151
|
Alexa Oniciuc EA, Walsh CJ, Coughlan LM, Awad A, Simon CA, Ruiz L, Crispie F, Cotter PD, Alvarez-Ordóñez A. Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and Quorum-Quenching Determinants as Revealed through Functional Metagenomics. mSystems 2020; 5:e00723-19. [PMID: 32071160 PMCID: PMC7029220 DOI: 10.1128/msystems.00723-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/22/2020] [Indexed: 12/16/2022] Open
Abstract
Here, the role of the dairy-processing chain as a reservoir of antimicrobial resistance (AR) determinants and a source of novel biocontrol quorum-sensing inhibitors is assessed through a functional metagenomics approach. A metagenomic library comprising ∼22,000 recombinant clones was built from DNA isolated from raw milk, raw milk cheeses, and cheese-processing environment swab samples. The high-throughput sequencing of 9,216 recombinant clones showed that lactic acid bacteria (LAB) dominated the microbial communities of raw milk cheese, while Gram-negative microorganisms of animal or soil origin dominated the microbiota of raw milk and cheese-processing environments. Although functional screening of the metagenomic library did not recover potential quorum-sensing inhibitors, in silico analysis using an in-house database built specifically for this study identified homologues to several genes encoding proteins with predicted quorum-quenching activity, among which, the QsdH hydrolase was the most abundant. In silico screening of the library identified LAB, and especially Lactococcus lactis, as a relevant reservoir of AR determinants in cheese. Functional screening of the library allowed the isolation of 13 recombinant clones showing an increased resistance toward ampicillin, which in all cases was accompanied by a reduced susceptibility to a wide range of β-lactam antibiotics. This study shows that the dairy-processing environment is a rich reservoir of AR determinants, which vary by sample source, and suggests that combining next-generation sequencing with functional metagenomics can be of use in overcoming the limitations of both approaches.IMPORTANCE The study shows the potential of functional metagenomics analyses to uncover the diversity of functions in microbial communities prevailing in dairy products and their processing environments, evidencing that lactic acid bacteria (LAB) dominate the cheese microbiota, whereas Gram-negative microorganisms of animal or soil origin dominate the microbiota of milk and cheese-processing environments. The functional and in silico screening of the library allowed the identification of LAB, and especially Lactococcus lactis, as a relevant reservoir of antimicrobial resistance (AR) determinants in cheese. Quorum-quenching (QQ) determinants were not recovered through the execution of wet-lab function-based screenings but were detected through in silico sequencing-based analyses.
Collapse
Affiliation(s)
| | - Calum J Walsh
- Teagasc Food Research Centre, Fermoy, County Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Amal Awad
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Cezara A Simon
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Lorena Ruiz
- Dairy Research Institute, Spanish National Research Council, Instituto de Productos Lácteos de Asturias-CSIC, Villaviciosa, Spain
| | - Fiona Crispie
- Teagasc Food Research Centre, Fermoy, County Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Fermoy, County Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| |
Collapse
|
152
|
Targeting the Class A Carbapenemase GES-5 via Virtual Screening. Biomolecules 2020; 10:biom10020304. [PMID: 32075131 PMCID: PMC7072645 DOI: 10.3390/biom10020304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
The worldwide spread of β-lactamases able to hydrolyze last resort carbapenems contributes to the antibiotic resistance problem and menaces the successful antimicrobial treatment of clinically relevant pathogens. Class A carbapenemases include members of the KPC and GES families. While drugs against KPC-type carbapenemases have recently been approved, for GES-type enzymes, no inhibitors have yet been introduced in therapy. Thus, GES carbapenemases represent important drug targets. Here, we present an in silico screening against the most prevalent GES carbapenemase, GES-5, using a lead-like compound library of commercially available compounds. The most promising candidates were selected for in vitro validation in biochemical assays against recombinant GES-5 leading to four derivatives active as high micromolar competitive inhibitors. For the best inhibitors, the ability to inhibit KPC-2 was also evaluated. The discovered inhibitors constitute promising starting points for hit to lead optimization.
Collapse
|
153
|
Saeki EK, Kobayashi RKT, Nakazato G. Quorum sensing system: Target to control the spread of bacterial infections. Microb Pathog 2020; 142:104068. [PMID: 32061914 DOI: 10.1016/j.micpath.2020.104068] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/30/2022]
Abstract
Quorum Sensing (QS) systems regulate the gene expression of different types of virulence factors in accordance with the cell population density. A literature search was performed, including electronic databases such as MEDLINE/PubMed, SciELO, and LILACS, as well as other databases not indexed, such as Google Scholar. The search was conducted between July 2018 and April 2019, through online research. Antimicrobial resistance is one of the biggest threats to global health and the dissemination of resistant microbes in the environment is a major public health problem. Therefore, it is important to develop new therapies to control the spread of resistant bacteria to humans. Thus, interference in the chemical signal (autoinducers) of the QS system has been postulated as a good alternative, technically known as "Quorum Quenching" or QS inhibitors. Inhibition of QS signaling is not intended to kill the microorganism, but to block the expression of the target genes, making the cells less virulent and more vulnerable to host immune response. Anti-virulence therapy by agents that interfere with this system in pathogenic bacteria is a well-studied strategy, including medicinal plants and their bioactive constituents, and presents good prospects. This review aims to provide an overview of the QS system in bacteria and describe the main inhibitors of the system.
Collapse
Affiliation(s)
- Erika Kushikawa Saeki
- Regional Laboratory Center, Adolfo Lutz Institute, Presidente Prudente, São Paulo, Brazil.
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
154
|
Li Y, Rebuffat S. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology. J Biol Chem 2020; 295:34-54. [PMID: 31784450 PMCID: PMC6952617 DOI: 10.1074/jbc.rev119.006545] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ribosomally synthesized and posttranslationally modified peptides (RiPPs), also called ribosomal peptide natural products (RPNPs), form a growing superfamily of natural products that are produced by many different organisms and particularly by bacteria. They are derived from precursor polypeptides whose modification by various dedicated enzymes helps to establish a vast array of chemical motifs. RiPPs have attracted much interest as a source of potential therapeutic agents, and in particular as alternatives to conventional antibiotics to address the bacterial resistance crisis. However, their ecological roles in nature are poorly understood and explored. The present review describes major RiPP actors in competition within microbial communities, the main ecological and physiological functions currently evidenced for RiPPs, and the microbial ecosystems that are the sites for these functions. We envision that the study of RiPPs may lead to discoveries of new biological functions and highlight that a better knowledge of how bacterial RiPPs mediate inter-/intraspecies and interkingdom interactions will hold promise for devising alternative strategies in antibiotic development.
Collapse
Affiliation(s)
- Yanyan Li
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France.
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
155
|
Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Venkateswara Sarma V. 2,4-Di-Tert-Butylphenol Isolated From an Endophytic Fungus, Daldinia eschscholtzii, Reduces Virulence and Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2020; 11:1668. [PMID: 32849344 DOI: 10.3389/fmicb.2020.0166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 05/20/2023] Open
Abstract
Pseudomonas aeruginosa is among the top three gram-negative bacteria according to the WHO's critical priority list of pathogens against which newer antibiotics are urgently needed and considered a global threat due to multiple drug resistance. This situation demands unconventional antimicrobial strategies such as the inhibition of quorum sensing to alleviate the manifestation of classical resistance mechanisms. Here, we report that 2,4-di-tert-butylphenol (2,4-DBP), isolated from an endophytic fungus, Daldinia eschscholtzii, inhibits the quorum-sensing properties of P. aeruginosa. We have found that treating P. aeruginosa with 2,4-DBP substantially reduced the secretion of virulence factors as well as biofilm, and its associated factors that are controlled by quorum sensing, in a dose-dependent manner. Concomitantly, 2,4-DBP also significantly reduced the expression of quorum sensing-related genes, i.e., lasI, lasR, rhlI, and rhlR significantly. Importantly, 2,4-DBP restricted the adhesion and invasion of P. aeruginosa to the A549 lung alveolar carcinoma cells. In addition, bactericidal assay with 2,4-DBP exhibited synergism with ampicillin to kill P. aeruginosa. Furthermore, our computational studies predicted that 2,4-DBP could bind to the P. aeruginosa quorum-sensing receptors LasR and RhlR. Collectively, these data suggest that 2,4-DBP can be exploited as a standalone drug or in combination with antibiotic(s) as an anti-virulence and anti-biofilm agent to combat the multidrug resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Rashmi Mishra
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sudhakar Pagal
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Ayaluru Murali
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | | | | |
Collapse
|
156
|
Sfriso R, Egert M, Gempeler M, Voegeli R, Campiche R. Revealing the secret life of skin - with the microbiome you never walk alone. Int J Cosmet Sci 2019; 42:116-126. [PMID: 31743445 PMCID: PMC7155096 DOI: 10.1111/ics.12594] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
The human skin microbiome has recently become a focus for both the dermatological and cosmetic fields. Understanding the skin microbiota, that is the collection of vital microorganisms living on our skin, and how to maintain its delicate balance is an essential step to gain insight into the mechanisms responsible for healthy skin and its appearance. Imbalances in the skin microbiota composition (dysbiosis) are associated with several skin conditions, either pathological such as eczema, acne, allergies or dandruff or non‐pathological such as sensitive skin, irritated skin or dry skin. Therefore, the development of approaches which preserve or restore the natural, individual balance of the microbiota represents a novel target not only for dermatologists but also for skincare applications. This review gives an overview on the current knowledge on the skin microbiome, the currently available sampling and analysis techniques as well as a description of current approaches undertaken in the skincare segment to help restoring and balancing the structure and functionality of the skin microbiota.
Collapse
Affiliation(s)
- R Sfriso
- DSM Nutritional Products, Personal care, Wurmisweg 576, CH-4303, Kaiseraugst, Switzerland
| | - M Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany
| | - M Gempeler
- DSM Nutritional Products, Personal care, Wurmisweg 576, CH-4303, Kaiseraugst, Switzerland
| | - R Voegeli
- DSM Nutritional Products, Personal care, Wurmisweg 576, CH-4303, Kaiseraugst, Switzerland
| | - R Campiche
- DSM Nutritional Products, Personal care, Wurmisweg 576, CH-4303, Kaiseraugst, Switzerland
| |
Collapse
|
157
|
iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou's 5-Steps Rule and Informative Physicochemical Properties. Int J Mol Sci 2019; 21:ijms21010075. [PMID: 31861928 PMCID: PMC6981611 DOI: 10.3390/ijms21010075] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/18/2023] Open
Abstract
Understanding of quorum-sensing peptides (QSPs) in their functional mechanism plays an essential role in finding new opportunities to combat bacterial infections by designing drugs. With the avalanche of the newly available peptide sequences in the post-genomic age, it is highly desirable to develop a computational model for efficient, rapid and high-throughput QSP identification purely based on the peptide sequence information alone. Although, few methods have been developed for predicting QSPs, their prediction accuracy and interpretability still requires further improvements. Thus, in this work, we proposed an accurate sequence-based predictor (called iQSP) and a set of interpretable rules (called IR-QSP) for predicting and analyzing QSPs. In iQSP, we utilized a powerful support vector machine (SVM) cooperating with 18 informative features from physicochemical properties (PCPs). Rigorous independent validation test showed that iQSP achieved maximum accuracy and MCC of 93.00% and 0.86, respectively. Furthermore, a set of interpretable rules IR-QSP was extracted by using random forest model and the 18 informative PCPs. Finally, for the convenience of experimental scientists, the iQSP web server was established and made freely available online. It is anticipated that iQSP will become a useful tool or at least as a complementary existing method for predicting and analyzing QSPs.
Collapse
|
158
|
Nain Z, Sayed SB, Karim MM, Islam MA, Adhikari UK. Energy-optimized pharmacophore coupled virtual screening in the discovery of quorum sensing inhibitors of LasR protein of Pseudomonas aeruginosa. J Biomol Struct Dyn 2019; 38:5374-5388. [DOI: 10.1080/07391102.2019.1700168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Sifat Bin Sayed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mohammad Minnatul Karim
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Ariful Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | | |
Collapse
|
159
|
Su S, Yin P, Li J, Chen G, Wang Y, Qu D, Li Z, Xue X, Luo X, Li M. In vitro and in vivo anti-biofilm activity of pyran derivative against Staphylococcus aureus and Pseudomonas aeruginosa. J Infect Public Health 2019; 13:791-799. [PMID: 31813834 DOI: 10.1016/j.jiph.2019.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The development of bacterial biofilm can cause severe chronic infections and antibiotic resistance. Therefore, it poses a significant threat to public health. Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) are two major pathogens that can cause biofilm-associated infections, which leads to the urgent necessity of developing new agents with biofilm-forming inhibitory ability. METHODS A series of pyran derivatives were synthesized and characterized, and their in vitro anti-biofilm activity against S. aureus and P. aeruginosa were measured by minimal biofilm inhibitory concentration assay and FITC dye staining. The in vivo antibiofilm therapeutical effects were evaluated in S. aureus induced tissue cage infection mice model and P. aeruginosa induced urinary tract catheter infection rat model. RESULTS Several pyran derivatives showed the in vitro anti-biofilm activity against S. aureus and P. aeruginosa, and the activity of these compounds was not mediated through the accessory gene regulator (agr) quorum sensing system of S. aureus. One of these pyran derivatives, namely 2-amino-4-(2,6-dichlorophenyl)-3-cyano-5-oxo-4H,5H-pyrano[3,2c]chromene, exhibited significant inhibitory biofilm-formation activity in S. aureus tissue cage infection mice model and in the P. aeruginosa-infected urinary tract catheters of experimental rats. CONCLUSIONS The data indicated that this pyran derivative is a possible lead compound that can be used for the development of novel anti-biofilm agents against S. aureus and P. aeruginosa infection.
Collapse
Affiliation(s)
- Shan Su
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Pengshuo Yin
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Jing Li
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi'an University, Xi'an, 710065, China
| | - Guanghui Chen
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Yikun Wang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Di Qu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhoupeng Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoyan Xue
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoxing Luo
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China; Precision Pharmacy & Drug Development Center, The Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
160
|
Huigens RW, Abouelhassan Y, Yang H. Phenazine Antibiotic-Inspired Discovery of Bacterial Biofilm-Eradicating Agents. Chembiochem 2019; 20:2885-2902. [PMID: 30811834 PMCID: PMC7325843 DOI: 10.1002/cbic.201900116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Bacterial biofilms are surface-attached communities of slow-growing and non-replicating persister cells that demonstrate high levels of antibiotic tolerance. Biofilms occur in nearly 80 % of infections and present unique challenges to our current arsenal of antibiotic therapies, all of which were initially discovered for their abilities to target rapidly dividing, free-floating planktonic bacteria. Bacterial biofilms are credited as the underlying cause of chronic and recurring bacterial infections. Innovative approaches are required to identify new small molecules that operate through bacterial growth-independent mechanisms to effectively eradicate biofilms. One source of inspiration comes from within the lungs of young cystic fibrosis (CF) patients, who often endure persistent Staphylococcus aureus infections. As these CF patients age, Pseudomonas aeruginosa co-infects the lungs and utilizes phenazine antibiotics to eradicate the established S. aureus infection. Our group has taken a special interest in this microbial competition strategy and we are investigating the potential of phenazine antibiotic-inspired compounds and synthetic analogues thereof to eradicate persistent bacterial biofilms. To discover new biofilm-eradicating agents, we have established an interdisciplinary research program involving synthetic medicinal chemistry, microbiology and molecular biology. From these efforts, we have identified a series of halogenated phenazines (HPs) that potently eradicate bacterial biofilms, and future work aims to translate these preliminary findings into ground-breaking clinical advances for the treatment of persistent biofilm infections.
Collapse
Affiliation(s)
- Robert W. Huigens
- Department of Medicinal Chemistry; Center for Natural Products Drug Discovery and Development (CNPD3); University of Florida, Gainesville, FL, USA
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry; Center for Natural Products Drug Discovery and Development (CNPD3); University of Florida, Gainesville, FL, USA
| | - Hongfen Yang
- Department of Medicinal Chemistry; Center for Natural Products Drug Discovery and Development (CNPD3); University of Florida, Gainesville, FL, USA
| |
Collapse
|
161
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
162
|
Deryabin D, Galadzhieva A, Kosyan D, Duskaev G. Plant-Derived Inhibitors of AHL-Mediated Quorum Sensing in Bacteria: Modes of Action. Int J Mol Sci 2019; 20:E5588. [PMID: 31717364 PMCID: PMC6888686 DOI: 10.3390/ijms20225588] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Numerous gram-negative phytopathogenic and zoopathogenic bacteria utilise acylated homoserine lactone (AHL) in communication systems, referred to as quorum sensing (QS), for induction of virulence factors and biofilm development. This phenomenon positions AHL-mediated QS as an attractive target for anti-infective therapy. This review focused on the most significant groups of plant-derived QS inhibitors and well-studied individual compounds for which in silico, in vitro and in vivo studies provide substantial knowledge about their modes of anti-QS activity. The current data about sulfur-containing compounds, monoterpenes and monoterpenoids, phenylpropanoids, benzoic acid derivatives, diarylheptanoids, coumarins, flavonoids and tannins were summarized; their plant sources, anti-QS effects and bioactivity mechanisms have also been summarized and discussed. Three variants of plant-derived molecules anti-QS strategies are proposed: (i) specific, via binding with LuxI-type AHL synthases and/or LuxR-type AHL receptor proteins, which have been shown for terpenes (carvacrol and l-carvone), phenylpropanoids (cinnamaldehyde and eugenol), flavonoid quercetin and ellagitannins; (ii) non-specific, by affecting the QS-related intracellular regulatory pathways by lowering regulatory small RNA expression (sulphur-containing compounds ajoene and iberin) or c-di-GMP metabolism reduction (coumarin); and (iii) indirect, via alteration of metabolic pathways involved in QS-dependent processes (vanillic acid and curcumin).
Collapse
Affiliation(s)
- Dmitry Deryabin
- Federal Scientific Center of Biological Systems and Agrotechnologies of RAS, Orenburg 460000, Russia; (A.G.); (D.K.); (G.D.)
| | | | | | | |
Collapse
|
163
|
Design, Synthesis and Biological Evaluation of New Piperazin-4-yl-(acetyl-thiazolidine-2,4-dione) Norfloxacin Analogues as Antimicrobial Agents. Molecules 2019; 24:molecules24213959. [PMID: 31683749 PMCID: PMC6864599 DOI: 10.3390/molecules24213959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/12/2023] Open
Abstract
In an effort to improve the antimicrobial activity of norfloxacin, a series of hybrid norfloxacin–thiazolidinedione molecules were synthesized and screened for their direct antimicrobial activity and their anti-biofilm properties. The new hybrids were intended to have a new binding mode to DNA gyrase, that will allow for a more potent antibacterial effect, and for activity against current quinolone-resistant bacterial strains. Moreover, the thiazolidinedione moiety aimed to include additional anti-pathogenicity by preventing biofilm formation. The resulting compounds showed promising direct activity against Gram-negative strains, and anti-biofilm activity against Gram-positive strains. Docking studies and ADMET were also used in order to explain the biological properties and revealed some potential advantages over the parent molecule norfloxacin.
Collapse
|
164
|
Krzyżek P. Challenges and Limitations of Anti-quorum Sensing Therapies. Front Microbiol 2019; 10:2473. [PMID: 31736912 PMCID: PMC6834643 DOI: 10.3389/fmicb.2019.02473] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is a mechanism allowing microorganisms to sense population density and synchronously control genes expression. It has been shown that QS supervises the activity of many processes important for microbial pathogenicity, e.g., sporulation, biofilm formation, and secretion of enzymes or membrane vesicles. This contributed to the concept of anti-QS therapy [also called quorum quenching (QQ)] and the opportunity of its application in fighting against various types of pathogens. In recent years, many published articles reported promising results indicating the possibility of reducing pathogenicity of tested microorganisms and their easier eradication when co-treated with antibiotics. The aim of the present article is to point to the opposite, negative side of the QQ therapy, with particular emphasis on three fundamental properties attributed to anti-QS substances: the selectivity, virulence reduction, and lack of resistance against QQ. This point of view may highlight new directions of research, which should be taken into account in the future before the widespread introduction of QQ therapies in the treatment of people.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
165
|
Wang Y, Feng T, Li H, Yu Y, Han Y, Zhang J, Li X, Li Y, Zhang XH. A novel heterologous expression strategy for the quorum-quenching enzyme MomL in Lysobacter enzymogenes to the inhibit pathogenicity of Pectobacterium. Appl Microbiol Biotechnol 2019; 103:8889-8898. [PMID: 31656979 DOI: 10.1007/s00253-019-10166-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/20/2019] [Accepted: 09/28/2019] [Indexed: 01/28/2023]
Abstract
Quorum-quenching (QQ) enzymes can block the quorum-sensing (QS) system and prevent the expression of QS-controlled pathogenic factors in bacteria. However, the low expression levels of QQ proteins in the original host bacteria have affected their widespread application. In this study, we heterologously expressed momL, encoding a QQ enzyme with high activity, in Lysobacter enzymogenes. A "yellow-to-white" selection marker and the high-constitutive-expression promoter PgroEL were used in this novel heterologous expression system. In addition, we optimized the spacer between the SD sequence and the initiator to improve the efficiency of the expression system by 1.54-fold. The engineered strain LeMomL degraded the AHL molecule and the virulence factors of Pectobacterium carotovorum subsp. carotovora (Pcc). Additionally, LeMomL significantly decreased the disease caused by Pcc in Chinese cabbages and carrot root tissues. In conclusion, this novel and facile L. enzymogenes expression strategy has good prospects and is an ideal approach for foreign protein expression.
Collapse
Affiliation(s)
- Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Tao Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hui Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yameng Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yong Han
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Jingjing Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
166
|
Racz R, Nagy A, Rakonczay Z, Dunavari EK, Gerber G, Varga G. Defense Mechanisms Against Acid Exposure by Dental Enamel Formation, Saliva and Pancreatic Juice Production. Curr Pharm Des 2019; 24:2012-2022. [PMID: 29769002 PMCID: PMC6225347 DOI: 10.2174/1381612824666180515125654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
The pancreas, the salivary glands and the dental enamel producing ameloblasts have marked developmental, structural and functional similarities. One of the most striking similarities is their bicarbonate-rich secretory product, serving acid neutralization. An important difference between them is that while pancreatic juice and saliva are delivered into a lumen where they can be collected and analyzed, ameloblasts produce locally precipitating hydroxyapatite which cannot be easily studied. Interestingly, the ion and protein secretion by the pancreas, the salivary glands, and maturation ameloblasts are all two-step processes, of course with significant differences too. As they all have to defend against acid exposure by producing extremely large quantities of bicarbonate, the failure of this function leads to deteriorating consequences. The aim of the present review is to describe and characterize the defense mechanisms of the pancreas, the salivary glands and enamel-producing ameloblasts against acid exposure and to compare their functional capabilities to do this by producing bicarbonate.
Collapse
Affiliation(s)
- Robert Racz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Akos Nagy
- Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Erika Katalin Dunavari
- Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Gabor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gabor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
167
|
Mion S, Rémy B, Plener L, Brégeon F, Chabrière E, Daudé D. Quorum Quenching Lactonase Strengthens Bacteriophage and Antibiotic Arsenal Against Pseudomonas aeruginosa Clinical Isolates. Front Microbiol 2019; 10:2049. [PMID: 31551983 PMCID: PMC6734170 DOI: 10.3389/fmicb.2019.02049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/20/2019] [Indexed: 01/21/2023] Open
Abstract
Many bacteria use quorum sensing (QS), a bacterial communication system based on the diffusion and perception of small signaling molecules, to synchronize their behavior in a cell-density dependent manner. QS regulates the expression of many genes associated with virulence factor production and biofilm formation. This latter is known to be involved in antibiotic and phage resistance mechanisms. Therefore, disrupting QS, a strategy known as quorum quenching (QQ), appears to be an interesting way to reduce bacterial virulence and increase antibiotic and phage treatment efficiency. In this study, the ability of the QQ enzyme SsoPox-W263I, a lactonase able to degrade acyl-homoserine lactones, was investigated for quenching both virulence and biofilm formation in clinical isolates of Pseudomonas aeruginosa from diabetic foot ulcers, as well as in the PA14 model strain. These strains were further evolved to resist to bacteriophage cocktails. Overall, 10 antibiotics or bacteriophage resistant strains were evaluated and SsoPox-W263I was shown to decrease pyocyanin, protease and elastase production in all strains. Furthermore, a reduction of more than 70% of biofilm formation was achieved in six out of ten strains. This anti-virulence potential was confirmed in vivo using an amoeba infection model, showing enhanced susceptibility toward amoeba of nine out of ten P. aeruginosa isolates upon QQ. This amoeba model was further used to demonstrate the ability of SsoPox-W263I to enhance the susceptibility of sensitive and phage resistant bacteria to bacteriophage and antibiotic.
Collapse
Affiliation(s)
- Sonia Mion
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Benjamin Rémy
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Gene&GreenTK, Marseille, France
| | | | - Fabienne Brégeon
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Service des Explorations Fonctionnelles Respiratoires Centre Hospitalo Universitaire Nord, Pôle Cardio-Vasculaire et Thoracique, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Eric Chabrière
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | |
Collapse
|
168
|
Alvarez-Lorenzo C, Concheiro A. Smart Drug Release from Medical Devices. J Pharmacol Exp Ther 2019; 370:544-554. [PMID: 30967402 DOI: 10.1124/jpet.119.257220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/01/2019] [Indexed: 03/08/2025] Open
Abstract
Medical devices are becoming key players on health monitoring and treatment. Advances in materials science and electronics have paved the way to the design of advanced wearable, insertable, and implantable medical devices suitable for the prevention and cure of diseases and the physical or functional replacement of damaged tissues or organs. However, intimate and prolonged contact of the medical devices with the human body increases the risks of adverse foreign-body reactions and biofilm formation. Drugs can be included in/on the medical device not only to minimize the risks but also to improve the therapeutic outcomes. Drug-eluting medical devices can deliver the drug in the place where it is needed using lower doses and avoiding systemic effects. Drug-device combination products that release the drug following preestablished rates have already demonstrated their clinical relevance. The aim of this mini-review is to bring attention to medical devices that can actively regulate drug release as a function of tiny changes in their environment, caused by the pathology itself, microorganisms adhesion or some external events. Thus, endowing medical devices with stimuli-responsiveness should allow for precise, on-demand, regulated release of the ancillary drugs to expand the therapeutic performance of the medical device and also should serve as a first step to offer personalized solutions to each patient. Main sections deal with smart drug-eluting medical devices that are sensitive to infection-related stimuli, natural healing processes, mechanical forces, electric fields, ultrasound, near-infrared radiation, or chemicals such as vitamin C.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
169
|
Zhang B, Zhuang X, Guo L, McLean RJC, Chu W. Recombinant N-acyl homoserine lactone-Lactonase AiiA QSI-1 Attenuates Aeromonas hydrophila Virulence Factors, Biofilm Formation and Reduces Mortality in Crucian Carp. Mar Drugs 2019; 17:E499. [PMID: 31461929 PMCID: PMC6780897 DOI: 10.3390/md17090499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/15/2019] [Accepted: 08/24/2019] [Indexed: 01/19/2023] Open
Abstract
Quorum quenching (QQ) is a promising alternative infection-control strategy to antibiotics that controls quorum-regulated virulence without killing the pathogens. Aeromonas hydrophila is an opportunistic gram-negative pathogen living in freshwater and marine environments. A. hydrophila possesses an N-acyl homoserine lactone (AHL)-based quorum-sensing (QS) system that regulates virulence, so quorum signal-inactivation (i.e., QQ) may represent a new way to combat A. hydrophila infection. In this study, an AHL lactonase gene, aiiA was cloned from Bacillus sp. strain QSI-1 and expressed in Escherichia coli strain BL21(DE3). The A. hydrophila hexanoyl homoserine lactone (C6-HSL) QS signal molecule was degraded by AiiAQSI-1, which resulted in a decrease of bacterial swimming motility, reduction of extracellular protease and hemolysin virulence factors, and inhibited the biofilm formation of A. hydrophila YJ-1 in a microtiter assay. In cell culture studies, AiiAQSI-1 decreased the ability of A. hydrophila adherence to and internalization by Epithelioma papulosum cyprini (EPC) cells. During in vivo studies, oral administration of AiiAQSI-1 via feed supplementation attenuated A. hydrophila infection in Crucian Carp. Results from this work indicate that feed supplementation with AiiAQSI-1 protein has potential to control A. hydrophila aquaculture disease via QQ.
Collapse
Affiliation(s)
- Bao Zhang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiyi Zhuang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Liyun Guo
- Department of Microbiology, Nanjing Institute of Fisheries Science, Nanjing 210036, China
| | - Robert J C McLean
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
170
|
Gupta K, Chhibber S. Biofunctionalization of Silver Nanoparticles With Lactonase Leads to Altered Antimicrobial and Cytotoxic Properties. Front Mol Biosci 2019; 6:63. [PMID: 31448285 PMCID: PMC6691173 DOI: 10.3389/fmolb.2019.00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
Background: N-acylated homoserine lactone lactonase which cleave the Acyl homoserine lactone molecules produced by biofilm-forming pathogens and silver nano-particles (AgNPs), are known for their antibacterial effect against several Gram-positive and Gram-negative bacteria. In this study, AgNPs were coated with N-acylated homoserine lactonase protein (AgNPs-AiiA) isolated from Bacillus sp. ZA12. Results: The AgNPs-AiiA complex was characterized by UV-visible spectra, Dynamic light Scattering, Fourier transform infrared spectroscopy (FTIR), and Field Emission Scanning Electron Microscope (Fe-SEM). The synthesized nano-particles were found to be spherical in shape and had an approximate size of 22.4 nm. Treatment with AiiA coated AgNPs showed a significant reduction in exopolysaccharide production, metabolic activity, cell surface hydrophobicity of bacterial cells, and anti-biofilm activity against multidrug-resistant K. pneumoniae as compared to treatment with AiiA protein and neat AgNPs. AgNPs-AiiA complex exhibited potent antibiofilm activity at sub-optimal concentration of 14.4 μg/mL without being harmful to the macrophages and to the various tissues including kidney, liver, spleen and lungs of BALB/c mice upon intra-venous administration. Conclusion: It is concluded that at a concentration of 14.4 μg/mL, AgNPs coated with AiiA kill bacteria without harming the host tissue and provides a suitable template to design novel anti-biofilm drug to circumvent the issue of drug resistance.
Collapse
Affiliation(s)
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
171
|
Cattò C, Cappitelli F. Testing Anti-Biofilm Polymeric Surfaces: Where to Start? Int J Mol Sci 2019; 20:E3794. [PMID: 31382580 PMCID: PMC6696330 DOI: 10.3390/ijms20153794] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Present day awareness of biofilm colonization on polymeric surfaces has prompted the scientific community to develop an ever-increasing number of new materials with anti-biofilm features. However, compared to the large amount of work put into discovering potent biofilm inhibitors, only a small number of papers deal with their validation, a critical step in the translation of research into practical applications. This is due to the lack of standardized testing methods and/or of well-controlled in vivo studies that show biofilm prevention on polymeric surfaces; furthermore, there has been little correlation with the reduced incidence of material deterioration. Here an overview of the most common methods for studying biofilms and for testing the anti-biofilm properties of new surfaces is provided.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
172
|
Synergistic Action of Phage and Antibiotics: Parameters to Enhance the Killing Efficacy Against Mono and Dual-Species Biofilms. Antibiotics (Basel) 2019; 8:antibiotics8030103. [PMID: 31349628 PMCID: PMC6783858 DOI: 10.3390/antibiotics8030103] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic pathogens and are commonly found in polymicrobial biofilm-associated diseases, namely chronic wounds. Their co-existence in a biofilm contributes to an increased tolerance of the biofilm to antibiotics. Combined treatments of bacteriophages and antibiotics have shown a promising antibiofilm activity, due to the profound differences in their mechanisms of action. In this study, 48 h old mono and dual-species biofilms were treated with a newly isolated P. aeruginosa infecting phage (EPA1) and seven different antibiotics (gentamicin, kanamycin, tetracycline, chloramphenicol, erythromycin, ciprofloxacin, and meropenem), alone and in simultaneous or sequential combinations. The therapeutic efficacy of the tested antimicrobials was determined. Phage or antibiotics alone had a modest effect in reducing biofilm bacteria. However, when applied simultaneously, a profound improvement in the killing effect was observed. Moreover, an impressive biofilm reduction (below the detection limit) was observed when gentamicin or ciprofloxacin were added sequentially after 6 h of phage treatment. The effect observed does not depend on the type of antibiotic but is influenced by its concentration. Moreover, in dual-species biofilms it was necessary to increase gentamicin concentration to obtain a similar killing effect as occurs in mono-species. Overall, combining phages with antibiotics can be synergistic in reducing the bacterial density in biofilms. However, the concentration of antibiotic and the time of antibiotic application are essential factors that need to be considered in the combined treatments.
Collapse
|
173
|
Mion S, Plener L, Rémy B, Daudé D, Chabrière É. Lactonase SsoPox modulates CRISPR-Cas expression in gram-negative proteobacteria using AHL-based quorum sensing systems. Res Microbiol 2019; 170:296-299. [PMID: 31279087 DOI: 10.1016/j.resmic.2019.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/15/2023]
Abstract
Quorum sensing (QS) is a molecular communication system that bacteria use to harmonize the regulation of genes in a cell density-dependent manner. In proteobacteria, QS is involved, among others, in virulence, biofilm formation or CRISPR-Cas gene regulation. Here, we report for the first time the effect of a QS-interfering enzyme to alter the regulation of CRISPR-Cas systems in model and clinical strains of Pseudomonas aeruginosa, as well as in the marine bacterium Chromobacterium violaceum CV12472. The expression of CRISPR-Cas genes decreased in most cases suggesting that enzymatic disruption of QS is promising for modulating phage-bacteria interactions.
Collapse
Affiliation(s)
- Sonia Mion
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Laure Plener
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Benjamin Rémy
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005 Marseille, France.
| | - Éric Chabrière
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
174
|
|
175
|
Kraemer SA, Ramachandran A, Perron GG. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019; 7:E180. [PMID: 31234491 PMCID: PMC6616856 DOI: 10.3390/microorganisms7060180] [Citation(s) in RCA: 404] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/06/2023] Open
Abstract
The ability to fight bacterial infections with antibiotics has been a longstanding cornerstone of modern medicine. However, wide-spread overuse and misuse of antibiotics has led to unintended consequences, which in turn require large-scale changes of policy for mitigation. In this review, we address two broad classes of corollaries of antibiotics overuse and misuse. Firstly, we discuss the spread of antibiotic resistance from hotspots of resistance evolution to the environment, with special concerns given to potential vectors of resistance transmission. Secondly, we outline the effects of antibiotic pollution independent of resistance evolution on natural microbial populations, as well as invertebrates and vertebrates. We close with an overview of current regional policies tasked with curbing the effects of antibiotics pollution and outline areas in which such policies are still under development.
Collapse
Affiliation(s)
- Susanne A Kraemer
- Department of Biology, Concordia University, 7141 Sherbrooke Street W, Montreal, QC H4B1R6, Canada.
| | - Arthi Ramachandran
- Department of Biology, Concordia University, 7141 Sherbrooke Street W, Montreal, QC H4B1R6, Canada.
| | - Gabriel G Perron
- Department of Biology, Reem-Kayden Center for Sciences and Computation, Bard College, 31 Campus Road, Annandale-On-Hudson, NY 12504, USA.
- Center for the Study of Land, Water, and Air, Bard College, Annandale-On-Hudson, NY 12504, USA.
| |
Collapse
|
176
|
Huang S, Bergonzi C, Schwab M, Elias M, Hicks RE. Evaluation of biological and enzymatic quorum quencher coating additives to reduce biocorrosion of steel. PLoS One 2019; 14:e0217059. [PMID: 31095643 PMCID: PMC6522020 DOI: 10.1371/journal.pone.0217059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/05/2019] [Indexed: 11/24/2022] Open
Abstract
Microbial colonization can be detrimental to the integrity of metal surfaces and lead to microbiologically influenced corrosion (MIC). Biocorrosion is a serious problem for aquatic and marine industries in the world. In Minnesota (USA), where this study was conducted, biocorrosion severely affects the maritime transportation industry. The anticorrosion activity of a variety of compounds, including chemical (magnesium peroxide) and biological (surfactin, capsaicin, and gramicidin) molecules were investigated as coating additives. We also evaluated a previously engineered, extremely stable, non-biocidal enzyme known to interfere in bacterial signaling, SsoPox (a quorum quenching lactonase). Experimental steel coupons were submerged in water from the Duluth Superior Harbor (DSH) for 8 weeks in the laboratory. Biocorrosion was evaluated by counting the number and the coverage of corrosion tubercles on coupons and also by ESEM imaging of the coupon surface. Three experimental coating additives significantly reduced the formation of corrosion tubercles: surfactin, magnesium peroxide and the quorum quenching lactonase by 31%, 36% and 50%, respectively. DNA sequence analysis of the V4 region of the bacterial 16S rRNA gene revealed that these decreases in corrosion were associated with significant changes in the composition of bacterial communities on the steel surfaces. These results demonstrate the potential of highly stable quorum quenching lactonases to provide a reliable, cost-effective method to treat steel structures and prevent biocorrosion.
Collapse
Affiliation(s)
- Siqian Huang
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
- * E-mail: (SH); (ME); (REH)
| | - Celine Bergonzi
- Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Michael Schwab
- Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail: (SH); (ME); (REH)
| | - Randall E. Hicks
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
- * E-mail: (SH); (ME); (REH)
| |
Collapse
|
177
|
Alford MA, Pletzer D, Hancock RE. Dismantling the bacterial virulence program. Microb Biotechnol 2019; 12:409-413. [PMID: 30864265 PMCID: PMC6465231 DOI: 10.1111/1751-7915.13388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022] Open
Abstract
In the face of rising antimicrobial resistance, there is an urgent need for the development of efficient and effective anti-infective compounds. Adaptive resistance, a reversible bacterial phenotype characterized by the ability to surmount antibiotic challenge without mutation, is triggered to cope in situ with several stressors and is very common clinically. Thus, it is important to target stress-response effectors that contribute to in vivo adaptations and associated lifestyles such as biofilm formation. Interfering with these proteins should provide a means of dismantling bacterial virulence for treating infectious diseases, in combination with conventional antibiotics.
Collapse
Affiliation(s)
- Morgan A. Alford
- Centre for Microbial Diseases and Immunity ResearchDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity ResearchDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| | - Robert E.W. Hancock
- Centre for Microbial Diseases and Immunity ResearchDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
178
|
Kadam S, Shai S, Shahane A, Kaushik KS. Recent Advances in Non-Conventional Antimicrobial Approaches for Chronic Wound Biofilms: Have We Found the 'Chink in the Armor'? Biomedicines 2019; 7:biomedicines7020035. [PMID: 31052335 PMCID: PMC6631124 DOI: 10.3390/biomedicines7020035] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/27/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic wounds are a major healthcare burden, with huge public health and economic impact. Microbial infections are the single most important cause of chronic, non-healing wounds. Chronic wound infections typically form biofilms, which are notoriously recalcitrant to conventional antibiotics. This prompts the need for alternative or adjunct ‘anti-biofilm’ approaches, notably those that account for the unique chronic wound biofilm microenvironment. In this review, we discuss the recent advances in non-conventional antimicrobial approaches for chronic wound biofilms, looking beyond standard antibiotic therapies. These non-conventional strategies are discussed under three groups. The first group focuses on treatment approaches that directly kill or inhibit microbes in chronic wound biofilms, using mechanisms or delivery strategies distinct from antibiotics. The second group discusses antimicrobial approaches that modify the biological, chemical or biophysical parameters in the chronic wound microenvironment, which in turn enables the disruption and removal of biofilms. Finally, therapeutic approaches that affect both, biofilm bacteria and microenvironment factors, are discussed. Understanding the advantages and limitations of these recent approaches, their stage of development and role in biofilm management, could lead to new treatment paradigms for chronic wound infections. Towards this end, we discuss the possibility that non-conventional antimicrobial therapeutics and targets could expose the ‘chink in the armor’ of chronic wound biofilms, thereby providing much-needed alternative or adjunct strategies for wound infection management.
Collapse
Affiliation(s)
- Snehal Kadam
- Ramalingaswami Re-entry Fellowship, Department of Biotechnology, Pune 411045, India.
| | - Saptarsi Shai
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed (to be) University, Erandwane, Pune 411038, India.
| | - Aditi Shahane
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed (to be) University, Erandwane, Pune 411038, India.
| | - Karishma S Kaushik
- Ramalingaswami Re-entry Fellowship, Department of Biotechnology, Pune 411045, India.
| |
Collapse
|
179
|
Inchagova KS, Duskaev GK, Deryabin DG. Quorum Sensing Inhibition in Chromobacterium violaceum by Amikacin Combination with Activated Charcoal or Small Plant-Derived Molecules (Pyrogallol and Coumarin). Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719010132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
180
|
Cosgriff CJ, White CR, Teoh WP, Grayczyk JP, Alonzo F. Control of Staphylococcus aureus Quorum Sensing by a Membrane-Embedded Peptidase. Infect Immun 2019; 87:e00019-19. [PMID: 30833334 PMCID: PMC6479040 DOI: 10.1128/iai.00019-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/23/2019] [Indexed: 02/08/2023] Open
Abstract
Gram-positive bacteria process and release small peptides, or pheromones, that act as signals for the induction of adaptive traits, including those involved in pathogenesis. One class of small signaling pheromones is the cyclic autoinducing peptides (AIPs), which regulate expression of genes that orchestrate virulence and persistence in a range of microbes, including staphylococci, listeriae, clostridia, and enterococci. In a genetic screen for Staphylococcus aureus secreted virulence factors, we identified an S. aureus mutant containing an insertion in the gene SAUSA300_1984 (mroQ), which encodes a putative membrane-embedded metalloprotease. A ΔmroQ mutant exhibited impaired induction of Toll-like receptor 2-dependent inflammatory responses from macrophages but elicited greater production of the inflammatory cytokine interleukin-1β and was attenuated in a murine skin and soft tissue infection model. The ΔmroQ mutant phenocopies an S. aureus mutant containing a deletion of the accessory gene regulatory system (Agr), wherein both strains have significantly reduced production of secreted toxins and virulence factors but increased surface protein A abundance. The Agr system controls virulence factor gene expression in S. aureus by sensing the accumulation of AIP via the histidine kinase AgrC and the response regulator AgrA. We provide evidence to suggest that MroQ acts within the Agr pathway to facilitate the optimal processing or export of AIP for signal amplification through AgrC/A and induction of virulence factor gene expression. Mutation of MroQ active-site residues significantly reduces AIP signaling and attenuates virulence. Altogether, this work identifies a new component of the Agr quorum-sensing circuit that is critical for the production of S. aureus virulence factors.
Collapse
Affiliation(s)
- Chance J Cosgriff
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Chelsea R White
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Wei Ping Teoh
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - James P Grayczyk
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
181
|
Cadavid E, Echeverri F. The Search for Natural Inhibitors of Biofilm Formation and the Activity of the Autoinductor C6-AHL in Klebsiella pneumoniae ATCC 13884. Biomolecules 2019; 9:biom9020049. [PMID: 30704099 PMCID: PMC6406709 DOI: 10.3390/biom9020049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Human nosocomial infections are common around the world. One of the main causes is the bacteria Klebsiella pneumoniae, which shows high rates of resistance to antibiotics. Thus, drugs with novel mechanisms of action are needed. In this work, we report the effects of various natural substances on the formation of biofilm in Klebsiella pneumoniae, as well as its stability. The effect of the molecules on the growth of K. pneumoniae was initially determined by measuring the optical density. The modification of the biofilm, the changes relating to its resistance, the effects on the bacterial adhesion to the urethral catheter and its antagonist role the hexanoyl-homoserinelactone were assessed by crystal violet, as well as by microscopy. The best effects were obtained with 3-methyl-2(5H)-furanone and 2´-hydroxycinnamic acid, which inhibited the formation of biofilm by 67.38% and 65.06%, respectively. Additionally, the remaining biofilm formed was more susceptible to gentamicin. Through microscopy examination, there were evident changes in the biofilm and adherence on the polyvinyl chloride (PVC) urethral catheter. Besides, 3-methyl-2(5H)-furanone inhibited the biofilm-forming effect of the autoinducer hexanoyl-homoserinelactone. Thus, these molecules could be developed as supplemental of antibiotics.
Collapse
Affiliation(s)
- Elizabeth Cadavid
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Calle 67 No. 53⁻10, Medellín 050010, Colombia.
| | - Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Calle 67 No. 53⁻10, Medellín 050010, Colombia.
| |
Collapse
|
182
|
Mion S, Rémy B, Plener L, Chabrière É, Daudé D. Quorum sensing et quorum quenching : Comment bloquer la communication des bactéries pour inhiber leur virulence ? Med Sci (Paris) 2019; 35:31-38. [DOI: 10.1051/medsci/2018310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
La plupart des bactéries utilisent un système de communication, le quorum sensing, fondé sur la sécrétion et la perception de petites molécules appelées autoinducteurs qui leur permettent d’adapter leur comportement en fonction de la taille de la population. Les bactéries mutualisent ainsi leurs efforts de survie en synchronisant entre elles la régulation de gènes impliqués notamment dans la virulence, la résistance aux antimicrobiens ou la formation du biofilm. Des méthodes ont vu le jour pour inhiber cette communication entre bactéries et limiter leurs effets nocifs. Des inhibiteurs chimiques, des anticorps ou encore des enzymes capables d’interférer avec les autoinducteurs ont été développés et se sont montrés efficaces pour diminuer la virulence des bactéries à la fois in vitro et in vivo. Cette stratégie, appelée quorum quenching, a également montré des effets synergiques avec des traitements antibactériens classiques. Il permettrait notamment d’augmenter la sensibilité des bactéries aux antibiotiques. Ceci constitue une piste thérapeutique prometteuse pour lutter contre les infections bactériennes et limiter les conséquences de l’antibiorésistance.
Collapse
|
183
|
Integrated Genomic and Metabolomic Approach to the Discovery of Potential Anti-Quorum Sensing Natural Products from Microbes Associated with Marine Samples from Singapore. Mar Drugs 2019; 17:md17010072. [PMID: 30669697 PMCID: PMC6356914 DOI: 10.3390/md17010072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/17/2022] Open
Abstract
With 70% of the Earth's surface covered in water, the marine ecosystem offers immense opportunities for drug discovery and development. Due to the decreasing rate of novel natural product discovery from terrestrial sources in recent years, many researchers are beginning to look seaward for breakthroughs in new therapeutic agents. As part of an ongoing marine drug discovery programme in Singapore, an integrated approach of combining metabolomic and genomic techniques were initiated for uncovering novel anti-quorum sensing molecules from bacteria associated with subtidal samples collected in the Singapore Strait. Based on the culture-dependent method, a total of 102 marine bacteria strains were isolated and the identities of selected strains were established based on their 16S rRNA gene sequences. About 5% of the marine bacterial organic extracts showed quorum sensing inhibitory (QSI) activity in a dose-dependent manner based on the Pseudomonas aeruginosa QS reporter system. In addition, the extracts were subjected to mass spectrometry-based molecular networking and the genome of selected strains were analysed for known as well as new biosynthetic gene clusters. This study revealed that using integrated techniques, coupled with biological assays, can provide an effective and rapid prioritization of marine bacterial strains for downstream large-scale culturing for the purpose of isolation and structural elucidation of novel bioactive compounds.
Collapse
|
184
|
Kenawy A, Dailin DJ, Abo-Zaid GA, Malek RA, Ambehabati KK, Zakaria KHN, Sayyed RZ, El Enshasy HA. Biosynthesis of Antibiotics by PGPR and Their Roles in Biocontrol of Plant Diseases. PLANT GROWTH PROMOTING RHIZOBACTERIA FOR SUSTAINABLE STRESS MANAGEMENT 2019:1-35. [DOI: 10.1007/978-981-13-6986-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
185
|
Marathe K, Bundale S, Nashikkar N, Upadhyay A. Influence of Linoleic Acid on Quorum Sensing in Proteus mirabilis and Serratia marcescens. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bbra/2674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quorum sensing (QS) is a bacterial cell density dependent mode of communication involved in regulation of virulence in pathogens including biofilm formation. Accordingly, curbing QS might prove to be an anti-virulence approach of controlling nosocomial infections caused by multi drug resistant bacteria. The report presented here documents the QS inhibitory properties of linoleic acid against Proteus mirabilis and Serratia marcescens known to cause nosocomial infections. Urease assay, prodigiosin assay, protease assay, biofilm formation assay and growth curve analysis were performed to investigate the effectiveness of linoleic acid in controlling virulence of P. mirabilis and S. marcescens. 2.5mM linoleic acid reduced the urease activity and biofilm formation to 42.11% and 11.11% respectively in P. mirabilis; and prodigiosin synthesis, protease activity and biofilm formation to 0%, 65.91% and 33.33% correspondingly in S. marcescens. Therefore, analysis of QS inhibitory behaviour of linoleic acid substantiates its use as a plausible drug for anti-virulence therapy without subjecting the bacteria to discerning force of antibiotics.
Collapse
Affiliation(s)
- Kirti Marathe
- Hislop school of biotechnology, Hislop College, Temple Road, Civil Lines Nagpur, 440001, India
| | - Sunita Bundale
- Hislop school of biotechnology, Hislop College, Temple Road, Civil Lines Nagpur, 440001, India
| | - Nandita Nashikkar
- Hislop school of biotechnology, Hislop College, Temple Road, Civil Lines Nagpur, 440001, India
| | - Avinash Upadhyay
- Hislop school of biotechnology, Hislop College, Temple Road, Civil Lines Nagpur, 440001, India
| |
Collapse
|