151
|
Johannknecht M, Schnitzler A, Lange J. Prestimulus Alpha Phase Modulates Visual Temporal Integration. eNeuro 2024; 11:ENEURO.0471-23.2024. [PMID: 39134415 PMCID: PMC11397504 DOI: 10.1523/eneuro.0471-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 09/14/2024] Open
Abstract
When presented shortly after another, discrete pictures are naturally perceived as continuous. The neuronal mechanism underlying such continuous or discrete perception is not well understood. While continuous alpha oscillations are a candidate for orchestrating such neuronal mechanisms, recent evidence is mixed. In this study, we investigated the influence of prestimulus alpha oscillation on visual temporal perception. Specifically, we were interested in whether prestimulus alpha phase modulates neuronal and perceptual processes underlying discrete or continuous perception. Participants had to report the location of a missing object in a visual temporal integration task, while simultaneously MEG data were recorded. Using source reconstruction, we evaluated local phase effects by contrasting phase angle values between correctly and incorrectly integrated trials. Our results show a phase opposition cluster between -0.8 and -0.5 s (relative to stimulus presentation) and between 6 and 20 Hz. These momentary phase angle values were correlated with behavioral performance and event-related potential amplitude. There was no evidence that frequency defined a window of temporal integration.
Collapse
Affiliation(s)
- Michelle Johannknecht
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
152
|
Hoyer RS, Tewarie PKB, Laureys S. Spatiotemporal dynamics of brain activity in cognition and consciousness: Comment on "Beyond task responsePre-stimulus activity modulates contents of consciousness" by Northoff, Zilio, and Zhang. Phys Life Rev 2024; 50:63-65. [PMID: 38964240 DOI: 10.1016/j.plrev.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Affiliation(s)
- Roxane S Hoyer
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Canada
| | - Prejaas K B Tewarie
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Canada; Sir Peter Mansfield Imaging Center, School of Physics, University of Nottingham, United Kingdom; Clinical Neurophysiology Group, University of Twente, Netherlands
| | - Steven Laureys
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Canada; GIGA Consciousness Research Unit and Coma Science Group, Liège University, Belgium; International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
153
|
Farraj N, Reiner M. Applications of Alpha Neurofeedback Processes for Enhanced Mental Manipulation of Unfamiliar Molecular and Spatial Structures. Appl Psychophysiol Biofeedback 2024; 49:365-382. [PMID: 38722457 DOI: 10.1007/s10484-024-09640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 08/09/2024]
Abstract
This study explores a novel approach to enhancing cognitive proficiency by targeting neural mechanisms that facilitate science and math learning, especially mental rotation. The study specifically examines the relationship between upper alpha intensity and mental rotation skills. Although prior neurofeedback research for increasing upper alpha highlights this correlation, mostly with familiar objects, novel chemistry and math learning prompts envisioning unfamiliar objects which question the persistence of this correlation. This study revisits the upper alpha and mental rotation relationship in the context of unfamiliar objects with a single neurofeedback session and examines the efficiency of manual and automatic neurofeedback protocols. Results will provide a basis for integrating neurofeedback protocols into learning applications for enhanced learning. Our study encompassed three cohorts: Group 1 experienced an automatic neurofeedback protocol, Group 2 received a manual neurofeedback protocol, and the control group had no neurofeedback intervention. The experimental phases involved EEG measurement of individual upper alpha (frequency of maximal power + 2 Hz) intensity, mental rotation tasks featuring geometric and unfamiliar molecular stimuli, one neurofeedback session for applicable groups, post-treatment upper alpha level assessments, and a mental rotation retest. The neurofeedback groups exhibited increased levels of upper alpha power, which was correlated with improved response time in mental rotation, regardless of stimulus type, compared to the control group. Both neurofeedback protocols achieved comparable results. This study advocates integrating neurofeedback into learning software for optimal learning experiences, highlighting a single session's efficacy and the substantial neurofeedback protocol's impact in enhancing upper alpha oscillations.
Collapse
Affiliation(s)
- Nehai Farraj
- Faculty of Education in Science and Technology, Technion Israel Institute of Technology, Haifa, Israel.
| | - Miriam Reiner
- Faculty of Education in Science and Technology, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
154
|
Adamovich T, Ismatullina V, Chipeeva N, Zakharov I, Feklicheva I, Malykh S. Task-specific topology of brain networks supporting working memory and inhibition. Hum Brain Mapp 2024; 45:e70024. [PMID: 39258339 PMCID: PMC11387957 DOI: 10.1002/hbm.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Network neuroscience explores the brain's connectome, demonstrating that dynamic neural networks support cognitive functions. This study investigates how distinct cognitive abilities-working memory and cognitive inhibitory control-are supported by unique brain network configurations constructed by estimating whole-brain networks using mutual information. The study involved 195 participants who completed the Sternberg Item Recognition task and Flanker tasks while undergoing electroencephalography recording. A mixed-effects linear model analyzed the influence of network metrics on cognitive performance, considering individual differences and task-specific dynamics. The findings indicate that working memory and cognitive inhibitory control are associated with different network attributes, with working memory relying on distributed networks and cognitive inhibitory control on more segregated ones. Our analysis suggests that both strong and weak connections contribute to cognitive processes, with weak connections potentially leading to a more stable and support networks of memory and cognitive inhibitory control. The findings indirectly support the network neuroscience theory of intelligence, suggesting different functional topology of networks inherent to various cognitive functions. Nevertheless, we propose that understanding individual variations in cognitive abilities requires recognizing both shared and unique processes within the brain's network dynamics.
Collapse
Affiliation(s)
- Timofey Adamovich
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Victoria Ismatullina
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Nadezhda Chipeeva
- Federal State Institution “National Medical Research Center for Children's Health” of the Ministry of Health of the Russian FederationMoscowRussia
| | - Ilya Zakharov
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | | | - Sergey Malykh
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| |
Collapse
|
155
|
Duecker K, Idiart M, van Gerven M, Jensen O. Oscillations in an artificial neural network convert competing inputs into a temporal code. PLoS Comput Biol 2024; 20:e1012429. [PMID: 39259769 PMCID: PMC11419396 DOI: 10.1371/journal.pcbi.1012429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/23/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
The field of computer vision has long drawn inspiration from neuroscientific studies of the human and non-human primate visual system. The development of convolutional neural networks (CNNs), for example, was informed by the properties of simple and complex cells in early visual cortex. However, the computational relevance of oscillatory dynamics experimentally observed in the visual system are typically not considered in artificial neural networks (ANNs). Computational models of neocortical dynamics, on the other hand, rarely take inspiration from computer vision. Here, we combine methods from computational neuroscience and machine learning to implement multiplexing in a simple ANN using oscillatory dynamics. We first trained the network to classify individually presented letters. Post-training, we added temporal dynamics to the hidden layer, introducing refraction in the hidden units as well as pulsed inhibition mimicking neuronal alpha oscillations. Without these dynamics, the trained network correctly classified individual letters but produced a mixed output when presented with two letters simultaneously, indicating a bottleneck problem. When introducing refraction and oscillatory inhibition, the output nodes corresponding to the two stimuli activate sequentially, ordered along the phase of the inhibitory oscillations. Our model implements the idea that inhibitory oscillations segregate competing inputs in time. The results of our simulations pave the way for applications in deeper network architectures and more complicated machine learning problems.
Collapse
Affiliation(s)
- Katharina Duecker
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| | - Marco Idiart
- Institute of Physics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcel van Gerven
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
156
|
Krasich K, Woldorff MG, De Brigard F, Sinnott-Armstrong W, Mudrik L. Prestimulus alpha phase, not only power, modulates conscious perception. Comment on "Beyond task response-Pre-stimulus activity modulates contents of consciousness" by G. Northoff, F. Zilio & J. Zhang. Phys Life Rev 2024; 50:123-125. [PMID: 39068900 DOI: 10.1016/j.plrev.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Kristina Krasich
- Department of Psychology, Elon University, Elon, NC, United States
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States; Department of Psychiatry, Duke University, Durham, NC, United States; Department of Psychology and Neuroscience, Duke University, Durham, NC, United States; Department of Neurobiology, Duke University, Durham, NC, United States
| | - Felipe De Brigard
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States; Department of Psychology and Neuroscience, Duke University, Durham, NC, United States; Department of Philosophy, Duke University, Durham, NC, United States
| | - Walter Sinnott-Armstrong
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States; Department of Psychology and Neuroscience, Duke University, Durham, NC, United States; Department of Philosophy, Duke University, Durham, NC, United States
| | - Liad Mudrik
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Canadian Institute for Advanced Research, (CIFAR), Brain, Mind, and Consciousness, Program, Toronto, ON, Canada.
| |
Collapse
|
157
|
Kameya M, Hirosawa T, Soma D, Yoshimura Y, An KM, Iwasaki S, Tanaka S, Yaoi K, Sano M, Miyagishi Y, Kikuchi M. Relationships between peak alpha frequency, age, and autistic traits in young children with and without autism spectrum disorder. Front Psychiatry 2024; 15:1419815. [PMID: 39279807 PMCID: PMC11392836 DOI: 10.3389/fpsyt.2024.1419815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Background Atypical peak alpha frequency (PAF) has been reported in children with autism spectrum disorder (ASD); however, the relationships between PAF, age, and autistic traits remain unclear. This study was conducted to investigate and compare the resting-state PAF of young children with ASD and their typically developing (TD) peers using magnetoencephalography (MEG). Methods Nineteen children with ASD and 24 TD children, aged 5-7 years, underwent MEG under resting-state conditions. The PAFs in ten brain regions were calculated, and the associations between these findings, age, and autistic traits, measured using the Social Responsiveness Scale (SRS), were examined. Results There were no significant differences in PAF between the children with ASD and the TD children. However, a unique positive association between age and PAF in the cingulate region was observed in the ASD group, suggesting the potential importance of the cingulate regions as a neurophysiological mechanism underlying distinct developmental trajectory of ASD. Furthermore, a higher PAF in the right temporal region was associated with higher SRS scores in TD children, highlighting the potential role of alpha oscillations in social information processing. Conclusions This study emphasizes the importance of regional specificity and developmental factors when investigating neurophysiological markers of ASD. The distinct age-related PAF patterns in the cingulate regions of children with ASD and the association between right temporal PAF and autistic traits in TD children provide novel insights into the neurobiological underpinnings of ASD. These findings pave the way for future research on the functional implications of these neurophysiological patterns and their potential as biomarkers of ASD across the lifespan.
Collapse
Affiliation(s)
- Masafumi Kameya
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Daiki Soma
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Faculty of Education, Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Kyung-Min An
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Sumie Iwasaki
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Ken Yaoi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Psychology, Faculty of Liberal Arts, Teikyo University, Tokyo, Japan
| | - Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yoshiaki Miyagishi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
158
|
Almeida-Antunes N, Antón-Toro L, Crego A, Rodrigues R, Sampaio A, López-Caneda E. Trying to forget alcohol: Brain mechanisms underlying memory suppression in young binge drinkers. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111053. [PMID: 38871018 DOI: 10.1016/j.pnpbp.2024.111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
People are able to voluntarily suppress unwanted thoughts or memories, a phenomenon known as suppression-induced forgetting or memory suppression. Despite harmful alcohol use, such as binge drinking, has been linked to impaired inhibitory control (IC) and augmented alcohol-cue reactivity, no study to date has assessed memory inhibition abilities towards alcohol-related cues in binge drinkers (BDs). Thus, the present preregistered study aimed to evaluate the behavioral and neurofunctional mechanisms associated with memory inhibition, specifically those related to the suppression of alcohol-related memories, in young BDs. For this purpose, electroencephalographic activity was recorded in eighty-two college students aged between 18 and 24 years old from the University of Minho (50% females; 40 non/low-drinkers [N/LDS] and 42 BDs) while they performed the Think/No-Think Alcohol task. Brain functional connectivity (FC) was calculated using the phase locking value and, subsequently, a dynamic seed-based analysis was conducted to explore the FC patterns between IC and memory networks. Comparatively to N/LDs, BDs exhibited decreased alpha-band FC between the anterior cingulate cortex and the left fusiform gyrus during attempts to suppress non-alcohol memories, accompanied by unsuccessful forgetting of those memories. Conversely, BDs displayed augmented gamma-band FC between the IC network and memory regions -i.e., hippocampus, parahippocampus and fusiform gyrus- during suppression of alcohol-related memories. Inhibitory abnormalities in BDs may lead to hypoconnectivity between IC and memory networks and deficient suppression of non-alcohol-related memories. However, while suppressing highly salient and reward-predicting stimuli, such as alcohol-related memories, BDs display a hyperconnectivity pattern between IC and memory networks, likely due to their augmented attention towards intrusive alcoholic memories and the attempts to compensate for potential underlying IC deficits. These findings hold important implications for alcohol research and treatment, as they open up new avenues for reducing alcohol use by shifting the focus to empowering suppression/control over alcohol-related memories. CLINICAL TRIAL REGISTRATION: [http://www.ClinicalTrials.gov], identifier [NCT05237414].
Collapse
Affiliation(s)
- Natália Almeida-Antunes
- Psychological Neuroscience Laboratory (PNL), Psychology Research Center (CIPsi), School of Psychology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luis Antón-Toro
- Department of Experimental Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain
| | - Alberto Crego
- Psychological Neuroscience Laboratory (PNL), Psychology Research Center (CIPsi), School of Psychology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Rodrigues
- Psychological Neuroscience Laboratory (PNL), Psychology Research Center (CIPsi), School of Psychology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Adriana Sampaio
- Psychological Neuroscience Laboratory (PNL), Psychology Research Center (CIPsi), School of Psychology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eduardo López-Caneda
- Psychological Neuroscience Laboratory (PNL), Psychology Research Center (CIPsi), School of Psychology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
159
|
Bömmer T, Schmidt LM, Meier K, Kricheldorff J, Stecher H, Herrmann CS, Thiel CM, Janitzky K, Witt K. Impact of Stimulation Duration in taVNS-Exploring Multiple Physiological and Cognitive Outcomes. Brain Sci 2024; 14:875. [PMID: 39335371 PMCID: PMC11430400 DOI: 10.3390/brainsci14090875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neuromodulation technique that modulates the noradrenergic activity of the locus coeruleus (LC). Yet, there is still uncertainty about the most effective stimulation and reliable outcome parameters. In a double blind, sham-controlled study including a sample of healthy young individuals (N = 29), we compared a shorter (3.4 s) and a longer (30 s) stimulation duration and investigated the effects of taVNS (real vs. sham) on saliva samples (alpha amylase and cortisol concentration), pupil (pupillary light reflex and pupil size at rest) and EEG data (alpha and theta activity at rest, ERPs for No-Go signals), and cognitive tasks (Go/No-Go and Stop Signal Tasks). Salivary alpha amylase concentration was significantly increased in the real as compared to sham stimulation for the 30 s stimulation condition. In the 3.4 s stimulation condition, we found prolonged reaction times and increased error rates in the Go/No-Go task and increased maximum acceleration in the pupillary light reflex. For the other outcomes, no significant differences were found. Our results show that prolonged stimulation increases salivary alpha-amylase, which was expected from the functional properties of the LC. The finding of longer response times to short taVNS stimulation was not expected and cannot be explained by an increase in LC activity. We also discuss the difficulties in assessing pupil size as an expression of taVNS-mediated LC functional changes.
Collapse
Affiliation(s)
- Till Bömmer
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Luisa M Schmidt
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Katharina Meier
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
| | - Julius Kricheldorff
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
| | - Heiko Stecher
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christiane M Thiel
- Biological Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
160
|
Hill AT, Ford TC, Bailey NW, Lum JAG, Bigelow FJ, Oberman LM, Enticott PG. EEG During Dynamic Facial Emotion Processing Reveals Neural Activity Patterns Associated with Autistic Traits in Children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609816. [PMID: 39372765 PMCID: PMC11451616 DOI: 10.1101/2024.08.27.609816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Altered brain connectivity and atypical neural oscillations have been observed in autism, yet their relationship with autistic traits in non-clinical populations remains underexplored. Here, we employ electroencephalography (EEG) to examine functional connectivity, oscillatory power, and broadband aperiodic activity during a dynamic facial emotion processing (FEP) task in 101 typically developing children aged 4-12 years. We investigate associations between these electrophysiological measures of brain dynamics and autistic traits as assessed by the Social Responsiveness Scale, 2nd Edition (SRS-2). Our results revealed that increased FEP-related connectivity across theta (4-7 Hz) and beta (13-30 Hz) frequencies correlated positively with higher SRS-2 scores, predominantly in right-lateralized (theta) and bilateral (beta) cortical networks. Additionally, a steeper 1/f-like aperiodic slope (spectral exponent) across fronto-central electrodes was associated with higher SRS-2 scores. Greater aperiodic-adjusted theta and alpha oscillatory power further correlated with both higher SRS-2 scores and steeper aperiodic slopes. These findings underscore important links between FEP-related brain dynamics and autistic traits in typically developing children. Future work could extend these findings to assess these EEG-derived markers as potential mechanisms underlying behavioural difficulties in autism.
Collapse
Affiliation(s)
- Aron T. Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Talitha C. Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
- Centre for Human Psychopharmacology & Swinburne Neuroimaging, School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Neil W. Bailey
- School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
- Monarch Research Institute Monarch Mental Health Group, Sydney, New South Wales, Australia
| | - Jarrad A. G. Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Felicity J. Bigelow
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Lindsay M. Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Peter G. Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| |
Collapse
|
161
|
Niu Y, Xiang J, Gao K, Wu J, Sun J, Wang B, Ding R, Dou M, Wen X, Cui X, Zhou M. Multi-Frequency Entropy for Quantifying Complex Dynamics and Its Application on EEG Data. ENTROPY (BASEL, SWITZERLAND) 2024; 26:728. [PMID: 39330063 PMCID: PMC11431093 DOI: 10.3390/e26090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Multivariate entropy algorithms have proven effective in the complexity dynamic analysis of electroencephalography (EEG) signals, with researchers commonly configuring the variables as multi-channel time series. However, the complex quantification of brain dynamics from a multi-frequency perspective has not been extensively explored, despite existing evidence suggesting interactions among brain rhythms at different frequencies. In this study, we proposed a novel algorithm, termed multi-frequency entropy (mFreEn), enhancing the capabilities of existing multivariate entropy algorithms and facilitating the complexity study of interactions among brain rhythms of different frequency bands. Firstly, utilizing simulated data, we evaluated the mFreEn's sensitivity to various noise signals, frequencies, and amplitudes, investigated the effects of parameters such as the embedding dimension and data length, and analyzed its anti-noise performance. The results indicated that mFreEn demonstrated enhanced sensitivity and reduced parameter dependence compared to traditional multivariate entropy algorithms. Subsequently, the mFreEn algorithm was applied to the analysis of real EEG data. We found that mFreEn exhibited a good diagnostic performance in analyzing resting-state EEG data from various brain disorders. Furthermore, mFreEn showed a good classification performance for EEG activity induced by diverse task stimuli. Consequently, mFreEn provides another important perspective to quantify complex dynamics.
Collapse
Affiliation(s)
- Yan Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Kai Gao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Jie Sun
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Runan Ding
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Mingliang Dou
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Xin Wen
- School of Software, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Xiaohong Cui
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Mengni Zhou
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
162
|
Liu Y, Lao W, Mao H, Zhong Y, Wang J, Ouyang W. Comparison of alterations in local field potentials and neuronal firing in mouse M1 and CA1 associated with central fatigue induced by high-intensity interval training and moderate-intensity continuous training. Front Neurosci 2024; 18:1428901. [PMID: 39211437 PMCID: PMC11357951 DOI: 10.3389/fnins.2024.1428901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background The mechanisms underlying central fatigue (CF) induced by high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) are still not fully understood. Methods In order to explore the effects of these exercises on the functioning of cortical and subcortical neural networks, this study investigated the effects of HIIT and MICT on local field potential (LFP) and neuronal firing in the mouse primary motor cortex (M1) and hippocampal CA1 areas. HIIT and MICT were performed on C57BL/6 mice, and simultaneous multichannel recordings were conducted in the M1 motor cortex and CA1 hippocampal region. Results A range of responses were elicited, including a decrease in coherence values of LFP rhythms in both areas, and an increase in slow and a decrease in fast power spectral density (PSD, n = 7-9) respectively. HIIT/MICT also decreased the gravity frequency (GF, n = 7-9) in M1 and CA1. Both exercises decreased overall firing rates, increased time lag of firing, declined burst firing rates and the number of spikes in burst, and reduced burst duration (BD) in M1 and CA1 (n = 7-9). While several neuronal firing properties showed a recovery tendency, the alterations of LFP parameters were more sustained during the 10-min post-HIIT/MICT period. MICT appeared to be more effective than HIIT in affecting LFP parameters, neuronal firing rate, and burst firing properties, particularly in CA1. Both exercises significantly affected neural network activities and local neuronal firing in M1 and CA1, with MICT associated with a more substantial and consistent suppression of functional integration between M1 and CA1. Conclusion Our study provides valuable insights into the neural mechanisms involved in exercise-induced central fatigue by examining the changes in functional connectivity and coordination between the M1 and CA1 regions. These findings may assist individuals engaged in exercise in optimizing their exercise intensity and timing to enhance performance and prevent excessive fatigue. Additionally, the findings may have clinical implications for the development of interventions aimed at managing conditions related to exercise-induced fatigue.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Ouyang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
163
|
Jończyk R, Krzysik I, Witczak O, Bromberek-Dyzman K, Thierry G. Operating in a second language lowers cognitive interference during creative idea generation: Evidence from brain oscillations in bilinguals. Neuroimage 2024; 297:120752. [PMID: 39074760 DOI: 10.1016/j.neuroimage.2024.120752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Tasks measuring human creativity overwhelmingly rely on both language comprehension and production. Although most of the world's population is bilingual, few studies have investigated the effects of language of operation on creative output. This is surprising given that fluent bilinguals master inhibitory control, a mechanism also at play in creative idea evaluation. Here, we compared creative output in the two languages of Polish(L1)-English(L2) bilinguals engaged in a cyclic adaptation of the Alternative Uses Task increasing the contribution of idea evaluation (convergent thinking). We show that Polish-English bilinguals suffer less cognitive interference when generating unusual uses for common objects in the L2 than the L1, without incurring a significant drop in idea originality. Right posterior alpha oscillation power, known to reflect creative thinking, increased over cycles. This effect paralleled the increase in originality ratings over cycles, and lower alpha power (8-10 Hz) was significantly greater in the L1 than the L2. Unexpectedly, we found greater beta (16.5-28 Hz) desynchronization in the L2 than the L1, suggesting that bilingual participants suffered less interference from competing mental representations when performing the task in the L2. Whereas creative output seems unaffected by language of operation overall, the drop in beta power in the L2 suggests that bilinguals are not subjected to the same level of semantic flooding in the second language as they naturally experience in their native language.
Collapse
Affiliation(s)
- Rafał Jończyk
- Faculty of English, Adam Mickiewicz University, Grunwaldzka 6, Poznań 60-780, Poland; Cognitive Neuroscience Center, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznań 61-614, Poland.
| | - Iga Krzysik
- Faculty of English, Adam Mickiewicz University, Grunwaldzka 6, Poznań 60-780, Poland
| | - Olga Witczak
- Faculty of English, Adam Mickiewicz University, Grunwaldzka 6, Poznań 60-780, Poland
| | | | - Guillaume Thierry
- Faculty of English, Adam Mickiewicz University, Grunwaldzka 6, Poznań 60-780, Poland; School of Psychology and Sport Science, Bangor University, Adeilad Brigantia, Penrallt Rd, Bangor LL57 2AS, UK
| |
Collapse
|
164
|
Schmidgen J, Heinen T, Konrad K, Bender S. From preparation to post-processing: Insights into evoked and induced cortical activity during pre-cued motor reactions in children and adolescents. Neuroimage 2024; 297:120735. [PMID: 39002787 DOI: 10.1016/j.neuroimage.2024.120735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024] Open
Abstract
INTRODUCTION The motor system undergoes significant development throughout childhood and adolescence. The contingent negative variation (CNV), a brain response reflecting preparation for upcoming actions, offers valuable insights into these changes. However, previous CNV studies of motor preparation have primarily focused on adults, leaving a gap in our understanding of how cortical activity related to motor planning and execution matures in children and adolescents. METHODS The study addresses this gap by investigating the maturation of motor preparation, pre-activation, and post-processing in 46 healthy, right-handed children and adolescents aged 5-16 years. To overcome the resolution limitations of previous studies, we combined 64-electrode high-density Electroencephalography (EEG) and advanced analysis techniques, such as event-related potentials (ERPs), mu-rhythm desynchronization as well as source localization approaches. The combined analyses provided an in-depth understanding of cortical activity during motor control. RESULTS Our data showed that children exhibited prolonged reaction times, increased errors, and a distinct pattern of cortical activation compared to adolescents. The findings suggest that the supplementary motor area (SMA) plays a progressively stronger role in motor planning and response evaluation as children age. Additionally, we observe a decrease in sensory processing and post-movement activity with development, potentially reflecting increased efficiency. Interestingly, adolescent subjects, unlike young adults in previous studies, did not yet show contralateral activation of motor areas during the motor preparation phase (late CNV). CONCLUSION The progressive increase in SMA activation and distinct cortical activation patterns in younger participants suggest immature motor areas. These immature regions might be a primary cause underlying the age-related increase in motor action control efficiency. Additionally, the study demonstrates a prolonged maturation of cortical motor areas, extending well into early adulthood, challenging the assumption that motor control is fully developed by late adolescence. This research, extending fundamental knowledge of motor control development, offers valuable insights that lay the foundation for understanding and treating motor control difficulties.
Collapse
Affiliation(s)
- Julia Schmidgen
- Department of Child and Adolescent Psychiatry, University of Cologne, University Hospital Cologne, Germany.
| | - Theresa Heinen
- Section Child Neuropsychology, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH, University Hospital, Aachen, Germany; JARA-BRAIN Institute II, Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany
| | - Kerstin Konrad
- Section Child Neuropsychology, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH, University Hospital, Aachen, Germany; JARA-BRAIN Institute II, Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, University of Cologne, University Hospital Cologne, Germany
| |
Collapse
|
165
|
Peng J, Zikereya T, Shao Z, Shi K. The neuromechanical of Beta-band corticomuscular coupling within the human motor system. Front Neurosci 2024; 18:1441002. [PMID: 39211436 PMCID: PMC11358111 DOI: 10.3389/fnins.2024.1441002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Beta-band activity in the sensorimotor cortex is considered a potential biomarker for evaluating motor functions. The intricate connection between the brain and muscle (corticomuscular coherence), especially in beta band, was found to be modulated by multiple motor demands. This coherence also showed abnormality in motion-related disorders. However, although there has been a substantial accumulation of experimental evidence, the neural mechanisms underlie corticomuscular coupling in beta band are not yet fully clear, and some are still a matter of controversy. In this review, we summarized the findings on the impact of Beta-band corticomuscular coherence to multiple conditions (sports, exercise training, injury recovery, human functional restoration, neurodegenerative diseases, age-related changes, cognitive functions, pain and fatigue, and clinical applications), and pointed out several future directions for the scientific questions currently unsolved. In conclusion, an in-depth study of Beta-band corticomuscular coupling not only elucidates the neural mechanisms of motor control but also offers new insights and methodologies for the diagnosis and treatment of motor rehabilitation and related disorders. Understanding these mechanisms can lead to personalized neuromodulation strategies and real-time neurofeedback systems, optimizing interventions based on individual neurophysiological profiles. This personalized approach has the potential to significantly improve therapeutic outcomes and athletic performance by addressing the unique needs of each individual.
Collapse
Affiliation(s)
| | | | | | - Kaixuan Shi
- Physical Education Department, China University of Geosciences Beijing, Beijing, China
| |
Collapse
|
166
|
Jiang Y, Zhang X, Guo Z, Jiang N. Altered EEG Theta and Alpha Band Functional Connectivity in Mild Cognitive Impairment During Working Memory Coding. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2845-2853. [PMID: 38905095 DOI: 10.1109/tnsre.2024.3417617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Individuals with mild cognitive impairment (MCI), the preclinical stage of Alzheimer disease (AD), suffer decline in their visual working memory (WM) functions. Using large-scale network analysis of electroencephalography (EEG), the current study intended to investigate if there are differences in functional connectivity properties extracted during visual WM coding stages between MCI patients and normal controls (NC). A total of 21 MCI patients and 20 NC performed visual memory tasks of load four, while 32-channel EEG recordings were acquired. The functional connectivity properties were extracted from the acquired EEGs by the directed transform function (DTF) via spectral Granger causal analysis. Brain network analyses revealed distinctive brain network patterns between the two groups during the WM coding stage. Compared with the NC, MCI patients exhibited a reduced visual network connectivity of the frontal-temporal in θ (4-7Hz) band. A likely compensation mechanism was observed in MCI patients, with a strong brain functional connectivity of the frontal-occipital and parietal-occipital in both θ and α (8-13Hz) band. Further analyses of the network core node properties based on the differential brain network showed that, in θ band, there was a significant difference in the out-degree of the frontal lobe and parietal lobe between the two groups, while in α band, such difference was located only in the parietal lobe. The current study found that, in MCI patients, dysconnectivity is found from the prefrontal lobe to bilateral temporal lobes, leading to increased recruitment of functional connectivity in the frontal-occipital and parietal-occipital direction. The dysconnectivity pattern of MCI is more complex and primarily driven by core nodes Pz and Fz. These results significantly expanded previous knowledge of MCI patients' EEG dynamics during WM tasks and provide new insights into the underpinning neural mechanism MCI. It further provided a potential therapeutic target for clinical interventions of the condition.
Collapse
|
167
|
Wisniewski MG. Echoes from Sensory Entrainment in Auditory Working Memory for Pitch. Brain Sci 2024; 14:792. [PMID: 39199484 PMCID: PMC11353064 DOI: 10.3390/brainsci14080792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Ongoing neural oscillations reflect cycles of excitation and inhibition in local neural populations, with individual neurons being more or less likely to fire depending upon the oscillatory phase. As a result, the oscillations could determine whether or not a sound is perceived and/or whether its neural representation enters into later processing stages. While empirical support for this idea has come from sound detection studies, large gaps in knowledge still exist regarding memory for sound events. In the current study, it was investigated how sensory entrainment impacts the fidelity of working memory representations for pitch. In two separate experiments, an 8 Hz amplitude modulated (AM) entraining stimulus was presented prior to a multitone complex having an f0 between 270 and 715 Hz. This "target" sound could be presented at phases from 0 to 2π radians in relation to the previous AM. After a retention interval of 4 s (Experiment 1; n = 26) or 2 s (Experiment 2; n = 28), listeners were tasked to reproduce the target sound's pitch by moving their finger along the horizontal axis of a response pad. It was hypothesized that if entrainment modulates auditory working memory fidelity, reproductions of a target's pitch would be more accurate and precise when targets were presented in phase with the entrainment. Cosine fits of the average data for both experiments showed a significant entrainment "echo" in the accuracy of pitch matches. There was no apparent echo in the matching precision. Fitting of the individual data accuracy showed that the optimal phase was consistent across individuals, aligning near the next AM peak had the AM continued. The results show that sensory entrainment modulates auditory working memory in addition to stimulus detection, consistent with the proposal that ongoing neural oscillatory activity modulates higher-order auditory processes.
Collapse
Affiliation(s)
- Matthew G Wisniewski
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
168
|
Gallina J, Ronconi L, Marsicano G, Bertini C. Alpha and theta rhythm support perceptual and attentional sampling in vision. Cortex 2024; 177:84-99. [PMID: 38848652 DOI: 10.1016/j.cortex.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
The visual system operates rhythmically, through timely coordinated perceptual and attentional processes, involving coexisting patterns in the alpha range (7-13 Hz) at ∼10 Hz, and theta (3-6 Hz) range, respectively. Here we aimed to disambiguate whether variations in task requirements, in terms of attentional demand and side of target presentation, might influence the occurrence of either perceptual or attentional components in behavioral visual performance, also uncovering possible differences in the sampling mechanisms of the two cerebral hemispheres. To this aim, visuospatial performance was densely sampled in two versions of a visual detection task where the side of target presentation was fixed (Task 1), with participants monitoring one single hemifield, or randomly varying across trials, with participants monitoring both hemifields simultaneously (Task 2). Performance was analyzed through spectral decomposition, to reveal behavioral oscillatory patterns. For Task 1, when attentional resources where focused on one hemifield only, the results revealed an oscillatory pattern fluctuating at ∼10 Hz and ∼6-9 Hz, for stimuli presented to the left and the right hemifield, respectively, possibly representing a perceptual sampling mechanism with different efficiency within the left and the right hemispheres. For Task 2, when attentional resources were simultaneously deployed to the two hemifields, a ∼5 Hz rhythm emerged both for stimuli presented to the left and the right, reflecting an attentional sampling process, equally supported by the two hemispheres. Overall, the results suggest that distinct perceptual and attentional sampling mechanisms operate at different oscillatory frequencies and their prevalence and hemispheric lateralization depends on task requirements.
Collapse
Affiliation(s)
- Jessica Gallina
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, Cesena, Italy; Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Marsicano
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, Cesena, Italy; Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, Italy
| | - Caterina Bertini
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, Cesena, Italy; Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, Italy.
| |
Collapse
|
169
|
Matyjek M, Kita S, Torralba Cuello M, Soto Faraco S. Multisensory integration of speech and gestures in a naturalistic paradigm. Hum Brain Mapp 2024; 45:e26797. [PMID: 39041175 PMCID: PMC11263810 DOI: 10.1002/hbm.26797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Speech comprehension is crucial for human social interaction, relying on the integration of auditory and visual cues across various levels of representation. While research has extensively studied multisensory integration (MSI) using idealised, well-controlled stimuli, there is a need to understand this process in response to complex, naturalistic stimuli encountered in everyday life. This study investigated behavioural and neural MSI in neurotypical adults experiencing audio-visual speech within a naturalistic, social context. Our novel paradigm incorporated a broader social situational context, complete words, and speech-supporting iconic gestures, allowing for context-based pragmatics and semantic priors. We investigated MSI in the presence of unimodal (auditory or visual) or complementary, bimodal speech signals. During audio-visual speech trials, compared to unimodal trials, participants more accurately recognised spoken words and showed a more pronounced suppression of alpha power-an indicator of heightened integration load. Importantly, on the neural level, these effects surpassed mere summation of unimodal responses, suggesting non-linear MSI mechanisms. Overall, our findings demonstrate that typically developing adults integrate audio-visual speech and gesture information to facilitate speech comprehension in noisy environments, highlighting the importance of studying MSI in ecologically valid contexts.
Collapse
Affiliation(s)
- Magdalena Matyjek
- Center for Brain and CognitionUniversitat Pompeu FabraBarcelonaSpain
- Humboldt‐Universität zu BerlinBerlinGermany
| | | | | | - Salvador Soto Faraco
- Center for Brain and CognitionUniversitat Pompeu FabraBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| |
Collapse
|
170
|
Vera JD, Freichel R, Michelini G, Loo SK, Lenartowicz A. A Network Approach to Understanding the Role of Executive Functioning and Alpha Oscillations in Inattention and Hyperactivity-Impulsivity Symptoms of ADHD. J Atten Disord 2024; 28:1357-1367. [PMID: 38798087 PMCID: PMC11292971 DOI: 10.1177/10870547241253999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
OBJECTIVE ADHD is a prevalent neurodevelopmental disorder characterized by symptoms of inattention and hyperactivity-impulsivity. Impairments in executive functioning (EF) are central to models of ADHD, while alpha-band spectral power event-related decreases (ERD) have emerged as a putative electroencephalography (EEG) biomarker of EF in ADHD. Little is known about the roles of EF and alpha ERD and their interactions with symptoms of ADHD. METHOD We estimated network models of ADHD symptoms and integrated alpha ERD measures into the symptom network. RESULTS EF emerges as a bridge network node connecting alpha ERD and the hyperactivity/impulsivity and inattention symptoms. We found that EF most closely relates to a subset of symptoms, namely the motoric symptoms, "seat" (difficulty staying seated), and "runs" (running or climbing excessively). CONCLUSIONS EF functions as a bridge node connecting alpha ERD and the ADHD symptom network. Motoric-type symptoms and EF deficits may constitute important nodes in the interplay between behavior/symptoms, cognition, and neurophysiological markers of ADHD.
Collapse
Affiliation(s)
| | | | - Giorgia Michelini
- University of California, Los Angeles, USA
- Queen Mary University of London, UK
| | | | | |
Collapse
|
171
|
Luan M, Wang D, Keil A, Ehrlenspiel F, Mirifar A. A Systematic Meta-Analysis of the Effectiveness of (Left) Hand Contractions on Motor Performance. SPORT, EXERCISE, AND PERFORMANCE PSYCHOLOGY 2024; 13:287-306. [PMID: 40018708 PMCID: PMC11862966 DOI: 10.1037/spy0000353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Unilateral left hand contractions (LHCs) have been used as a neurophysiologically motivated intervention for optimizing and stabilizing a wide range of behaviors, including motor performance. What is currently unknown however is the efficacy and neurophysiological basis of LHC interventions. The aim of this systematic meta-analysis was to review and synthesize the evidence on the effectiveness of LHCs, as a pre-performance routine, on motor performance. We, therefore, discuss the theoretical background, highlights key methodological considerations, and suggest areas of future research. An electronic search of the PubMed, PsycInfo, Google Scholar, Scopus, and SPORTDiscus databases was conducted to identify peer-reviewed literature relating to LHCs and motor performance, skilled performance, peak performance, and choking. Ten studies (12 effect sizes) met inclusion criteria and were retained for quality assessment and synthesis. The findings indicate a moderate effect of LHC interventions on performance (g = 0.59, 95% CI = 0.14, 1.03); further, moderator analyses revealed that the effect was significant in experimental design studies, among sub-elite and elite athletes, and when participants were exposed to high-pressure situations. A trim-and-fill analysis was conducted to estimate and correct any potential publication bias, and the results suggest the effect of the LHC intervention may not be as robust as initially appeared. We conclude that this moderate effect should be interpreted with caution. Specifically, concerns regarding study quality and lack of neurophysiological specificity appear to limit the impact and significance of the LHC literature as it currently stands.
Collapse
Affiliation(s)
- Mengkai Luan
- Department of Psychology, Shanghai University of Sport, 650
Qing Yuan Huan Road, Shanghai, 200438, People’s Republic of China
| | - Danlei Wang
- Department of Psychology, Shanghai University of Sport, 650
Qing Yuan Huan Road, Shanghai, 200438, People’s Republic of China
| | - Andreas Keil
- Center for the Study of Emotion & Attention, University
of Florida, PO Box 112766, Gainesville, FL 32611, Florida, USA
| | - Felix Ehrlenspiel
- Department of Sport and Health Sciences, Faculty of Sports
and Health Sciences, Sport Psychology, Technical University of Munich, Uptown
Munich, Campus D - Georg-Brauchle-Ring 60/62, 80992, Munich, Germany
| | - Arash Mirifar
- Center for the Study of Emotion & Attention, University
of Florida, PO Box 112766, Gainesville, FL 32611, Florida, USA
- Department of Sport and Health Sciences, Faculty of Sports
and Health Sciences, Sport Psychology, Technical University of Munich, Uptown
Munich, Campus D - Georg-Brauchle-Ring 60/62, 80992, Munich, Germany
| |
Collapse
|
172
|
Busch N, Geyer T, Zinchenko A. Individual peak alpha frequency does not index individual differences in inhibitory cognitive control. Psychophysiology 2024; 61:e14586. [PMID: 38594833 DOI: 10.1111/psyp.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Previous work has indicated that individual differences in cognitive performance can be predicted by characteristics of resting state oscillations, such as individual peak alpha frequency (IAF). Although IAF has previously been correlated with cognitive functions, such as memory, attention, or mental speed, its link to cognitive conflict processing remains unexplored. The current work investigated the relationship between IAF and inhibitory cognitive control in two well-established conflict tasks, Stroop and Navon task, while also controlling for alpha power, theta power, and the 1/f offset of aperiodic broadband activity. In Bayesian analyses on a large sample of 127 healthy participants, we found substantial evidence against the assumption that IAF predicts individual abilities to spontaneously exert cognitive control. Similarly, our findings yielded substantial evidence against links between cognitive control and resting state power in the alpha and theta bands or between cognitive control and aperiodic 1/f offset. In sum, our results challenge frameworks suggesting that an individual's ability to spontaneously engage attentional control networks may be mirrored in resting state EEG characteristics.
Collapse
Affiliation(s)
- Nuno Busch
- School of Management, Technische Universität München, Munich, Germany
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Geyer
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Center for NeuroSciences-Brain & Mind, Munich, Germany
- NICUM-NeuroImaging Core Unit Munich, Munich, Germany
| | - Artyom Zinchenko
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
173
|
Greenwood PE, Ward LM. Attentional selection and communication through coherence: Scope and limitations. PLoS Comput Biol 2024; 20:e1011431. [PMID: 39102437 PMCID: PMC11326628 DOI: 10.1371/journal.pcbi.1011431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Synchronous neural oscillations are strongly associated with a variety of perceptual, cognitive, and behavioural processes. It has been proposed that the role of the synchronous oscillations in these processes is to facilitate information transmission between brain areas, the 'communication through coherence,' or CTC hypothesis. The details of how this mechanism would work, however, and its causal status, are still unclear. Here we investigate computationally a proposed mechanism for selective attention that directly implicates the CTC as causal. The mechanism involves alpha band (about 10 Hz) oscillations, originating in the pulvinar nucleus of the thalamus, being sent to communicating cortical areas, organizing gamma (about 40 Hz) oscillations there, and thus facilitating phase coherence and communication between them. This is proposed to happen contingent on control signals sent from higher-level cortical areas to the thalamic reticular nucleus, which controls the alpha oscillations sent to cortex by the pulvinar. We studied the scope of this mechanism in parameter space, and limitations implied by this scope, using a computational implementation of our conceptual model. Our results indicate that, although the CTC-based mechanism can account for some effects of top-down and bottom-up attentional selection, its limitations indicate that an alternative mechanism, in which oscillatory coherence is caused by communication between brain areas rather than being a causal factor for it, might operate in addition to, or even instead of, the CTC mechanism.
Collapse
Affiliation(s)
| | - Lawrence M Ward
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
174
|
Park SE, Chung J, Lee J, Kim MJB, Kim J, Jeon HJ, Kim H, Woo C, Kim H, Lee SA. Digital assessment of cognitive-affective biases related to mental health. PLOS DIGITAL HEALTH 2024; 3:e0000595. [PMID: 39208388 PMCID: PMC11361731 DOI: 10.1371/journal.pdig.0000595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
With an increasing societal need for digital therapy solutions for poor mental health, we face a corresponding rise in demand for scientifically validated digital contents. In this study we aimed to lay a sound scientific foundation for the development of brain-based digital therapeutics to assess and monitor cognitive effects of social and emotional bias across diverse populations and age-ranges. First, we developed three computerized cognitive tasks using animated graphics: 1) an emotional flanker task designed to test attentional bias, 2) an emotional go-no-go task to measure bias in memory and executive function, and 3) an emotional social evaluation task to measure sensitivity to social judgments. Then, we confirmed the generalizability of our results in a wide range of samples (children (N = 50), young adults (N = 172), older adults (N = 39), online young adults (N=93), and depression patients (N = 41)) using touchscreen and online computer-based tasks, and devised a spontaneous thought generation task that was strongly associated with, and therefore could potentially serve as an alternative to, self-report scales. Using PCA, we extracted five components that represented different aspects of cognitive-affective function (emotional bias, emotional sensitivity, general accuracy, and general/social attention). Next, a gamified version of the above tasks was developed to test the feasibility of digital cognitive training over a 2-week period. A pilot training study utilizing this application showed decreases in emotional bias in the training group (that were not observed in the control group), which was correlated with a reduction in anxiety symptoms. Using a 2-channel wearable EEG system, we found that frontal alpha and gamma power were associated with both emotional bias and its reduction across the 2-week training period.
Collapse
Affiliation(s)
- Sang-Eon Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jisu Chung
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jeonghyun Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minwoo JB Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jinhee Kim
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyungsook Kim
- Hanyang Digital Healthcare Center, Hanyang University, Seoul, Republic of Korea
| | - Choongwan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hackjin Kim
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
175
|
Blanc C, Buisson JC, Kruck J, Kostrubiec V. Haptic coordination: Squeezing a vibrating stress ball decreases anxiety and arousal. Hum Mov Sci 2024; 96:103220. [PMID: 38776797 DOI: 10.1016/j.humov.2024.103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/20/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
We evaluated the effect of haptic coordination on anxiety and arousal. Participants looked at a stressful or calming image and then repeatedly squeezed a vibrating stress ball for 20 s. Using a pre-post paradigm with a control group, we showed that squeezing the vibrating ball reduced anxiety and arousal, as assessed by the State-Trait Anxiety Inventory and electrodermal activity, respectively. The stability of haptic coordination was manipulated by varying the detuning between the spontaneous squeezing frequency and the intrinsic frequency of ball vibration. Coordination stability affected arousal and stress affected stability. The data were discussed in the light of Kahneman's attentional resource-sharing model.
Collapse
Affiliation(s)
- Clément Blanc
- Center for Studies and Research on Health Psychopathology and Psychology (CERPPS), University of Toulouse 2 Jean Jaurès, Toulouse, France.
| | - Jean-Christophe Buisson
- Institut de Recherche en Informatique de Toulouse - UMR 5505, CNRS - University of Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jeanne Kruck
- Center for Studies and Research on Health Psychopathology and Psychology (CERPPS), University of Toulouse 2 Jean Jaurès, Toulouse, France
| | - Viviane Kostrubiec
- Center for Studies and Research on Health Psychopathology and Psychology (CERPPS), University of Toulouse 2 Jean Jaurès, Toulouse, France; University of Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
176
|
Uemura M, Katagiri Y, Imai E, Kawahara Y, Otani Y, Ichinose T, Kondo K, Kowa H. Dorsal Anterior Cingulate Cortex Coordinates Contextual Mental Imagery for Single-Beat Manipulation during Rhythmic Sensorimotor Synchronization. Brain Sci 2024; 14:757. [PMID: 39199452 PMCID: PMC11352649 DOI: 10.3390/brainsci14080757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Flexible pulse-by-pulse regulation of sensorimotor synchronization is crucial for voluntarily showing rhythmic behaviors synchronously with external cueing; however, the underpinning neurophysiological mechanisms remain unclear. We hypothesized that the dorsal anterior cingulate cortex (dACC) plays a key role by coordinating both proactive and reactive motor outcomes based on contextual mental imagery. To test our hypothesis, a missing-oddball task in finger-tapping paradigms was conducted in 33 healthy young volunteers. The dynamic properties of the dACC were evaluated by event-related deep-brain activity (ER-DBA), supported by event-related potential (ERP) analysis and behavioral evaluation based on signal detection theory. We found that ER-DBA activation/deactivation reflected a strategic choice of motor control modality in accordance with mental imagery. Reverse ERP traces, as omission responses, confirmed that the imagery was contextual. We found that mental imagery was updated only by environmental changes via perceptual evidence and response-based abductive reasoning. Moreover, stable on-pulse tapping was achievable by maintaining proactive control while creating an imagery of syncopated rhythms from simple beat trains, whereas accuracy was degraded with frequent erroneous tapping for missing pulses. We conclude that the dACC voluntarily regulates rhythmic sensorimotor synchronization by utilizing contextual mental imagery based on experience and by creating novel rhythms.
Collapse
Affiliation(s)
- Maho Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan; (Y.O.); (H.K.)
- School of Music, Mukogawa Women’s University, Nishinomiya 663-8558, Japan;
| | - Yoshitada Katagiri
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Emiko Imai
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan;
| | - Yasuhiro Kawahara
- Department of Human life and Health Sciences, Division of Arts and Sciences, The Open University of Japan, Chiba 261-8586, Japan;
| | - Yoshitaka Otani
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan; (Y.O.); (H.K.)
- Faculty of Rehabilitation, Kobe International University, Kobe 658-0032, Japan
| | - Tomoko Ichinose
- School of Music, Mukogawa Women’s University, Nishinomiya 663-8558, Japan;
| | | | - Hisatomo Kowa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan; (Y.O.); (H.K.)
| |
Collapse
|
177
|
Kim JC, Hellrung L, Grueschow M, Nebe S, Nagy Z, Tobler PN. Neural Representation of Valenced and Generic Probability and Uncertainty. J Neurosci 2024; 44:e0195242024. [PMID: 38866483 PMCID: PMC11270512 DOI: 10.1523/jneurosci.0195-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Representing the probability and uncertainty of outcomes facilitates adaptive behavior by allowing organisms to prepare in advance and devote attention to relevant events. Probability and uncertainty are often studied only for valenced (appetitive or aversive) outcomes, raising the question of whether the identified neural machinery also processes the probability and uncertainty of motivationally neutral outcomes. Here, we aimed to dissociate valenced from valence-independent (i.e., generic) probability (p; maximum at p = 1) and uncertainty (maximum at p = 0.5) signals using human neuroimaging. In a Pavlovian task (n = 41; 19 females), different cues predicted appetitive, aversive, or neutral liquids with different probabilities (p = 0, p = 0.5, p = 1). Cue-elicited motor responses accelerated, and pupil sizes increased primarily for cues that predicted valenced liquids with higher probability. For neutral liquids, uncertainty rather than probability tended to accelerate cue-induced responding and decrease pupil size. At the neural level, generic uncertainty signals were limited to the occipital cortex, while generic probability also activated the anterior ventromedial prefrontal cortex. These generic probability and uncertainty signals contrasted with cue-induced responses that only encoded the probability and uncertainty of valenced liquids in medial prefrontal, insular, and occipital cortices. Our findings show a behavioral and neural dissociation of generic and valenced signals. Thus, some parts of the brain keep track of motivational charge while others do not, highlighting the need and usefulness of characterizing the exact nature of learned representations.
Collapse
Affiliation(s)
- Jae-Chang Kim
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Lydia Hellrung
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Marcus Grueschow
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Stephan Nebe
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Zoltan Nagy
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Philippe N Tobler
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
178
|
Gigliotti F, Giovannone F, Belli A, Sogos C. Atypical Sensory Processing in Neurodevelopmental Disorders: Clinical Phenotypes in Preschool-Aged Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:875. [PMID: 39062324 PMCID: PMC11276037 DOI: 10.3390/children11070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Sensory processing issues are frequent in neurodevelopmental disorders (NDDs), with very variable prevalence rates ranging from 20% to 95%. This study aimed to investigate sensory processing in preschool-aged children with NDDs, to clarify the epidemiology, and to identify associated or correlated clinical and psychometric variables. METHODS A total of 141 NDD children (age range 2-5 years old) were included and enrolled in two subgroups: 72 with ASD and 69 with other NDDs. A standardized neuropsychological evaluation was assessed (Griffiths III/WPPSI-III/Leiter-R, ADOS-2) and the parents completed the CBCL ½-5, the SPM-P, and the ADI-R. RESULTS Atypical sensory processing was reported in 39.7% of the total sample, more frequently in ASD (44.4%) than in other NDDs (34.8%). No statistically significant differences were found regarding gender and developmental level. A positive correlation was found between sensory processing abnormalities and behavioral problems (p < 0.01). CONCLUSIONS Compared to other NDDs, ASDs more frequently have atypical sensory processing and appear to present a specific vulnerability in the processing of proprioceptive and vestibular inputs. Our results suggest that sensory processing difficulties should be considered regardless of developmental level and in children with behavioral problems.
Collapse
Affiliation(s)
| | | | | | - Carla Sogos
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (F.G.); (A.B.)
| |
Collapse
|
179
|
Zioga I, Kenett YN, Giannopoulos A, Luft CDB. The role of alpha oscillations in free- and goal-directed semantic associations. Hum Brain Mapp 2024; 45:e26770. [PMID: 38970217 PMCID: PMC11226545 DOI: 10.1002/hbm.26770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024] Open
Abstract
Alpha oscillations are known to play a central role in several higher-order cognitive functions, especially selective attention, working memory, semantic memory, and creative thinking. Nonetheless, we still know very little about the role of alpha in the generation of more remote semantic associations, which is key to creative and semantic cognition. Furthermore, it remains unclear how these oscillations are shaped by the intention to "be creative," which is the case in most creativity tasks. We aimed to address these gaps in two experiments. In Experiment 1, we compared alpha oscillatory activity (using a method which distinguishes genuine oscillatory activity from transient events) during the generation of free associations which were more vs. less distant from a given concept. In Experiment 2, we replicated these findings and also compared alpha oscillatory activity when people were generating free associations versus associations with the instruction to be creative (i.e. goal-directed). We found that alpha was consistently higher during the generation of more distant semantic associations, in both experiments. This effect was widespread, involving areas in both left and right hemispheres. Importantly, the instruction to be creative seems to increase alpha phase synchronisation from left to right temporal brain areas, suggesting that intention to be creative changed the flux of information in the brain, likely reflecting an increase in top-down control of semantic search processes. We conclude that goal-directed generation of remote associations relies on top-down mechanisms compared to when associations are freely generated.
Collapse
Affiliation(s)
- Ioanna Zioga
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Yoed N. Kenett
- Faculty of Data and Decision Sciences, Technion—Israel Institute of TechnologyHaifaIsrael
| | - Anastasios Giannopoulos
- School of Electrical and Computer EngineeringNational Technical University of Athens (NTUA) AthensAthensGreece
| | | |
Collapse
|
180
|
Mertel K, Dimitrijevic A, Thaut M. Can Music Enhance Working Memory and Speech in Noise Perception in Cochlear Implant Users? Design Protocol for a Randomized Controlled Behavioral and Electrophysiological Study. Audiol Res 2024; 14:611-624. [PMID: 39051196 PMCID: PMC11270222 DOI: 10.3390/audiolres14040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND A cochlear implant (CI) enables deaf people to understand speech but due to technical restrictions, users face great limitations in noisy conditions. Music training has been shown to augment shared auditory and cognitive neural networks for processing speech and music and to improve auditory-motor coupling, which benefits speech perception in noisy listening conditions. These are promising prerequisites for studying multi-modal neurologic music training (NMT) for speech-in-noise (SIN) perception in adult cochlear implant (CI) users. Furthermore, a better understanding of the neurophysiological correlates when performing working memory (WM) and SIN tasks after multi-modal music training with CI users may provide clinicians with a better understanding of optimal rehabilitation. METHODS Within 3 months, 81 post-lingual deafened adult CI recipients will undergo electrophysiological recordings and a four-week neurologic music therapy multi-modal training randomly assigned to one of three training focusses (pitch, rhythm, and timbre). Pre- and post-tests will analyze behavioral outcomes and apply a novel electrophysiological measurement approach that includes neural tracking to speech and alpha oscillation modulations to the sentence-final-word-identification-and-recall test (SWIR-EEG). Expected outcome: Short-term multi-modal music training will enhance WM and SIN performance in post-lingual deafened adult CI recipients and will be reflected in greater neural tracking and alpha oscillation modulations in prefrontal areas. Prospectively, outcomes could contribute to understanding the relationship between cognitive functioning and SIN besides the technical deficits of the CI. Targeted clinical application of music training for post-lingual deafened adult CI carriers to significantly improve SIN and positively impact the quality of life can be realized.
Collapse
Affiliation(s)
- Kathrin Mertel
- Music and Health Research Collaboratory (MaHRC), University of Toronto, Toronto, ON M5S 1C5, Canada;
| | - Andrew Dimitrijevic
- Sunnybrook Cochlear Implant Program, Sunnybrook Hospital, Toronto, ON M4N 3M5, Canada;
| | - Michael Thaut
- Music and Health Research Collaboratory (MaHRC), University of Toronto, Toronto, ON M5S 1C5, Canada;
| |
Collapse
|
181
|
Bailey KM, Sami S, Smith FW. Decoding familiar visual object categories in the mu rhythm oscillatory response. Neuropsychologia 2024; 199:108900. [PMID: 38697558 DOI: 10.1016/j.neuropsychologia.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Whilst previous research has linked attenuation of the mu rhythm to the observation of specific visual categories, and even to a potential role in action observation via a putative mirror neuron system, much of this work has not considered what specific type of information might be coded in this oscillatory response when triggered via vision. Here, we sought to determine whether the mu rhythm contains content-specific information about the identity of familiar (and also unfamiliar) graspable objects. In the present study, right-handed participants (N = 27) viewed images of both familiar (apple, wine glass) and unfamiliar (cubie, smoothie) graspable objects, whilst performing an orthogonal task at fixation. Multivariate pattern analysis (MVPA) revealed significant decoding of familiar, but not unfamiliar, visual object categories in the mu rhythm response. Thus, simply viewing familiar graspable objects may automatically trigger activation of associated tactile and/or motor properties in sensorimotor areas, reflected in the mu rhythm. In addition, we report significant attenuation in the central beta band for both familiar and unfamiliar visual objects, but not in the mu rhythm. Our findings highlight how analysing two different aspects of the oscillatory response - either attenuation or the representation of information content - provide complementary views on the role of the mu rhythm in response to viewing graspable object categories.
Collapse
Affiliation(s)
| | - Saber Sami
- Norwich Medical School, University of East Anglia, UK
| | | |
Collapse
|
182
|
Rominger C, Koschutnig K, Fink A, Perchtold-Stefan CM. MRI resting-state signature of the propensity to experience meaningful coincidences: a functional coupling analysis. Cereb Cortex 2024; 34:bhae269. [PMID: 38984703 PMCID: PMC11234293 DOI: 10.1093/cercor/bhae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/11/2024] Open
Abstract
The propensity to experience meaningful patterns in random arrangements and unrelated events shows considerable interindividual differences. Reduced inhibitory control (over sensory processes) and decreased working memory capacities are associated with this trait, which implies that the activation of frontal as well as posterior brain regions may be altered during rest and working memory tasks. In addition, people experiencing more meaningful coincidences showed reduced gray matter of the left inferior frontal gyrus (IFG), which is linked to the inhibition of irrelevant information in working memory and the control and integration of multisensory information. To study deviations in the functional connectivity of the IFG with posterior associative areas, the present study investigated the fMRI resting state in a large sample of n = 101 participants. We applied seed-to-voxel analysis and found that people who perceive more meaningful coincidences showed negative functional connectivity of the left IFG (i.e. pars triangularis) with areas of the left posterior associative cortex (e.g. superior parietal cortex). A data-driven multivoxel pattern analysis further indicated that functional connectivity of a cluster located in the right cerebellum with a cluster including parts of the left middle frontal gyrus, left precentral gyrus, and the left IFG (pars opercularis) was associated with meaningful coincidences. These findings add evidence to the neurocognitive foundations of the propensity to experience meaningful coincidences, which strengthens the idea that deviations of working memory functions and inhibition of sensory and motor information explain why people experience more meaning in meaningless noise.
Collapse
Affiliation(s)
- Christian Rominger
- Corresponding author: Institute of Psychology, University of Graz, Universitätsplatz 2/III, A-8010 Graz, Austria.
| | - Karl Koschutnig
- Institute of Psychology, University of Graz, Universitätsplatz 2/III, A-8010 Graz, Austria
| | - Andreas Fink
- Institute of Psychology, University of Graz, Universitätsplatz 2/III, A-8010 Graz, Austria
| | | |
Collapse
|
183
|
Tröndle M, Langer N. Decomposing neurophysiological underpinnings of age-related decline in visual working memory. Neurobiol Aging 2024; 139:30-43. [PMID: 38593526 DOI: 10.1016/j.neurobiolaging.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
Exploring the neural basis of age-related decline in working memory is vital in our aging society. Previous electroencephalographic studies suggested that the contralateral delay activity (CDA) may be insensitive to age-related decline in lateralized visual working memory (VWM) performance. Instead, recent evidence indicated that task-induced alpha power lateralization decreases in older age. However, the relationship between alpha power lateralization and age-related decline of VWM performance remains unknown, and recent studies have questioned the validity of these findings due to confounding factors of the aperiodic signal. Using a sample of 134 participants, we replicated the age-related decrease of alpha power lateralization after adjusting for the aperiodic signal. Critically, the link between task performance and alpha power lateralization was found only when correcting for aperiodic signal biases. Functionally, these findings suggest that age-related declines in VWM performance may be related to the decreased ability to prioritize relevant over irrelevant information. Conversely, CDA amplitudes were stable across age groups, suggesting a distinct neural mechanism possibly related to preserved VWM encoding or early maintenance.
Collapse
Affiliation(s)
- Marius Tröndle
- Department of Psychology, University of Zurich, Methods of Plasticity Research, Zurich, Switzerland; University Research Priority Program (URPP) Dynamic of Healthy Aging, Zurich, Switzerland.
| | - Nicolas Langer
- Department of Psychology, University of Zurich, Methods of Plasticity Research, Zurich, Switzerland; University Research Priority Program (URPP) Dynamic of Healthy Aging, Zurich, Switzerland
| |
Collapse
|
184
|
Romeo Z, Angrilli A, Spironelli C. Gender effect in affective processing: Alpha EEG source analysis on emotional slides and film-clips. Psychophysiology 2024; 61:e14568. [PMID: 38467579 DOI: 10.1111/psyp.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/27/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Past research on gender-related brain asymmetries in emotions was limited and not univocal. The present study analyzed EEG alpha activity (indexing cortical de-activation) from 64 scalp sites in 20 women and 20 men during a counterbalanced block presentation of emotional slides and short video-clips. Stimuli consisted of 45 brief clips of 13 s, divided into 15 erotic (pleasant), 15 neutral and 15 fear (unpleasant) contents. Slides consisted in 45 photo shots (presented for 13 s each) extracted from the videos. As expected, women perceived fear stimuli as more arousing and more unpleasant compared to men. Alpha EEG source analysis revealed gender effects depending on stimulus. Emotional film-clips elicited in both groups a pattern of greater right than left occipital activation. Instead, emotional pictures activated opposite occipital regions, as women showed greater activation in the left, men in the right hemisphere. Men also showed greater activation to Erotic compared to Fear stimuli (i.e., pictures/clips) in the posterior parietal complex. Results point to the relevance of emotional stimulus type to reveal gender effects: clips are ecological, dynamic and engaging, and forced a unified pattern of emotional responses that reset individual differences. Emotional pictures, less engaging, allowed individual differences to emerge and interact with the stimulus category.
Collapse
Affiliation(s)
- Zaira Romeo
- Department of General Psychology, University of Padova, Padova, Italy
| | - Alessandro Angrilli
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Chiara Spironelli
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
185
|
Hoffman SJ, Dotson NM, Lima V, Gray CM. The primate cortical LFP exhibits multiple spectral and temporal gradients and widespread task dependence during visual short-term memory. J Neurophysiol 2024; 132:206-225. [PMID: 38842507 PMCID: PMC11383615 DOI: 10.1152/jn.00264.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
Although cognitive functions are hypothesized to be mediated by synchronous neuronal interactions in multiple frequency bands among widely distributed cortical areas, we still lack a basic understanding of the distribution and task dependence of oscillatory activity across the cortical map. Here, we ask how the spectral and temporal properties of the local field potential (LFP) vary across the primate cerebral cortex, and how they are modulated during visual short-term memory. We measured the LFP from 55 cortical areas in two macaque monkeys while they performed a visual delayed match to sample task. Analysis of peak frequencies in the LFP power spectra reveals multiple discrete frequency bands between 3 and 80 Hz that differ between the two monkeys. The LFP power in each band, as well as the sample entropy, a measure of signal complexity, display distinct spatial gradients across the cortex, some of which correlate with reported spine counts in cortical pyramidal neurons. Cortical areas can be robustly decoded using a small number of spectral and temporal parameters, and significant task-dependent increases and decreases in spectral power occur in all cortical areas. These findings reveal pronounced, widespread, and spatially organized gradients in the spectral and temporal activity of cortical areas. Task-dependent changes in cortical activity are globally distributed, even for a simple cognitive task.NEW & NOTEWORTHY We recorded extracellular electrophysiological signals from roughly the breadth and depth of a cortical hemisphere in nonhuman primates (NHPs) performing a visual memory task. Analyses of the band-limited local field potential (LFP) power displayed widespread, frequency-dependent cortical gradients in spectral power. Using a machine learning classifier, these features allowed robust cortical area decoding. Further task dependence in LFP power were found to be widespread, indicating large-scale gradients of LFP activity, and task-related activity.
Collapse
Affiliation(s)
- Steven J Hoffman
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Nicholas M Dotson
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
- Salk Institute for Biological Studies, La Jolla, California, United States
| | - Vinicius Lima
- Aix Marseille Université, INSERM, Systems Neuroscience Institute, Marseille, France
| | - Charles M Gray
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
| |
Collapse
|
186
|
Smith ES, Crawford TJ. The inhibitory effect of a recent distractor: singleton vs. multiple distractors. Exp Brain Res 2024; 242:1745-1759. [PMID: 38819649 PMCID: PMC11208228 DOI: 10.1007/s00221-024-06846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
In the complex interplay between sensory and cognitive processes, the brain must sift through a flood of sensory data to pinpoint relevant signals. This selective mechanism is crucial for the effective control of behaviour, by allowing organisms to focus on important tasks and blocking out distractions. The Inhibition of a Recent Distractor (IRD) Task examines this selection process by exploring how inhibiting distractors influences subsequent eye movements towards an object in the visual environment. In a series of experiments, research by Crawford et al. (2005a) demonstrated a delayed response to a target appearing at the location that was previously occupied by a distractor, demonstrating a legacy inhibition exerted by the distractor on the spatial location of the upcoming target. This study aimed to replicate this effect and to investigate any potential constraints when multiple distractors are presented. Exploring whether the effect is observed in more ecologically relevant scenarios with multiple distractors is crucial for assessing the extent to which it can be applied to a broader range of environments. Experiment 1 successfully replicated the effect, showing a significant IRD effect only with a single distractor. Experiments 2-5 explored a number of possible explanations for this phenomenon.
Collapse
Affiliation(s)
- Eleanor S Smith
- Centre for Ageing Research, Department of Psychology, Lancaster University, Lancaster, LA1 4YF, England
| | - Trevor J Crawford
- Centre for Ageing Research, Department of Psychology, Lancaster University, Lancaster, LA1 4YF, England.
| |
Collapse
|
187
|
Liesefeld HR, Lamy D, Gaspelin N, Geng JJ, Kerzel D, Schall JD, Allen HA, Anderson BA, Boettcher S, Busch NA, Carlisle NB, Colonius H, Draschkow D, Egeth H, Leber AB, Müller HJ, Röer JP, Schubö A, Slagter HA, Theeuwes J, Wolfe J. Terms of debate: Consensus definitions to guide the scientific discourse on visual distraction. Atten Percept Psychophys 2024; 86:1445-1472. [PMID: 38177944 PMCID: PMC11552440 DOI: 10.3758/s13414-023-02820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/06/2024]
Abstract
Hypothesis-driven research rests on clearly articulated scientific theories. The building blocks for communicating these theories are scientific terms. Obviously, communication - and thus, scientific progress - is hampered if the meaning of these terms varies idiosyncratically across (sub)fields and even across individual researchers within the same subfield. We have formed an international group of experts representing various theoretical stances with the goal to homogenize the use of the terms that are most relevant to fundamental research on visual distraction in visual search. Our discussions revealed striking heterogeneity and we had to invest much time and effort to increase our mutual understanding of each other's use of central terms, which turned out to be strongly related to our respective theoretical positions. We present the outcomes of these discussions in a glossary and provide some context in several essays. Specifically, we explicate how central terms are used in the distraction literature and consensually sharpen their definitions in order to enable communication across theoretical standpoints. Where applicable, we also explain how the respective constructs can be measured. We believe that this novel type of adversarial collaboration can serve as a model for other fields of psychological research that strive to build a solid groundwork for theorizing and communicating by establishing a common language. For the field of visual distraction, the present paper should facilitate communication across theoretical standpoints and may serve as an introduction and reference text for newcomers.
Collapse
Affiliation(s)
- Heinrich R Liesefeld
- Department of Psychology, University of Bremen, Hochschulring 18, D-28359, Bremen, Germany.
| | - Dominique Lamy
- The School of Psychology Sciences and The Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv 69978, POB 39040, Tel Aviv, Israel.
| | | | - Joy J Geng
- University of California Davis, Daivs, CA, USA
| | | | | | | | | | | | | | | | - Hans Colonius
- Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | - Anna Schubö
- Philipps University Marburg, Marburg, Germany
| | | | | | - Jeremy Wolfe
- Harvard Medical School, Boston, MA, USA
- Brigham & Women's Hospital, Boston, MA, USA
| |
Collapse
|
188
|
Wang J, Wang J, Hu J, Sun J, Li C, Hong X, Tong S. Baseline alpha wave predicts post-cue alpha during visual spatial attention with linear mixed model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40040163 DOI: 10.1109/embc53108.2024.10782793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Electroencephalography alpha-band (8-13 Hz) activity following spatial cues during visual attention has been extensively studied. However, its functional role remains unclear, possibly due to individual differences or contributing factors. Our recent study showed that post-cue alpha activity depended on baseline alpha by splitting participants based on their median baseline alpha, which, however, ignored the difference in baseline alpha within the subgroups. We thus re-analyzed post-cue alpha with the linear mixed model (LMM), considering individual differences and larger sample sizes for the predictability of baseline alpha. We found that post-cue alpha wave could be well predicted by baseline alpha in two tasks (n = 30 each) with instructional and probabilistic cues based on the LMM (R2=0.994). Our results showed that the LMM was superior in tackling the contributing factors in the study of post-cue alpha activity, and baseline alpha could be a reliable predictor of post-cue alpha activity in visual spatial attention.
Collapse
|
189
|
Haslacher D, Cavallo A, Reber P, Kattein A, Thiele M, Nasr K, Hashemi K, Sokoliuk R, Thut G, Soekadar SR. Working memory enhancement using real-time phase-tuned transcranial alternating current stimulation. Brain Stimul 2024; 17:850-859. [PMID: 39029737 DOI: 10.1016/j.brs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Prior work has shown that transcranial alternating current stimulation (tACS) of parietooccipital alpha oscillations (8-14 Hz) can modulate working memory (WM) performance as a function of the phase lag to endogenous oscillations. However, leveraging this effect using real-time phase-tuned tACS has not been feasible so far due to stimulation artifacts preventing continuous phase tracking. OBJECTIVES AND HYPOTHESIS We aimed to develop a system that tracks and adapts the phase lag between tACS and ongoing parietooccipital alpha oscillations in real-time. We hypothesized that such real-time phase-tuned tACS enhances working memory performance, depending on the phase lag. METHODS We developed real-time phase-tuned closed-loop amplitude-modulated tACS (CLAM-tACS) targeting parietooccipital alpha oscillations. CLAM-tACS was applied at six different phase lags relative to ongoing alpha oscillations while participants (N = 21) performed a working memory task. To exclude that behavioral effects of CLAM-tACS were mediated by other factors such as sensory co-stimulation, a second group of participants (N = 25) received equivalent stimulation of the forehead. RESULTS WM accuracy improved in a phase lag dependent manner (p = 0.0350) in the group receiving parietooccipital stimulation, with the strongest enhancement observed at 330° phase lag between tACS and ongoing alpha oscillations (p = 0.00273, d = 0.976). Moreover, across participants, modulation of frontoparietal alpha oscillations correlated both in amplitude (p = 0.0248) and phase (p = 0.0270) with the modulation of WM accuracy. No such effects were observed in the control group receiving frontal stimulation. CONCLUSIONS Our results demonstrate the feasibility and efficacy of real-time phase-tuned CLAM-tACS in modulating both brain activity and behavior, thereby paving the way for further investigation into brain-behavior relationships and the exploration of innovative therapeutic applications.
Collapse
Affiliation(s)
- David Haslacher
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alessia Cavallo
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology and Experimental Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Reber
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Psychology, University of California, Berkeley, CA, USA
| | - Anna Kattein
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Thiele
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Khaled Nasr
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kimia Hashemi
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rodika Sokoliuk
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gregor Thut
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
190
|
Packy AL, Jayahankar J, Teymourlouei A, Stone J, Oh H, Katz GE, Reggia JA, Gentili RJ. Neurocognitive assessment under various human-robot teaming environments. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039128 DOI: 10.1109/embc53108.2024.10781646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Human-robot teaming has become increasingly important with the advent of intelligent machines. Prior efforts suggest that performance, mental workload, and trust are critical elements of human-robot dynamics that can be altered by the robot's behavior. Most prior human-robot teaming studies used behavioral analyses, but a limited number used neural markers, without the use of physical robots and complex tasks. Here we combine behavioral and EEG cortical dynamics to examine cognitive-motor processes when individuals complete a complex task under various team environments with a robot. The results revealed that altering the robot quality affected both behavioral and EEG dynamics. Task completion with an experienced robot led to greater team performance and human trust along with lower mental workload compared to an inexperienced teammate or when individuals performed alone. EEG changes suggest that different attentional processes were engaged when humans worked with the robot and performed alone, and that visual processing was more prominent when teaming with an inexperienced teammate. This work can inform human cognitive-motor processes and the design of robotic controllers in human-robot teams.
Collapse
|
191
|
Zhou J, Li D, Ye F, Liu R, Feng Y, Feng Z, Li R, Li X, Liu J, Zhang X, Zhou J, Wang G. Effect of add-on transcranial alternating current stimulation (tACS) in major depressive disorder: A randomized controlled trial. Brain Stimul 2024; 17:760-768. [PMID: 38880208 DOI: 10.1016/j.brs.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The effect of transcranial alternating current stimulation (tACS) on major depressive disorder (MDD) was not confirmed. OBJECTIVE To evaluate the feasibility, safety, and efficacy of tACS as an add-on treatment for the symptoms of depression and to understand how tACS affects brain activity. METHODS The 4-week, double-blind, randomized, sham-controlled trial was performed from January 29, 2023 to December 22, 2023. Sixty-six participants were recruited and randomly assigned to receive 20 40-min sessions of either active (77.5Hz, 15 mA) or sham stimulation, with one electrode on the forehead and two on the mastoid, each day (n = 33 for each group) for four weeks (till Week 4). The participants were followed for 4 more weeks (till Week 8) without stimulation for efficacy/safety assessment. During the 4-week trial, all participants were required to take 10-20 mg of escitalopram daily. The primary efficacy endpoint was the change in HAMD-17 scores from baseline to Week 4 (with 20 treatment sessions completed). Resting-state electroencephalography (EEG) was collected with a 64-channel EEG system (Brain Products, Germany) at baseline and the Week 4 follow-up. The chi-square test, Fisher's exact test, independent-sample t-test, or Wilcoxon rank-sum test were used, as appropriate, to compare the differences in variables between groups. The effect of the intervention on the HAMD-17 score was also evaluated with linear mixed modeling (LMM) as sensitivity analysis. The correlation between the mean reduction in EEG and the mean reduction in the HAMD-17 total score was evaluated using Spearman correlation analysis. RESULTS A total of 66 patients (mean [SD] age, 28.4 [8.18] years; 52 [78.8 %] female) were randomized, and 57 patients completed the study. Significant differences were found in the reductions in the HAMD-17 scores at Week 4 (t = 3.44, P = 0.001). Response rates at Week 4 were significantly higher in the active tACS group than in the sham tACS group (22 out of 33 patients [66.7 %] versus 11 out of 33 [33.3 %], P = 0.007). In the active tACS group, a correlation between the mean change in alpha power and HAMD-17 scores at Week 4 was found (r = 2.38, P = 0.024), and the mean change in alpha power was significantly bigger for responders (Z = 2.46, P = 0.014). No serious adverse events were observed in this trial. CONCLUSION The additional antidepressant effect of tACS is significant, and the combination of tACS with antidepressants is a feasible and effective approach for the treatment of MDD. The antidepressant mechanism of tACS may be the reduction in alpha power in the left frontal lobe. Future research directions may include exploring more appropriate treatment parameters of tACS.
Collapse
Affiliation(s)
- Jingjing Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Dan Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fukang Ye
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rui Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuan Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zizhao Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ruinan Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiaoya Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jing Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xueshan Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jia Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
192
|
Pei H, Jiang S, Liu M, Ye G, Qin Y, Liu Y, Duan M, Yao D, Luo C. Simultaneous EEG-fMRI Investigation of Rhythm-Dependent Thalamo-Cortical Circuits Alteration in Schizophrenia. Int J Neural Syst 2024; 34:2450031. [PMID: 38623649 DOI: 10.1142/s012906572450031x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Schizophrenia is accompanied by aberrant interactions of intrinsic brain networks. However, the modulatory effect of electroencephalography (EEG) rhythms on the functional connectivity (FC) in schizophrenia remains unclear. This study aims to provide new insight into network communication in schizophrenia by integrating FC and EEG rhythm information. After collecting simultaneous resting-state EEG-functional magnetic resonance imaging data, the effect of rhythm modulations on FC was explored using what we term "dynamic rhythm information." We also investigated the synergistic relationships among three networks under rhythm modulation conditions, where this relationship presents the coupling between two brain networks with other networks as the center by the rhythm modulation. This study found FC between the thalamus and cortical network regions was rhythm-specific. Further, the effects of the thalamus on the default mode network (DMN) and salience network (SN) were less similar under alpha rhythm modulation in schizophrenia patients than in controls ([Formula: see text]). However, the similarity between the effects of the central executive network (CEN) on the DMN and SN under gamma modulation was greater ([Formula: see text]), and the degree of coupling was negatively correlated with the duration of disease ([Formula: see text], [Formula: see text]). Moreover, schizophrenia patients exhibited less coupling with the thalamus as the center and greater coupling with the CEN as the center. These results indicate that modulations in dynamic rhythms might contribute to the disordered functional interactions seen in schizophrenia.
Collapse
Affiliation(s)
- Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Mei Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Guofeng Ye
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yun Qin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yayun Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Mingjun Duan
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation Chinese, Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation Chinese, Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| |
Collapse
|
193
|
Lundqvist M, Miller EK, Nordmark J, Liljefors J, Herman P. Beta: bursts of cognition. Trends Cogn Sci 2024; 28:662-676. [PMID: 38658218 DOI: 10.1016/j.tics.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Beta oscillations are linked to the control of goal-directed processing of sensory information and the timing of motor output. Recent evidence demonstrates they are not sustained but organized into intermittent high-power bursts mediating timely functional inhibition. This implies there is a considerable moment-to-moment variation in the neural dynamics supporting cognition. Beta bursts thus offer new opportunities for studying how sensory inputs are selectively processed, reshaped by inhibitory cognitive operations and ultimately result in motor actions. Recent method advances reveal diversity in beta bursts that provide deeper insights into their function and the underlying neural circuit activity motifs. We propose that brain-wide, spatiotemporal patterns of beta bursting reflect various cognitive operations and that their dynamics reveal nonlinear aspects of cortical processing.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden; The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Earl K Miller
- The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonatan Nordmark
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Johan Liljefors
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Pawel Herman
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden; Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
194
|
Voegtle A, Mohrbutter C, Hils J, Schulz S, Weuthen A, Brämer U, Ullsperger M, Sweeney-Reed CM. Cholinergic modulation of motor sequence learning. Eur J Neurosci 2024; 60:3706-3718. [PMID: 38716689 DOI: 10.1111/ejn.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 07/06/2024]
Abstract
The cholinergic system plays a key role in motor function, but whether pharmacological modulation of cholinergic activity affects motor sequence learning is unknown. The acetylcholine receptor antagonist biperiden, an established treatment in movement disorders, reduces attentional modulation, but whether it influences motor sequence learning is not clear. Using a randomized, double-blind placebo-controlled crossover design, we tested 30 healthy young participants and showed that biperiden impairs the ability to learn sequential finger movements, accompanied by widespread oscillatory broadband power changes (4-25 Hz) in the motor sequence learning network after receiving biperiden, with greater power in the theta, alpha and beta bands over ipsilateral motor and bilateral parietal-occipital areas. The reduced early theta power during a repeated compared with random sequence, likely reflecting disengagement of top-down attention to sensory processes, was disrupted by biperiden. Alpha synchronization during repeated sequences reflects sensory gating and lower visuospatial attention requirements compared with visuomotor responses to random sequences. After biperiden, alpha synchronization was greater, potentially reflecting excessive visuospatial attention reduction, affecting visuomotor responding required to enable sequence learning. Beta oscillations facilitate sequence learning by integrating visual and somatosensory inputs, stabilizing repeated sequences and promoting prediction of the next stimulus. The beta synchronization after biperiden fits with a disruption of the selective visuospatial attention enhancement associated with initial sequence learning. These findings highlight the role of cholinergic processes in motor sequence learning.
Collapse
Affiliation(s)
- Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Catharina Mohrbutter
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jonathan Hils
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Steve Schulz
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Weuthen
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Uwe Brämer
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Ullsperger
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
195
|
Zhozhikashvili N, Protopova M, Shkurenko T, Arsalidou M, Zakharov I, Kotchoubey B, Malykh S, Pavlov YG. Working memory processes and intrinsic motivation: An EEG study. Int J Psychophysiol 2024; 201:112355. [PMID: 38718899 DOI: 10.1016/j.ijpsycho.2024.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024]
Abstract
Processes typically encompassed by working memory (WM) include encoding, retention, and retrieval of information. Previous research has demonstrated that motivation can influence WM performance, although the specific WM processes affected by motivation are not yet fully understood. In this study, we investigated the effects of motivation on different WM processes, examining how task difficulty modulates these effects. We hypothesized that motivation level and personality traits of the participants (N = 48, 32 females; mean age = 21) would modulate the parietal alpha and frontal theta electroencephalography (EEG) correlates of WM encoding, retention, and retrieval phases of the Sternberg task. This effect was expected to be more pronounced under conditions of very high task difficulty. We found that increasing difficulty led to reduced accuracy and increased response time, but no significant relationship was found between motivation and accuracy. However, EEG data revealed that motivation influenced WM processes, as indicated by changes in alpha and theta oscillations. Specifically, higher levels of the Resilience trait-associated with mental toughness, hardiness, self-efficacy, achievement motivation, and low anxiety-were related to increased alpha desynchronization during encoding and retrieval. Increased scores of Subjective Motivation to perform well in the task were related to enhanced frontal midline theta during retention. Additionally, these effects were significantly stronger under conditions of high difficulty. These findings provide insights into the specific WM processes that are influenced by motivation, and underscore the importance of considering both task difficulty and intrinsic motivation in WM research.
Collapse
Affiliation(s)
- Natalia Zhozhikashvili
- Faculty of Social Sciences, HSE University, Moscow, Russia; Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany.
| | - Maria Protopova
- Center for Language and Brain, HSE University, Moscow, Russia
| | | | | | - Ilya Zakharov
- Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Sergey Malykh
- Developmental Behavioral Genetics Lab, Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Yuri G Pavlov
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
196
|
Redding ZV, Fiebelkorn IC. Separate Cue- and Alpha-Related Mechanisms for Distractor Suppression. J Neurosci 2024; 44:e1444232024. [PMID: 38729761 PMCID: PMC11209672 DOI: 10.1523/jneurosci.1444-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Research on selective attention has largely focused on the enhancement of behaviorally important information, with less focus on the suppression of distracting information. Enhancement and suppression can operate through a push-pull relationship attributable to competitive interactions among neural populations. There has been considerable debate, however, regarding (1) whether suppression can be voluntarily deployed, independent of enhancement, and (2) whether voluntary deployment of suppression is associated with neural processes occurring prior to the distractor onset. Here, we investigated the interplay between pre- and post-distractor neural processes, while male and female human subjects performed a visual search task with a cue that indicated the location of an upcoming distractor. We utilized two established EEG markers of suppression: the distractor positivity (PD) and alpha power (∼8-15 Hz). The PD-a component of event-related potentials-has been linked with successful distractor suppression, and increased alpha power has been linked with attenuated sensory processing. Cueing the location of an upcoming distractor speeded responses and led to an earlier PD, consistent with earlier suppression due to strategic use of a spatial cue. In comparison, higher predistractor alpha power contralateral to distractors led to a later PD, consistent with later suppression. Lower alpha power contralateral to distractors instead led to distractor-related attentional capture. Lateralization of alpha power was not linked to the spatial cue. This observation, combined with differences in the timing of suppression-as indexed by earlier and later PD components-demonstrates that cue-related, voluntary suppression can occur separate from alpha-related gating of sensory processing.
Collapse
Affiliation(s)
- Zach V Redding
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14627
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14627
| |
Collapse
|
197
|
Misselhorn J, Fiene M, Radecke JO, Engel AK, Schneider TR. Transcranial Alternating Current Stimulation over Frontal Eye Fields Mimics Attentional Modulation of Visual Processing. J Neurosci 2024; 44:e1510232024. [PMID: 38729759 PMCID: PMC11209665 DOI: 10.1523/jneurosci.1510-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Attentional control over sensory processing has been linked to neural alpha oscillations and related inhibition of cerebral cortex. Despite the wide consensus on the functional relevance of alpha oscillations for attention, precise neural mechanisms of how alpha oscillations shape perception and how this top-down modulation is implemented in cortical networks remain unclear. Here, we tested the hypothesis that alpha oscillations in frontal eye fields (FEFs) are causally involved in the top-down regulation of visual processing in humans (male and female). We applied sham-controlled, intermittent transcranial alternating current stimulation (tACS) over bilateral FEF at either 10 Hz (alpha) or 40 Hz (gamma) to manipulate attentional preparation in a visual discrimination task. Under each stimulation condition, we measured psychometric functions for contrast perception and introduced a novel linear mixed modeling approach for statistical control of neurosensory side effects of the electric stimulation. tACS at alpha frequency reduced the slope of the psychometric function, resulting in improved subthreshold and impaired superthreshold contrast perception. Side effects on the psychometric functions were complex and showed large interindividual variability. Controlling for the impact of side effects on the psychometric parameters by using covariates in the linear mixed model analysis reduced this variability and strengthened the perceptual effect. We propose that alpha tACS over FEF mimicked a state of endogenous attention by strengthening a fronto-occipitoparietal network in the alpha band. We speculate that this network modulation enhanced phasic gating in occipitoparietal cortex leading to increased variability of single-trial psychometric thresholds, measurable as a reduction of psychometric slope.
Collapse
Affiliation(s)
- Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Marina Fiene
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan-Ole Radecke
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck 23562, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck 23562, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
198
|
Jiang Z, An X, Liu S, Yin E, Yan Y, Ming D. Beyond alpha band: prestimulus local oscillation and interregional synchrony of the beta band shape the temporal perception of the audiovisual beep-flash stimulus. J Neural Eng 2024; 21:036035. [PMID: 37419108 DOI: 10.1088/1741-2552/ace551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Objective.Multisensory integration is more likely to occur if the multimodal inputs are within a narrow temporal window called temporal binding window (TBW). Prestimulus local neural oscillations and interregional synchrony within sensory areas can modulate cross-modal integration. Previous work has examined the role of ongoing neural oscillations in audiovisual temporal integration, but there is no unified conclusion. This study aimed to explore whether local ongoing neural oscillations and interregional audiovisual synchrony modulate audiovisual temporal integration.Approach.The human participants performed a simultaneity judgment (SJ) task with the beep-flash stimuli while recording electroencephalography. We focused on two stimulus onset asynchrony (SOA) conditions where subjects report ∼50% proportion of synchronous responses in auditory- and visual-leading SOA (A50V and V50A).Main results.We found that the alpha band power is larger in synchronous response in the central-right posterior and posterior sensors in A50V and V50A conditions, respectively. The results suggested that the alpha band power reflects neuronal excitability in the auditory or visual cortex, which can modulate audiovisual temporal perception depending on the leading sense. Additionally, the SJs were modulated by the opposite phases of alpha (5-10 Hz) and low beta (14-20 Hz) bands in the A50V condition while the low beta band (14-18 Hz) in the V50A condition. One cycle of alpha or two cycles of beta oscillations matched an auditory-leading TBW of ∼86 ms, while two cycles of beta oscillations matched a visual-leading TBW of ∼105 ms. This result indicated the opposite phases in the alpha and beta bands reflect opposite cortical excitability, which modulated the audiovisual SJs. Finally, we found stronger high beta (21-28 Hz) audiovisual phase synchronization for synchronous response in the A50V condition. The phase synchrony of the beta band might be related to maintaining information flow between visual and auditory regions in a top-down manner.Significance.These results clarified whether and how the prestimulus brain state, including local neural oscillations and functional connectivity between brain regions, affects audiovisual temporal integration.
Collapse
Affiliation(s)
- Zeliang Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Erwei Yin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
- Defense Innovation Institute, Academy of Military Sciences (AMS), 100071 Beijing, People's Republic of China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), 300457 Tianjin, People's Republic of China
| | - Ye Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
- Defense Innovation Institute, Academy of Military Sciences (AMS), 100071 Beijing, People's Republic of China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), 300457 Tianjin, People's Republic of China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
| |
Collapse
|
199
|
Shuster AE, Chen PC, Niknazar H, McDevitt EA, Lopour B, Mednick SC. Novel Electrophysiological Signatures of Learning and Forgetting in Human Rapid Eye Movement Sleep. J Neurosci 2024; 44:e1517232024. [PMID: 38670803 PMCID: PMC11170679 DOI: 10.1523/jneurosci.1517-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Despite the known behavioral benefits of rapid eye movement (REM) sleep, discrete neural oscillatory events in human scalp electroencephalography (EEG) linked with behavior have not been discovered. This knowledge gap hinders mechanistic understanding of the function of sleep, as well as the development of biophysical models and REM-based causal interventions. We designed a detection algorithm to identify bursts of activity in high-density, scalp EEG within theta (4-8 Hz) and alpha (8-13 Hz) bands during REM sleep. Across 38 nights of sleep, we characterized the burst events (i.e., count, duration, density, peak frequency, amplitude) in healthy, young male and female human participants (38; 21F) and investigated burst activity in relation to sleep-dependent memory tasks: hippocampal-dependent episodic verbal memory and nonhippocampal visual perceptual learning. We found greater burst count during the more REM-intensive second half of the night (p < 0.05), longer burst duration during the first half of the night (p < 0.05), but no differences across the night in density or power (p > 0.05). Moreover, increased alpha burst power was associated with increased overnight forgetting for episodic memory (p < 0.05). Furthermore, we show that increased REM theta burst activity in retinotopically specific regions was associated with better visual perceptual performance. Our work provides a critical bridge between discrete REM sleep events in human scalp EEG that support cognitive processes and the identification of similar activity patterns in animal models that allow for further mechanistic characterization.
Collapse
Affiliation(s)
| | - Pin-Chun Chen
- University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hamid Niknazar
- Sleep and Cognition Lab, University of California, Irvine, California 92697
| | | | - Beth Lopour
- Sleep and Cognition Lab, University of California, Irvine, California 92697
| | - Sara C Mednick
- Sleep and Cognition Lab, University of California, Irvine, California 92697
| |
Collapse
|
200
|
Marcu GM, Băcilă CI, Zăgrean AM. Temporal-Posterior Alpha Power in Resting-State Electroencephalography as a Potential Marker of Complex Childhood Trauma in Institutionalized Adolescents. Brain Sci 2024; 14:584. [PMID: 38928584 PMCID: PMC11201643 DOI: 10.3390/brainsci14060584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The present study explored whether, given the association of temporal alpha with fear circuitry (learning and conditioning), exposure to complex childhood trauma (CCT) is reflected in the temporal-posterior alpha power in resting-state electroencephalography (EEG) in complex trauma-exposed adolescents in a sample of 25 adolescents and similar controls aged 12-17 years. Both trauma and psychopathology were screened or assessed, and resting-state EEG was recorded following a preregistered protocol for data collection. Temporal-posterior alpha power, corresponding to the T5 and T6 electrode locations (international 10-20 system), was extracted from resting-state EEG in both eyes-open and eyes-closed conditions. We found that in the eyes-open condition, temporal-posterior alpha was significantly lower in adolescents exposed to CCT relative to healthy controls, suggesting that childhood trauma exposure may have a measurable impact on alpha oscillatory patterns. Our study highlights the importance of considering potential neural markers, such as temporal-posterior alpha power, to understanding the long-term consequences of CCT exposure in developmental samples, with possible important clinical implications in guiding neuroregulation interventions.
Collapse
Affiliation(s)
- Gabriela Mariana Marcu
- Division of Physiology and Neuroscience, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Psychology, Faculty of Social Sciences and Humanities, “Lucian Blaga” University of Sibiu, 550201 Sibiu, Romania
- Collective of Scientific Research in Neurosciences of the Clinical Psychiatry Hospital “Dr. Gheorghe Preda”, 550082 Sibiu, Romania
| | - Ciprian Ionuț Băcilă
- Collective of Scientific Research in Neurosciences of the Clinical Psychiatry Hospital “Dr. Gheorghe Preda”, 550082 Sibiu, Romania
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology and Neuroscience, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|