151
|
Tanase C, Gheorghisan-Galateanu AA, Popescu ID, Mihai S, Codrici E, Albulescu R, Hinescu ME. CD36 and CD97 in Pancreatic Cancer versus Other Malignancies. Int J Mol Sci 2020; 21:5656. [PMID: 32781778 PMCID: PMC7460590 DOI: 10.3390/ijms21165656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Starting from the recent identification of CD36 and CD97 as a novel marker combination of fibroblast quiescence in lung during fibrosis, we aimed to survey the literature in search for facts about the separate (or concomitant) expression of clusters of differentiation CD36 and CD97 in either tumor- or pancreatic-cancer-associated cells. Here, we provide an account of the current knowledge on the diversity of the cellular functions of CD36 and CD97 and explore their potential (common) contributions to key cellular events in oncogenesis or metastasis development. Emphasis is placed on quiescence as an underexplored mechanism and/or potential target in therapy. Furthermore, we discuss intricate signaling mechanisms and networks involving CD36 and CD97 that may regulate different subpopulations of tumor-associated cells, such as cancer-associated fibroblasts, adipocyte-associated fibroblasts, tumor-associated macrophages, or neutrophils, during aggressive pancreatic cancer. The coexistence of quiescence and activated states in cancer-associated cell subtypes during pancreatic cancer should be better documented, in different histological forms. Remodeling of the local microenvironment may also change the balance between growth and dormant state. Taking advantage of the reported data in different other tissue types, we explore the possibility to induce quiescence (similar to that observed in normal cells), as a therapeutic option to delay the currently observed clinical outcome.
Collapse
Affiliation(s)
- Cristiana Tanase
- Victor Babeș National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (I.D.P.); (S.M.); (E.C.); (R.A.); (M.E.H.)
- Faculty of Medicine, Titu Maiorescu University, 001863 Bucharest, Romania
| | - Ancuta-Augustina Gheorghisan-Galateanu
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari Str., 050474 Bucharest, Romania;
- ‘C.I. Parhon’ National Institute of Endocrinology, 001863 Bucharest, Romania
| | - Ionela Daniela Popescu
- Victor Babeș National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (I.D.P.); (S.M.); (E.C.); (R.A.); (M.E.H.)
| | - Simona Mihai
- Victor Babeș National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (I.D.P.); (S.M.); (E.C.); (R.A.); (M.E.H.)
| | - Elena Codrici
- Victor Babeș National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (I.D.P.); (S.M.); (E.C.); (R.A.); (M.E.H.)
| | - Radu Albulescu
- Victor Babeș National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (I.D.P.); (S.M.); (E.C.); (R.A.); (M.E.H.)
- National Institute for Chemical Pharmaceutical R&D, 001863 Bucharest, Romania
| | - Mihail Eugen Hinescu
- Victor Babeș National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (I.D.P.); (S.M.); (E.C.); (R.A.); (M.E.H.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroilor Sanitari Str., 050474 Bucharest, Romania;
| |
Collapse
|
152
|
Luo D, Li C, Wu L, Chen Q. [Advances of Exosomes Extraction and Its Mechanism in Early Diagnosis of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:999-1006. [PMID: 32752584 PMCID: PMC7679221 DOI: 10.3779/j.issn.1009-3419.2020.101.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
肺癌是世界范围内发病率和死亡率较高的恶性肿瘤之一,严重威胁着国民的生命安全与健康。肺癌的早期诊断是肺癌预防和治疗过程中的关键环节,对肺癌进行早期诊断有利于提高患者的生存率。外泌体(exosomes)与肿瘤的侵袭与转移过程密切相关,在肺癌的发生发展过程中,外泌体发挥着重要的调控作用。近年来,以外泌体为载体的生物标记物成为肺癌强有力的诊断工具。外泌体是一种由细胞分泌的由膜包裹的大小均一、直径约为30 nm-200 nm的脂质双分子层结构小囊泡。外泌体的内容物包含不同类型的核酸和蛋白质,这些核酸和蛋白质来源于其亲本细胞(包括亲本癌细胞),具有广泛的生理功能,包括参与免疫调节、细胞间联络等。外泌体中的生物大分子物质,如单链RNA、长非编码RNA、微小RNA(microRNA, miRNA)、蛋白质以及脂类,可以为肺癌的早期临床诊断提供有价值的信息。因此,本文就外泌体的来源、结构特点、提取方法、生物学特性和在肺癌早期诊断中的作用研究进展做简要阐述。
Collapse
Affiliation(s)
- Dan Luo
- Department of Medical Experimental Center, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442008, China.,Hubei University of Medicine, College of Pharmacy, Shiyan 442000, China
| | - Chunlei Li
- Department of Medical Experimental Center, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442008, China
| | - Lun Wu
- Department of Medical Experimental Center, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442008, China
| | - Qinhua Chen
- Department of Medical Experimental Center, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442008, China.,Shenzhen Baoan Authentic Traditional Chinese Medicine Therapy Hospital, Shenzhen 518102, China
| |
Collapse
|
153
|
Exosome-modified PLGA Microspheres for Improved Internalization into Dendritic Cells and Macrophages. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0008-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
154
|
Xie H, Di K, Huang R, Khan A, Xia Y, Xu H, Liu C, Tan T, Tian X, Shen H, He N, Li Z. Extracellular vesicles based electrochemical biosensors for detection of cancer cells: A review. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
155
|
Wang Y, Li Z, Xu S, Guo J. Novel potential tumor biomarkers: Circular RNAs and exosomal circular RNAs in gastrointestinal malignancies. J Clin Lab Anal 2020; 34:e23359. [PMID: 32419229 PMCID: PMC7370736 DOI: 10.1002/jcla.23359] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/12/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are structural ubiquitous RNA molecules. Accumulating evidences have elucidated that circRNAs play essential roles in the pathogenesis of diseases including cancers. Exosomal circRNAs are those circRNAs stably existing in exosomes and having high clinical values as novel potential diagnostic biomarkers of many diseases. Gastrointestinal (GI) malignancies, including pancreatic cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric cancer, are leading causes of mortality worldwide and a major global health burden. However, no ideal tumor biomarkers of screening early GI cancers are currently available. METHODS We collected data through Web of Science. The search terms used were as follows: circular RNA, circRNA, exosomes, exosomal circRNAs, biomarkers, gastrointestinal malignancies, pancreatic cancer, hepatocellular carcinoma, HCC, gastric cancer, colorectal cancer, physiological functions, biogenesis, molecular mechanism. Only articles published in English were included. RESULTS We found that several circRNAs and exosomal circRNAs have been used as potential biomarkers to screen GI cancers including pancreatic cancer (hsa_circ_0001649, circ_0007534, circ_0030235, circRHOT1, circZMYM2, circ-LDLRAD3, chr14:101402109-101464448C, chr4:52729603-52780244C, circ-IARS, and circ-PDE8A), HCC (circSETD3, circADAMTS13, hsa_circ_0007874, hsa_circ_104135, circFBLIM1, cSMARCA5, circRNA-100338, and circPTGR1), colorectal cancer (hsa_circ_0001178, hsa_circ_0000826, hsa_circ_0004771, circDDX17, circITGA7, and circHIPK3), and gastric cancer (hsa_circ_0074362, circNRIP1, circAKT3, circ-DONSON, circPSMC3, circ-KIAA1244, circPVRL3, circPVT1, hsa_circ_0000096, ciRS-133, hsa_circ_0001017, and hsa_circ_0061276). CONCLUSION CircRNAs and exosomal circRNAs have the potential high clinical diagnostic values for GI malignancies.
Collapse
Affiliation(s)
- Yezhao Wang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of PathophysiologyNingbo University School of MedicineNingboChina
| | - Zhe Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of PathophysiologyNingbo University School of MedicineNingboChina
| | - Suyuan Xu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of PathophysiologyNingbo University School of MedicineNingboChina
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of PathophysiologyNingbo University School of MedicineNingboChina
| |
Collapse
|
156
|
Wang X, Chai Z, Pan G, Hao Y, Li B, Ye T, Li Y, Long F, Xia L, Liu M. ExoBCD: a comprehensive database for exosomal biomarker discovery in breast cancer. Brief Bioinform 2020; 22:5860692. [PMID: 32591816 DOI: 10.1093/bib/bbaa088] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/08/2020] [Accepted: 04/26/2020] [Indexed: 12/24/2022] Open
Abstract
Effective and safe implementation of precision oncology for breast cancer is a vital strategy to improve patient outcomes, which relies on the application of reliable biomarkers. As 'liquid biopsy' and novel resource for biomarkers, exosomes provide a promising avenue for the diagnosis and treatment of breast cancer. Although several exosome-related databases have been developed, there is still lacking of an integrated database for exosome-based biomarker discovery. To this end, a comprehensive database ExoBCD (https://exobcd.liumwei.org) was constructed with the combination of robust analysis of four high-throughput datasets, transcriptome validation of 1191 TCGA cases and manual mining of 950 studies. In ExoBCD, approximately 20 900 annotation entries were integrated from 25 external sources and 306 exosomal molecules (49 potential biomarkers and 257 biologically interesting molecules). The latter could be divided into 3 molecule types, including 121 mRNAs, 172 miRNAs and 13 lncRNAs. Thus, the well-linked information about molecular characters, experimental biology, gene expression patterns, overall survival, functional evidence, tumour stage and clinical use were fully integrated. As a data-driven and literature-based paradigm proposed of biomarker discovery, this study also demonstrated the corroborative analysis and identified 36 promising molecules, as well as the most promising prognostic biomarkers, IGF1R and FRS2. Taken together, ExoBCD is the first well-corroborated knowledge base for exosomal studies of breast cancer. It not only lays a foundation for subsequent studies but also strengthens the studies of probing molecular mechanisms, discovering biomarkers and developing meaningful clinical use.
Collapse
Affiliation(s)
- Xuanyi Wang
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zixuan Chai
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Guizhi Pan
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Ting Ye
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yinghong Li
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Fei Long
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lixin Xia
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mingwei Liu
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
157
|
Kogure A, Yoshioka Y, Ochiya T. Extracellular Vesicles in Cancer Metastasis: Potential as Therapeutic Targets and Materials. Int J Mol Sci 2020; 21:E4463. [PMID: 32585976 PMCID: PMC7352700 DOI: 10.3390/ijms21124463] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
The vast majority of cancer-related deaths are due to metastasis of the primary tumor that develops years to decades after apparent cures. However, it is difficult to effectively prevent or treat cancer metastasis. Recent studies have shown that communication between cancer cells and surrounding cells enables cancer progression and metastasis. The comprehensive term "extracellular vesicles" (EVs) describes lipid bilayer vesicles that are secreted to outside cells; EVs are well-established mediators of cell-to-cell communication. EVs participate in cancer progression and metastasis by transferring bioactive molecules, such as proteins and RNAs, including microRNAs (miRNAs), between cancer and various cells in local and distant microenvironments. Clinically, EVs functioning as diagnostic biomarkers, therapeutic targets, or even as anticancer drug-delivery vehicles have been emphasized as a result of their unique biological and pathophysiological characteristics. The potential therapeutic effects of EVs in cancer treatment are rapidly emerging and represent a new and important area of research. This review focuses on the therapeutic potential of EVs and discusses their utility for the inhibition of cancer progression, including metastasis.
Collapse
Affiliation(s)
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 1600023, Japan; (A.K.); (T.O.)
| | | |
Collapse
|
158
|
Curley N, Levy D, Do MA, Brown A, Stickney Z, Marriott G, Lu B. Sequential deletion of CD63 identifies topologically distinct scaffolds for surface engineering of exosomes in living human cells. NANOSCALE 2020; 12:12014-12026. [PMID: 32463402 PMCID: PMC7313400 DOI: 10.1039/d0nr00362j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Exosomes are cell-derived extracellular vesicles that have great potential in the field of nano-medicine. However, a fundamental challenge in the engineering of exosomes is the design of biocompatible molecular scaffolds on their surface to enable cell targeting and therapeutic functions. CD63 is a hallmark protein of natural exosomes that is highly enriched on the external surface of the membrane. We have previously described engineering of CD63 for use as a molecular scaffold in order to introduce cell-targeting features to the exosome surface. Despite this initial success, the restrictive M-shaped topology of full-length CD63 may hinder specific applications that require N- or C-terminal display of cell-targeting moieties on the outer surface of the exosome. In this study, we describe new and topologically distinct CD63 scaffolds that enable robust and flexible surface engineering of exosomes. In particular, we conducted sequential deletions of the transmembrane helix of CD63 to generate a series of CD63 truncates, each genetically-fused to a fluorescent protein. Molecular and cellular characterization studies showed truncates of CD63 harboring the transmembrane helix 3 (TM3) correctly targeted and anchored to the exosome membrane and exhibited distinct n-, N-, Ω-, or I-shaped membrane topologies in the exosomal membrane. We further established that these truncates retained robust membrane-anchoring and exosome-targeting activities when stably expressed in the HEK293 cells. Moreover, HEK293 cells produced engineered exosomes in similar quantities to cells expressing full-length CD63. Based on the results of our systematic sequential deletion studies, we propose a model to understand molecular mechanisms that underlie membrane-anchoring and exosome targeting features of CD63. In summary, we have established new and topologically distinct scaffolds based on engineering of CD63 that enables flexible engineering of the exosome surface for applications in disease-targeted drug delivery and therapy.
Collapse
Affiliation(s)
- Natalie Curley
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
| | - Daniel Levy
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
| | - Mai Anh Do
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
| | - Annie Brown
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
| | - Zachary Stickney
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
| | - Gerard Marriott
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Biao Lu
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
| |
Collapse
|
159
|
de Oliveira MC, Caires HR, Oliveira MJ, Fraga A, Vasconcelos MH, Ribeiro R. Urinary Biomarkers in Bladder Cancer: Where Do We Stand and Potential Role of Extracellular Vesicles. Cancers (Basel) 2020; 12:E1400. [PMID: 32485907 PMCID: PMC7352974 DOI: 10.3390/cancers12061400] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane vesicles released by all cells and involved in intercellular communication. Importantly, EVs cargo includes nucleic acids, lipids, and proteins constantly transferred between different cell types, contributing to autocrine and paracrine signaling. In recent years, they have been shown to play vital roles, not only in normal biological functions, but also in pathological conditions, such as cancer. In the multistep process of cancer progression, EVs act at different levels, from stimulation of neoplastic transformation, proliferation, promotion of angiogenesis, migration, invasion, and formation of metastatic niches in distant organs, to immune escape and therapy resistance. Moreover, as products of their parental cells, reflecting their genetic signatures and phenotypes, EVs hold great promise as diagnostic and prognostic biomarkers. Importantly, their potential to overcome the current limitations or the present diagnostic procedures has created interest in bladder cancer (BCa). Indeed, cystoscopy is an invasive and costly technique, whereas cytology has poor sensitivity for early staged and low-grade disease. Several urine-based biomarkers for BCa were found to overcome these limitations. Here, we review their potential advantages and downfalls. In addition, recent literature on the potential of EVs to improve BCa management was reviewed and discussed.
Collapse
Affiliation(s)
- Manuel Castanheira de Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar e Universitário do Porto, 4099-001 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Hugo R. Caires
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria J. Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Avelino Fraga
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar e Universitário do Porto, 4099-001 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - M. Helena Vasconcelos
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ricardo Ribeiro
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Laboratory of Genetics and Instituto de Saúde Ambiental, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
160
|
Shin H, Oh S, Hong S, Kang M, Kang D, Ji YG, Choi BH, Kang KW, Jeong H, Park Y, Hong S, Kim HK, Choi Y. Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes. ACS NANO 2020; 14:5435-5444. [PMID: 32286793 DOI: 10.1021/acsnano.9b09119] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been proposed as promising biomarkers for liquid biopsy. Here, we demonstrate an accurate diagnosis of early-stage lung cancer, using deep learning-based surface-enhanced Raman spectroscopy (SERS) of the exosomes. Our approach was to explore the features of cell exosomes through deep learning and figure out the similarity in human plasma exosomes, without learning insufficient human data. The deep learning model was trained with SERS signals of exosomes derived from normal and lung cancer cell lines and could classify them with an accuracy of 95%. In 43 patients, including stage I and II cancer patients, the deep learning model predicted that plasma exosomes of 90.7% patients had higher similarity to lung cancer cell exosomes than the average of the healthy controls. Such similarity was proportional to the progression of cancer. Notably, the model predicted lung cancer with an area under the curve (AUC) of 0.912 for the whole cohort and stage I patients with an AUC of 0.910. These results suggest the great potential of the combination of exosome analysis and deep learning as a method for early-stage liquid biopsy of lung cancer.
Collapse
Affiliation(s)
- Hyunku Shin
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seunghyun Oh
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soonwoo Hong
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minsung Kang
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| | - Daehyeon Kang
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yong-Gu Ji
- Exopert Corporation, Seoul 02841, Republic of Korea
| | - Byeong Hyeon Choi
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Ka-Won Kang
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyesun Jeong
- School of Biosystems and Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yong Park
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sunghoi Hong
- School of Biosystems and Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Koo Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- Exopert Corporation, Seoul 02841, Republic of Korea
| |
Collapse
|
161
|
Lee J, Kim H, Heo Y, Yoo YK, Han SI, Kim C, Hur D, Kim H, Kang JY, Lee JH. Enhanced paper-based ELISA for simultaneous EVs/exosome isolation and detection using streptavidin agarose-based immobilization. Analyst 2020; 145:157-164. [PMID: 31723951 DOI: 10.1039/c9an01140d] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
EVs/exosomes are considered as the next generation of biomarkers, including for liquid biopsies. Consequently, the quantification of EVs/exosomes is crucial for facilitating EV/exosome research and applications. Paper-based enzyme-linked immunosorbent assay (p-ELISA) is a portable diagnostic system with low cost that is simple and easy to use; however, it shows low sensitivity and linearity. In this study, we develop p-ELISA for targeting EVs/exosomes by using streptavidin agarose resin-based immobilization (SARBI). This method reduces assay preparation times, provides strong binding, and retains good sensitivity and linearity. The time required for the total assay, including preparation steps and surface immobilization, was shortened to ∼2 h. We evaluated SARBI p-ELISA systems with/without CD63 capture Ab and then with fetal bovine serum (FBS) and EVs/exosome-depleted fetal bovine serum (dFBS). The results provide evidence supporting the selective capture ability of SARBI p-ELISA. We obtain semiquantitative p-ELISA results using an exosome standard (ES) and human serum (HS), with R2 values of 0.95 and 0.92, respectively.
Collapse
Affiliation(s)
- Junwoo Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Makler A, Asghar W. Exosomal biomarkers for cancer diagnosis and patient monitoring. Expert Rev Mol Diagn 2020; 20:387-400. [PMID: 32067543 PMCID: PMC7071954 DOI: 10.1080/14737159.2020.1731308] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Introduction: In recent years, extensive research has been conducted on using exosomes as biomarkers for cancer detection. Exosomes are 40-150 nm-sized extracellular vesicles released by all cell types, including tumor cells. Exosomes are stable in body fluids due to their lipid bilayer member and often contain DNA, RNA, and proteins. These exosomes can be harvested from blood, plasma, serum, urine, or saliva and analyzed for tumor-relevant mutations. Thus, exosomes provide an alternative to current methods of tumor detection.Areas covered: This review discusses the use of exosomal diagnostics in various tumor types as well as their examination in various clinical trials. The authors also discuss the limitations of exosome-based diagnostics in the clinical setting and provide examples of several studies in which the development and usage of microfluidic chips and nano-sensing devices have been utilized to address these obstacles.Expert commentary: In recent years, exosomes and their contents have exhibited potential as novel tumor detection markers despite the labor involved in their harvest and isolation. Despite this, much work is being done to optimize exosome capture and analysis. Thus, their roles as biomarkers in the clinical setting appear promising.
Collapse
Affiliation(s)
- Amy Makler
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431
| | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
- Department of Biological Sciences (courtesy appointment), Florida Atlantic University, Boca Raton, FL 33431
| |
Collapse
|
163
|
Chen W, Shao F, Xianyu Y. Microfluidics-Implemented Biochemical Assays: From the Perspective of Readout. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903388. [PMID: 31532891 DOI: 10.1002/smll.201903388] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/20/2019] [Indexed: 05/05/2023]
Abstract
Over the past decades, microfluidics has emerged as an increasingly important tool to perform biochemical assays for diagnosis and healthcare. The precise fluid control and molecule manipulation within microfluidics greatly contribute to developing assays with simplicity and convenience. The advantages of microfluidics, including decreased consumption of reagents and samples, lower operating and analysis time, much lower cost, and higher integration and automation over traditional systems, offer a great platform to meet the needs of point-of-care applications. In this Review, versatile strategies are outlined and recent advances in microfluidics-implemented assays are discussed from the perspective of readout, because a convenient and straightforward readout is what a biochemical assay requires and the end user desires. Functions and properties arising from each readout are reviewed and the advantages and limitations of each readout are discussed together with current challenges and future perspectives.
Collapse
Affiliation(s)
- Wenwen Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518055, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yunlei Xianyu
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
164
|
Wang C, Wang C, Jin D, Yu Y, Yang F, Zhang Y, Yao Q, Zhang GJ. AuNP-Amplified Surface Acoustic Wave Sensor for the Quantification of Exosomes. ACS Sens 2020; 5:362-369. [PMID: 31933360 DOI: 10.1021/acssensors.9b01869] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we report a gold nanoparticle (AuNP)-amplified surface acoustic wave (SAW) sensor for exosome detection with high sensitivity. The SAW chip was self-assembled with mercapto acetic acid to generate carboxylic groups via the Au-S bond. Anti-CD63 was then anchored onto the chip by pretreatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide,1-hydroxypyrrolidine-2,5-dione (NHS). Due to the existence of a membrane protein, CD63, on the exosome surface, exosomes could be bound onto the antibody-immobilized SAW chip. To amplify the detection signal, both the biotin-conjugated epithelial cell adhesion molecule (EpCAM) antibody as a secondary antibody and AuNP-labeled streptavidin were applied onto the exosome-bound SAW chip, resulting in AuNP assembly on the chip through biotin-avidin recognition. The sensor was capable of detecting 1.1 × 103 particles/mL exosomes, which was about 2 orders of magnitude higher than those detected by the strategy without using signal amplification. The sensor also achieved a satisfactory specificity and could detect the low-abundance exosomes directly in blood samples from cancer patients with minimal disturbance. This makes the SAW sensor useful for early diagnosis of cancer.
Collapse
Affiliation(s)
- Chenyun Wang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P. R. China
| | - Cancan Wang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P. R. China
| | - Dan Jin
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P. R. China
| | - Yi Yu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P. R. China
| | - Fan Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P. R. China
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P. R. China
| | - Qunfeng Yao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P. R. China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P. R. China
| |
Collapse
|
165
|
Shao B, Xiao Z. Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors - A review. Anal Chim Acta 2020; 1114:74-84. [PMID: 32359518 DOI: 10.1016/j.aca.2020.02.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/07/2023]
Abstract
Exosomal biomarkers including tumor-derived exosomes, exosomal surface proteins and exosomal nucleic acids have emerged as one of the most important and general cancer biomarkers in modern biomedical science. These indicators can provide momentous biological information for early diagnosis and treatment of cancer. Recently, numerous studies have been conducted to design biosensors for exosomal biomarkers detection and profiling with high sensitivity and strong applied ability. Among these biosensors, nanomaterial-based optical biosensors are prospective future platforms for rapid and cost-effective detection of exosomal biomarkers. Firstly, we have focused on the progress and advancements in different optical-transducing approaches (Surface-Enhanced Raman Scattering, Surface Plasmon Resonance, Colorimetry, Immunochromatographic assay, Chemiluminescence, Electrochemiluminescence, and fluorescence) for detecting and profiling exosomal biomarkers. Additionally, we have summarized strengths and drawbacks of each strategy. Finally, challenges and future outlooks in developing efficient nanomaterial-based optical biosensor systems for exosomal tumor biomarkers detection have been discussed. The review will exhibit an overview of this field and provide meaningful information for scientific researchers.
Collapse
Affiliation(s)
- Baoyi Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, PR China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
166
|
Gong N, Zhu W, Xu R, Teng Z, Deng C, Zhou H, Xia M, Zhao M. Keratinocytes-derived exosomal miRNA regulates osteoclast differentiation in middle ear cholesteatoma. Biochem Biophys Res Commun 2020; 525:341-347. [PMID: 32093888 DOI: 10.1016/j.bbrc.2020.02.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/08/2020] [Indexed: 01/03/2023]
Abstract
The occurrence and development of osteoclasts can directly affect the severity of bone destruction in middle ear cholesteatoma. At the same time, cell communication between keratinocytes and fibroblasts can stimulate osteoclast differentiation. However, the molecular mechanism of osteoclast differentiation in cholesteatoma is still poorly understood. In this study, we try to isolate the exosomes of keratinocytes from patients with middle ear cholesteatoma, and explore the effects of keratinocyte-derived exosomes (Ker-Exo) on osteoclast differentiation by co-culturing Ker-Exo with fibroblasts and osteoclast precursor cells. As a result, we confirmed that Ker-Exo primed fibroblasts can up-regulate the expression of RANKL and promote osteoclast differentiation. We revealed that the effect of Ker-Exo depened on its miRNA-17 conponent. Analysis confirmed that miRNA-17 was down-regulated in Ker-Exo, and they can increase RANKL level in fibroblasts, thus promoting the differentiation of osteoclasts. In conclusions, we provide evidence that exosomes miRNA-17 secreted by keratinocytes in patients with middle ear cholesteatoma can up-regulate the expression of RANKL in fibroblasts and induce osteoclast differentiation.
Collapse
Affiliation(s)
- NingYue Gong
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Weili Zhu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Runtong Xu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Zhenxiao Teng
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Chang Deng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - He Zhou
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong University, China; Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, China; Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China.
| |
Collapse
|
167
|
Zhu L, Xu N, Zhang ZL, Zhang TC. Cell derived extracellular vesicles: from isolation to functionalization and biomedical applications. Biomater Sci 2020; 7:3552-3565. [PMID: 31313767 DOI: 10.1039/c9bm00580c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are shed from most mammalian cells by different processes. EVs possess several distinct advantages, including excellent biocompatibility, good bio-stability and low immunogenicity. Moreover, they play significant roles in physiological and pathological processes. Challenges in EV research mainly concern highly efficient isolation, specific membrane surface engineering and further development of EV applications in biomedical fields. In this review, we summarize the recent and representative research regarding isolation, engineering and biomedical applications of EVs, which represent important research focus areas. These three aspects have not ever been systematically classified and summarized in previous reviews. Finally, we give our insights into the key issues concerning EVs and their future development for biomedical applications.
Collapse
Affiliation(s)
- Lian Zhu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China.
| | | | | | | |
Collapse
|
168
|
Kaid C, Assoni A, Marçola M, Semedo-Kuriki P, Bortolin RH, Carvalho VM, Okamoto OK. Proteome and miRNome profiling of microvesicles derived from medulloblastoma cell lines with stem-like properties reveals biomarkers of poor prognosis. Brain Res 2020; 1730:146646. [PMID: 31917138 DOI: 10.1016/j.brainres.2020.146646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/23/2019] [Accepted: 01/02/2020] [Indexed: 01/13/2023]
Abstract
Primary central nervous system (CNS) tumors are the most common deadly childhood cancer. Several patients with medulloblastoma experience local or metastatic recurrences after standard treatment, a condition associated with very poor prognosis. Current neuroimaging techniques do not accurately detect residual stem-like medulloblastoma cells promoting tumor relapses. In attempt to identify candidate tumor markers that could be circulating in blood or cerebrospinal (CSF) fluid of patients, we evaluated the proteome and miRNome content of extracellular microvesicles (MVs) released by highly-aggressive stem-like medulloblastoma cells overexpressing the pluripotent factor OCT4A. These cells display enhanced tumor initiating capability and resistance to chemotherapeutic agents. A common set of 464 proteins and 10 microRNAs were exclusively detected in MVs of OCT4A-overexpressing cells from four distinct medulloblastoma cell lines, DAOY, CHLA-01-MED, D283-MED, and USP13-MED. The interactome mapping of these exclusive proteins and miRNAs revealed ERK, PI3K/AKT/mTOR, EGF/EGFR, and stem cell self-renewal as the main oncogenic signaling pathways altered in these aggressive medulloblastoma cells. Of these MV cargos, four proteins (UBE2M, HNRNPCL2, HNRNPCL3, HNRNPCL4) and five miRNAs (miR-4449, miR-500b, miR-3648, miR-1291, miR-3607) have not been previously reported in MVs from normal tissues and in CSF. These proteins and miRNAs carried within MVs might serve as biomarkers of aggressive stem-like medulloblastoma cells to improve clinical benefit by helping refining diagnosis, patient stratification, and early detection of relapsed disease.
Collapse
Affiliation(s)
- Carolini Kaid
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Amanda Assoni
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Marina Marçola
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Patricia Semedo-Kuriki
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | - Oswaldo Keith Okamoto
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil; Hemotherapy and Cellular Therapy Department, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil.
| |
Collapse
|
169
|
Sheikh Hosseini M, Parhizkar Roudsari P, Gilany K, Goodarzi P, Payab M, Tayanloo-Beik A, Larijani B, Arjmand B. Cellular Dust as a Novel Hope for Regenerative Cancer Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1288:139-160. [DOI: 10.1007/5584_2020_537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
170
|
Miles J, Andre M, Caobi A, Ruiz M, Nair M, Raymond A. Bioengineered Exosomal Extracellular Vesicles in Cancer Therapeutics. Crit Rev Biomed Eng 2020; 48:177-187. [PMID: 33389895 PMCID: PMC11102805 DOI: 10.1615/critrevbiomedeng.2020034847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Liquid or blood-based biopsy is a less invasive and more efficient method in which to clinicians can identify diagnostic, prognostic, and therapeutic responsive biomarkers in cancer patients. Circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), RNAs, proteins, metabolites, and extracellular vesicles (EVs) are all potential biomarkers found in liquid biopsies. All nucleated cells including healthy, virally infected, and cancer cells release EVs. Since the early 1980s, evidence has mounted to support the pathophysiological role of EVs in cancer. Here we focus on the smallest of the EV, the exosome, and their clinical relevance as nanotherapeutics for cancers. Exosomes obtained from tumors have been reported to promote and/or facilitate malignancy of cancers especially in terms of metastatic potential. Exosomal EVs have also contributed to the development of therapeutic resistance. Recent studies demonstrate that intrinsic and bioengineered exosomes can serve as effective therapeutic agents that disrupt cancer progression. Here we review the current literature regarding the utilization of bioengineered exosomes for therapeutics to treat prevalent cancers such as melanoma, glioma, breast, pancreatic, hepatic, cervical, prostate, and colon cancers. Overall, studies reviewed show that bioengineered exosomes are effective and promising for targeted cancer therapy.
Collapse
Affiliation(s)
- J. Miles
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University 11200 SW 8th Street Miami, FL 33199, USA
| | - M. Andre
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University 11200 SW 8th Street Miami, FL 33199, USA
| | - A. Caobi
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University 11200 SW 8th Street Miami, FL 33199, USA
| | - M. Ruiz
- Department of Human and Health Services, Herbert Wertheim College of Medicine, Florida International University 11200 SW 8th Street Miami, FL 33199, USA
- Miami Cancer Institute, Bone Marrow Transplant and CART T-Cell Therapy Department, Baptist Health South Florida, 8900 N Kendall Dr., Miami, FL 33176, USA
| | - M. Nair
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University 11200 SW 8th Street Miami, FL 33199, USA
| | - A.D. Raymond
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University 11200 SW 8th Street Miami, FL 33199, USA
| |
Collapse
|
171
|
Jiménez-Zenteno AK, Cerf A. Liquid Biopsy Based on Circulating Cancer-Associated Cells: Bridging the Gap from an Emerging Concept to a Mainstream Tool in Precision Medicine. ACTA ACUST UNITED AC 2019; 4:e1900164. [PMID: 32293131 DOI: 10.1002/adbi.201900164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/15/2019] [Indexed: 01/01/2023]
Abstract
The concept of liquid biopsy and the isolation and analysis of circulating biomarkers from blood samples is proposed as a surrogate to solid biopsies and can have the potential to revolutionize the management of patients with cancer. The relevance of circulating tumor cells (CTCs) and the importance of the information they carry is acknowledged by the medical community. But what are the barriers to clinical adoption? This review draws a panorama of the biological implications of CTCs, their physical and biochemical properties, and the current technological bottlenecks for their analysis in relation with the medical needs. Keys and considerations to bridge the technological and clinical gaps that still need to be overcome to be able to introduce CTCs in clinical routine are finally synthesized.
Collapse
Affiliation(s)
| | - Aline Cerf
- Université de Toulouse, CNRS, 7 Avenue du Colonel Roche, 31400, Toulouse, France
| |
Collapse
|
172
|
Chen SL, Chen CY, Hsieh JCH, Yu ZY, Cheng SJ, Hsieh KY, Yang JW, Kumar PV, Lin SF, Chen GY. Graphene Oxide-Based Biosensors for Liquid Biopsies in Cancer Diagnosis. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1725. [PMID: 31816919 PMCID: PMC6956293 DOI: 10.3390/nano9121725] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Liquid biopsies use blood or urine as test samples, which are able to be continuously collected in a non-invasive manner. The analysis of cancer-related biomarkers such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA, and exosomes provides important information in early cancer diagnosis, tumor metastasis detection, and postoperative recurrence monitoring assist with clinical diagnosis. However, low concentrations of some tumor markers, such as CTCs, ctDNA, and microRNA, in the blood limit its applications in clinical detection and analysis. Nanomaterials based on graphene oxide have good physicochemical properties and are now widely used in biomedical detection technologies. These materials have properties including good hydrophilicity, mechanical flexibility, electrical conductivity, biocompatibility, and optical performance. Moreover, utilizing graphene oxide as a biosensor interface has effectively improved the sensitivity and specificity of biosensors for cancer detection. In this review, we discuss various cancer detection technologies regarding graphene oxide and discuss the prospects and challenges of this technology.
Collapse
Affiliation(s)
- Shiue-Luen Chen
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chong-You Chen
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Jason Chia-Hsun Hsieh
- Division of Haematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital (Linkou), Taoyuan 333, Taiwan;
| | - Zih-Yu Yu
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
| | - Sheng-Jen Cheng
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Kuan Yu Hsieh
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Jia-Wei Yang
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Shien-Fong Lin
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Guan-Yu Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
173
|
Ayala‐Mar S, Donoso‐Quezada J, Gallo‐Villanueva RC, Perez‐Gonzalez VH, González‐Valdez J. Recent advances and challenges in the recovery and purification of cellular exosomes. Electrophoresis 2019; 40:3036-3049. [PMID: 31373715 PMCID: PMC6972601 DOI: 10.1002/elps.201800526] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are nanovesicles secreted by most cellular types that carry important biochemical compounds throughout the body with different purposes, playing a preponderant role in cellular communication. Because of their structure, physicochemical properties and stability, recent studies are focusing in their use as nanocarriers for different therapeutic compounds for the treatment of different diseases ranging from cancer to Parkinson's disease. However, current bioseparation protocols and methodologies are selected based on the final exosome application or intended use and present both advantages and disadvantages when compared among them. In this context, this review aims to present the most important technologies available for exosome isolation while discussing their advantages and disadvantages and the possibilities of being combined with other strategies. This is critical since the development of novel exosome-based therapeutic strategies will be constrained to the effectiveness and yield of the selected downstream purification methodologies for which a thorough understanding of the available technological resources is needed.
Collapse
Affiliation(s)
- Sergio Ayala‐Mar
- Tecnologico de MonterreySchool of Engineering and Science, AvEugenio Garza Sada 2501 SurMonterreyNLMexico
| | - Javier Donoso‐Quezada
- Tecnologico de MonterreySchool of Engineering and Science, AvEugenio Garza Sada 2501 SurMonterreyNLMexico
| | | | - Victor H. Perez‐Gonzalez
- Tecnologico de MonterreySchool of Engineering and Science, AvEugenio Garza Sada 2501 SurMonterreyNLMexico
| | - José González‐Valdez
- Tecnologico de MonterreySchool of Engineering and Science, AvEugenio Garza Sada 2501 SurMonterreyNLMexico
| |
Collapse
|
174
|
Song W, Zhou X, Benktander JD, Gaunitz S, Zou G, Wang Z, Novotny MV, Jacobson SC. In-Depth Compositional and Structural Characterization of N-Glycans Derived from Human Urinary Exosomes. Anal Chem 2019; 91:13528-13537. [PMID: 31539226 PMCID: PMC6834888 DOI: 10.1021/acs.analchem.9b02620] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal components in healthy individuals is essential. Here, we significantly extend the number of N-glycan compositions, including sulfated species, identified from urinary exosomes and determine the sialic acid linkages for many of those compositions. Capillary electrophoresis-mass spectrometry (CE-MS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify N-glycan and sulfated N-glycan compositions. Second, because the alteration of sialylation patterns has been previously implicated in various disease states, ion-exchange chromatography, microfluidic capillary electrophoresis (CE), and MALDI-MS were adopted to resolve positional isomers of sialic acids. Structures of the sialyl-linkage isomers were assigned indirectly through α2-3 sialidase treatment and sialic acid linkage-specific alkylamidation (SALSA). In total, we have identified 219 N-glycan structures that include 175 compositions, 64 sialic acid linkage isomers, 26 structural isomers, and 27 sulfated glycans.
Collapse
Affiliation(s)
- Woran Song
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Xiaomei Zhou
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - John D. Benktander
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Stefan Gaunitz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Guozhang Zou
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Ziyu Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Stephen C. Jacobson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| |
Collapse
|
175
|
Soda N, Rehm BHA, Sonar P, Nguyen NT, Shiddiky MJA. Advanced liquid biopsy technologies for circulating biomarker detection. J Mater Chem B 2019; 7:6670-6704. [PMID: 31646316 DOI: 10.1039/c9tb01490j] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liquid biopsy is a new diagnostic concept that provides important information for monitoring and identifying tumor genomes in body fluid samples. Detection of tumor origin biomolecules like circulating tumor cells (CTCs), circulating tumor specific nucleic acids (circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), microRNAs (miRNAs), long non-coding RNAs (lnRNAs)), exosomes, autoantibodies in blood, saliva, stool, urine, etc. enables cancer screening, early stage diagnosis and evaluation of therapy response through minimally invasive means. From reliance on painful and hazardous tissue biopsies or imaging depending on sophisticated equipment, cancer management schemes are witnessing a rapid evolution towards minimally invasive yet highly sensitive liquid biopsy-based tools. Clinical application of liquid biopsy is already paving the way for precision theranostics and personalized medicine. This is achieved especially by enabling repeated sampling, which in turn provides a more comprehensive molecular profile of tumors. On the other hand, integration with novel miniaturized platforms, engineered nanomaterials, as well as electrochemical detection has led to the development of low-cost and simple platforms suited for point-of-care applications. Herein, we provide a comprehensive overview of the biogenesis, significance and potential role of four widely known biomarkers (CTCs, ctDNA, miRNA and exosomes) in cancer diagnostics and therapeutics. Furthermore, we provide a detailed discussion of the inherent biological and technical challenges associated with currently available methods and the possible pathways to overcome these challenges. The recent advances in the application of a wide range of nanomaterials in detecting these biomarkers are also highlighted.
Collapse
Affiliation(s)
- Narshone Soda
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan, QLD 4111, Australia
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Molecular Design and Synthesis, Queensland University of Technology (QUT), Brisbane, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
176
|
Mohammadi S, Yousefi F, Shabaninejad Z, Movahedpour A, Mahjoubin Tehran M, Shafiee A, Moradizarmehri S, Hajighadimi S, Savardashtaki A, Mirzaei H. Exosomes and cancer: From oncogenic roles to therapeutic applications. IUBMB Life 2019; 72:724-748. [PMID: 31618516 DOI: 10.1002/iub.2182] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Exosomes belong to extracellular vehicles that were produced and secreted from most eukaryotic cells and are involved in cell-to-cell communications. They are an effective delivery system for biological compounds such as mRNAs, microRNAs (miRNAs), proteins, lipids, saccharides, and other physiological compounds to target cells. In this way, they could influence on cellular pathways and mediate their physiological behaviors including cell proliferation, tumorigenesis, differentiation, and so on. Many research studies focused on their role in cancers and also on potentially therapeutic and biomarker applications. In the current study, we reviewed the exosomes' effects on cancer progression based on their cargoes including miRNAs, long noncoding RNAs, circular RNAs, DNAs, mRNAs, proteins, and lipids. Moreover, their therapeutic roles in cancer were considered. In this regard, we have given a brief overview of challenges and obstacles in using exosomes as therapeutic agents.
Collapse
Affiliation(s)
- Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mahjoubin Tehran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
177
|
Markov O, Oshchepkova A, Mironova N. Immunotherapy Based on Dendritic Cell-Targeted/-Derived Extracellular Vesicles-A Novel Strategy for Enhancement of the Anti-tumor Immune Response. Front Pharmacol 2019; 10:1152. [PMID: 31680949 PMCID: PMC6798004 DOI: 10.3389/fphar.2019.01152] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC)-based anti-tumor vaccines have great potential for the treatment of cancer. To date, a large number of clinical trials involving DC-based vaccines have been conducted with a view to treating tumors of different histological origins. However, DC-based vaccines had several drawbacks, including problems with targeted delivery of tumor antigens to DCs and prolong storage of cellular vaccines. Therefore, the development of other immunotherapeutic approaches capable of enhancing the immunogenicity of existing DC-based vaccines or directly triggering anti-tumor immune responses is of great interest. Extracellular vesicles (EVs) are released by almost all types of eukaryotic cells for paracrine signaling. EVs can interact with target cells and change their functional activity by delivering different signaling molecules including mRNA, non-coding RNA, proteins, and lipids. EVs have potential benefits as natural vectors for the delivery of RNA and other therapeutic molecules targeted to DCs, T-lymphocytes, and tumor cells; therefore, EVs are a promising entity for the development of novel cell-free anti-tumor vaccines that may be a favourable alternative to DC-based vaccines. In the present review, we discuss the anti-tumor potential of EVs derived from DCs, tumors, and other cells. Methods of EV isolation are systematized, and key molecules carried by EVs that are necessary for the activation of a DC-mediated anti-tumor immune response are analyzed with a focus on the RNA component of EVs. Characteristics of anti-tumor immune responses induced by EVs in vitro and in vivo are reviewed. Finally, perspectives and challenges with the use of EVs for the development of anti-tumor cell-free vaccines are considered.
Collapse
Affiliation(s)
- Oleg Markov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | | | | |
Collapse
|
178
|
Spiniello M, Steinbrink MI, Cesnik AJ, Miller RM, Scalf M, Shortreed MR, Smith LM. Comprehensive in vivo identification of the c-Myc mRNA protein interactome using HyPR-MS. RNA (NEW YORK, N.Y.) 2019; 25:1337-1352. [PMID: 31296583 PMCID: PMC6800478 DOI: 10.1261/rna.072157.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/27/2019] [Indexed: 05/10/2023]
Abstract
Proteins bind mRNA through their entire life cycle from transcription to degradation. We analyzed c-Myc mRNA protein interactors in vivo using the HyPR-MS method to capture the crosslinked mRNA by hybridization and then analyzed the bound proteins using mass spectrometry proteomics. Using HyPR-MS, 229 c-Myc mRNA-binding proteins were identified, confirming previously proposed interactors, suggesting new interactors, and providing information related to the roles and pathways known to involve c-Myc. We performed structural and functional analysis of these proteins and validated our findings with a combination of RIP-qPCR experiments, in vitro results released in past studies, publicly available RIP- and eCLIP-seq data, and results from software tools for predicting RNA-protein interactions.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Naples 80138, Italy
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, Naples 80131, Italy
| | - Maisie I Steinbrink
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
179
|
Zhang JT, Qin H, Man Cheung FK, Su J, Zhang DD, Liu SY, Li XF, Qin J, Lin JT, Jiang BY, Song Dong, Liao RQ, Qiang N, Yang XN, Tu HY, Zhou Q, Yang JJ, Zhang XC, Zhang YN, Wu YL, Zhong WZ. Plasma extracellular vesicle microRNAs for pulmonary ground-glass nodules. J Extracell Vesicles 2019; 8:1663666. [PMID: 31579436 PMCID: PMC6758624 DOI: 10.1080/20013078.2019.1663666] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/08/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
In this study, we evaluated the diagnostic value and molecular characteristics of plasma extracellular vesicles (EVs)-derived miRNAs for patients with solitary pulmonary nodules (SPNs), particularly ground-glass nodules (GGNs). This study was registered at www.clinicaltrials.gov under registration number NCT03230019. Small RNA sequencing was performed to assess plasma EVs miRNAs in 59 patients, including 12 patients with benign nodules (2017, training set). MiRNA profiles of 40 an additional individuals were sequenced (2018, validation set). Overall, 16 pure GGNs, 21 mixed GGNs, and 42 solid nodules were included, with paired post-operative plasma samples available for 20 patients. The target miRNA/reference miRNA ratio was used to construct a support vector machine (SVM) model. The SVM model with the best specificity showed 100% specificity in both the training and validation sets independently. The model with the best sensitivity showed 100% and 96.9% sensitivity in the training and validation sets, respectively. Principal component analysis revealed that pure GGN distributions were distinct from those of solid nodules, and mixed GGNs had a diffuse distribution. Among differentially expressed miRNAs, miR-500a-3p, miR-501-3p, and miR-502-3p were upregulated in tumor tissues and enhanced overall survival. The SVM classifier accurately distinguished malignant GGNs and benign nodules. The distinct profile characteristics of miRNAs provided insights into the feasibility of EVs miRNAs as prognostic factors in lung cancer.
Collapse
Affiliation(s)
- Jia-Tao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Hao Qin
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai, China
| | - Fiona Ka Man Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Da-Dong Zhang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai, China
| | - Shi-Yi Liu
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai, China
| | - Xiao-Fang Li
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai, China
| | - Jing Qin
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jun-Tao Lin
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Ben-Yuan Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Song Dong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Ri-Qiang Liao
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Nie Qiang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Ya-Nan Zhang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangdong Key Laboratory of Lung Cancer Translational Medicine, Guangzhou, China
| |
Collapse
|
180
|
Liu J, Wang X. Focus on exosomes-From pathogenic mechanisms to the potential clinical application value in lymphoma. J Cell Biochem 2019; 120:19220-19228. [PMID: 31452241 DOI: 10.1002/jcb.29241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are highly specialized and functional bilayer membranous particles. They have been considered as vehicles for transporting and delivering a large number of proteins, lipids, and nucleic acids (gene, noncoding RNA, DNA) from parental to recipient cells. In hematological malignancies, exosomes are involved in the tumorigenesis, including producing growth factors, hindering antitumor immunoreaction, promote inflammation, angiogenesis, and hypercoagulation. With the deepening of understanding, exosomes have ignited great interests and ever-increasing efforts into the therapeutic application among scientists, such as biomarkers, therapeutic target, drug delivery system, and vaccines. Here, we discuss the most recent studies on the functions and the emerging therapeutic applications of exosomes in lymphoma.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,School of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,School of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, Shandong, China
| |
Collapse
|
181
|
Kannan A, Philley JV, Hertweck KL, Ndetan H, Singh KP, Sivakumar S, Wells RB, Vadlamudi RK, Dasgupta S. Cancer Testis Antigen Promotes Triple Negative Breast Cancer Metastasis and is Traceable in the Circulating Extracellular Vesicles. Sci Rep 2019; 9:11632. [PMID: 31406142 PMCID: PMC6690992 DOI: 10.1038/s41598-019-48064-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Triple negative breast cancer (TNBC) has poor survival, exhibits rapid metastases, lacks targeted therapies and reliable prognostic markers. Here, we examined metastasis promoting role of cancer testis antigen SPANXB1 in TNBC and its utility as a therapeutic target and prognostic biomarker. Expression pattern of SPANXB1 was determined using matched primary cancer, lymph node metastatic tissues and circulating small extracellular vesicles (sEVs). cDNA microarray analysis of TNBC cells stably integrated with a metastasis suppressor SH3GL2 identified SPANXB1 as a potential target gene. TNBC cells overexpressing SH3GL2 exhibited decreased levels of both SPANXB1 mRNA and protein. Silencing of SPANXB1 reduced migration, invasion and reactive oxygen species production of TNBC cells. SPANXB1 depletion augmented SH3GL2 expression and decreased RAC-1, FAK, A-Actinin and Vinculin expression. Phenotypic and molecular changes were reversed upon SPANXB1 re-expression. SPANXB1 overexpressing breast cancer cells with an enhanced SPANXB1:SH3GL2 ratio achieved pulmonary metastasis within 5 weeks, whereas controls cells failed to do so. Altered expression of SPANXB1 was detected in the sEVs of SPANXB1 transduced cells. Exclusive expression of SPANXB1 was traceable in circulating sEVs, which was associated with TNBC progression. SPANXB1 represents a novel and ideal therapeutic target for blocking TNBC metastases due to its unique expression pattern and may function as an EV based prognostic marker to improve TNBC survival. Uniquely restricted expression of SPANXB1 in TNBCs, makes it an ideal candidate for targeted therapeutics and prognostication.
Collapse
Affiliation(s)
- Anbarasu Kannan
- Departments of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Julie V Philley
- Departments of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Kate L Hertweck
- Departments of Biology, The University of Texas at Tyler, Tyler, Texas, USA.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Harrison Ndetan
- Departments of Epidemiology and Biostatistics, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Karan P Singh
- Departments of Epidemiology and Biostatistics, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Subramaniam Sivakumar
- Departments of Biochemistry, Sri Sankara Arts and Science College, Kanchipuram, India
| | - Robert B Wells
- Departments of Pathology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Ratna K Vadlamudi
- Departments of Obstetrics and Gynecology, CDP program, Mays Cancer Center, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Santanu Dasgupta
- Departments of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA. .,Departments of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA.
| |
Collapse
|
182
|
Schuh CMAP, Cuenca J, Alcayaga-Miranda F, Khoury M. Exosomes on the border of species and kingdom intercommunication. Transl Res 2019; 210:80-98. [PMID: 30998903 DOI: 10.1016/j.trsl.2019.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022]
Abstract
Over the last decades exosomes have become increasingly popular in the field of medicine. While until recently they were believed to be involved in the removal of obsolete particles from the cell, it is now known that exosomes are key players in cellular communication, carrying source-specific molecules such as proteins, growth factors, miRNA/mRNA, among others. The discovery that exosomes are not bound to intraspecies interactions, but are also capable of interkingdom communication, has once again revolutionized the field of exosomes research. A rapidly growing body of literature is shedding light at novel sources and participation of exosomes in physiological or regenerative processes, infection and disease. For the purpose of this review we have categorized 6 sources of interest (animal products, body fluids, plants, bacteria, fungus and parasites) and linked their innate roles to the clinics and potential medical applications, such as cell-based therapy, diagnostics or drug delivery.
Collapse
Affiliation(s)
- Christina M A P Schuh
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile; Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.
| | - Jimena Cuenca
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisca Alcayaga-Miranda
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
183
|
Islam MK, Syed P, Lehtinen L, Leivo J, Gidwani K, Wittfooth S, Pettersson K, Lamminmäki U. A Nanoparticle-Based Approach for the Detection of Extracellular Vesicles. Sci Rep 2019; 9:10038. [PMID: 31296879 PMCID: PMC6624270 DOI: 10.1038/s41598-019-46395-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/18/2019] [Indexed: 01/17/2023] Open
Abstract
The analysis of extracellular vesicles (EVs) typically requires tedious and time-consuming isolation process from bio-fluids. We developed a nanoparticle-based time resolved fluorescence immunoassay (NP-TRFIA) that uses biotinylated antibodies against the proteins of tetraspanin family and tumor-associated antigens for capturing EVs from urine samples and cell culture supernatants without the need for isolation. The captured-EVs were detected either with Eu3+-chelate or Eu3+-doped nanoparticle-based labels conjugated either to antibodies against the tetraspanins or lectins targeting the glycan moieties on EVs surface. The NP-TRFIA demonstrated specific capturing and detection of EVs by antibodies and lectins. Lectin-nanoparticle based assays showed 2–10 fold higher signal-to-background ratio compared with lectin-chelate assays. The nanoparticle assay concept allowed surface glycosylation profiling of the urine derived-EVs with lectins. It was also applied to establish an assay showing differential expression of tumor-associated proteins on more aggressive (higher ITGA3 on DU145- and PC3-EVs) compared to less aggressive (higher EpCAM on LNCaP-EVs) PCa- cell lines derived-EVs. This NP-TRFIA can be used as a simple tool for analysis and characterization of EVs in urine and cell culture supernatants. Such approach could be useful in identification of disease-specific markers on the surface of patient-derived urinary EVs.
Collapse
Affiliation(s)
- Md Khirul Islam
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland.
| | - Parvez Syed
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Laura Lehtinen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Janne Leivo
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland.,Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kamlesh Gidwani
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Saara Wittfooth
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Kim Pettersson
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
184
|
Aasen T, Leithe E, Graham SV, Kameritsch P, Mayán MD, Mesnil M, Pogoda K, Tabernero A. Connexins in cancer: bridging the gap to the clinic. Oncogene 2019; 38:4429-4451. [PMID: 30814684 PMCID: PMC6555763 DOI: 10.1038/s41388-019-0741-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 01/26/2019] [Indexed: 02/08/2023]
Abstract
Gap junctions comprise arrays of intercellular channels formed by connexin proteins and provide for the direct communication between adjacent cells. This type of intercellular communication permits the coordination of cellular activities and plays key roles in the control of cell growth and differentiation and in the maintenance of tissue homoeostasis. After more than 50 years, deciphering the links among connexins, gap junctions and cancer, researchers are now beginning to translate this knowledge to the clinic. The emergence of new strategies for connexin targeting, combined with an improved understanding of the molecular bases underlying the dysregulation of connexins during cancer development, offers novel opportunities for clinical applications. However, different connexin isoforms have diverse channel-dependent and -independent functions that are tissue and stage specific. This can elicit both pro- and anti-tumorigenic effects that engender significant challenges in the path towards personalised medicine. Here, we review the current understanding of the role of connexins and gap junctions in cancer, with particular focus on the recent progress made in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain.
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital and K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), University of A Coruña, A Coruña, Spain
| | - Marc Mesnil
- STIM Laboratory, Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers, France
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
185
|
Chang L, Ni J, Zhu Y, Pang B, Graham P, Zhang H, Li Y. Liquid biopsy in ovarian cancer: recent advances in circulating extracellular vesicle detection for early diagnosis and monitoring progression. Am J Cancer Res 2019; 9:4130-4140. [PMID: 31281536 PMCID: PMC6592165 DOI: 10.7150/thno.34692] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022] Open
Abstract
The current biomarkers available in the clinic are not enough for early diagnosis or for monitoring disease progression of ovarian cancer. Liquid biopsy is a minimally invasive test and has the advantage of early diagnosis and real-time monitoring of treatment response. Although significant progress has been made in the usage of circulating tumor cells and cell-free DNA for ovarian cancer diagnosis, their potential for early detection or monitoring progression remains elusive. Extracellular vesicles (EVs) are a heterogeneous group of lipid membranous particles released from almost all cell types. EVs contain proteins, mRNA, DNA fragments, non-coding RNAs, and lipids and play a critical role in intercellular communication. Emerging evidence suggests that EVs have crucial roles in cancer development and metastasis, thus holding promise for liquid biopsy-based biomarker discovery for ovarian cancer diagnosis. In this review, we discuss the advantages of EV-based liquid biopsy, summarize the protein biomarkers identified from EVs in ovarian cancer, and highlight the utility of new technologies recently developed for EV detection with an emphasis on their use for diagnosing ovarian cancer, monitoring cancer progression, and developing personalized medicine.
Collapse
|
186
|
Gargiulo E, Paggetti J, Moussay E. Hematological Malignancy-Derived Small Extracellular Vesicles and Tumor Microenvironment: The Art of Turning Foes into Friends. Cells 2019; 8:cells8050511. [PMID: 31137912 PMCID: PMC6562645 DOI: 10.3390/cells8050511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023] Open
Abstract
Small extracellular vesicles (small EVs) are commonly released by all cells, and are found in all body fluids. They are implicated in cell to cell short- and long-distance communication through the transfer of genetic material and proteins, as well as interactions between target cell membrane receptors and ligands anchored on small EV membrane. Beyond their canonical functions in healthy tissues, small EVs are strategically used by tumors to communicate with the cellular microenvironment and to establish a proper niche which would ultimately allow cancer cell proliferation, escape from the immune surveillance, and metastasis formation. In this review, we highlight the effects of hematological malignancy-derived small EVs on immune and stromal cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, 84, val fleuri, L-1526 Luxembourg, Luxembourg.
| | - Jerome Paggetti
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, 84, val fleuri, L-1526 Luxembourg, Luxembourg.
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, 84, val fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
187
|
Lin Y, Dong H, Deng W, Lin W, Li K, Xiong X, Guo Y, Zhou F, Ma C, Chen Y, Ren H, Yang H, Dai N, Ma L, Meltzer SJ, Yeung SCJ, Zhang H. Evaluation of Salivary Exosomal Chimeric GOLM1-NAA35 RNA as a Potential Biomarker in Esophageal Carcinoma. Clin Cancer Res 2019; 25:3035-3045. [PMID: 30745298 DOI: 10.1158/1078-0432.ccr-18-3169] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/03/2018] [Accepted: 02/01/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE Transcriptionally induced chimeric RNAs are an important emerging area of research into molecular signatures for biomarker and therapeutic target development. Salivary exosomes represent a relatively unexplored, but convenient, and noninvasive area of cancer biomarker discovery. However, the potential of cancer-derived exosomal chimeric RNAs in saliva as biomarkers is unknown. Here, we explore the potential clinical utility of salivary exosomal GOLM1-NAA35 chimeric RNA (seG-NchiRNA) in esophageal squamous cell carcinoma (ESCC). EXPERIMENTAL DESIGN In a retrospective study, the prognostic significance of G-NchiRNA was determined in ESCC tissues. The correlation between seG-NchiRNA and circulating exosomal or tumoral G-NchiRNA was ascertained in cultured cells and mice. In multiple prospective cohorts of patients with ESCC, seG-NchiRNA was measured by qRT-PCR and analyzed for diagnostic accuracy, longitudinal monitoring of treatment response, and prediction of progression-free survival (PFS). RESULTS Exosomal G-NchiRNA was readily detectable in ESCC cells and nude mouse ESCC xenografts. SeG-NchiRNA levels reflected tumor burden in vivo and correlated with tumor G-NchiRNA levels. In prospective studies of a training cohort (n = 220) and a validation cohort (n = 102), seG-NchiRNA levels were substantially reduced after ESCC resection. Moreover, seG-NchiRNA was successfully used to evaluate chemoradiation responsiveness, as well as to detect disease progression earlier than imaging studies. Changes in seG-NchiRNA levels also predicted PFS of patients after chemoradiation. CONCLUSIONS SeG-NchiRNA constitutes an effective candidate noninvasive biomarker for the convenient, reliable assessment of therapeutic response, recurrence, and early detection.
Collapse
Affiliation(s)
- Yusheng Lin
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, China
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, China
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
- Department of Pathology, Jinan University Medical College, Guangzhou, Guangdong, China
| | - Weilun Deng
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Wan Lin
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Kai Li
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao Xiong
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Yi Guo
- Endoscopy Center, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, Henan, China
| | - Changchun Ma
- Department of Radiation Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuping Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongzheng Ren
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Haijun Yang
- Department of Pathology, Anyang Tumor Hospital, Anyang, Henan, China
| | - Ningtao Dai
- Department of Pathology, Anyang Tumor Hospital, Anyang, Henan, China
| | - Lang Ma
- Department of Gastroenterology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen J Meltzer
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Sai-Ching J Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, China.
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
- Department of Pathology, Jinan University Medical College, Guangzhou, Guangdong, China
| |
Collapse
|
188
|
Skalnikova HK, Bohuslavova B, Turnovcova K, Juhasova J, Juhas S, Rodinova M, Vodicka P. Isolation and Characterization of Small Extracellular Vesicles from Porcine Blood Plasma, Cerebrospinal Fluid, and Seminal Plasma. Proteomes 2019; 7:proteomes7020017. [PMID: 31027284 PMCID: PMC6630935 DOI: 10.3390/proteomes7020017] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) are a highly attractive subject of biomedical research as possible carriers of nucleic acid and protein biomarkers. EVs released to body fluids enable indirect access to inner organs by so-called "liquid biopsies". Obtaining a high-quality EV sample with minimum contaminants is crucial for proteomic analyses using LC-MS/MS or other techniques. However, the EV content in various body fluids largely differs, which may hamper subsequent analyses. Here, we present a comparison of extracellular vesicle yields from blood plasma, cerebrospinal fluid, and seminal plasma using an experimental pig model. Pigs are widely used in biomedical research as large animal models with anatomy and physiology close to those of humans and enable studies (e.g., of the nervous system) that are unfeasible in humans. EVs were isolated from body fluids by differential centrifugation followed by ultracentrifugation. EVs were characterized according to protein yields and to the quality of the isolated vesicles (e.g., size distribution, morphology, positivity for exosome markers). In our experimental setting, substantial differences in EV amounts were identified among body fluids, with the seminal plasma being the richest EV source. The yields of pellet proteins from ultracentrifugation of 1 mL of porcine body fluids may help to estimate body fluid input volumes to obtain sufficient samples for subsequent proteomic analyses.
Collapse
Affiliation(s)
- Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Bozena Bohuslavova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Karolina Turnovcova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Marie Rodinova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 12109 Prague, Czech Republic.
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| |
Collapse
|
189
|
Lee S, Mankhong S, Kang JH. Extracellular Vesicle as a Source of Alzheimer's Biomarkers: Opportunities and Challenges. Int J Mol Sci 2019; 20:ijms20071728. [PMID: 30965555 PMCID: PMC6479979 DOI: 10.3390/ijms20071728] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease characterized by memory decline and cognitive dysfunction. Although the primary causes of AD are not clear, it is widely accepted that the accumulation of amyloid beta (Aβ) and consecutive hyper-phosphorylation of tau, synaptic loss, oxidative stress and neuronal death might play a vital role in AD pathogenesis. Recently, it has been widely suggested that extracellular vesicles (EVs), which are released from virtually all cell types, are a mediator in regulating AD pathogenesis. Clinical evidence for the diagnostic performance of EV-associated biomarkers, particularly exosome biomarkers in the blood, is also emerging. In this review, we briefly introduce the biological function of EVs in the central nervous system and discuss the roles of EVs in AD pathogenesis. In particular, the roles of EVs associated with autophagy and lysosomal degradation systems in AD proteinopathy and in disease propagation are discussed. Next, we summarize candidates for biochemical AD biomarkers in EVs, including proteins and miRNAs. The accumulating data brings hope that the application of EVs will be helpful for early diagnostics and the identification of new therapeutic targets for AD. However, at the same time, there are several challenges in developing valid EV biomarkers. We highlight considerations for the development of AD biomarkers from circulating EVs, which includes the standardization of pre-analytical sources of variability, yield and purity of isolated EVs and quantification of EV biomarkers. The development of valid EV AD biomarkers may be facilitated by collaboration between investigators and the industry.
Collapse
Affiliation(s)
- Seongju Lee
- Department of Anatomy, College of Medicine, Inha University, Incheon 22212, Korea.
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea.
| | - Sakulrat Mankhong
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea.
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea.
| | - Ju-Hee Kang
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea.
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea.
| |
Collapse
|
190
|
Exosome beads array for multiplexed phenotyping in cancer. J Proteomics 2019; 198:87-97. [DOI: 10.1016/j.jprot.2018.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
|
191
|
Scott E, Munkley J. Glycans as Biomarkers in Prostate Cancer. Int J Mol Sci 2019; 20:E1389. [PMID: 30893936 PMCID: PMC6470778 DOI: 10.3390/ijms20061389] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men, claiming over350,000 lives worldwide annually. Current diagnosis relies on prostate-specific antigen (PSA)testing, but this misses some aggressive tumours, and leads to the overtreatment of non-harmfuldisease. Hence, there is an urgent unmet clinical need to identify new diagnostic and prognosticbiomarkers. As prostate cancer is a heterogeneous and multifocal disease, it is likely that multiplebiomarkers will be needed to guide clinical decisions. Fluid-based biomarkers would be ideal, andattention is now turning to minimally invasive liquid biopsies, which enable the analysis oftumour components in patient blood or urine. Effective diagnostics using liquid biopsies willrequire a multifaceted approach, and a recent high-profile review discussed combining multipleanalytes, including changes to the tumour transcriptome, epigenome, proteome, and metabolome.However, the concentration on genomics-based paramaters for analysing liquid biopsies ispotentially missing a goldmine. Glycans have shown huge promise as disease biomarkers, anddata suggests that integrating biomarkers across multi-omic platforms (including changes to theglycome) can improve the stratification of patients with prostate cancer. A wide range ofalterations to glycans have been observed in prostate cancer, including changes to PSAglycosylation, increased sialylation and core fucosylation, increased O-GlcNacylation, theemergence of cryptic and branched N-glyans, and changes to galectins and proteoglycans. In thisreview, we discuss the huge potential to exploit glycans as diagnostic and prognostic biomarkersfor prostate cancer, and argue that the inclusion of glycans in a multi-analyte liquid biopsy test forprostate cancer will help maximise clinical utility.
Collapse
Affiliation(s)
- Emma Scott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
192
|
Lin J, Ma L, Zhang D, Gao J, Jin Y, Han Z, Lin D. Tumour biomarkers-Tracing the molecular function and clinical implication. Cell Prolif 2019; 52:e12589. [PMID: 30873683 PMCID: PMC6536410 DOI: 10.1111/cpr.12589] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
In recent years, with the increase in cancer mortality caused by metastasis, and with the development of individualized and precise medical treatment, early diagnosis with precision becomes the key to decrease the death rate. Since detecting tumour biomarkers in body fluids is the most non‐invasive way to identify the status of tumour development, it has been widely investigated for the usage in clinic. These biomarkers include different expression or mutation in microRNAs (miRNAs), circulating tumour DNAs (ctDNAs), proteins, exosomes and circulating tumour cells (CTCs). In the present article, we summarized and discussed some updated research on these biomarkers. We overviewed their biological functions and evaluated their multiple roles in human and small animal clinical treatment, including diagnosis of cancers, classification of cancers, prognostic and predictive values for therapy response, monitors for therapy efficacy, and anti‐cancer therapeutics. Biomarkers including different expression or mutation in miRNAs, ctDNAs, proteins, exosomes and CTCs provide more choice for early diagnosis of tumour detection at early stage before metastasis. Combination detection of these tumour biomarkers may provide higher accuracy at the lowest molecule combination number for tumour early detection. Moreover, tumour biomarkers can provide valuable suggestions for clinical anti‐cancer treatment and execute monitoring of treatment efficiency.
Collapse
Affiliation(s)
- Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lie Ma
- Department of Respiratory Disease, The Navy General Hospital of PLA, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihai Han
- Department of Respiratory Disease, The Navy General Hospital of PLA, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
193
|
García-Romero N, Madurga R, Rackov G, Palacín-Aliana I, Núñez-Torres R, Asensi-Puig A, Carrión-Navarro J, Esteban-Rubio S, Peinado H, González-Neira A, González-Rumayor V, Belda-Iniesta C, Ayuso-Sacido A. Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation. J Transl Med 2019; 17:75. [PMID: 30871557 PMCID: PMC6419425 DOI: 10.1186/s12967-019-1825-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are small membrane-bound vesicles which play an important role in cell-to-cell communication. Their molecular cargo analysis is presented as a new source for biomarker detection, and it might provide an alternative to traditional solid biopsies. However, the most effective approach for EV isolation is not yet well established. RESULTS Here, we study the efficiency of the most common EV isolation methods-ultracentrifugation, Polyethlyene glycol and two commercial kits, Exoquick® and PureExo®. We isolated circulating EVs from the bloodstream of healthy donors, characterized the size and yield of EVs and analyzed their protein profiles and concentration. Moreover, we have used for the first time Digital-PCR to identify and detect specific gDNA sequences, which has several implications for diagnostic and monitoring many types of diseases. CONCLUSIONS Our findings present Polyethylene glycol precipitation as the most feasible and less cost-consuming EV isolation technique.
Collapse
Affiliation(s)
- N García-Romero
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
| | - R Madurga
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
| | - G Rackov
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
- IMDEA Nanoscience, Madrid, Spain
| | - I Palacín-Aliana
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
| | - R Núñez-Torres
- Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | | | - J Carrión-Navarro
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
| | - S Esteban-Rubio
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
- Facultad de Medicina (IMMA), Universidad San Pablo-CEU, Madrid, Spain
| | - H Peinado
- Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - A González-Neira
- Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | | | - C Belda-Iniesta
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain
| | - A Ayuso-Sacido
- Fundación de Investigación HM Hospitales, HM Hospitales, C/Oña 10, 28050, Madrid, Spain.
- Facultad de Medicina (IMMA), Universidad San Pablo-CEU, Madrid, Spain.
| |
Collapse
|
194
|
Li SL, An N, Liu B, Wang SY, Wang JJ, Ye Y. Exosomes from LNCaP cells promote osteoblast activity through miR-375 transfer. Oncol Lett 2019; 17:4463-4473. [PMID: 30988815 PMCID: PMC6447935 DOI: 10.3892/ol.2019.10110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Previous studies have revealed that exosomes influence tumour metastasis, diagnosis and treatment. In addition, exosomal microRNAs (miRNAs/miRs) are closely associated with the metastatic microenvironment; however, the regulatory role of exosomal miRNAs from prostate cancer cells on bone metastasis remains poorly understood. In the present study, a series of experiments were performed to determine whether exosomal miR-375 from LNCaP cells promote osteoblast activity. Exosomes were isolated and purified by ultracentrifugation, total RNA from cells and total miRNA from exosomes were then extracted, and miR-375 levels were detected by reverse transcription-quantitative polymerase chain reaction. Exosome libraries from LNCaP and RWPE-1 cells were sequenced and selected using an Illumina HiSeq™ 2500 system. The effects of exosomes on osteoblasts were determined and osteoblast activity was evaluated by measuring the activity of alkaline phosphatase, the extent of extracellular matrix mineralisation and the expression of osteoblast activity-associated marker genes. Morphological observations, particle size analysis and molecular phenotyping confirmed that cell supernatants contained exosomes. Differential expression analysis confirmed high miR-375 expression levels in LNCaP cell-derived exosomes. The ability of exosomes to enter osteoblasts and increase their levels of miR-375 was further analysed. The results demonstrated that exosomal miR-375 significantly promoted osteoblast activity. In conclusion, the present study may lead to further investigation of the function role of exosomal miR-375 in the activation and differentiation of osteoblasts in PCa.
Collapse
Affiliation(s)
- Su-Liang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Na An
- Department of Laboratory Medicine, Shaanxi Jiaotong Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Bing Liu
- Department of Pathology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Sheng-Yu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Jian-Jun Wang
- Intensive Care Unit, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Yun Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| |
Collapse
|
195
|
Fitts CA, Ji N, Li Y, Tan C. Exploiting Exosomes in Cancer Liquid Biopsies and Drug Delivery. Adv Healthc Mater 2019; 8:e1801268. [PMID: 30663276 DOI: 10.1002/adhm.201801268] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/21/2018] [Indexed: 01/08/2023]
Abstract
Exosomes are cell-derived nanovesicles that transfer molecular cargo from donor to recipient cells and mediate intercellular communication. Advancement in elucidating the biological capabilities and functionalities of exosomes has revealed the striking roles of exosomes as conveyors of bioactive molecules across the biological barriers. Tumor-derived exosomes hold great promise to serve as a liquid biopsy tool for cancer diagnosis and prognosis, as large quantities of exosomes are excreted by tumor cells continuously into the circulation, carrying the molecular cargo (DNA, RNA, proteins) reflective of the genetic and signaling alterations in tumor cells. Two inherent characteristics of exosomes offer important opportunities for drug delivery: their superb transcellular permeability and biocompatibility. Exosomes are uniquely capable of encapsulating a variety of payloads and deliver them to the target tissues. This review discusses the potential of tumor-derived exosomes in cancer liquid biopsies as well as the underlying mechanisms. Furthermore, the recent progress of developing exosomes as highly versatile and efficient drug carriers is also summarized.
Collapse
Affiliation(s)
- Coy Austin Fitts
- Department of Pharmaceutics and Drug DeliveryUniversity of Mississippi University, MS 38677 USA
| | - Nan Ji
- Department of Pharmaceutics and Drug DeliveryUniversity of Mississippi University, MS 38677 USA
| | - Yusheng Li
- Department of Pharmaceutics and Drug DeliveryUniversity of Mississippi University, MS 38677 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug DeliveryUniversity of Mississippi University, MS 38677 USA
| |
Collapse
|
196
|
Welch JL, Stapleton JT, Okeoma CM. Vehicles of intercellular communication: exosomes and HIV-1. J Gen Virol 2019; 100:350-366. [PMID: 30702421 PMCID: PMC7011712 DOI: 10.1099/jgv.0.001193] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
The terms extracellular vesicles, microvesicles, oncosomes, or exosomes are often used interchangeably as descriptors of particles that are released from cells and comprise a lipid membrane that encapsulates nucleic acids and proteins. Although these entities are defined based on a specific size range and/or mechanism of release, the terminology is often ambiguous. Nevertheless, these vesicles are increasingly recognized as important modulators of intercellular communication. The generic characterization of extracellular vesicles could also be used as a descriptor of enveloped viruses, highlighting the fact that extracellular vesicles and enveloped viruses are similar in both composition and function. Their high degree of similarity makes differentiating between vesicles and enveloped viruses in biological specimens particularly difficult. Because viral particles and extracellular vesicles are produced simultaneously in infected cells, it is necessary to separate these populations to understand their independent functions. We summarize current understanding of the similarities and differences of extracellular vesicles, which henceforth we will refer to as exosomes, and the enveloped retrovirus, HIV-1. Here, we focus on the presence of these particles in semen, as these are of particular importance during HIV-1 sexual transmission. While there is overlap in the terminology and physical qualities between HIV-1 virions and exosomes, these two types of intercellular vehicles may differ depending on the bio-fluid source. Recent data have demonstrated that exosomes from human semen serve as regulators of HIV-1 infection that may contribute to the remarkably low risk of infection per sexual exposure.
Collapse
Affiliation(s)
- Jennifer L. Welch
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Jack T. Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Chioma M. Okeoma
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacologic Sciences, Basic Sciences Tower, Rm 8-142, Stony Brook, University School of Medicine, Stony Brook, NY 11794-8651, USA
| |
Collapse
|
197
|
Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, Daugaard M, Guns E, Hoorfar M, Li ITS. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng 2019; 3:011503. [PMID: 31069333 PMCID: PMC6481742 DOI: 10.1063/1.5087122] [Citation(s) in RCA: 359] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes are small (∼30-140 nm) lipid bilayer-enclosed particles of endosomal origin. They are a subset of extracellular vesicles (EVs) that are secreted by most cell types. There has been growing interest in exosome research in the last decade due to their emerging role as intercellular messengers and their potential in disease diagnosis. Indeed, exosomes contain proteins, lipids, and RNAs that are specific to their cell origin and could deliver cargo to both nearby and distant cells. As a result, investigation of exosome cargo contents could offer opportunities for disease detection and treatment. Moreover, exosomes have been explored as natural drug delivery vehicles since they can travel safely in extracellular fluids and deliver cargo to destined cells with high specificity and efficiency. Despite significant efforts made in this relatively new field of research, progress has been held back by challenges such as inefficient separation methods, difficulties in characterization, and lack of specific biomarkers. In this review, we summarize the current knowledge in exosome biogenesis, their roles in disease progression, and therapeutic applications and opportunities in bioengineering. Furthermore, we highlight the established and emerging technological developments in exosome isolation and characterization. We aim to consider critical challenges in exosome research and provide directions for future studies.
Collapse
Affiliation(s)
- Xia Li
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Alexander L. Corbett
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | | | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Jonathan P. Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Cathie Garnis
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada, and Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada, and Department of Urologic Sciences, University of British Columbia, Vancouver, Vancouver, BC V5Z 1M9, Canada
| | - Emma Guns
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada, and Department of Urologic Sciences, University of British Columbia, Vancouver, Vancouver, BC V5Z 1M9, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Isaac T. S. Li
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
198
|
Wongkaew N. Nanofiber-integrated miniaturized systems: an intelligent platform for cancer diagnosis. Anal Bioanal Chem 2019; 411:4251-4264. [PMID: 30706075 DOI: 10.1007/s00216-019-01589-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/26/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022]
Abstract
Cancer diagnostic tools enabling screening, diagnosis, and effective disease management are essential elements to increase the survival rate of diagnosed patients. Low abundance of cancer markers present in large amounts of interferences remains the major issue. Moreover, current diagnostic technologies are restricted to high-resourced settings only. Integrating nanofibers into miniaturized analytical systems holds a significant promise to address these challenges as demonstrated by recent publications. A large surface area, three-dimensional porous network, and diverse range of functional chemistries make nanofibers an excellent candidate as immobilization support and/or transduction elements, enabling high capture yield and ultrasensitive detection in miniaturized devices. Functional nanofibers have thus been used to isolate and detect various cancer-related biomarkers with a high degree of success in both on-chip and off-chip platforms. In fact, the chemical and functional adaptability of nanofibers has been exploited to address the technical challenges unique to each of the cancer markers in body fluids, where circulating tumor cells are prominently investigated among others (proteins, nucleic acids, and exosomes). So far, none of the work has exploited the nanofibers for cancer-derived exosomes, opening an avenue for further research effort. The trend and future prospects signal possibilities to strengthen the implementation of nanofiber-miniaturized system hybrid for a next generation of cancer diagnostic platforms both in clinical and point-of-care testing.
Collapse
Affiliation(s)
- Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
199
|
Yu J, Lin Y, Xiong X, Li K, Yao Z, Dong H, Jiang Z, Yu D, Yeung SCJ, Zhang H. Detection of Exosomal PD-L1 RNA in Saliva of Patients With Periodontitis. Front Genet 2019; 10:202. [PMID: 30923536 PMCID: PMC6426748 DOI: 10.3389/fgene.2019.00202] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is the most prevalent inflammatory disease of the periodontium, and is related to oral and systemic health. Exosomes are emerging as non-invasive biomarker for liquid biopsy. We here evaluated the levels of programmed death-ligand 1 (PD-L1) mRNA in salivary exosomes from patients with periodontitis and non-periodontitis controls. The purposes of this study were to establish a procedure for isolation and detection of mRNA in exosomes from saliva of periodontitis patients, to characterize the level of salivary exosomal PD-L1, and to illustrate its clinical relevance. Bioinformatics analysis suggested that periodontitis was associated with an inflammation gene expression signature, that PD-L1 expression positively correlated with inflammation in periodontitis based on gene set enrichment analysis (GSEA) and that PD-L1 expression was remarkably elevated in periodontitis patients versus control subjects. Exosomal RNAs were successfully isolated from saliva of 61 patients and 30 controls and were subjected to qRT-PCR. Levels of PD-L1 mRNA in salivary exosomes were higher in periodontitis patients than controls (P < 0.01). Salivary exosomal PD-L1 mRNA showed significant difference between the stages of periodontitis. In summary, the protocols for isolating and detecting exosomal RNA from saliva of periodontitis patients were, for the first time, characterized. The current study suggests that assay of exosomes-based PD-L1 mRNA in saliva has potential to distinguish periodontitis from the healthy, and the levels correlate with the severity/stage of periodontitis.
Collapse
Affiliation(s)
- Jialiang Yu
- Department of Stomatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yusheng Lin
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Xiao Xiong
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Kai Li
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Zhimeng Yao
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Hongmei Dong
- Cancer Research Center, Shantou University Medical College, Shantou, China
- Institute of Precision Cancer and Pathology, Jinan University Medical College, Guangzhou, China
| | - Zuojie Jiang
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Dan Yu
- Department of Stomatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hao Zhang
- Institute of Precision Cancer and Pathology, Jinan University Medical College, Guangzhou, China
- Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Hao Zhang,
| |
Collapse
|
200
|
Słomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front Immunol 2018; 9:2723. [PMID: 30619239 PMCID: PMC6300519 DOI: 10.3389/fimmu.2018.02723] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
The terms microparticles (MPs) and microvesicles (MVs) refer to large extracellular vesicles (EVs) generated from a broad spectrum of cells upon its activation or death by apoptosis. The unique surface antigens of MPs/MVs allow for the identification of their cellular origin as well as its functional characterization. Two basic aspects of MP/MV functions in physiology and pathological conditions are widely considered. Firstly, it has become evident that large EVs have strong procoagulant properties. Secondly, experimental and clinical studies have shown that MPs/MVs play a crucial role in the pathophysiology of inflammation-associated disorders. A cardinal feature of these disorders is an enhanced generation of platelets-, endothelial-, and leukocyte-derived EVs. Nevertheless, anti-inflammatory effects of miscellaneous EV types have also been described, which provided important new insights into the large EV-inflammation axis. Advances in understanding the biology of MPs/MVs have led to the preparation of this review article aimed at discussing the association between large EVs and inflammation, depending on their cellular origin.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Sabine Katharina Urban
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Ewa Żekanowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Miroslaw Kornek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|