis in colon cancer. Essays Biochem 2021; 65:1015-1024. [PMID: 34414429 PMCID: PMC8628182 DOI: 10.1042/ebc20210038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) are a class of hepatically derived metabolite-hormones with prominent roles in nutrient absorption, metabolic and immune homeostasis in the intestine. BAs are ligands for multiple nuclear receptors (NRs), through which they confer transcriptional regulation on target genes that form an enterohepatic hormonal feedback loop to regulate BA synthesis and maintain lipid homeostasis. Endogenous BAs made by the host undergo significant biotransformation by the gut microbiota in the intestine, which diversifies the intestinal BA pool and facilitate host–microbiota cross-talk through BA-mediated signaling. BAs dysregulation contributes to development of metabolic diseases, pathological inflammation and colon cancer. This review provides a brief historic perspective of the study of NR-mediated BA signaling transduction, with a focus on recent advancements in understanding the active role the gut microbiome plays in reshaping intestinal BA landscape, and the implications of novel microbially derived BAs in modulating immune homeostasis and cancer development in the host. Targeting the BA–NR signaling axis for pharmacological intervention provides ample opportunities in the prevention and treatment of intestinal diseases.
Collapse
|
166
|
The Multifaceted Effects of Gut Microbiota on the Immune System of the Intestinal Mucosa. IMMUNO 2021. [DOI: 10.3390/immuno1040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The gut microbiota has diverse microbial components, including bacteria, viruses, and fungi. The interaction between gut microbiome components and immune responses has been studied extensively over the last decade. Several studies have reported the potential role of the gut microbiome in maintaining gut homeostasis and the development of disease. The commensal microbiome can preserve the integrity of the mucosal barrier by acting on the host immune system. Contrastingly, dysbiosis-induced inflammation can lead to the initiation and progression of several diseases through inflammatory processes and oxidative stress. In this review, we describe the multifaceted effects of the gut microbiota on several diseases from the perspective of mucosal immunological responses.
Collapse
|
167
|
Ebert T, Neytchev O, Witasp A, Kublickiene K, Stenvinkel P, Shiels PG. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal 2021; 35:1426-1448. [PMID: 34006115 DOI: 10.1089/ars.2020.8184] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chronic kidney disease (CKD) can be regarded as a burden of lifestyle disease that shares common underpinning features and risk factors with the aging process; it is a complex constituted by several adverse components, including chronic inflammation, oxidative stress, early vascular aging, and cellular senescence. Recent Advances: A systemic approach to tackle CKD, based on mitigating the associated inflammatory, cell stress, and damage processes, has the potential to attenuate the effects of CKD, but it also preempts the development and progression of associated morbidities. In effect, this will enhance health span and compress the period of morbidity. Pharmacological, nutritional, and potentially lifestyle-based interventions are promising therapeutic avenues to achieve such a goal. Critical Issues: In the present review, currents concepts of inflammation and oxidative damage as key patho-mechanisms in CKD are addressed. In particular, potential beneficial but also adverse effects of different systemic interventions in patients with CKD are discussed. Future Directions: Senotherapeutics, the nuclear factor erythroid 2-related factor 2-kelch-like ECH-associated protein 1 (NRF2-KEAP1) signaling pathway, the endocrine klotho axis, inhibitors of the sodium-glucose cotransporter 2 (SGLT2), and live bio-therapeutics have the potential to reduce the burden of CKD and improve quality of life, as well as morbidity and mortality, in this fragile high-risk patient group. Antioxid. Redox Signal. 35, 1426-1448.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ognian Neytchev
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
168
|
Siddiqui MT, Cresci GAM. The Immunomodulatory Functions of Butyrate. J Inflamm Res 2021; 14:6025-6041. [PMID: 34819742 PMCID: PMC8608412 DOI: 10.2147/jir.s300989] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) system contains many different types of immune cells, making it a key immune organ system in the human body. In the last decade, our knowledge has substantially expanded regarding our understanding of the gut microbiome and its complex interaction with the gut immune system. Short chain fatty acids (SCFA), and specifically butyrate, play an important role in mediating the effects of the gut microbiome on local and systemic immunity. Gut microbial alterations and depletion of luminal butyrate have been well documented in the literature for a number of systemic and GI inflammatory disorders. Although a substantial knowledge gap exists requiring the need for further investigations to determine cause and effect, there is heightened interest in developing immunomodulatory therapies by means of reprogramming of gut microbiome or by supplementing its beneficial metabolites, such as butyrate. In the current review, we discuss the role of endogenous butyrate in the inflammatory response and maintaining immune homeostasis within the intestine. We also present the experimental models and human studies which explore therapeutic potential of butyrate supplementation in inflammatory conditions associated with butyrate depletion.
Collapse
Affiliation(s)
- Mohamed Tausif Siddiqui
- Department of Gastroenterology, Hepatology and Human Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Gail A M Cresci
- Department of Gastroenterology, Hepatology and Human Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Pediatric Gastroenterology, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
169
|
Kossumov A, Mussabay K, Pepoyan A, Tsaturyan V, Sidamonidze K, Tsereteli D, Supiyev A, Kozhakhmetov S, Chulenbayeva L, Dusmagambetov M, Pignatelli M, Zhumadilov Z, Marotta F, Kushugulova A. Digestive System and Severe Acute Respiratory Syndrome Coronavirus 2: New Era of Microbiome Study and Gastrointestinal Tract Manifestations during the Coronavirus Disease-19 Pandemic. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Main focuses of the review were that during the pandemic of SARS-CoV-2 were gastrointestinal disorders were accompanying. Viral RNA and viral particles are found in feces for more than 30 days. Although SARS-CoV-2 primarily causes lung infection through binding to ACE2 receptors, intestinal epithelial cells, especially enterocytes of the small intestine, also express ACE2 receptors. It is also known that a respiratory viral infection causes disturbances in the gut microbiota. Diet, environmental factors, and genetics play an important role in the formation of gut microbiota, which can affect immunity. The diversity of gut microbiota diminishes in old age, and Covid-19 has been mostly fatal in older patients, further indicating the role that gut microbiota may play in this disease. It is therefore plausible that the gut microbiota could be a new therapeutic target and that probiotics could have a role in the management of these patients.
Collapse
|
170
|
Shinjyo N, Kita K. Infection and Immunometabolism in the Central Nervous System: A Possible Mechanistic Link Between Metabolic Imbalance and Dementia. Front Cell Neurosci 2021; 15:765217. [PMID: 34795562 PMCID: PMC8592913 DOI: 10.3389/fncel.2021.765217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes are frequently associated with dementia, suggesting that the dysregulation of energy metabolism can increase the risk of neurodegeneration and cognitive impairment. In addition, growing evidence suggests the link between infections and brain disorders, including Alzheimer's disease. The immune system and energy metabolism are in an intricate relationship. Infection triggers immune responses, which are accompanied by imbalance in cellular and organismal energy metabolism, while metabolic disorders can lead to immune dysregulation and higher infection susceptibility. In the brain, the activities of brain-resident immune cells, including microglia, are associated with their metabolic signatures, which may be affected by central nervous system (CNS) infection. Conversely, metabolic dysregulation can compromise innate immunity in the brain, leading to enhanced CNS infection susceptibility. Thus, infection and metabolic imbalance can be intertwined to each other in the etiology of brain disorders, including dementia. Insulin and leptin play pivotal roles in the regulation of immunometabolism in the CNS and periphery, and dysfunction of these signaling pathways are associated with cognitive impairment. Meanwhile, infectious complications are often comorbid with diabetes and obesity, which are characterized by insulin resistance and leptin signaling deficiency. Examples include human immunodeficiency virus (HIV) infection and periodontal disease caused by an oral pathogen Porphyromonas gingivalis. This review explores potential interactions between infectious agents and insulin and leptin signaling pathways, and discuss possible mechanisms underlying the relationship between infection, metabolic dysregulation, and brain disorders, particularly focusing on the roles of insulin and leptin.
Collapse
Affiliation(s)
- Noriko Shinjyo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
171
|
Mhatre SD, Iyer J, Puukila S, Paul AM, Tahimic CGT, Rubinstein L, Lowe M, Alwood JS, Sowa MB, Bhattacharya S, Globus RK, Ronca AE. Neuro-consequences of the spaceflight environment. Neurosci Biobehav Rev 2021; 132:908-935. [PMID: 34767877 DOI: 10.1016/j.neubiorev.2021.09.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
As human space exploration advances to establish a permanent presence beyond the Low Earth Orbit (LEO) with NASA's Artemis mission, researchers are striving to understand and address the health challenges of living and working in the spaceflight environment. Exposure to ionizing radiation, microgravity, isolation and other spaceflight hazards pose significant risks to astronauts. Determining neurobiological and neurobehavioral responses, understanding physiological responses under Central Nervous System (CNS) control, and identifying putative mechanisms to inform countermeasure development are critically important to ensuring brain and behavioral health of crew on long duration missions. Here we provide a detailed and comprehensive review of the effects of spaceflight and of ground-based spaceflight analogs, including simulated weightlessness, social isolation, and ionizing radiation on humans and animals. Further, we discuss dietary and non-dietary countermeasures including artificial gravity and antioxidants, among others. Significant future work is needed to ensure that neural, sensorimotor, cognitive and other physiological functions are maintained during extended deep space missions to avoid potentially catastrophic health and safety outcomes.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Stephanie Puukila
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA; Flinders University, Adelaide, Australia
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Wake Forest Medical School, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
172
|
Glinert A, Turjeman S, Elliott E, Koren O. Microbes, metabolites and (synaptic) malleability, oh my! The effect of the microbiome on synaptic plasticity. Biol Rev Camb Philos Soc 2021; 97:582-599. [PMID: 34734461 PMCID: PMC9298272 DOI: 10.1111/brv.12812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
The microbiome influences the emotional and cognitive phenotype of its host, as well as the neurodevelopment and pathophysiology of various brain processes and disorders, via the well‐established microbiome–gut–brain axis. Rapidly accumulating data link the microbiome to severe neuropsychiatric disorders in humans, including schizophrenia, Alzheimer's and Parkinson's. Moreover, preclinical work has shown that perturbation of the microbiome is closely associated with social, cognitive and behavioural deficits. The potential of the microbiome as a diagnostic and therapeutic tool is currently undercut by a lack of clear mechanistic understanding of the microbiome–gut–brain axis. This review establishes the hypothesis that the mechanism by which this influence is carried out is synaptic plasticity – long‐term changes to the physical and functional neuronal structures that enable the brain to undertake learning, memory formation, emotional regulation and more. By examining the different constituents of the microbiome–gut–brain axis through the lens of synaptic plasticity, this review explores the diverse aspects by which the microbiome shapes the behaviour and mental wellbeing of the host. Key elements of this complex bi‐directional relationship include neurotransmitters, neuronal electrophysiology, immune mediators that engage with both the central and enteric nervous systems and signalling cascades that trigger long‐term potentiation of synapses. The importance of establishing mechanistic correlations along the microbiome–gut–brain axis cannot be overstated as they hold the potential for furthering current understanding regarding the vast fields of neuroscience and neuropsychiatry. This review strives to elucidate the promising theory of microbiome‐driven synaptic plasticity in the hope of enlightening current researchers and inspiring future ones.
Collapse
Affiliation(s)
- Ayala Glinert
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| |
Collapse
|
173
|
Spot-light on microbiota in obesity and cancer. Int J Obes (Lond) 2021; 45:2291-2299. [PMID: 34363002 DOI: 10.1038/s41366-021-00866-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/26/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Over the last few years, the complexity and diversity of gut microbiota within and across individuals has been detailed in relation to human health. Further, understanding of the bidirectional association between gut microbiota and metabolic disorders has highlighted a complimentary, yet crucial role for microbiota in the onset and progression of obesity-related cancers. While strategies for cancer prevention and cure are known to work efficiently when supported by healthy diet and lifestyle choices and physical activity, emerging evidence suggests that the complex interplay relating microbiota both to neoplastic and metabolic diseases could aid strategies for cancer treatment and outcomes. This review will explore the experimental and clinical grounds supporting the functional role of gut microbiota in the pathophysiology and progression of cancers in relation to obesity and its metabolic correlates. Therapeutic approaches aiding microbiota restoration in connection with cancer treatments will be discussed.
Collapse
|
174
|
Balan Y, Gaur A, Sakthivadivel V, Kamble B, Sundaramurthy R. Is the Gut Microbiota a Neglected Aspect of Gut and Brain Disorders? Cureus 2021; 13:e19740. [PMID: 34938619 PMCID: PMC8684598 DOI: 10.7759/cureus.19740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is a quickly developing bacterial ecosystem with biodiversity. It is an adaptive immunity that varies with food intake, environmental conditions, and human habits, among other factors. Various external stimuli, such as drugs, can influence the gut microbial environment and lead to gut dysbiosis. Recently, gut dysbiosis has been identified as an important factor that leads to several diseases either by the released metabolites or by the gut neuronal connection. In brain disorders, gut dysbiosis is involved in neuropsychiatric manifestations, including autism spectrum disorder, anxiety, and depression by interfering with neurotransmitter homeostasis, and neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease by releasing abnormal metabolites from the gut. Gut dysbiosis has been documented in gut disorders, including inflammatory bowel disease or irritable bowel syndrome. Immune cells in the gut are modulated by external factors such as stress, diet, and drugs to produce inflammatory cytokines, including interleukins (IL-4, IL-6, IL-17, IL-23, etc.). Inflammatory cytokines lead to a cascade of events, which lead to various ailments in the bowel. Beneficial bacteria in the form of probiotics ameliorate the condition and have healthful effects in disease conditions. This warrants further research to identify newer therapeutic strategies for diseases that cannot be cured or are difficult to treat.
Collapse
Affiliation(s)
- Yuvaraj Balan
- Department of Biochemistry, All India Institute of Medical Sciences, Bibinagar, Bibinagar, IND
| | - Archana Gaur
- Department of Physiology, All India Institute of Medical Sciences, Bibinagar, Bibinagar, IND
| | | | - Bhushan Kamble
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Bibinagar, Bibinagar, IND
| | - Raja Sundaramurthy
- Department of Microbiology, All India Institute of Medical Sciences, Bibinagar, Bibinagar, IND
| |
Collapse
|
175
|
Ghosh S, Pramanik S. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Arch Microbiol 2021; 203:5281-5308. [PMID: 34405262 PMCID: PMC8370661 DOI: 10.1007/s00203-021-02516-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
The research on human gut microbiome, regarded as the black box of the human body, is still at the stage of infancy as the functional properties of the complex gut microbiome have not yet been understood. Ongoing metagenomic studies have deciphered that the predominant microbial communities belong to eubacterial phyla Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Cyanobacteria, Verrucomicrobia and archaebacterial phylum Euryarchaeota. The indigenous commensal microbial flora prevents opportunistic pathogenic infection and play undeniable roles in digestion, metabolite and signaling molecule production and controlling host's cellular health, immunity and neuropsychiatric behavior. Besides maintaining intestinal health via short-chain fatty acid (SCFA) production, gut microbes also aid in neuro-immuno-endocrine modulatory molecule production, immune cell differentiation and glucose and lipid metabolism. Interdependence of diet and intestinal microbial diversity suggests the effectiveness of pre- and pro-biotics in maintenance of gut and systemic health. Several companies worldwide have started potentially exploiting the microbial contribution to human health and have translated their use in disease management and therapeutic applications. The present review discusses the vast diversity of microorganisms playing intricate roles in human metabolism. The contribution of the intestinal microbiota to regulate systemic activities including gut-brain-immunity crosstalk has been focused. To the best of our knowledge, this review is the first of its kind to collate and discuss the companies worldwide translating the multi-therapeutic potential of human intestinal microbiota, based on the multi-omics studies, i.e. metagenomics and metabolomics, as ready solutions for several metabolic and systemic disorders.
Collapse
Affiliation(s)
- Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| |
Collapse
|
176
|
Abstract
A variety of effector proteins contribute to host defense in Caenorhabditis elegans. However, beyond lytic enzymes and antimicrobial peptides and proteins, little is known about the exact function of these infection-related effectors. This study set out to identify pathogen-dependent cytokine-like molecules, focusing on C-type lectin domain-containing proteins (CLECs). In total, 38 CLECs that are differentially regulated in response to bacterial infections have been previously identified by microarray and transcriptome sequencing (RNA-seq) analyses in C. elegans. We successfully cloned 18 of these 38 CLECs and chose to focus on CLEC-47 because, among these 18 cloned CLECs, it was the smallest protein and was recombinantly expressed at the highest levels in prokaryotic cells examined by SDS-PAGE. Quantitative real-time PCR (qRT-PCR/qPCR) showed that the expression of clec-47 was induced by a variety of Gram-positive bacterial pathogens, including Enterococcus faecium, Staphylococcus aureus, and Cutibacterium acnes, but was suppressed by the Gram-negative bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa. By expressing CLEC-47 in HEK 293 cells, we showed that CLEC-47 is released into the culture media, which the Golgi apparatus inhibitors (brefeldin A [BFA] and GolgiStop) could block. Purified recombinant CLEC-47 (maltose binding protein [MBP]–CLEC-47–His) did not display antimicrobial activity against ESKAPE pathogen isolates but bound directly to murine macrophage J774A.1 cells. Recombinant CLEC-47 attracted and recruited J774A.1 cells in a chemotaxis assay. In addition, qPCR studies and enzyme-linked immunosorbent assays (ELISAs) showed that CLEC-47 activates J774A.1 cells in a dose- and time-dependent manner to express the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, and Macrophage Inflammatory Protein 2 (MIP-2). Moreover, C. elegans, fed with CLEC-47-expressing Escherichia coli, demonstrated enhanced expression of several antimicrobial proteins (CNC-1, CNC-2, CPR-1, and CPR-2) as well as the detoxification protein MTL-1. These data suggest that CLEC-47 functions as a novel cytokine-like signaling molecule and exemplify how the study of infection-related effectors in C. elegans can help elucidate the evolution of immune responses.
Collapse
|
177
|
Mertowska P, Mertowski S, Wojnicka J, Korona-Głowniak I, Grywalska E, Błażewicz A, Załuska W. A Link between Chronic Kidney Disease and Gut Microbiota in Immunological and Nutritional Aspects. Nutrients 2021; 13:3637. [PMID: 34684638 PMCID: PMC8540836 DOI: 10.3390/nu13103637] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is generally progressive and irreversible, structural or functional renal impairment for 3 or more months affecting multiple metabolic pathways. Recently, the composition, dynamics, and stability of a patient's microbiota has been noted to play a significant role during disease onset or progression. Increasing urea concentration during CKD can lead to an acceleration of the process of kidney injury leading to alterations in the intestinal microbiota that can increase the production of gut-derived toxins and alter the intestinal epithelial barrier. A detailed analysis of the relationship between the role of intestinal microbiota and the development of inflammation within the symbiotic and dysbiotic intestinal microbiota showed significant changes in kidney dysfunction. Several recent studies have determined that dietary factors can significantly influence the activation of immune cells and their mediators. Moreover, dietary changes can profoundly affect the balance of gut microbiota. The aim of this review is to present the importance and factors influencing the differentiation of the human microbiota in the progression of kidney diseases, such as CKD, IgA nephropathy, idiopatic nephropathy, and diabetic kidney disease, with particular emphasis on the role of the immune system. Moreover, the effects of nutrients, bioactive compounds on the immune system in development of chronic kidney disease were reviewed.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (J.W.); (A.B.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (J.W.); (A.B.)
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, 8 Jaczewskiego Street, 20-954 Lublin, Poland;
| |
Collapse
|
178
|
Sugino KY, Ma T, Paneth N, Comstock SS. Effect of Environmental Exposures on the Gut Microbiota from Early Infancy to Two Years of Age. Microorganisms 2021; 9:2140. [PMID: 34683461 PMCID: PMC8537618 DOI: 10.3390/microorganisms9102140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/19/2023] Open
Abstract
The gut microbiota undergoes rapid changes during infancy in response to early-life exposures. We have investigated how the infant gut bacterial community matures over time and how exposures such as human milk and antibiotic treatment alter gut microbiota development. We used the LonGP program to create predictive models to determine the contribution of exposures on infant gut bacterial abundances from one month to two years of age. These models indicate that infant antibiotic use, human milk intake, maternal pre-pregnancy BMI, and sample shipping time were associated with changes in gut microbiome composition. In most infants, Bacteroides, Lachnospiraceae unclassified, Faecalibacterium, Akkermansia, and Phascolarctobacterium abundance increased rapidly after 6 months, while Escherichia, Bifidobacterium, Veillonella, and Streptococcus decreased in abundance over time. Individual, time-varying, random effects explained most of the variation in the LonGP models. Multivariate association with linear models (MaAsLin) displayed partial agreement with LonGP in the predicted trajectories over time and in relation to significant factors such as human milk intake. Multiple factors influence the dynamic changes in bacterial composition of the infant gut. Within-individual differences dominate the temporal variations in the infant gut microbiome, suggesting individual temporal variability is an important feature to consider in studies with a longitudinal sampling design.
Collapse
Affiliation(s)
- Kameron Y. Sugino
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - Tengfei Ma
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (T.M.); (N.P.)
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (T.M.); (N.P.)
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
179
|
Coker MO, Cairo C, Garzino-Demo A. HIV-Associated Interactions Between Oral Microbiota and Mucosal Immune Cells: Knowledge Gaps and Future Directions. Front Immunol 2021; 12:676669. [PMID: 34616391 PMCID: PMC8488204 DOI: 10.3389/fimmu.2021.676669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
Even with sustained use of antiretroviral therapy (ART), HIV-infected individuals have an increased risk of systemic comorbid conditions and oral pathologies, including opportunistic infections, oral mucosal inflammation, and gingival and periodontal diseases. The immune-mediated mechanisms that drive this increased risk, in the context of sustained viral suppression, are unclear. HIV infection, even when controlled, alters microbial communities contributing to a chronic low-grade inflammatory state that underlies these non-HIV co-morbidities. The higher prevalence of dental caries, and mucosal and periodontal inflammation reported in HIV-infected individuals on ART is often associated with differentially abundant oral microbial communities, possibly leading to a heightened susceptibility to inflammation. This mini-review highlights current gaps in knowledge regarding the microbe-mediated oral mucosal immunity with HIV infection while discussing opportunities for future research investigations and implementation of novel approaches to elucidate these gaps. Interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-infected individuals. More broadly, additional research is needed to bolster general models of microbiome-mediated chronic immune activation and aid the development of precise microbiota-targeted interventions to reverse or mitigate adverse outcomes.
Collapse
Affiliation(s)
- Modupe O Coker
- Department of Oral Biology, School of Dental Medicine at Rutgers, Newark, NJ, United States.,Department of Epidemiology, School of Public Health at Rutgers, Newark, NJ, United States
| | - Cristiana Cairo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alfredo Garzino-Demo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
180
|
Schwartz JL, Peña N, Kawar N, Zhang A, Callahan N, Robles SJ, Griebel A, Adami GR. Old age and other factors associated with salivary microbiome variation. BMC Oral Health 2021; 21:490. [PMID: 34602059 PMCID: PMC8489047 DOI: 10.1186/s12903-021-01828-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Many factors can contribute to the exact makeup of the salivary microbiome. Differences in the oral microbiome occur with old age, which may be due to oral conditions and diseases associated with old age, such as edentulism, as well as other unknown causes. METHODS The salivary microbiome was sampled in patients from a large urban clinic. For all subjects age, gender, periodontal status, caries status, presence of edentulism, medications, and tobacco usage were recorded. Multifactor analysis was used to study variation in salivary microbiome profiles linked to these factors. RESULTS In the population sampled, there were significantly higher numbers of edentulous subjects, and increased levels of polypharmacy found with aging. Large differences in alpha diversity and beta diversity of the salivary microbiome in the old age group were largely linked to edentulism. However, multivariable analysis revealed, even after adjusting for differences in edentulism, polypharmacy, tobacco usage, periodontal disease, caries level, and gender, that old age itself was associated with lower levels of taxa Porphyromonas endodontalis, Alloprevotella tannerae, Filifactor alocis, Treponema, Lautropia Mirabilis and Pseudopropionibacterium sp._HMT_194. Surprisingly, of these taxa, most were ones known to reside on or near tooth surfaces. CONCLUSIONS Another factor or factors beyond edentulism, polypharmacy and periodontal disease play a role in the differences seen in oral microbiome with old age. The nature of this factor(s) is not known.
Collapse
Affiliation(s)
- Joel L Schwartz
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA
| | - Natalia Peña
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA
| | - Nadia Kawar
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrew Zhang
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA
| | - Nicholas Callahan
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven J Robles
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA
| | - Andrew Griebel
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Guy R Adami
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, 60612, USA.
| |
Collapse
|
181
|
Fan L, Lee JH. Enteral feeding and the microbiome in critically ill children: a narrative review. Transl Pediatr 2021; 10:2778-2791. [PMID: 34765500 PMCID: PMC8578772 DOI: 10.21037/tp-20-349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE This narrative review summarizes our current knowledge on the interplay between enteral nutrition (EN) and gut microbiota in critically ill children, using examples from two commonly encountered diagnoses in the pediatric intensive care unit (PICU): severe sepsis and acute respiratory distress syndrome (ARDS). This review will also highlight potential areas of therapeutic interventions that should be explored in future studies. BACKGROUND Critically ill children display extreme dysbiosis in their gut microbiome. Factors within the PICU that are often associated with dysbiosis include the use of broad-spectrum antibiotics, proton-pump inhibitors (PPIs), intravenous morphine, and fasting. Dysbiosis can potentially lead to adverse clinical outcomes (e.g., nosocomial infection, and prolonged hospitalization). EN may modulate dysbiosis. The gut microbiota is involved in the breaking down of macronutrients, mainly carbohydrates and proteins. Fermentation of undigestible carbohydrate (e.g., inulin and oligosaccharides), and amino acids by large intestine microbiota produces short chain fatty acids (SCFAs). SCFAs serve as the main fuel source for enterocytes and help to maintain healthy gut lining. Changes to selected components of macronutrients can result in alterations in gut microbiome and have potentially beneficial effects in patients in the PICU. METHODS A comprehensive search of the MEDLINE, Cochrane Library and Google Scholar databases was conducted using appropriate MESH terms and keywords. In this narrative review, we provide a summary of current knowledge on effect of EN on gut microbiota in pediatric studies, but also describes animal- and lab-based, as well as adult studies where relevant. CONCLUSIONS The gut microbiome can be altered by dietary modifications and common PICU practices and treatment. Although there are strong associations in restoring eubiosis and improvement in clinical outcomes, proving causality remains challenging. Further microbiome research is needed to provide mechanistic insights into the impact of the ever changing gut microbiome. In the future, new microbiota targeted therapies could potentially be the treatment of challenging PICU conditions and restore homeostasis in these children.
Collapse
Affiliation(s)
- Lijia Fan
- Division of Paediatric Critical Care, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
182
|
Koosha RZ, Fazel P, Sedighian H, Behzadi E, Ch MH, Imani Fooladi AA. The impact of the gut microbiome on toxigenic bacteria. Microb Pathog 2021; 160:105188. [PMID: 34530074 DOI: 10.1016/j.micpath.2021.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/05/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Millions of symbiotic and pathogenic microorganisms known as microbiota colonize the host body. The microbiome plays an important role in human health and colonizes hundreds of different species of multicellular organisms so that they are introduced as the metaorganisms. Changes in the microbial population of the gut microbiome may cause resistance to pathogenic bacteria-induced infection. Understanding the principles of Host-Microbiota Interactions (HMIs) is important because it clarifies our insight towards the mechanisms of infections established in the host. Interactions between the host and the microbiota help answer the question of how a microorganism can contribute to the health or disease of the host. Microbiota can increase host resistance to colonization of pathogenic species. Studying the HMIs network can in several ways delineate the pathogenic mechanisms of pathogens and thereby help to increase useful and novel therapeutic pathways. For example, the potentially unique microbial effects that target the distinct host or interfere with the endogenous host interactions can be identified. In addition, the way mutations in essential proteins in the host and/or in the microbes can influence the interactions between them may be determined. Furthermore, HMIs help in identifying host cell regulatory modules.
Collapse
Affiliation(s)
- Roohollah Zarei Koosha
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvindokht Fazel
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran; Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Hedayati Ch
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Microbial Toxins Physiology Group, Universal Scientific Education and Research Network, Rasht, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
183
|
Gupta T, Kaur H, Kapila S, Kapila R. Potential probiotic Lacticaseibacillus rhamnosus MTCC-5897 attenuates Escherichia coli induced inflammatory response in intestinal cells. Arch Microbiol 2021; 203:5703-5713. [PMID: 34476513 DOI: 10.1007/s00203-021-02541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022]
Abstract
Probiotics are microbes having tremendous potential to prevent gastrointestinal disorders. In current investigation, immunomodulatory action of probiotic Lacticaseibacillus rhamnosus MTCC-5897 was studied during exclusion, competition and displacement of Escherichia coli on intestinal epithelial (Caco-2) cells. The incubation of intestinal cells with Escherichia coli, enhanced downstream signalling and activated nuclear factor kappa B (NF-κB). This significantly increased (p < 0.01) the pro-inflammatory cytokines (IL-8, TNF-α, IFN-ϒ) expression. While, incubation of epithelial cells with Lacticaseibacillus rhamnosus during exclusion and competition with Escherichia coli, counteracted these enhanced expressions. The immunomodulatory feature of Lacticaseibacillus rhamnosus was also highlighted with increased (p < 0.05) transcription of toll-like receptor-2 (TLR-2) and single Ig IL-1-related receptor (SIGIRR) along with diminished expression of TLR-4. Likewise, attenuation (p < 0.05) of E. coli-mediated enhanced nuclear translocation of NF-κB p-65 subunit by Lacticaseibacillus rhamnosus during exclusion was confirmed with western blotting. Thus, present finding establishes the prophylactic potential of Lacticaseibacillus rhamnosus against exclusion of Escherichia coli in intestinal cells.
Collapse
Affiliation(s)
- Taruna Gupta
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Harpreet Kaur
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
184
|
Karbasizade S, Ghorbani F, Ghasemi Darestani N, Mansouri-Tehrani MM, Kazemi AH. Comparison of therapeutic effects of statins and aloe vera mouthwash on chemotherapy induced oral mucositis. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2021; 13:110-116. [PMID: 34540131 PMCID: PMC8446774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chemotherapy induced oral mucositis is a common problem among patients with cancer. Different therapeutic agents have been evaluated to prevent or treat the disease. Here we aimed to compare therapeutic effects of atorvastatin and aloe vera mouthwash on chemotherapy induced oral mucositis. METHODS 120 patients with large intestine and gastric cancer who were treated with 5-fluorouracil (FOLFOX4) for the first time were entered and randomized into 3 groups. Group 1 received tablets of atorvastatin 10 mg daily until 2 weeks after chemotherapy sessions plus placebo mouthwash. Group 2 received aloe vera mouthwash plus placebo tablets and group 3 received placebo mouthwash and placebo tablets until 2 weeks after chemotherapy sessions. Severity of mucositis was assessed using world health organization (WHO) indexes. Based on this method, mucositis is divided into 4 grades. This study was approved by Iranian Registry of Clinical Trials (IRCT) with the code of: IRCT20201203049585N1 (https://fa.irct.ir/trial/54037). RESULTS Analysis of the incidence of mucositis among patients showed that in placebo group, 50% of patients experienced grade 2 to 4 mucositis. In group 1, 9 patients (22.5%) had grade 2 mucositis and 6 patients (15%) had grade 3 mucositis and 4 patients (10%) had grade 4 mucositis. In group 2, only 1 patient (2.5%) was diagnosed with grade 2 mucositis. These data showed no significant differences between group 1 and group 3 (P=0.674), but the therapeutic results of group 2 were significantly better than those of group 3 (P=0.042) and group 1 (P=0.036). CONCLUSION We showed that treatments with aloe vera mouthwash could be an effective choice in prevention of mucositis for patients undergoing chemotherapy. There are also much to discover about effects of aloe vera mouthwash on this disease.
Collapse
Affiliation(s)
- Setare Karbasizade
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical ScienceIsfahan, Iran
| | - Fatemeh Ghorbani
- School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| | | | | | - Amir Hooman Kazemi
- School of Persian Medicine, Tehran University of Medical ScienceTehran, Iran
- International School, Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
185
|
Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review). Int J Oncol 2021; 59:75. [PMID: 34396439 PMCID: PMC8360620 DOI: 10.3892/ijo.2021.5255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer affects millions of individuals worldwide. Thus, there is an increased need for the development of novel effective therapeutic approaches. Tumorigenesis is often coupled with immunosuppression which defeats the anticancer immune defense mechanisms activated by the host. Novel anticancer therapies based on the use of immune checkpoint inhibitors (ICIs) are very promising against both solid and hematological tumors, although still exhibiting heterogeneous efficacy, as well as tolerability. Such a differential response seems to derive from individual diversity, including the gut microbiota (GM) composition of specific patients. Experimental evidence supports the key role played by the GM in the activation of the immune system response against malignancies. This observation suggests to aim for patient-tailored complementary therapies able to modulate the GM, enabling the selective enrichment in microbial species, which can improve the positive outcome of ICI-based immunotherapy. Moreover, the research of GM-derived predictive biomarkers may help to identify the selected cancer population, which can benefit from ICI-based therapy, without the occurrence of adverse reactions and/or cancer relapse. The present review summarizes the landmark studies published to date, which have contributed to uncovering the tight link existing between GM composition, cancer development and the host immune system. Bridging this triangle of interactions may ultimately guide towards the identification of novel biomarkers, as well as integrated and patient-tailored anticancer approaches with greater efficacy.
Collapse
|
186
|
Tsoukalas D, Sarandi E, Georgaki S. The snapshot of metabolic health in evaluating micronutrient status, the risk of infection and clinical outcome of COVID-19. Clin Nutr ESPEN 2021; 44:173-187. [PMID: 34330463 PMCID: PMC8234252 DOI: 10.1016/j.clnesp.2021.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
COVID-19 has re-established the significance of analyzing the organism through a metabolic perspective to uncover the dynamic interconnections within the biological systems. The role of micronutrient status and metabolic health emerge as pivotal in COVID-19 pathogenesis and the immune system's response. Metabolic disruption, proceeding from modifiable factors, has been proposed as a significant risk factor accounting for infection susceptibility, disease severity and risk for post-COVID complications. Metabolomics, the comprehensive study and quantification of intermediates and products of metabolism, is a rapidly evolving field and a novel tool in biomarker discovery. In this article, we propose that leveraging insulin resistance biomarkers along with biomarkers of micronutrient deficiencies, will allow for a diagnostic window and provide functional therapeutic targets. Specifically, metabolomics can be applied as: a. At-home test to assess the risk of infection and propose nutritional support, b. A screening tool for high-risk COVID-19 patients to develop serious illness during hospital admission and prioritize medical support, c(i). A tool to match nutritional support with specific nutrient requirements for mildly ill patients to reduce the risk for hospitalization, and c(ii). for critically ill patients to reduce recovery time and risk of post-COVID complications, d. At-home test to monitor metabolic health and reduce post-COVID symptomatology. Metabolic rewiring offers potential virtues towards disease prevention, dissection of high-risk patients, taking actionable therapeutic measures, as well as shielding against post-COVID syndrome.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- European Institute of Nutritional Medicine, 00198 Rome, Italy; Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece.
| | - Evangelia Sarandi
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece; Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece.
| | - Spyridoula Georgaki
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece.
| |
Collapse
|
187
|
Faraj J, Takanti V, Tavakoli HR. The Gut-Brain Axis: Literature Overview and Psychiatric Applications. Fed Pract 2021; 38:356-362. [PMID: 34733087 PMCID: PMC8560095 DOI: 10.12788/fp.0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Literature exploring the relationship between the intestinal microbiome and its effects on general health and well-being has grown significantly in recent years, and our knowledge of this subject continues to grow. Mounting evidence indicates that the intestinal microbiome is a potential target for therapeutic intervention in psychiatric illness and in neurodegenerative disorders such as Alzheimer disease. It is reasonable to consider modulating not just a patient's neurochemistry, behavior, or cognitive habits, but also their intestinal microbiome in an effort to improve psychiatric symptoms. OBSERVATIONS In this review paper, we show that intestinal microbiota possess the ability to directly influence both physical and mental well-being; therefore, should be included in future discussions regarding psychiatric treatment. CONCLUSIONS Clinicians are encouraged to consider patients' gut health when evaluating and treating psychiatric conditions, such as anxiety and depression. Optimization and diversification of gut flora through the use of psychobiotics-probiotics that confer mental health benefits-may soon become standard practice in conjunction with traditional psychiatric treatment modalities such as pharmacotherapy and psychotherapy.
Collapse
Affiliation(s)
- Janine Faraj
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| | - Varun Takanti
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| | - Hamid R Tavakoli
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| |
Collapse
|
188
|
Scavizzi F, Bassi C, Lupini L, Guerriero P, Raspa M, Sabbioni S. A comprehensive approach for microbiota and health monitoring in mouse colonies using metagenomic shotgun sequencing. Anim Microbiome 2021; 3:53. [PMID: 34325744 PMCID: PMC8323313 DOI: 10.1186/s42523-021-00113-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/16/2021] [Indexed: 01/13/2023] Open
Abstract
Background Health surveillance of murine colonies employed for scientific purposes aim at detecting unwanted infection that can affect the well-being of animals and personnel, and potentially undermine scientific results. In this study, we investigated the use of a next-generation sequencing (NGS) metagenomic approach for monitoring the microbiota composition and uncovering the possible presence of pathogens in mice housed in specific pathogen-free (SPF) or conventional (non-SPF) facilities.
Results Analysis of metagenomic NGS assay through public and free algorithms and databases allowed to precisely assess the composition of mouse gut microbiome and quantify the contribution of the different microorganisms at the species level. Sequence analysis allowed the uncovering of pathogens or the presence of imbalances in the microbiota composition. In several cases, fecal pellets taken from conventional facilities were found to carry gene sequences from bacterial pathogens (Helicobacter hepaticus, Helicobacter typhlonius, Chlamydia muridarum, Streptococcus pyogenes, Rodentibacter pneumotropicus, Citrobacter rodentium, Staphylococcus aureus), intestinal protozoa (Entamoeba muris, Tritrichomonas muris, Spironucleus muris) nematoda (Aspiculuris tetraptera, Syphacia obvelata), eukaryotic parasites (Myocoptes musculinus) and RNA virus (Norwalk virus). Thus, the use of NGS metagenomics can reduce the number of tests required for the detection of pathogens and avoid the use of sentinel mice. Conclusions In summary, in comparison with standard approaches, which require multiple types of test, NGS assay can detect bacteria, fungi, DNA and RNA viruses, and eukaryotic parasites from fecal pellets in a single test. Considering the need to protect animal well-being and to improve the success and reproducibility of preclinical studies, this work provides the proof-of-concept that the use of NGS metagenomics for health monitoring of laboratory mice is a feasible and dependable approach, that is able to broaden the current concept of health monitoring of laboratory mice from “pathogen surveillance” to a more inclusive “microbiota surveillance”. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00113-4.
Collapse
Affiliation(s)
- Ferdinando Scavizzi
- National Research Council (IBBC), CNR-Campus International Development, (EMMA-INFRAFRONTIER- IMPC), Monterotondo Scalo, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy.,Laboratorio Per Le Tecnologie Delle Terapie Avanzate (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Paola Guerriero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Marcello Raspa
- National Research Council (IBBC), CNR-Campus International Development, (EMMA-INFRAFRONTIER- IMPC), Monterotondo Scalo, Italy
| | - Silvia Sabbioni
- Laboratorio Per Le Tecnologie Delle Terapie Avanzate (LTTA), University of Ferrara, 44121, Ferrara, Italy. .,Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
189
|
Turroni F, Milani C, Ventura M, van Sinderen D. The human gut microbiota during the initial stages of life: insights from bifidobacteria. Curr Opin Biotechnol 2021; 73:81-87. [PMID: 34333445 DOI: 10.1016/j.copbio.2021.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022]
Abstract
Current scientific literature has identified the infant gut microbiota as a multifaceted organ influencing a range of aspects of host-health and development. Many scientific studies have focused on characterizing the main microbial taxa that constitute the resident bacterial population of the infant gut. This has generated a wealth of information on the bacterial composition of the infant gut microbiota, and on the functional role/s exerted by their key microbial members. In this context, one of the most prevalent, abundant and investigated microbial taxon in the human infant gut is the genus Bifidobacterium, due to the purported beneficial activities is bestows upon its host. This review discusses the most recent findings regarding the infant gut microbiota with a particular focus on the molecular mechanisms by which bifidobacteria impact on host health and well-being.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland.
| |
Collapse
|
190
|
Sulaiman I, Wu BG, Li Y, Tsay JC, Sauthoff M, Scott AS, Ji K, Koralov SB, Weiden M, Clemente JC, Jones D, Huang YJ, Stringer KA, Zhang L, Geber A, Banakis S, Tipton L, Ghedin E, Segal LN. Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism. Eur Respir J 2021; 58:13993003.03434-2020. [PMID: 33446604 DOI: 10.1183/13993003.03434-2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/19/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Microbiome studies of the lower airways based on bacterial 16S rRNA gene sequencing assess microbial community structure but can only infer functional characteristics. Microbial products, such as short-chain fatty acids (SCFAs), in the lower airways have significant impact on the host's immune tone. Thus, functional approaches to the analyses of the microbiome are necessary. METHODS Here we used upper and lower airway samples from a research bronchoscopy smoker cohort. In addition, we validated our results in an experimental mouse model. We extended our microbiota characterisation beyond 16S rRNA gene sequencing with the use of whole-genome shotgun (WGS) and RNA metatranscriptome sequencing. SCFAs were also measured in lower airway samples and correlated with each of the sequencing datasets. In the mouse model, 16S rRNA gene and RNA metatranscriptome sequencing were performed. RESULTS Functional evaluations of the lower airway microbiota using inferred metagenome, WGS and metatranscriptome data were dissimilar. Comparison with measured levels of SCFAs shows that the inferred metagenome from the 16S rRNA gene sequencing data was poorly correlated, while better correlations were noted when SCFA levels were compared with WGS and metatranscriptome data. Modelling lower airway aspiration with oral commensals in a mouse model showed that the metatranscriptome most efficiently captures transient active microbial metabolism, which was overestimated by 16S rRNA gene sequencing. CONCLUSIONS Functional characterisation of the lower airway microbiota through metatranscriptome data identifies metabolically active organisms capable of producing metabolites with immunomodulatory capacity, such as SCFAs.
Collapse
Affiliation(s)
- Imran Sulaiman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Benjamin G Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Yonghua Li
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Jun-Chieh Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Maya Sauthoff
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Adrienne S Scott
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Kun Ji
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sergei B Koralov
- Dept of Pathology, New York University School of Medicine, New York, NY, USA
| | - Michael Weiden
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| | - Jose C Clemente
- Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew Jones
- Dept of Biochemistry and Molecular Pharmacology and Dept of Radiation Oncology, New York University School of Medicine, New York, NY, USA
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathleen A Stringer
- Dept of Clinical Pharmacy, College of Pharmacy, and Division of Pulmonary and Critical Care Medicine, Dept of Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lingdi Zhang
- Center for Genomics and Systems Biology, Dept of Biology, New York University, New York, NY, USA
| | - Adam Geber
- Center for Genomics and Systems Biology, Dept of Biology, New York University, New York, NY, USA
| | - Stephanie Banakis
- Center for Genomics and Systems Biology, Dept of Biology, New York University, New York, NY, USA
| | - Laura Tipton
- Center for Genomics and Systems Biology, Dept of Biology, New York University, New York, NY, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Dept of Biology, New York University, New York, NY, USA.,Dept of Epidemiology, School of Global Public Health, New York University, New York, NY, USA
| | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
191
|
Osei-Bordom DC, Kamarajah S, Christou N. Colorectal Cancer, Liver Metastases and Biotherapies. Biomedicines 2021; 9:894. [PMID: 34440099 PMCID: PMC8389538 DOI: 10.3390/biomedicines9080894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/01/2022] Open
Abstract
(1) Background: colorectal cancer (CRC) is one of the deadliest causes of death by cancer worldwide. Its first main metastatic diffusion spreads to the liver. Different mechanisms such as the epithelial-mesenchymal transition and angiogenesis are the characteristics of this invasion. At this stage, different options are possible and still in debate, especially regarding the use of targeted therapeutics and biotherapies. (2) Methods: A review of the literature has been done focusing on the clinical management of liver metastasis of colorectal cancer and the contribution of biotherapies in this field. (3) Results: In a clinical setting, surgeons and oncologists consider liver metastasis in CRC into two groups to launch adapted therapeutics: resectable and non-resectable. Around these two entities, the combination of targeted therapies and biotherapies are of high interest and are currently tested to know in which molecular and clinical conditions they have to be applied to impact positively both on survival and quality of life of patients.
Collapse
Affiliation(s)
- Daniel-Clement Osei-Bordom
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham B15 2TH, UK; (D.-C.O.-B.); (S.K.)
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Sivesh Kamarajah
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham B15 2TH, UK; (D.-C.O.-B.); (S.K.)
| | - Niki Christou
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham B15 2TH, UK; (D.-C.O.-B.); (S.K.)
- Department of General Surgery, University Hospital of Limoges, 87000 Limoges, France
- EA3842 CAPTuR Laboratory “Cell Activation Control, Tumor Progression and Therapeutic Resistance”, Faculty of Medicine, 2 Rue du Docteur Marcland, 87025 Limoges, France
| |
Collapse
|
192
|
Sheikh A, Taube J, Greathouse KL. Contribution of the Microbiota and their Secretory Products to Inflammation and Colorectal Cancer Pathogenesis: The Role of Toll-like Receptors. Carcinogenesis 2021; 42:1133-1142. [PMID: 34218275 DOI: 10.1093/carcin/bgab060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Alterations in diversity and function of the gut microbiome are associated with concomitant changes in immune response, including chronic inflammation. Chronic inflammation is a major risk factor for colorectal cancer (CRC). An important component of the inflammatory response system are the toll-like receptors (TLRs). TLRs are capable of sensing microbial components, including nucleic acids, lipopolysaccharides, and peptidoglycans, as well as bacterial outer membrane vesicles (OMV). OMVs can be decorated with or carry as cargo these TLR activating factors. These microbial factors can either promote tolerance or activate signaling pathways leading to chronic inflammation. Herein we discuss the role of the microbiome and the OMVs that originate from intestinal bacteria in promoting chronic inflammation and the development of colitis-associated CRC. We also discuss the contribution of TLRs in mediating the microbiome-inflammation axis and subsequent cancer development. Understanding the role of the microbiome and its secretory factors in TLR response may lead to the development of better cancer therapeutics.
Collapse
Affiliation(s)
- Aadil Sheikh
- Department of Biology, College of Arts and Sciences, Baylor University
| | - Joseph Taube
- Department of Biology, College of Arts and Sciences, Baylor University
| | - K Leigh Greathouse
- Department of Biology, College of Arts and Sciences, Baylor University.,Human Science and Design, Robbins College of Health and Human Sciences, Baylor University
| |
Collapse
|
193
|
Alberti G, Mazzola M, Gagliardo C, Pitruzzella A, Fucarini A, Giammanco M, Tomasello G, Carini F. Extracellular vesicles derived from gut microbiota in inflammatory bowel disease and colorectal cancer: new players? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:233-240. [PMID: 34282804 DOI: 10.5507/bp.2021.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
The human gut microbiome encompasses inter alia, the myriad bacterial species that create the optimal host-microorganism balance essential for normal metabolic and immune function. Various lines of evidence suggest that dysregulation of the microbiota-host interaction is linked to pathologies such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Extracellular vesicles (EVs), found in virtually all body fluids and produced by both eukaryotic cells and bacteria are involved in cell-cell communication and crosstalk mechanisms, such as the immune response, barrier function and intestinal flora. This review highlights advancements in knowledge of the functional role that EVs may have in IBD and CRC, and discusses the possible use of EVs derived from intestinal microbiota in therapeutic strategies for treating these conditions.
Collapse
Affiliation(s)
- Giusi Alberti
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Margherita Mazzola
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Carola Gagliardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Palermo, Italy
| | - Alessandro Pitruzzella
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Alberto Fucarini
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Marco Giammanco
- Department of Surgery, Oncologicical and Stomatological Sciences (Di.Chir.On.S), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Giovanni Tomasello
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Francesco Carini
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| |
Collapse
|
194
|
Probiotics: A Promising Candidate for Management of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13133178. [PMID: 34202265 PMCID: PMC8268640 DOI: 10.3390/cancers13133178] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the World's third most frequently diagnosed cancer type. It accounted for about 9.4% mortality out of the total incidences of cancer in the year 2020. According to estimated facts by World Health Organization (WHO), by 2030, 27 million new CRC cases, 17 million deaths, and around 75 million people living with the disease will appear. The facts and evidence that establish a link between the intestinal microflora and the occurrence of CRC are quite intuitive. Current shortcomings of chemo- and radiotherapies and the unavailability of appropriate treatment strategies for CRC are becoming the driving force to search for an alternative approach for the prevention, therapy, and management of CRC. Probiotics have been used for a long time due to their beneficial health effects, and now, it has become a popular candidate for the preventive and therapeutic treatment of CRC. The probiotics adopt different strategies such as the improvement of the intestinal barrier function, balancing of natural gut microflora, secretion of anticancer compounds, and degradation of carcinogenic compounds, which are useful in the prophylactic treatment of CRC. The pro-apoptotic ability of probiotics against cancerous cells makes them a potential therapeutic candidate against cancer diseases. Moreover, the immunomodulatory properties of probiotics have created interest among researchers to explore the therapeutic strategy by activating the immune system against cancerous cells. The present review discusses in detail different strategies and mechanisms of probiotics towards the prevention and treatment of CRC.
Collapse
|
195
|
Torun A, Hupalowska A, Trzonkowski P, Kierkus J, Pyrzynska B. Intestinal Microbiota in Common Chronic Inflammatory Disorders Affecting Children. Front Immunol 2021; 12:642166. [PMID: 34163468 PMCID: PMC8215716 DOI: 10.3389/fimmu.2021.642166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence and prevalence rate of chronic inflammatory disorders is on the rise in the pediatric population. Recent research indicates the crucial role of interactions between the altered intestinal microbiome and the immune system in the pathogenesis of several chronic inflammatory disorders in children, such as inflammatory bowel disease (IBD) and autoimmune diseases, such as type 1 diabetes mellitus (T1DM) and celiac disease (CeD). Here, we review recent knowledge concerning the pathogenic mechanisms underlying these disorders, and summarize the facts suggesting that the initiation and progression of IBD, T1DM, and CeD can be partially attributed to disturbances in the patterns of composition and abundance of the gut microbiota. The standard available therapies for chronic inflammatory disorders in children largely aim to treat symptoms. Although constant efforts are being made to maximize the quality of life for children in the long-term, sustained improvements are still difficult to achieve. Additional challenges are the changing physiology associated with growth and development of children, a population that is particularly susceptible to medication-related adverse effects. In this review, we explore new promising therapeutic approaches aimed at modulation of either gut microbiota or the activity of the immune system to induce a long-lasting remission of chronic inflammatory disorders. Recent preclinical studies and clinical trials have evaluated new approaches, for instance the adoptive transfer of immune cells, with genetically engineered regulatory T cells expressing antigen-specific chimeric antigen receptors. These approaches have revolutionized cancer treatments and have the potential for the protection of high-risk children from developing autoimmune diseases and effective management of inflammatory disorders. The review also focuses on the findings of studies that indicate that the responses to a variety of immunotherapies can be enhanced by strategic manipulation of gut microbiota, thus emphasizing on the importance of proper interaction between the gut microbiota and immune system for sustained health benefits and improvement of the quality of life of pediatric patients.
Collapse
Affiliation(s)
- Anna Torun
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Hupalowska
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Kierkus
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Beata Pyrzynska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
196
|
Obregon-Gutierrez P, Aragon V, Correa-Fiz F. Sow Contact Is a Major Driver in the Development of the Nasal Microbiota of Piglets. Pathogens 2021; 10:pathogens10060697. [PMID: 34205187 PMCID: PMC8227386 DOI: 10.3390/pathogens10060697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
The nasal microbiota composition is associated with the health status of piglets. Sow-contact in early life is one of the factors influencing the microbial composition in piglets; however, its impact has never been assessed in the nasal microbiota of piglets reared in controlled environmental conditions. Nasal microbiota of weaning piglets in high-biosecurity facilities with different time of contact with their sows (no contact after farrowing, contact limited to few hours or normal contact until weaning at three weeks) was unveiled by 16S rRNA gene sequencing. Contact with sows demonstrated to be a major factor affecting the nasal microbial composition of the piglets. The nasal microbiota of piglets that had contact with sows until weaning, but were reared in high biosecurity facilities, was richer and more similar to the previously described healthy nasal microbiota from conventional farm piglets. On the other hand, the nasal communities inhabiting piglets with no or limited contact with sows was different and dominated by bacteria not commonly abundant in this body site. Furthermore, the length of sow–piglet contact was also an important variable. In addition, the piglets raised in BSL3 conditions showed an increased richness of low-abundant species in the nasal microbiota. Artificially rearing in high biosecurity facilities without the contact of sows as a source of nasal colonizers had dramatic impacts on the nasal microbiota of weaning piglets and may introduce significant bias into animal research under these conditions.
Collapse
Affiliation(s)
- Pau Obregon-Gutierrez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (P.O.-G.); (V.A.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (P.O.-G.); (V.A.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (P.O.-G.); (V.A.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
197
|
Hariharan R, Mousa A, de Courten B. Influence of AMY1A copy number variations on obesity and other cardiometabolic risk factors: A review of the evidence. Obes Rev 2021; 22:e13205. [PMID: 33432778 DOI: 10.1111/obr.13205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/01/2022]
Abstract
The rising incidence of obesity and type 2 diabetes is contributing to the escalating burden of disease globally. These metabolic disorders are closely linked with diet and in particular with carbohydrate consumption; hence, it is important to understand the underlying mechanisms that influence carbohydrate metabolism. Amylase, the enzyme responsible for the digestion of starch, is coded by the genes AMY1A, AMY1B, and AMY1C (salivary amylase) and AMY2A and AMY2B (pancreatic amylase). Previous studies demonstrate wide variations in AMY1A copy numbers, which can be attributed to several genetic, nutritional, and geographical diversities seen in populations globally. Current literature suggests that AMY1A copy number variations are important in obesity and other cardiometabolic disorders through their effects on glucose and lipid homeostasis, inflammatory markers, and the gut microbiome. This review synthesizes the available evidence to improve understanding of the role of AMY1A in obesity and related cardiometabolic risk factors and disorders including insulin resistance and type 2 diabetes, cardiovascular risk and inflammation, and the gut microbiome.
Collapse
Affiliation(s)
- Rohit Hariharan
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, Australia
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Australia
| |
Collapse
|
198
|
Alghamdi MA, Redwan EM. Interplay of Microbiota and Citrullination in the Immunopathogenesis of Rheumatoid Arthritis. Probiotics Antimicrob Proteins 2021; 14:99-113. [PMID: 34036479 DOI: 10.1007/s12602-021-09802-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 12/18/2022]
Abstract
Microbiota is a balanced ecosystem that has important functions to the host health including development, defense, digestion, and absorption of dietary fibers and minerals, vitamin synthesizes, protection, and training the host immune system. On the other hand, its dysbiosis is linked to many human diseases such as rheumatoid arthritis (RA). The RA is an inflammatory autoimmune disorder caused by genetic and environmental factors; microbiota may be considered as a risk environmental factor for it. Citrullination is a post-translation modification (PMT) that converts the amino acid arginine to amino acid citrulline in certain proteins. These citrullinated proteins are recognized as a foreign antigen by the immune system resulting in the upregulation of inflammatory action such as in RA. The current work highlights the effect of both gut and oral microbiota dysbiosis on the development of RA, as well as discusses how the alteration in microbiota composition leads to the overgrowth of some bacterial species that entangled in RA pathogenicity. The evidence suggested that some oral and gut microbial species such as Porphyromonas gingivalis and Prevotella copri, respectively, contribute to RA pathogenesis. During dysbiosis, these bacteria can mediate the citrullination of either human or bacteria proteins to trigger an immune response that leads to the generation of autoantibodies.
Collapse
Affiliation(s)
- Mohammed A Alghamdi
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.,Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, 21934, Egypt.
| |
Collapse
|
199
|
Gut Microbiota, in the Halfway between Nutrition and Lung Function. Nutrients 2021; 13:nu13051716. [PMID: 34069415 PMCID: PMC8159117 DOI: 10.3390/nu13051716] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
The gut microbiota is often mentioned as a “forgotten organ” or “metabolic organ”, given its profound impact on host physiology, metabolism, immune function and nutrition. A healthy diet is undoubtedly a major contributor for promoting a “good” microbial community that turns out to be crucial for a fine-tuned symbiotic relationship with the host. Both microbial-derived components and produced metabolites elicit the activation of downstream cascades capable to modulate both local and systemic immune responses. A balance between host and gut microbiota is crucial to keep a healthy intestinal barrier and an optimal immune homeostasis, thus contributing to prevent disease occurrence. How dietary habits can impact gut microbiota and, ultimately, host immunity in health and disease has been the subject of intense study, especially with regard to metabolic diseases. Only recently, these links have started to be explored in relation to lung diseases. The objective of this review is to address the current knowledge on how diet affects gut microbiota and how it acts on lung function. As the immune system seems to be the key player in the cross-talk between diet, gut microbiota and the lungs, involved immune interactions are discussed. There are key nutrients that, when present in our diet, help in gut homeostasis and lead to a healthier lifestyle, even ameliorating chronic diseases. Thus, with this review we hope to incite the scientific community interest to use diet as a valuable non-pharmacological addition to lung diseases management. First, we talk about the intestinal microbiota and interactions through the intestinal barrier for a better understanding of the following sections, which are the main focus of this article: the way diet impacts the intestinal microbiota and the immune interactions of the gut–lung axis that can explain the impact of diet, a key modifiable factor influencing the gut microbiota in several lung diseases.
Collapse
|
200
|
Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions. ACS Infect Dis 2021; 7:987-1009. [PMID: 33848139 DOI: 10.1021/acsinfecdis.0c00839] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, important relationships between the microbiota and human health have emerged. A link between alterations of microbiota composition (dysbiosis) and cancer development has been recently demonstrated. In particular, the composition and the oncogenic role of intestinal bacterial flora has been extensively investigated in preclinical and clinical studies focusing on gastrointestinal tumors. Overall, the development of gastrointestinal tumors is favored by dysbiosis as it leads to depletion of antitumor substances (e.g., short-chain fatty acids) produced by healthy microbiota. Moreover, dysbiosis leads to alterations of the gut barrier, promotes a chronic inflammatory status through activation of toll-like receptors, and causes metabolic and hormonal dysregulations. However, the effects of these imbalances are not limited to the gastrointestinal tract and they can influence gynecological tumor carcinogenesis as well. The purpose of this Review is to provide a synthetic update about the mechanisms of interaction between gut microbiota and the female reproductive tract favoring the development of neoplasms. Furthermore, novel therapeutic approaches based on the modulation of microbiota and their role in gynecological oncology are discussed.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|