151
|
Russell C, Rodriguez C, Yaseen M. High-value biochemical products & applications of freshwater eukaryotic microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151111. [PMID: 34695461 DOI: 10.1016/j.scitotenv.2021.151111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
A shift in public perception of the health and nutritional benefits of organic supplements and skin care products has led to a surge in high-value products being extracted from microalgae. Traditional forms of microalgae products were proteins, lipids and carbohydrates. However, in recent times the extraction of carotenoids (pigments), polyunsaturated acids (PUFAs), vitamins, phytosterols and polyphenols has increased significantly. Despite the diversity of products most research has failed to scale up production to industrial scale due to economic constraints and productivity capacities. It is clear that the main market drivers are the pharmaceutical and nutraceutical industries. This paper reviews the high-value products produced from freshwater eukaryotic microalgae. In addition, the paper also considers the biochemical properties of eukaryotic microalgae to provide a comparative analysis of different strains based on their high-value product content.
Collapse
Affiliation(s)
- Callum Russell
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Cristina Rodriguez
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| |
Collapse
|
152
|
Colantoni E, Palone F, Cesi V, Leter B, Sugoni G, Laudadio I, Negroni A, Vitali R, Stronati L. Innovative method to grow the probiotic Lactobacillus reuteri in the omega3-rich microalga Isochrysis galbana. Sci Rep 2022; 12:3127. [PMID: 35210548 PMCID: PMC8873227 DOI: 10.1038/s41598-022-07227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Microalgae are natural sources of valuable bioactive compounds, such as polyunsaturated fatty acids (PUFAs), that show antioxidant, anti-inflammatory, anticancer and antimicrobial activities. The marine microalga Isochrysis galbana (I. galbana) is extremely rich in ω3 PUFAs, mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Probiotics are currently suggested as adjuvant therapy in the management of diseases associated with gut dysbiosis. The Lactobacillus reuteri (L. reuteri), one of the most widely used probiotics, has been shown to produce multiple beneficial effects on host health. The present study aimed to present an innovative method for growing the probiotic L. reuteri in the raw seaweed extracts from I. galbana as an alternative to the conventional medium, under conditions of oxygen deprivation (anaerobiosis). As a result, the microalga I. galbana was shown for the first time to be an excellent culture medium for growing L. reuteri. Furthermore, the gas-chromatography mass-spectrometry analysis showed that the microalga-derived ω3 PUFAs were still available after the fermentation by L. reuteri. Accordingly, the fermented compound (FC), obtained from the growth of L. reuteri in I. galbana in anaerobiosis, was able to significantly reduce the adhesiveness and invasiveness of the harmful adherent-invasive Escherichia coli to intestinal epithelial cells, due to a cooperative effect between L. reuteri and microalgae-released ω3 PUFAs. These findings open new perspectives in the use of unicellular microalgae as growth medium for probiotics and in the production of biofunctional compounds.
Collapse
Affiliation(s)
- Eleonora Colantoni
- Division of Health Protection Technologies, ENEA, Via Anguillarese 301, 00123, Rome, Italy
| | - Francesca Palone
- Division of Health Protection Technologies, ENEA, Via Anguillarese 301, 00123, Rome, Italy
| | - Vincenzo Cesi
- Division of Health Protection Technologies, ENEA, Via Anguillarese 301, 00123, Rome, Italy
| | - Beatrice Leter
- Division of Health Protection Technologies, ENEA, Via Anguillarese 301, 00123, Rome, Italy
| | - Giulia Sugoni
- Division of Protection and Enhancement of the Natural Capital, ENEA, Via Anguillarese 301, 00123, Rome, Italy
| | - Ilaria Laudadio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Anna Negroni
- Division of Health Protection Technologies, ENEA, Via Anguillarese 301, 00123, Rome, Italy
| | - Roberta Vitali
- Division of Health Protection Technologies, ENEA, Via Anguillarese 301, 00123, Rome, Italy
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
153
|
Perković L, Djedović E, Vujović T, Baković M, Paradžik T, Čož-Rakovac R. Biotechnological Enhancement of Probiotics through Co-Cultivation with Algae: Future or a Trend? Mar Drugs 2022; 20:142. [PMID: 35200671 PMCID: PMC8880515 DOI: 10.3390/md20020142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The diversity of algal species is a rich source of many different bioactive metabolites. The compounds extracted from algal biomass have various beneficial effects on health. Recently, co-culture systems between microalgae and bacteria have emerged as an interesting solution that can reduce the high contamination risk associated with axenic cultures and, consequently, increase biomass yield and synthesis of active compounds. Probiotic microorganisms also have numerous positive effects on various aspects of health and represent potent co-culture partners. Most studies consider algae as prebiotics that serve as enhancers of probiotics performance. However, the extreme diversity of algal organisms and their ability to produce a plethora of metabolites are leading to new experimental designs in which these organisms are cultivated together to derive maximum benefit from their synergistic interactions. The future success of these studies depends on the precise experimental design of these complex systems. In the last decade, the development of high-throughput approaches has enabled a deeper understanding of global changes in response to interspecies interactions. Several studies have shown that the addition of algae, along with probiotics, can influence the microbiota, and improve gut health and overall yield in fish, shrimp, and mussels aquaculture. In the future, such findings can be further explored and implemented for use as dietary supplements for humans.
Collapse
Affiliation(s)
- Lucija Perković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Elvis Djedović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Tamara Vujović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Marija Baković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Tina Paradžik
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
154
|
Wang J, Hu X, Chen J, Wang T, Huang X, Chen G. The Extraction of β-Carotene from Microalgae for Testing Their Health Benefits. Foods 2022; 11:502. [PMID: 35205979 PMCID: PMC8871089 DOI: 10.3390/foods11040502] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023] Open
Abstract
β-carotene, a member of the carotenoid family, is a provitamin A, and can be converted into vitamin A (retinol), which plays essential roles in the regulation of physiological functions in animal bodies. Microalgae synthesize a variety of carotenoids including β-carotene and are a rich source of natural β-carotene. This has attracted the attention of researchers in academia and the biotech industry. Methods to enrich or purify β-carotene from microalgae have been investigated, and experiments to understand the biological functions of microalgae products containing β-carotene have been conducted. To better understand the use of microalgae to produce β-carotene and other carotenoids, we have searched PubMed in August 2021 for the recent studies that are focused on microalgae carotenoid content, the extraction methods to produce β-carotene from microalgae, and the bioactivities of β-carotene from microalgae. Articles published in peer-reviewed scientific journals were identified, screened, and summarized here. So far, various types and amounts of carotenoids have been identified and extracted in different types of microalgae. Diverse methods have been developed overtime to extract β-carotene efficiently and practically from microalgae for mass production. It appears that methods have been developed to simplify the steps and extract β-carotene directly and efficiently. Multiple studies have shown that extracts or whole organism of microalgae containing β-carotene have activities to promote lifespan in lab animals and reduce oxidative stress in culture cells, etc. Nevertheless, more studies are warranted to study the health benefits and functional mechanisms of β-carotene in these microalgae extracts, which may benefit human and animal health in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China; (J.W.); (X.H.)
| | - Xinge Hu
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
| | - Junbin Chen
- School of Public Health, Southern Medical University, Guangzhou 510515, China;
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China; (J.W.); (X.H.)
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
| |
Collapse
|
155
|
Ahmad A, Banat F, Alsafar H, Hasan SW. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150585. [PMID: 34597562 DOI: 10.1016/j.scitotenv.2021.150585] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
A growing world population is causing hazardous compounds to form at an increasingly rapid rate, calling for ecological action. Wastewater management and treatment is an expensive process that requires appropriate integration technology to make it more feasible and cost-effective. Algae are of great interest as potential feedstocks for various applications, including environmental sustainability, biofuel production, and the manufacture of high-value bioproducts. Bioremediation with microalgae is a potential approach to reduce wastewater pollution. The need for effective nutrient recovery, greenhouse gas reduction, wastewater treatment, and biomass reuse has led to a wide interest in the use of microalgae for wastewater treatment. Furthermore, algae biomass can be used to produce bioenergy and high-value bioproducts. The use of microalgae as medicine (production of bioactive and medicinal compounds), biofuels, biofertilizers, and food additives has been explored by researchers around the world. Technological and economic barriers currently prevent the commercial use of algae, and optimal downstream processes are needed to reduce production costs. Therefore, the simultaneous use of microalgae for wastewater treatment and biofuel production could be an economical approach to address these issues. This article provides an overview of algae and their application in bioremediation, bioenergy production, and bioactive compound production. It also highlights the current problems and opportunities in the algae-based sector, which has recently become quite promising.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Habiba Alsafar
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
156
|
Udayan A, Pandey AK, Sirohi R, Sreekumar N, Sang BI, Sim SJ, Kim SH, Pandey A. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-28. [PMID: 35095355 PMCID: PMC8783767 DOI: 10.1007/s11101-021-09784-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
In the current global scenario, the world is under a serious dilemma due to the increasing human population, industrialization, and urbanization. The ever-increasing need for fuels and increasing nutritional problems have made a serious concern on the demand for nutrients and renewable and eco-friendly fuel sources. Currently, the use of fossil fuels is creating ecological and economic problems. Microalgae have been considered as a promising candidate for high-value metabolites and alternative renewable energy sources. Microalgae offer several advantages such as rapid growth rate, efficient land utilization, carbon dioxide sequestration, ability to cultivate in wastewater, and most importantly, they do not participate in the food crop versus energy crop dilemma or debate. An efficient microalgal biorefinery system for the production of lipids and subsequent byproduct for nutraceutical applications could well satisfy the need. But, the current microalgal cultivation systems for the production of lipids and nutraceuticals do not offer techno-economic feasibility together with energy and environmental sustainability. This review article has its main focus on the production of lipids and nutraceuticals from microalgae, covering the current strategies used for lipid production and the major high-value metabolites from microalgae and their nutraceutical importance. This review also provides insights on the future strategies for enhanced microalgal lipid production and subsequent utilization of microalgal biomass. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram, Kerala 695 004 India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sung Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sang Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226 001 India
| |
Collapse
|
157
|
Wiatrowski M, Klein BC, Davis RW, Quiroz-Arita C, Tan ECD, Hunt RW, Davis RE. Techno-economic assessment for the production of algal fuels and value-added products: opportunities for high-protein microalgae conversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:8. [PMID: 35418157 PMCID: PMC8764804 DOI: 10.1186/s13068-021-02098-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/24/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Microalgae possess numerous advantages for use as a feedstock in producing renewable fuels and products, with techno-economic analysis (TEA) frequently used to highlight the economic potential and technical challenges of utilizing this biomass in a biorefinery context. However, many historical TEA studies have focused on the conversion of biomass with elevated levels of carbohydrates and lipids and lower levels of protein, incurring substantial burdens on the ability to achieve high cultivation productivity rates relative to nutrient-replete, high-protein biomass. Given a strong dependence of algal biomass production costs on cultivation productivity, further TEA assessment is needed to understand the economic potential for utilizing potentially lower-cost but lower-quality, high-protein microalgae for biorefinery conversion. RESULTS In this work, we conduct rigorous TEA modeling to assess the economic viability of two conceptual technology pathways for processing proteinaceous algae into a suite of fuels and products. One approach, termed mild oxidative treatment and upgrading (MOTU), makes use of a series of thermo-catalytic operations to upgrade solubilized proteins and carbohydrates to hydrocarbon fuels, while another alternative focuses on the biological conversion of those substrates to oxygenated fuels in the form of mixed alcohols (MA). Both pathways rely on the production of polyurethanes from unsaturated fatty acids and valorization of unconverted solids for use as a material for synthesizing bioplastics. The assessment found similar, albeit slightly higher fuel yields and lower costs for the MA pathway, translating to a residual solids selling price of $899/ton for MA versus $1033/ton for MOTU as would be required to support a $2.50/gallon gasoline equivalent (GGE) fuel selling price. A variation of the MA pathway including subsequent upgrading of the mixed alcohols to hydrocarbon fuels (MAU) reflected a required solids selling price of $975/ton. CONCLUSION The slight advantages observed for the MA pathway are partially attributed to a boundary that stops at oxygenated fuels versus fungible drop-in hydrocarbon fuels through a more complex MOTU configuration, with more comparable results obtained for the MAU scenario. In either case, it was shown that an integrated algal biorefinery can be economical through optimal strategies to utilize and valorize all fractions of the biomass.
Collapse
Affiliation(s)
- Matthew Wiatrowski
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| | - Bruno C Klein
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Ryan W Davis
- Biomass Science and Conversion Technologies, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Carlos Quiroz-Arita
- Biomass Science and Conversion Technologies, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Eric C D Tan
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Ryan W Hunt
- Algix, 5168 Water Tower Rd, Meridian, MS, 39301, USA
| | - Ryan E Davis
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| |
Collapse
|
158
|
Aeroterrestrial and Extremophilic Microalgae as Promising Sources for Lipids and Lipid Nanoparticles in Dermal Cosmetics. COSMETICS 2022. [DOI: 10.3390/cosmetics9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microscopic prokaryotic and eukaryotic algae (microalgae), which can be effectively grown in mass cultures, are gaining increasing interest in cosmetics. Up to now, the main attention was on aquatic algae, while species from aeroterrestrial and extreme environments remained underestimated. In these habitats, algae accumulate high amounts of some chemical substances or develop specific compounds, which cause them to thrive in inimical conditions. Among such biologically active molecules is a large family of lipids, which are significant constituents in living organisms and valuable ingredients in cosmetic formulations. Therefore, natural sources of lipids are increasingly in demand in the modern cosmetic industry and its innovative technologies. Among novelties in skin care products is the use of lipid nanoparticles as carriers of dermatologically active ingredients, which enhance their penetration and release in the skin strata. This review is an attempt to comprehensively cover the available literature on the high-value lipids from microalgae, which inhabit aeroterrestrial and extreme habitats (AEM). Data on different compounds of 87 species, subspecies and varieties from 53 genera (represented by more than 141 strains) from five phyla are provided and, despite some gaps in the current knowledge, demonstrate the promising potential of AEM as sources of valuable lipids for novel skin care products.
Collapse
|
159
|
Parkes R, Barone ME, Aranyos A, Fierli D, Koehler H, Gillespie E, Touzet N. Species-specific responses in pigments and fatty acids of five freshwater chlorophytes exposed to varying cultivation conditions. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
160
|
Prospective on the application of abiotic stresses to enhance the industrial production of exopolysaccharides from microalgae. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
161
|
Xia D, Qiu W, Wang X, Liu J. Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals. Mar Drugs 2021; 19:703. [PMID: 34940702 PMCID: PMC8703604 DOI: 10.3390/md19120703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Microalgal cells serve as solar-powered factories that produce pharmaceuticals, recombinant proteins (vaccines and drugs), and valuable natural byproducts that possess medicinal properties. The main advantages of microalgae as cell factories can be summarized as follows: they are fueled by photosynthesis, are carbon dioxide-neutral, have rapid growth rates, are robust, have low-cost cultivation, are easily scalable, pose no risk of human pathogenic contamination, and their valuable natural byproducts can be further processed. Despite their potential, there are many technical hurdles that need to be overcome before the commercial production of microalgal pharmaceuticals, and extensive studies regarding their impact on human health must still be conducted and the results evaluated. Clearly, much work remains to be done before microalgae can be used in the large-scale commercial production of pharmaceuticals. This review focuses on recent advancements in microalgal biotechnology and its future perspectives.
Collapse
Affiliation(s)
- Donghua Xia
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
| | - Wen Qiu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Xianxian Wang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Junying Liu
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
- Pharmaceutical Manufacturing Technology Centre (PMTC), Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|
162
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
163
|
Singh S, Verma DK, Thakur M, Tripathy S, Patel AR, Shah N, Utama GL, Srivastav PP, Benavente-Valdés JR, Chávez-González ML, Aguilar CN. Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Res Int 2021; 150:110746. [PMID: 34865764 DOI: 10.1016/j.foodres.2021.110746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Application of high-value algal metabolites (HVAMs) in cosmetics, additives, pigments, foods and medicines are very important. These HVAMs can be obtained from the cultivation of micro- and macro-algae. These metabolites can benefit human and animal health in a physiological and nutritional manner. However, because of conventional extraction methods and their energy and the use of pollutant solvents, the availability of HVAMs from algae remains insufficient. Receiving their sustainability and environmental benefits have recently made green extraction technologies for HVAM extractions more desirable. But very little information is available about the technology of green extraction of algae from these HVAM. This review, therefore, highlights the supercritical fluid extraction (SCFE) as principal green extraction technologyand theirideal parameters for extracting HVAMs. In first, general information is provided concerning the HVAMs and their components of macro and micro origin. The review also includes a description of SCFE technology's properties, instrumentation operation, solvents used, and the merits and demerits. Moreover, there are several HVAMs associated with their numerous high-level biological activities which include high-level antioxidant, anti-inflammatory, anticancer and antimicrobial activity and have potential health-beneficial effects in humans since they are all HVAMs, such as foods and nutraceuticals. Finally, it provides future insights, obstacles, and suggestions for selecting the right technologies for extraction.
Collapse
Affiliation(s)
- Smita Singh
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh 140413, Punjab, India.
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior 474001, Madhya Pradesh, India.
| | - Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Nihir Shah
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia; Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Juan Roberto Benavente-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Mónica L Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico.
| |
Collapse
|
164
|
Wang Y, Tibbetts SM, McGinn PJ. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021; 10:3002. [PMID: 34945551 PMCID: PMC8700990 DOI: 10.3390/foods10123002] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
As a result of population growth, an emerging middle-class, and a more health-conscious society concerned with overconsumption of fats and carbohydrates, dietary protein intake is on the rise. To address this rapid change in the food market, and the subsequent high demand for protein products, agriculture, aquaculture, and the food industry have been working actively in recent years to increase protein product output from both production and processing aspects. Dietary proteins derived from animal sources are of the highest quality, containing well-balanced profiles of essential amino acids that generally exceed those of other food sources. However, as a result of studies highlighting low production efficiency (e.g., feed to food conversion) and significant environmental impacts, together with the negative health impacts associated with the dietary intake of some animal products, especially red meats, the consumption of animal proteins has been remaining steady or even declining over the past few decades. To fill this gap, researchers and product development specialists at all levels have been working closely to discover new sources of protein, such as plant-based ingredients. In this regard, microalgae have been recognized as strategic crops, which, due to their vast biological diversity, have distinctive phenotypic traits and interactions with the environment in the production of biomass and protein, offering possibilities of production of large quantities of microalgal protein through manipulating growing systems and conditions and bioengineering technologies. Despite this, microalgae remain underexploited crops and research into their nutritional values and health benefits is in its infancy. In fact, only a small handful of microalgal species are being produced at a commercial scale for use as human food or protein supplements. This review is intended to provide an overview on microalgal protein content, its impact by environmental factors, its protein quality, and its associated evaluation methods. We also attempt to present the current challenges and future research directions, with a hope to enhance the research, product development, and commercialization, and ultimately meet the rapidly increasing market demand for high-quality protein products.
Collapse
Affiliation(s)
- Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Sean M. Tibbetts
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada; (S.M.T.); (P.J.M.)
| | - Patrick J. McGinn
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada; (S.M.T.); (P.J.M.)
| |
Collapse
|
165
|
Uribe-Wandurraga ZN, Igual M, Rufino RGD, Savall C, García-Segovia P, Martínez-Monzó J. Physicochemical and rheological characterisation of microalgae-enriched ketchups and their sensory acceptability. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
166
|
Ahmad N, Zuo Y, Anwar F, Abbas A, Shahid M, Hassan AA, Bilal M, Rasheed T. Ultrasonic-assisted extraction as a green route for hydrolysis of bound phenolics in selected wild fruits: Detection and systematic characterization using GC–MS–TIC method. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
167
|
Gara-Ali M, Zili F, Hosni K, Ben Ouada H, Ben-Mahrez K. Lipophilic extracts of the thermophilic cyanobacterium Leptolyngbya sp. and chlorophyte Graesiella sp. and their potential use as food and anticancer agents. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
168
|
Abstract
The efficient use of natural resources is essential for the planet’s sustainability and ensuring food security. Colombia’s large availability of water resources in combination with its climatic characteristics allows for the development of many microalgae species. The use of microalgae can potentially contribute to sustainable production in support of the agri-food sector. The nutritional composition (proteins, carbohydrates, fatty acids, vitamins, pigments, and antioxidants) of microalgae along with the ease of producing high biomass yields make them an excellent choice for human and animal nutrition and agriculture. Several species of microalgae have been studied seeking to develop food supplements for pigs, ruminants, poultry, fish, crustaceans, rabbits, and even bees. Important benefits to animal health, production, and improved bromatological and organoleptic characteristics of milk, meat, and eggs have been observed. Based on the functional properties of some microalgae species, foods and supplements have also been developed for human nutrition. Moreover, because microalgae contain essential nutrients, they can be utilized as biofertilizers by replacing chemical fertilizers, which are detrimental to the environment. In view of the above, the study of microalgae is a promising research area for the development of biotechnology and bioeconomy in Colombia.
Collapse
|
169
|
Exploring the Potential of Icelandic Seaweeds Extracts Produced by Aqueous Pulsed Electric Fields-Assisted Extraction for Cosmetic Applications. Mar Drugs 2021; 19:md19120662. [PMID: 34940661 PMCID: PMC8704373 DOI: 10.3390/md19120662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
A growing concern for overall health is driving a global market of natural ingredients not only in the food industry but also in the cosmetic field. In this study, a screening on potential cosmetic applications of aqueous extracts from three Icelandic seaweeds produced by pulsed electric fields (PEF) was performed. Produced extracts by PEF from Ulva lactuca, Alaria esculenta and Palmaria palmata were compared with the traditional hot water extraction in terms of polyphenol, flavonoid and carbohydrate content. Moreover, antioxidant properties and enzymatic inhibitory activities were evaluated by using in vitro assays. PEF exhibited similar results to the traditional method, showing several advantages such as its non-thermal nature and shorter extraction time. Amongst the three Icelandic species, Alaria esculenta showed the highest content of phenolic (mean value 8869.7 µg GAE/g dw) and flavonoid (mean value 12,098.7 µg QE/g dw) compounds, also exhibiting the highest antioxidant capacities. Moreover, Alaria esculenta extracts exhibited excellent anti-enzymatic activities (76.9, 72.8, 93.0 and 100% for collagenase, elastase, tyrosinase and hyaluronidase, respectively) for their use in skin whitening and anti-aging products. Thus, our preliminary study suggests that Icelandic Alaria esculenta-based extracts produced by PEF could be used as potential ingredients for natural cosmetic and cosmeceutical formulations.
Collapse
|
170
|
Genetic engineering of microalgae for enhanced lipid production. Biotechnol Adv 2021; 52:107836. [PMID: 34534633 DOI: 10.1016/j.biotechadv.2021.107836] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Microalgae have the potential to become microbial cell factories for lipid production. Their ability to convert sunlight and CO2 into valuable lipid compounds has attracted interest from cosmetic, biofuel, food and feed industries. In order to make microalgae-derived products cost-effective and commercially competitive, enhanced growth rates and lipid productivities are needed, which require optimization of cultivation systems and strain improvement. Advances in genetic tool development and omics technologies have increased our understanding of lipid metabolism, which has opened up possibilities for targeted metabolic engineering. In this review we provide a comprehensive overview on the developments made to genetically engineer microalgal strains over the last 30 years. We focus on the strategies that lead to an increased lipid content and altered fatty acid profile. These include the genetic engineering of the fatty acid synthesis pathway, Kennedy pathway, polyunsaturated fatty acid and triacylglycerol metabolisms and fatty acid catabolism. Moreover, genetic engineering of specific transcription factors, NADPH generation and central carbon metabolism, which lead to increase of lipid accumulation are also reviewed.
Collapse
|
171
|
Abstract
Among photosynthetic microorganisms, Cyanobacteria and Microalgae species have been highly studied thank to their high value-added compounds for several industrial applications. Thus, their production is increasing in the last decade to produce raw material for cosmetics. In fact, the daily routine includes the use of cosmetics and sunscreens to protect against the environmental changes, mainly the increment of ultraviolet (UV) radiation rate with a consequent skin damage and premature aging due to this overexposure. As it is well discussed, chemical UV filters are extensively incorporated into sunscreens formulas; however, they can induce allergenic reactions as well. For these reasons, some pigments derived from microalgae, such as astaxanthin, lutein, β-carotene as well as other biocompounds are now well described in the literature as well as biotechnologically manufactured as natural ingredients to be incorporated into skin care products with multifunctional benefits even for sunscreen purposes. Hence, this investigation summarizes the recent studies about the main pigments from photosynthetic microorganisms' biomasses as well as their uses in dermocosmetics with novel attributes, such as anti-aging agents, makeups, skin lightening and whitening, among others.
Collapse
|
172
|
Microalgal lipids: biochemistry and biotechnology. Curr Opin Biotechnol 2021; 74:1-7. [PMID: 34749062 DOI: 10.1016/j.copbio.2021.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022]
Abstract
Microalgae, including cyanobacteria, are a genetically diverse and biochemically diverse group of mostly photosynthetic organisms that can be found in nearly every ecosystem. They produce a broad range of compounds, including structural and bioactive lipids with various roles in the metabolism of the cell and potential applications in biotechnology. The majority of lipids are synthesized in the chloroplast using acetate to produce fatty acids and terpenoids via the acetate pathway and methylerythritol phosphate deoxy-xylulose phosphate pathway, respectively. This review will highlight the major groups of microalgal lipids as well as their applications in food, fuels, and specialty chemicals. Future directions include the development of microalgal chassis organisms and molecular tools to manipulate lipid synthesis for the enhanced production of target metabolites.
Collapse
|
173
|
Tan HT, Yusoff FM, Khaw YS, Ahmad SA, Shaharuddin NA. Uncovering Research Trends of Phycobiliproteins Using Bibliometric Approach. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112358. [PMID: 34834721 PMCID: PMC8622606 DOI: 10.3390/plants10112358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Phycobiliproteins are gaining popularity as long-term, high-value natural products which can be alternatives to synthetic products. This study analyzed research trends of phycobiliproteins from 1909 to 2020 using a bibliometric approach based on the Scopus database. The current findings showed that phycobiliprotein is a burgeoning field in terms of publications outputs with "biochemistry, genetics, and molecular biology" as the most related and focused subject. The Journal of Applied Phycology was the most productive journal in publishing articles on phycobiliproteins. Although the United States of America (U.S.A.) contributed the most publications on phycobiliproteins, the Chinese Academy of Sciences (China) is the institution with the largest number of publications. The most productive author on phycobiliproteins was Glazer, Alexander N. (U.S.A.). The U.S.A. and Germany were at the forefront of international collaboration in this field. According to the keyword analysis, the most explored theme was the optimization of microalgae culture parameters and phycobiliproteins extraction methods. The bioactivity properties and extraction of phycobiliproteins were identified as future research priorities. Synechococcus and Arthrospira were the most cited genera. This study serves as an initial step in fortifying the phycobiliproteins market, which is expected to exponentially expand in the future. Moreover, further research and global collaboration are necessary to commercialize phycobiliproteins and increase the consumer acceptability of the pigments and their products.
Collapse
Affiliation(s)
- Hui Teng Tan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.T.T.); (Y.S.K.)
| | - Fatimah Md. Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yam Sim Khaw
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.T.T.); (Y.S.K.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.A.A.); (N.A.S.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.A.A.); (N.A.S.)
| |
Collapse
|
174
|
Chase EE, Monteil-Bouchard S, Gobet A, Andrianjakarivony FH, Desnues C, Blanc G. A High Rate Algal Pond Hosting a Dynamic Community of RNA Viruses. Viruses 2021; 13:2163. [PMID: 34834969 PMCID: PMC8619904 DOI: 10.3390/v13112163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
Despite a surge of RNA virome sequencing in recent years, there are still many RNA viruses to uncover-as indicated by the relevance of viral dark matter to RNA virome studies (i.e., putative viruses that do not match to taxonomically identified viruses). This study explores a unique site, a high-rate algal pond (HRAP), for culturing industrially microalgae, to elucidate new RNA viruses. The importance of viral-host interactions in aquatic systems are well documented, and the ever-expanding microalgae industry is no exception. As the industry becomes a more important source of sustainable plastic manufacturing, a producer of cosmetic pigments and alternative protein sources, and a means of CO2 remediation in the face of climate change, studying microalgal viruses becomes a vital practice for proactive management of microalgae cultures at the industrial level. This study provides evidence of RNA microalgal viruses persisting in a CO2 remediation pilot project HRAP and uncovers the diversity of the RNA virosphere contained within it. Evidence shows that family Marnaviridae is cultured in the basin, alongside other potential microalgal infecting viruses (e.g., family Narnaviridae, family Totitiviridae, and family Yueviridae). Finally, we demonstrate that the RNA viral diversity of the HRAP is temporally dynamic across two successive culturing seasons.
Collapse
Affiliation(s)
- Emily E. Chase
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Sonia Monteil-Bouchard
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
| | - Angélique Gobet
- MARBEC University Montpellier, CNRS, Ifremer, IRD, 34203 Sète, France;
| | - Felana H. Andrianjakarivony
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Christelle Desnues
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Guillaume Blanc
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (F.H.A.)
| |
Collapse
|
175
|
Maltsev Y, Maltseva K, Kulikovskiy M, Maltseva S. Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition. BIOLOGY 2021; 10:1060. [PMID: 34681157 PMCID: PMC8533579 DOI: 10.3390/biology10101060] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Microalgae are a valuable natural resource for a variety of value-added products. The growth of microalgae is determined by the impact of many factors, but, from the point of view of the implementation of autotrophic growth, light is of primary importance. This work presents an overview of the influence of light conditions on the growth of microalgae, the content of lipids, carotenoids, and the composition of fatty acids in their biomass, taking into account parameters such as the intensity, duration of lighting, and use of rays of different spectral composition. The optimal light intensity for the growth of microalgae lies in the following range: 26-400 µmol photons m-2 s-1. An increase in light intensity leads to an activation of lipid synthesis. For maximum lipid productivity, various microalgae species and strains need lighting of different intensities: from 60 to 700 µmol photons m-2 s-1. Strong light preferentially increases the triacylglyceride content. The intensity of lighting has a regulating effect on the synthesis of fatty acids, carotenoids, including β-carotene, lutein and astaxanthin. In intense lighting conditions, saturated fatty acids usually accumulate, as well as monounsaturated ones, and the number of polyunsaturated fatty acids decreases. Red as well as blue LED lighting improves the biomass productivity of microalgae of various taxonomic groups. Changing the duration of the photoperiod, the use of pulsed light can stimulate microalgae growth, the production of lipids, and carotenoids. The simultaneous use of light and other stresses contributes to a stronger effect on the productivity of algae.
Collapse
Affiliation(s)
- Yevhen Maltsev
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia; (M.K.); (S.M.)
| | - Kateryna Maltseva
- Faculty of Chemistry and Biology, Bogdan Khmelnitsky Melitopol State Pedagogical University, 72312 Melitopol, Ukraine;
| | - Maxim Kulikovskiy
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia; (M.K.); (S.M.)
| | - Svetlana Maltseva
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia; (M.K.); (S.M.)
| |
Collapse
|
176
|
Protein nutritional quality, amino acid profile, anti-amylase and anti-glucosidase properties of microalgae: Inhibition and mechanisms of action through in vitro and in silico studies. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
177
|
Ali S, Paul Peter A, Chew KW, Munawaroh HSH, Show PL. Resource recovery from industrial effluents through the cultivation of microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 337:125461. [PMID: 34198241 DOI: 10.1016/j.biortech.2021.125461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Industrial effluents such as pharmaceutical residues, pesticides, dyes, and metal processes holds abundant value-added products (VAPs), where its recovery has become essential. The purpose of such recovery is for sustainable treatment, which is an approach that considers the economic, social, and environmental aspects. Microalgae with its potential in the recovery process from effluents, can reduce energy usage of waste management strategies and regenerate nutrients such as carbon, phosphorus, and nitrogen. Microalgae cultures offer the use of inorganic materials by microalgae for their growth and the help of bacteria to produce biomass, thus, resulting in the absence of secondary emissions due to its ability to eliminate volatile organic compounds. Moreover, recovered bioactive compounds are transformed into bioethanol, bio-fertilizers, biopolymer, health supplements and animal feed. Therefore, it is significant to focus on an economical and efficient utilization of microalgae in recovering nutrients that can be further used in various commercial applications.
Collapse
Affiliation(s)
- Shazia Ali
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Angela Paul Peter
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
178
|
Miguel SP, Ribeiro MP, Otero A, Coutinho P. Application of microalgae and microalgal bioactive compounds in skin regeneration. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
179
|
Guarda I, Fonseca I, Pereira H, Martins LL, Gomes R, Matos J, Gomes-Bispo A, Bandarra NM, Afonso C, Cardoso C. Key Constituents and Antioxidant Activity of Novel Functional Foods Developed with Skeletonema Sp. Biomass. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1975003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Inês Guarda
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
| | - Inês Fonseca
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
| | - Hugo Pereira
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | | | - Romina Gomes
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
| | - Joana Matos
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
- Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ana Gomes-Bispo
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
- Ciimar, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Narcisa Maria Bandarra
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
- Ciimar, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Cláudia Afonso
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
- Ciimar, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Carlos Cardoso
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
- Ciimar, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| |
Collapse
|
180
|
Unay E, Ozkaya B, Yoruklu HC. A multicriteria decision analysis for the evaluation of microalgal growth and harvesting. CHEMOSPHERE 2021; 279:130561. [PMID: 33892454 DOI: 10.1016/j.chemosphere.2021.130561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Biomass obtained from microalgae research studies gained momentum in recent years because of their extensive application potential in multiple industries such as high-value nutraceuticals, bioproducts, cosmetics, animal feed industries, and biofuels while being a sustainable and environmentally friendly option. Although they have high biomass yields and rapid growth rates there are some limitations and challenges that remain for large-scale commercialized cultivation and harvesting methods of microalgae. Since there are multiple pathways related to efficient cultivation and harvesting methods to be viable, this study adopted, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), a multicriteria decision-making tool, to find the most acceptable alternative by using excel spreadsheets to evaluate the information that is derived from literature and pilot-scale studies. As a result, tubular (helical) and plate (flat panel) photobioreactors (PBRs) for cultivation and chemical harvesting (with chitosan) and bio-flocculation for harvesting were deemed suitable, while plastic bag PBR and suspended air flotation were deemed unsuitable.
Collapse
Affiliation(s)
- Elifnaz Unay
- Yildiz Technical University, Faculty of Civil Engineering, Environmental Engineering Department, 34220, Esenler Istanbul, Turkey.
| | - Bestami Ozkaya
- Yildiz Technical University, Faculty of Civil Engineering, Environmental Engineering Department, 34220, Esenler Istanbul, Turkey.
| | - Hulya Civelek Yoruklu
- Yildiz Technical University, Faculty of Civil Engineering, Environmental Engineering Department, 34220, Esenler Istanbul, Turkey.
| |
Collapse
|
181
|
Otero P, Carpena M, Garcia-Oliveira P, Echave J, Soria-Lopez A, Garcia-Perez P, Fraga-Corral M, Cao H, Nie S, Xiao J, Simal-Gandara J, Prieto MA. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Crit Rev Food Sci Nutr 2021; 63:1901-1929. [PMID: 34463176 DOI: 10.1080/10408398.2021.1969534] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, consumers are increasingly aware of the relationship between diet and health, showing a greater preference of products from natural origin. In the last decade, seaweeds have outlined as one of the natural sources with more potential to obtain bioactive carbohydrates. Numerous seaweed polysaccharides have aroused the interest of the scientific community, due to their biological activities and their high potential on biomedical, functional food and technological applications. To obtain polysaccharides from seaweeds, it is necessary to find methodologies that improve both yield and quality and that they are profitable. Nowadays, environmentally friendly extraction technologies are a viable alternative to conventional methods for obtaining these products, providing several advantages like reduced number of solvents, energy and time. On the other hand, chemical modification of their structure is a useful approach to improve their solubility and biological properties, and thus enhance the extent of their potential applications since some uses of polysaccharides are still limited. The present review aimed to compile current information about the most relevant seaweed polysaccharides, available extraction and modification methods, as well as a summary of their biological activities, to evaluate knowledge gaps and future trends for the industrial applications of these compounds.Key teaching pointsStructure and biological functions of main seaweed polysaccharides.Emerging extraction methods for sulfate polysaccharides.Chemical modification of seaweeds polysaccharides.Potential industrial applications of seaweed polysaccharides.Biological activities, knowledge gaps and future trends of seaweed polysaccharides.
Collapse
Affiliation(s)
- Paz Otero
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - J Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - A Soria-Lopez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P Garcia-Perez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Fraga-Corral
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Hui Cao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - J Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
182
|
Panchal SK, Brown L. Addressing the Insufficient Availability of EPA and DHA to Meet Current and Future Nutritional Demands. Nutrients 2021; 13:nu13082855. [PMID: 34445016 PMCID: PMC8398444 DOI: 10.3390/nu13082855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia;
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia
- Correspondence: ; Tel.: +61-433-062-123
| |
Collapse
|
183
|
Shaikh SS, Bawazir A, Yahya BA. Phytochemical, Histochemical and in-vitro Antimicrobial Study of Various Solvent Extracts of Costus speciosus (J.Koenig) Sm. and Costus pictus D. Don. Turk J Pharm Sci 2021; 19:116-124. [DOI: 10.4274/tjps.galenos.2021.08683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
184
|
Mishra B, Manmode S, Walke G, Chakraborty S, Neralkar M, Hotha S. Synthesis of the hyper-branched core tetrasaccharide motif of chloroviruses. Org Biomol Chem 2021; 19:1315-1328. [PMID: 33459320 DOI: 10.1039/d0ob02176h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical synthesis of complex oligosaccharides, especially those possessing hyper-branched structures with one or multiple 1,2-cis glycosidic bonds, is a challenging task. Complementary reactivity of glycosyl donors and acceptors and proper tuning of the solvent/temperature/activator coupled with compromised glycosylation yields for sterically congested glycosyl acceptors are among several factors that make such syntheses daunting. Herein, we report the synthesis of a semi-conserved hyper-branched core tetrasaccharide motif from chloroviruses which are associated with reduced cognitive function in humans as well as in mouse models. The target tetrasaccharide contains four different sugar residues in which l-fucose is connected to d-xylose and l-rhamnose via a 1,2-trans glycosidic bond, whereas with the d-galactose residue is connected through a 1,2-cis glycosidic bond. A thorough and comprehensive study of various accountable factors enabled us to install a 1,2-cis galactopyranosidic linkage in a stereoselective fashion under [Au]/[Ag]-catalyzed glycosidation conditions en route to the target tetrasaccharide motif in 14 steps.
Collapse
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Sujit Manmode
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Gulab Walke
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Saptashwa Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Mahesh Neralkar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| |
Collapse
|
185
|
|
186
|
Geada P, Moreira C, Silva M, Nunes R, Madureira L, Rocha CMR, Pereira RN, Vicente AA, Teixeira JA. Algal proteins: Production strategies and nutritional and functional properties. BIORESOURCE TECHNOLOGY 2021; 332:125125. [PMID: 33865652 DOI: 10.1016/j.biortech.2021.125125] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Animal-based proteins are the most consumed worldwide given their well-balanced nutritional composition. However, the growing demand for animal proteins will not be sustainable due to their low conversion efficiency and high environmental footprint. Specific consumers' dietary restrictions and modern trends emphasize the importance of finding alternative sustainable non-animal sources to meet future food (and, in particular, protein) global needs. Algal biomass is considered a relevant alternative, presenting advantages over terrestrial biomass such as higher growth rate, low water consumption, no competition for arable land, carbon-neutral emissions, and production of numerous bioactive compounds. This review provides an overview of recent research advances on algae as source of proteins, including production strategies from relevant protein-producing species. Particular emphasis will be given to algae protein current applications and forthcoming challenges of their use. Nutritional and functional aspects of algae biomass or its protein-enriched fractions will be overviewed.
Collapse
Affiliation(s)
- Pedro Geada
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Catarina Moreira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Maria Silva
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Rafaela Nunes
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Leandro Madureira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Cristina M R Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - António A Vicente
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - José A Teixeira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
187
|
Liyanaarachchi VC, Premaratne M, Ariyadasa TU, Nimarshana P, Malik A. Two-stage cultivation of microalgae for production of high-value compounds and biofuels: A review. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102353] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
188
|
Coelho DFM, Alfaia CMRPM, Assunção JMP, Costa M, Pinto RMA, de Andrade Fontes CMG, Lordelo MM, Prates JAM. Impact of dietary Chlorella vulgaris and carbohydrate-active enzymes incorporation on plasma metabolites and liver lipid composition of broilers. BMC Vet Res 2021; 17:229. [PMID: 34187475 PMCID: PMC8243889 DOI: 10.1186/s12917-021-02932-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chlorella vulgaris has been proposed as a sustainable green feedstock in poultry nutrition due to its ease of cultivation, minimal environmental impact and balanced nutritional composition. However, the majority of studies documents the use of C. vulgaris as a dietary supplement in broilers instead of a feed ingredient. To the best of our knowledge, no report has shown the effect of a high-level incorporation (>2 % in the diet) of C. vulgaris on plasma metabolites and hepatic lipid composition of broilers. One hundred and twenty Ross 308 male birds were housed in 40 wired-floor cages and randomly distributed by the following experimental diets at 22 days of age (n = 10) during 15 days: (1) a corn-soybean meal based diet (control); (2) based diet with 10% of C. vulgaris; (3) diet 2 supplemented with 0.005% Rovabio® Excel AP; and (4) diet 2 supplemented with 0.01% of a pre-selected four-CAZyme mixture. RESULTS The inclusion of C. vulgaris at 10% in the diet, regardless of the presence of exogenous CAZymes, changed plasma metabolites but did not compromise broilers growth. Plasma total lipids increased in broilers fed C. vulgaris combined with the two feed CAZymes (p < 0.001) compared with the control diet. Moreover, the supplementation with Rovabio® increased total cholesterol and LDL-cholesterol, while the addition of the four-CAZyme mixture increased triacylglycerols, VLDL-cholesterol and ALP activity. In opposition, HDL-cholesterol levels decreased in broilers fed microalga alone (p = 0.002). Regarding hepatic composition, the inclusion of C. vulgaris in broiler diets, individually or combined with exogenous CAZymes, had a minor effect on fatty acids but improved the n-6/n-3 ratio and total carotenoids. CONCLUSIONS In summary, the inclusion of a high level (10%) of C. vulgaris in broiler´s diet, regardless of the presence of exogenous CAZymes, improved hepatic antioxidant composition and did not impair broiler's performance. In addition, the feed supplementation with CAZymes increased broilers lipemia. Therefore, dietary C. vulgaris at this incorporation level seems to be safe for animal health and do not compromise performance traits, with no need of CAZymes supplementation.
Collapse
Affiliation(s)
- Diogo Francisco Maurício Coelho
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | | | - José Miguel Pestana Assunção
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Mónica Costa
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Rui Manuel Amaro Pinto
- iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | | | - Madalena M. Lordelo
- LEAF - Linking Landscape, Environment, Agriculture And Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José António Mestre Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
189
|
Improvements in Conventional Modeling Practices for Effective Simulation and Understanding of Microalgal Growth in Photobioreactors: an Experimental Study. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
190
|
Conde TA, Neves BF, Couto D, Melo T, Neves B, Costa M, Silva J, Domingues P, Domingues MR. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar Drugs 2021; 19:md19070357. [PMID: 34201621 PMCID: PMC8307217 DOI: 10.3390/md19070357] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
The demand for sustainable and environmentally friendly food sources and food ingredients is increasing, and microalgae are promoted as a sustainable source of essential and bioactive lipids, with high levels of omega-3 fatty acids (ω-3 FA), comparable to those of fish. However, most FA screening studies on algae are scattered or use different methodologies, preventing a true comparison of its content between microalgae. In this work, we used gas-chromatography mass-spectrometry (GC-MS) to characterize the FA profile of seven different commercial microalgae with biotechnological applications (Chlorella vulgaris, Chlorococcum amblystomatis, Scenedesmus obliquus, Tetraselmis chui, Phaeodactylum tricornutum, Spirulina sp., and Nannochloropsis oceanica). Screening for antioxidant activity was also performed to understand the relationship between FA profile and bioactivity. Microalgae exhibited specific FA profiles with a different composition, namely in the ω-3 FA profile, but with species of the same phylum showing similar tendencies. The different lipid extracts showed similar antioxidant activities, but with a low activity of the extracts of Nannochloropsis oceanica. Overall, this study provides a direct comparison of FA profiles between microalgae species, supporting the role of these species as alternative, sustainable, and healthy sources of essential lipids.
Collapse
Affiliation(s)
- Tiago A. Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruna F. Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Margarida Costa
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
191
|
Wan Osman WNA, Mat Nawi NI, Samsuri S, Bilad MR, Khan AL, Hunaepi H, Jaafar J, Lam MK. Ultra low-pressure filtration system for energy efficient microalgae filtration. Heliyon 2021; 7:e07367. [PMID: 34222699 PMCID: PMC8243011 DOI: 10.1016/j.heliyon.2021.e07367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Microalgae-based products have gained growing interest leading to an increase in large-scale cultivation. However, the high energy associated with microalgae harvesting becomes one of the bottlenecks. This study evaluated an energy-efficient microalga harvesting via ultra-low-pressure membrane (ULPM) filtration (<20 kPa) in combination with aeration. ULPM offered various benefits especially in terms of reducing the energy consumption due to it operated under low transmembrane pressure (TMP). High TMP often associated with high pumping energy hence would increase the amount of energy consumed. In addition, membrane with high TMP would severely affect by membrane compaction. Results showed that membrane compaction leads to up to 66 % clean water permeability loss when increasing the TMP from 2.5 to 19 kPa. The Chlorella vulgaris broth permeabilities decreased from 1660 and 1250 to 296 and 251 L/m2hrbar for corresponding TMPs for system with and without aeration, respectively. However, it was found that membrane fouling was more vulnerable at low TMP due to poor foulant scouring from a low crossflow velocity in which up to 56 % of permeability losses were observed. Membrane fouling is the biggest drawback of membrane system as it would reduce the membrane performance. In this study, aeration was introduced as membrane fouling control to scour-off the foulant from membrane surface and pores. In terms of energy consumption, it was observed that the specific energy consumption for the ULPM were very low of up to 4.4 × 10-3 kWh/m3. Overall, combination of low TMP with aeration offers lowest energy input.
Collapse
Affiliation(s)
- Wan Nur Aisyah Wan Osman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia.,HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Normi Izati Mat Nawi
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
| | - Shafirah Samsuri
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia.,HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Muhammad Roil Bilad
- Faculty of Applied Science and Engineering, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia.,Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Islamabad, Pakistan
| | - Hunaepi Hunaepi
- Faculty of Applied Science and Engineering, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Man Kee Lam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia.,HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| |
Collapse
|
192
|
Comparison of various approaches to detect algal culture contamination: a case study of Chlorella sp. contamination in a Phaeodactylum tricornutum culture. Appl Microbiol Biotechnol 2021; 105:5189-5200. [PMID: 34146137 DOI: 10.1007/s00253-021-11396-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Microalgal contamination in algal culture is a serious problem hampering the cultivation process, which can result in considerable economic and time losses. With the field of microalgal biotechnology on the rise, development of new tools for monitoring the cultures is of high importance. Here we present a case study of the detection of fast-growing green algae Chlorella vulgaris (as contaminant) in a diatom Phaeodactylum tricornutum culture using various approaches. We prepared mixed cultures of C. vulgaris and P. tricornutum in different cell-to-cell ratios in the range from 1:103 to 1:107. We compared the sensitivity among microscopy, cultivation-based technique, PCR, and qPCR. The detection of C. vulgaris contamination using light microscopy failed in samples containing cell ratios <1:105. Our results confirmed PCR/qPCR to provide the most reliable and sensitive results, with detection sensitivity close to 75 cells/mL. The method was similarly sensitive in a pure C. vulgaris culture as well as in a mixed culture containing 107-times more P. tricornutum cells. A next-generation sequencing analysis revealed a positive discrimination of C. vulgaris during DNA extraction. The method of cultivation media exchange from sea water to fresh water, preferred by the Chlorella contaminant, demonstrated a presence of the contaminant with a sensitivity comparable to PCR approaches, albeit with a much longer detection time. The results suggest that a qPCR/PCR-based approach is the best choice for an early warning in the commercial culturing of microalgae. This method can be conveniently complemented with the substitution-cultivation method to test the proliferating potential of the contaminant. KEY POINTS: • PCR-based protocol developed for detection of Chlorella cells. • Synergy of various approaches shows deeper insight into a presence of contaminants. • Positive/negative discrimination occurs during DNA extraction in mixed cultures. • Newly developed assays ready to use as in diagnostics of contamination.
Collapse
|
193
|
Saadaoui I, Rasheed R, Aguilar A, Cherif M, Al Jabri H, Sayadi S, Manning SR. Microalgal-based feed: promising alternative feedstocks for livestock and poultry production. J Anim Sci Biotechnol 2021; 12:76. [PMID: 34134776 PMCID: PMC8359609 DOI: 10.1186/s40104-021-00593-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
There is an immediate need to identify alternative sources of high-nutrient feedstocks for domestic livestock production and poultry, not only to support growing food demands but also to produce microalgae-source functional foods with multiple health benefits. Various species of microalgae and cyanobacteria are used to supplement existing feedstocks. In this review, microalgae have been defined as a potential feedstock for domestic animals due to their abundance of proteins, carbohydrates, lipids, minerals, vitamins, and other high-value products. Additionally, the positive physiological effects on products of animals fed with microalgal biomass have been compiled and recommendations are listed to enhance the assimilation of biomolecules in ruminant and nonruminant animals, which possess differing digestive systems. Furthermore, the role of microalgae as prebiotics is also discussed. With regards to large scale cultivation of microalgae for use as feed, many economic trade-offs must be considered such as the selection of strains with desired nutritional properties, cultivation systems, and steps for downstream processing. These factors are highlighted with further investigations needed to reduce the overall costs of cultivation. Finally, this review outlines the pros and cons of utilizing microalgae as a supplementary feedstock for poultry and cattle, existing cultivation strategies, and the economics of large-scale microalgal production.
Collapse
Affiliation(s)
- Imen Saadaoui
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar.
| | - Rihab Rasheed
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Ana Aguilar
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maroua Cherif
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Hareb Al Jabri
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Schonna R Manning
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
194
|
Abstract
In recent years, there has been considerable interest in using microalgal lipids in the food, chemical, pharmaceutical, and cosmetic industries. Several microalgal species can accumulate appreciable lipid quantities and therefore are characterized as oleaginous. In cosmetic formulations, lipids and their derivatives are one of the main ingredients. Different lipid classes are great moisturizing, emollient, and softening agents, work as surfactants and emulsifiers, give consistence to products, are color and fragrance carriers, act as preservatives to maintain products integrity, and can be part of the molecules delivery system. In the past, chemicals have been widely used but today’s market and customers’ demands are oriented towards natural products. Microalgae are an extraordinary source of lipids and other many bioactive molecules. Scientists’ attention to microalgae cultivation for their industrial application is increasing. For the high costs associated, commercialization of microalgae and their products is still not very widespread. The possibility to use biomass for various industrial purposes could make microalgae more economically competitive.
Collapse
|
195
|
Dalheim L, Svenning JB, Olsen RL. In vitro intestinal digestion of lipids from the marine diatom Porosira glacialis compared to commercial LC n-3 PUFA products. PLoS One 2021; 16:e0252125. [PMID: 34106926 PMCID: PMC8189463 DOI: 10.1371/journal.pone.0252125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/10/2021] [Indexed: 11/26/2022] Open
Abstract
Marine sources of long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) are in high demand for use in health supplements. Mass cultivated marine microalgae is a promising and sustainable source of LC n-3 PUFA, which relieves pressure on natural fish stocks. The lipid class profile from cultivated photosynthetic algae differ from the marine organisms currently used for the production of LC n-3 PUFA. The objective of this study was to compare in vitro intestinal digestion of oil extracted from the cold-adapted marine diatom Porosira glacialis with commercially available LC n-3 PUFA supplements; cod liver oil, krill oil, ethyl ester concentrate, and oil from the copepod Calanus finmarchicus (Calanus® oil). The changes in the free fatty acids and neutral and polar lipids during the enzymatic hydrolysis were characterized by liquid and gas chromatography. In Calanus® oil and the Ethyl ester concentrate, the free fatty acids increased very little (4.0 and 4.6%, respectively) during digestion. In comparison, free fatty acids in Krill oil and P. glacialis oil increased by 14.7 and 17.0%, respectively. Cod liver oil had the highest increase (28.2%) in free fatty acids during the digestion. Monounsaturated and saturated fatty acids were more easily released than polyunsaturated fatty acids in all five oils.
Collapse
Affiliation(s)
- Lars Dalheim
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| | - Jon Brage Svenning
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ragnar Ludvig Olsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
196
|
Borella L, Sforza E, Bertucco A. Effect of residence time in continuous photobioreactor on mass and energy balance of microalgal protein production. N Biotechnol 2021; 64:46-53. [PMID: 34087470 DOI: 10.1016/j.nbt.2021.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
There is increasing interest in new protein sources for the food and feed industry and for the agricultural sector, and microalgae are considered a good alternative, having a high protein content and a well-balanced amino acid profile. However, protein production from microalgae presents several unsolved issues, as the biomass composition changes markedly as a function of cultivation operating conditions. Continuous systems, however, may be properly set to boost the accumulation of protein in the biomass, ensuring stable production. Here, two microalgae and two cyanobacterial species were cultivated in continuous operating photobioreactors (PBR) under nonlimiting nutrient conditions, to study the effects of light intensity and residence time on both biomass and protein productivity at steady state. Although light strongly affected biomass growth inside the PBR, the overall protein pool did not vary in response to irradiance. On the other hand, shorter residence times resulted in protein accumulation of up to 68 % in cyanobacteria, in contrast with green algae, where a minor influence of residence time on biomass composition was observed. Energy balance showed that light conversion to protein decreased with light intensity. Protein content was also related to energy costs for cell maintenance. In conclusion, it is shown that residence time is the key variable to increase protein content and yield of protein production, but its effect depends on the specific species.
Collapse
Affiliation(s)
- Lisa Borella
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Eleonora Sforza
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131, Padova, Italy.
| | - Alberto Bertucco
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| |
Collapse
|
197
|
Abstract
Microalgae have become an attractive natural source of a diverse range of biomolecules, including enzymatic and non-enzymatic antioxidants; nevertheless, economically sustainable production of such compounds from microalgae biomass is still challenging. The main hurdles are: (a) increasing microalgae yield; (b) achieving optimal cultivation conditions; (c) energy-efficient and cost-effective downstream processing (extraction and purification); (d) optimal storage of post-processed antioxidant molecules. This review provides a detailed overview of enzymatic and non-enzymatic antioxidants in the cellular metabolism of the commercially important microalgae Dunaliella, industrial applications of antioxidant enzymes, strategies to enhanced antioxidant accumulation in cells, and the opportunities and limitations of current technologies for antioxidant enzymes production from microalgae biomass as an alternative to common microbial sources.
Collapse
|
198
|
Kumar V, Al Momin S, Kumar VV, Ahmed J, Al-Musallam L, Shajan AB, Al-Aqeel H, Al-Mansour H, Al-Zakri WM. Distribution and diversity of eukaryotic microalgae in Kuwait waters assessed using 18S rRNA gene sequencing. PLoS One 2021; 16:e0250645. [PMID: 33901235 PMCID: PMC8075240 DOI: 10.1371/journal.pone.0250645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/08/2021] [Indexed: 11/18/2022] Open
Abstract
The microbial communities play a crucial role in ecosystem functioning through interactions among individuals and taxonomic groups in a highly dynamic marine ecosystem. The structure and functioning of the microbial communities are often influenced by the changes in the surrounding environment. Monitoring the microbial diversity of the marine ecosystem helps to understand spatial patterns of microbial community and changes due to season, climate, and various drivers of biological diversity. Kuwait is characterized by an arid environment with a high degree of temperature variation during summer and winter. Our understanding of spatial distribution patterns of microbial communities, their diversity, and the influence of human activities on the degree of changes in the diversity of the microbial community in Kuwait territorial waters remain unclear. In this study, we employed 18S rRNA sequencing to explore marine microalgal community composition and dynamics in seawater samples collected from Kuwait waters over two seasonal cycles across six locations. A total of 448,184 sequences across 36 replicates corresponding to 12 samples from six stations were obtained. The quality-filtered sequences were clustered into 1,293 representative sequences, which were then classified into different eukaryotic taxa. This study reveals that the phytoplankton community in Kuwait waters is diverse and shows significant variations among different taxa during summer and winter. Dinoflagellates and diatoms were the most abundant season-dependent microalgae taxa in Kuwait waters. Alexandrium and Pyrophacus were abundant in summer, whereas Gonyaulax was abundant during the winter. The abundance of Coscinodiscus and Navicula, of the diatom genera, were also dependent upon both seasonal and possible anthropogenic factors. Our results demonstrate the effectiveness of a sequencing-based approach, which could be used to improve the accuracy of quantitative eukaryotic microbial community profiles.
Collapse
Affiliation(s)
- Vinod Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
- * E-mail:
| | - Sabah Al Momin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Vanitha V. Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Jasim Ahmed
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Lamya Al-Musallam
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Anisha B. Shajan
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Hamed Al-Aqeel
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Hamad Al-Mansour
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Walid M. Al-Zakri
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| |
Collapse
|
199
|
Kiran BR, Venkata Mohan S. Microalgal Cell Biofactory-Therapeutic, Nutraceutical and Functional Food Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:836. [PMID: 33919450 PMCID: PMC8143517 DOI: 10.3390/plants10050836] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
Microalgae are multifaceted photosynthetic microorganisms with emerging business potential. They are present ubiquitously in terrestrial and aquatic environments with rich species diversity and are capable of producing significant biomass. Traditionally, microalgal biomass is being used as food and feed in many countries around the globe. The production of microalgal-based bioactive compounds at an industrial scale through biotechnological interventions is gaining interest more recently. The present review provides a detailed overview of the key algal metabolites, which plays a crucial role in nutraceutical, functional foods, and animal/aquaculture feed industries. Bioactive compounds of microalgae known to exhibit antioxidant, antimicrobial, antitumor, and immunomodulatory effects were comprehensively reviewed. The potential microalgal species and biological extracts against human pathogens were also discussed. Further, current technologies involved in upstream and downstream bioprocessing including cultivation, harvesting, and cell disruption were documented. Establishing microalgae as an alternative supplement would complement the sustainable and environmental requirements in the framework of human health and well-being.
Collapse
Affiliation(s)
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India;
| |
Collapse
|
200
|
Bocanegra A, Macho-González A, Garcimartín A, Benedí J, Sánchez-Muniz FJ. Whole Alga, Algal Extracts, and Compounds as Ingredients of Functional Foods: Composition and Action Mechanism Relationships in the Prevention and Treatment of Type-2 Diabetes Mellitus. Int J Mol Sci 2021; 22:3816. [PMID: 33917044 PMCID: PMC8067684 DOI: 10.3390/ijms22083816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is a major systemic disease which involves impaired pancreatic function and currently affects half a billion people worldwide. Diet is considered the cornerstone to reduce incidence and prevalence of this disease. Algae contains fiber, polyphenols, ω-3 PUFAs, and bioactive molecules with potential antidiabetic activity. This review delves into the applications of algae and their components in T2DM, as well as to ascertain the mechanism involved (e.g., glucose absorption, lipids metabolism, antioxidant properties, etc.). PubMed, and Google Scholar databases were used. Papers in which whole alga, algal extracts, or their isolated compounds were studied in in vitro conditions, T2DM experimental models, and humans were selected and discussed. This review also focuses on meat matrices or protein concentrate-based products in which different types of alga were included, aimed to modulate carbohydrate digestion and absorption, blood glucose, gastrointestinal neurohormones secretion, glycosylation products, and insulin resistance. As microbiota dysbiosis in T2DM and metabolic alterations in different organs are related, the review also delves on the effects of several bioactive algal compounds on the colon/microbiota-liver-pancreas-brain axis. As the responses to therapeutic diets vary dramatically among individuals due to genetic components, it seems a priority to identify major gene polymorphisms affecting potential positive effects of algal compounds on T2DM treatment.
Collapse
Affiliation(s)
- Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
| | - Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Francisco José Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| |
Collapse
|