151
|
Zhang Z, Cheng N, Liang J, Deng Y, Xiang P, Hei Z, Li X. Gut microbiota changes in animal models of spinal cord injury: a preclinical systematic review and meta-analysis. Ann Med 2023; 55:2269379. [PMID: 37851840 PMCID: PMC10586076 DOI: 10.1080/07853890.2023.2269379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND An increasing number of studies show that the intestinal flora is closely related to spinal cord injury. Many researchers are exploring the changes in the richness, diversity, and evenness of intestinal flora in spinal cord injury animal models to identify the characteristic bacteria. METHODS A comprehensive literature search was conducted using three databases: PubMed, Embase, and Web of Science. A meta-analysis was performed using R 4.3.1 to evaluate the comparison of microbiota diversity, richness, and evenness and the relative abundance of intestinal microbiota in animals with spinal cord injury and blank controls. RESULTS Fifteen studies were included in the meta-analysis, of which 12 involved gut microbiota distribution indicators and 11 included intestinal microflora relative abundance indicators. Meta-analysis of high-dimensional indicators describing the distribution of the gut microbiota identified a substantial decline in the evenness and richness of the intestinal flora. In addition, the Actinobacteria phylum and Erysipelotrichales and Clostridiales orders were significantly different between the spinal cord injury and sham groups; therefore, they may be the characteristic bacteria in spinal cord injury models. CONCLUSION Our meta-analysis suggested that the gut microbiota in the spinal cord injury animal model group was altered compared with that in the control group, with varying degrees of changes in richness and evenness and potentially pathogenic characteristic flora. More rigorous methodological studies are needed because of the high heterogeneity and limited sample size. Further research is needed to clinically apply intestinal microbiota and potentially guide fecal microbiota transplantation therapy.
Collapse
Affiliation(s)
- Zhenye Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nan Cheng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianfen Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yifan Deng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ping Xiang
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
152
|
Ochoa-Hernández ME, Reynoso-Varela A, Martínez-Córdova LR, Rodelas B, Durán U, Alcántara-Hernández RJ, Serrano-Palacios D, Calderón K. Linking the shifts in the metabolically active microbiota in a UASB and hybrid anaerobic-aerobic bioreactor for swine wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118435. [PMID: 37379625 DOI: 10.1016/j.jenvman.2023.118435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Due to the high concentration of pollutants, swine wastewater needs to be treated prior to disposal. The combination of anaerobic and aerobic technologies in one hybrid system allows to obtain higher removal efficiencies compared to those achieved via conventional biological treatment, and the performance of a hybrid system depends on the microbial community in the bioreactor. Here, we evaluated the community assembly of an anaerobic-aerobic hybrid reactor for swine wastewater treatment. Sequencing of partial 16S rRNA coding genes was performed using Illumina from DNA and retrotranscribed RNA templates (cDNA) extracted from samples from both sections of the hybrid system and from a UASB bioreactor fed with the same swine wastewater influent. Proteobacteria and Firmicutes were the dominant phyla and play a key role in anaerobic fermentation, followed by Methanosaeta and Methanobacterium. Several differences were found in the relative abundances of some genera between the DNA and cDNA samples, indicating an increase in the diversity of the metabolically active community, highlighting Chlorobaculum, Cladimonas, Turicibacter and Clostridium senso stricto. Nitrifying bacteria were more abundant in the hybrid bioreactor. Beta diversity analysis revealed that the microbial community structure significantly differed among the samples (p < 0.05) and between both anaerobic treatments. The main predicted metabolic pathways were the biosynthesis of amino acids and the formation of antibiotics. Also, the metabolism of C5-branched dibasic acid, Vit B5 and CoA, exhibited an important relationship with the main nitrogen-removing microorganisms. The anaerobic-aerobic hybrid bioreactor showed a higher ammonia removal rate compared to the conventional UASB system. However, further research and adjustments are needed to completely remove nitrogen from wastewater.
Collapse
Affiliation(s)
- María E Ochoa-Hernández
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Andrea Reynoso-Varela
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur., Ciudad Obregón, Sonora, CP.85000, Mexico
| | - Luis R Martínez-Córdova
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Belén Rodelas
- Department of Microbiology and Institute of Water Research, University of Granada, Spain
| | - Ulises Durán
- Universidad Autónoma Metropolitana, Biotechnology Dept., P.A. 55-535, 09340, Iztapalapa, Mexico City, Mexico
| | - Rocío J Alcántara-Hernández
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de México, Mexico
| | - Denisse Serrano-Palacios
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur., Ciudad Obregón, Sonora, CP.85000, Mexico.
| | - Kadiya Calderón
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
153
|
Barreiros-Mota I, R. Araújo J, Marques C, Sousa L, Morais J, Castela I, Faria A, Neto MT, Cordeiro-Ferreira G, Virella D, Pita A, Pereira-da-Silva L, Calhau C. Changes in Microbiota Profile in the Proximal Remnant Intestine in Infants Undergoing Surgery Requiring Enterostomy. Microorganisms 2023; 11:2482. [PMID: 37894140 PMCID: PMC10609405 DOI: 10.3390/microorganisms11102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Early-life gut dysbiosis has been associated with an increased risk of inflammatory, metabolic, and immune diseases later in life. Data on gut microbiota changes in infants undergoing intestinal surgery requiring enterostomy are scarce. This prospective cohort study examined the enterostomy effluent of 29 infants who underwent intestinal surgery due to congenital malformations of the gastrointestinal tract, necrotizing enterocolitis, or spontaneous intestinal perforation. Initial effluent samples were collected immediately after surgery and final effluent samples were collected three weeks later. Gut microbiota composition was analysed using real-time PCR and 16S rRNA gene sequencing. Three weeks after surgery, an increase in total bacteria number (+21%, p = 0.026), a decrease in Staphylococcus (-21%, p = 0.002) and Candida spp. (-16%, p = 0.045), and an increase in Lactobacillus (+3%, p = 0.045) and in less abundant genera belonging to the Enterobacteriales family were found. An increase in alpha diversity (Shannon's and Simpson's indexes) and significant alterations in beta diversity were observed. A correlation of necrotizing enterocolitis with higher Staphylococcus abundance and higher alpha diversity was also observed. H2-blockers and/or proton pump inhibitor therapy were positively correlated with a higher total bacteria number. In conclusion, these results suggest that positive changes occur in the gut microbiota profile of infants three weeks after intestinal surgery.
Collapse
Affiliation(s)
- Inês Barreiros-Mota
- Nutrition & Metabolism Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (I.B.-M.); (J.R.A.); (C.M.); (L.S.); (I.C.); (A.F.)
- CHRC—Comprehensive Health Research Centre, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; (J.M.); (M.T.N.); (L.P.-d.-S.)
| | - João R. Araújo
- Nutrition & Metabolism Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (I.B.-M.); (J.R.A.); (C.M.); (L.S.); (I.C.); (A.F.)
- Nutrition & Metabolism Department, CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Cláudia Marques
- Nutrition & Metabolism Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (I.B.-M.); (J.R.A.); (C.M.); (L.S.); (I.C.); (A.F.)
- Nutrition & Metabolism Department, CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Laura Sousa
- Nutrition & Metabolism Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (I.B.-M.); (J.R.A.); (C.M.); (L.S.); (I.C.); (A.F.)
| | - Juliana Morais
- CHRC—Comprehensive Health Research Centre, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; (J.M.); (M.T.N.); (L.P.-d.-S.)
| | - Inês Castela
- Nutrition & Metabolism Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (I.B.-M.); (J.R.A.); (C.M.); (L.S.); (I.C.); (A.F.)
- CHRC—Comprehensive Health Research Centre, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; (J.M.); (M.T.N.); (L.P.-d.-S.)
| | - Ana Faria
- Nutrition & Metabolism Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (I.B.-M.); (J.R.A.); (C.M.); (L.S.); (I.C.); (A.F.)
- CHRC—Comprehensive Health Research Centre, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; (J.M.); (M.T.N.); (L.P.-d.-S.)
- Nutrition & Metabolism Department, CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Maria Teresa Neto
- CHRC—Comprehensive Health Research Centre, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; (J.M.); (M.T.N.); (L.P.-d.-S.)
- Neonatal Intensive Care Unit, Department of Pediatrics, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, 1169-045 Lisbon, Portugal; (G.C.-F.); (D.V.); (A.P.)
- Medicine of Woman, Childhood and Adolescence Academic Area, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), 1169-056 Lisbon, Portugal
| | - Gonçalo Cordeiro-Ferreira
- Neonatal Intensive Care Unit, Department of Pediatrics, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, 1169-045 Lisbon, Portugal; (G.C.-F.); (D.V.); (A.P.)
| | - Daniel Virella
- Neonatal Intensive Care Unit, Department of Pediatrics, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, 1169-045 Lisbon, Portugal; (G.C.-F.); (D.V.); (A.P.)
| | - Ana Pita
- Neonatal Intensive Care Unit, Department of Pediatrics, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, 1169-045 Lisbon, Portugal; (G.C.-F.); (D.V.); (A.P.)
| | - Luís Pereira-da-Silva
- CHRC—Comprehensive Health Research Centre, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; (J.M.); (M.T.N.); (L.P.-d.-S.)
- Neonatal Intensive Care Unit, Department of Pediatrics, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, 1169-045 Lisbon, Portugal; (G.C.-F.); (D.V.); (A.P.)
- Medicine of Woman, Childhood and Adolescence Academic Area, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), 1169-056 Lisbon, Portugal
| | - Conceição Calhau
- Nutrition & Metabolism Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (I.B.-M.); (J.R.A.); (C.M.); (L.S.); (I.C.); (A.F.)
- Nutrition & Metabolism Department, CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
154
|
Gomes de Oliveira LI, Clementino JR, Salgaço MK, de Oliveira SPA, Dos Santos Lima M, Mesa V, de Souza EL, Vinderola CG, Magnani M, Sivieri K. Revealing the beneficial effects of a dairy infant formula on the gut microbiota of early childhood children with autistic spectrum disorder using static and SHIME® fermentation models. Food Funct 2023; 14:8964-8974. [PMID: 37724612 DOI: 10.1039/d3fo01156a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
This study evaluated the impact of the Milnutri Profutura® (MNP) dairy infant formula on the gut microbiota of early childhood children (three to five years) with Autistic Spectrum Disorder (ASD) using static fermentation (time zero, 24, and 48 h) and the Simulator of the Human Intestinal Microbiol Ecosystem (SHIME®) (time zero, 72 h, and 7 days). The relative abundance of selected intestinal bacterial groups, pH values, organic acids, and sugars were verified at time zero, 24, and 48 h using flow cytometry and measurements. In addition, the diversity and changes in the gut microbiota, and the amounts of acetic, butyric, and propionic acids and ammonium ions (NH4+) in fermentation using the SHIME® were measured at time zero, 72 h, and 7 days. MNP increased Lactobacillus/Enterococcus and Bifidobacterium populations and decreased Bacteroides/Prevotella, Clostridium histolyticum and Eubacterium rectale/Clostridium coccoides populations (p < 0.05) at 24 and 48 h of static fermentation, showing a positive prebiotic activity score (65.18 ± 0.07). The pH, fructose and glucose decreased, while lactic, butyric, and propionic acids increased (p < 0.05) at 48 h of static fermentation. MNP increased (p < 0.05) the Firmicutes phylum during the fermentation in SHIME®. MNP decreased the diversity at 72 h of fermentation, mostly by the increase (p < 0.05) in the Lactobacillus genus. Microbial groups considered harmful such as Lachnospiraceae, Negativicoccus, and Lachnoclostridium were inhibited after administration with MNP. Propionic and butyric acids increased at 72 h and NH4+ decreased (p < 0.05) at the end of fermentation with MNP. The results indicate MNP as an infant formula which may benefit the gut microbiota of children with ASD.
Collapse
Affiliation(s)
- Louise Iara Gomes de Oliveira
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Jéssika Rodrigues Clementino
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Mateus Kawata Salgaço
- Department of Food and Nutrition, Laboratory of Food Microbiology, School of Pharmaceutical Sciences, São Paulo State University, Brazil
| | - Sônia Paula Alexandrino de Oliveira
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Campus Petrolina, Brazil
| | - Victoria Mesa
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Universidad de Antioquia (UdeA), Medellín 050010, Colombia
| | - Evandro Leite de Souza
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Celso Gabriel Vinderola
- Department of Biotechnology and Food Technology, Faculty of Chemical Engineering, Universidad Nacional del Litoral
| | - Marciane Magnani
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Katia Sivieri
- Department of Food and Nutrition, Laboratory of Food Microbiology, School of Pharmaceutical Sciences, São Paulo State University, Brazil
| |
Collapse
|
155
|
Yaghjyan L, Mai V, Darville LNF, Cline J, Wang X, Ukhanova M, Tagliamonte MS, Martinez YC, Rich SN, Koomen JM, Egan KM. Associations of gut microbiome with endogenous estrogen levels in healthy postmenopausal women. Cancer Causes Control 2023; 34:873-881. [PMID: 37286847 DOI: 10.1007/s10552-023-01728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE The gut microbiome is a potentially important contributor to endogenous estrogen levels after menopause. In healthy postmenopausal women, we examined associations of fecal microbiome composition with levels of urinary estrogens, their metabolites, and relevant metabolic pathway ratios implicated in breast cancer risk. METHODS Eligible postmenopausal women (n = 164) had a body mass index (BMI) ≤ 35 kg/m2 and no history of hormone use (previous 6 months) or cancer/metabolic disorders. Estrogens were quantified in spot urine samples with liquid chromatography-high resolution mass spectrometry (corrected for creatinine). Bacterial DNA was isolated from fecal samples and the V1-V2 hypervariable regions of 16S rRNA were sequenced on the Illumina MiSeq platform. We examined associations of gut microbiome's indices of within-sample (alpha) diversity (i.e., Shannon, Chao1, and Inverse Simpson), phylogenetic diversity, and the ratio of the two main phyla (Firmicutes and Bacteroidetes; F/B ratio) with individual estrogens and metabolic ratios, adjusted for age and BMI. RESULTS In this sample of 164 healthy postmenopausal women, the mean age was 62.9 years (range 47.0-86.0). We found significant inverse associations of observed species with 4-pathway:total estrogens (p = 0.04) and 4-pathway:2-pathway (p = 0.01). Shannon index was positively associated with 2-catechols: methylated 2-catechols (p = 0.04). Chao1 was inversely associated with E1:total estrogens (p = 0.04), and 4-pathway:2-pathway (p = 0.02) and positively associated with 2-pathway:parent estrogens (p = 0.01). Phylogenetic diversity was inversely associated with 4-pathway:total estrogens (p = 0.02), 4-pathway:parent estrogens (p = 0.03), 4-pathway:2-pathway (p = 0.01), and 4-pathway:16-pathway (p = 0.03) and positively associated with 2-pathway:parent estrogens (p = 0.01). F/B ratio was not associated with any of the estrogen measures. CONCLUSION Microbial diversity was associated with several estrogen metabolism ratios implicated in breast cancer risk. Further studies are warranted to confirm these findings in a larger and more representative sample of postmenopausal women, particularly with enrichment of minority participants.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA.
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | | | | | | | - Maria Ukhanova
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Massimiliano S Tagliamonte
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Shannan N Rich
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA
| | | | | |
Collapse
|
156
|
Bellés A, Abad I, Sánchez L, Grasa L. Whey and Buttermilk-Based Formulas Modulate Gut Microbiota in Mice with Antibiotic-Induced Dysbiosis. Mol Nutr Food Res 2023; 67:e2300248. [PMID: 37654048 DOI: 10.1002/mnfr.202300248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Indexed: 09/02/2023]
Abstract
SCOPE Diet is one of the main factors that modifies intestinal microbiota composition. The search for foods that can reverse situations of intestinal dysbiosis such as that induced by antibiotics is of great interest. Buttermilk and whey are the main by-products produced by the dairy industry containing bioactive compounds. The aim of this study is to investigate the ability of whey and buttermilk-based formulas supplemented with lactoferrin and milk fat globule membrane (MFGM) to modulate the effects of clindamycin on mouse intestinal microbiota. METHODS AND RESULTS Male C57BL/6 mice are treated with saline (control), clindamycin (Clin), a formula containing whey (F1) or buttermilk (F2), Clin+F1 or Clin+F2, and their fecal microbiota profiles are analyzed by sequencing of 16S rRNA gene using the MinION device. Clin induces alterations in both the composition and metabolic functions of the mice intestinal microbiota. The treatment with F1 or F2 reverses the effects of clindamycin, restoring the levels of Rikenellaceae and Lactobacillaceae families and certain pathways related to short-chain fatty acids production and tetrahydrofolate biosynthesis. CONCLUSION Whey and buttermilk supplemented with lactoferrin and MFGM may be a bioactive formula for functional foods to prevent or restore microbiota alterations induced by antibiotic administration.
Collapse
Affiliation(s)
- Andrea Bellés
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, 50013, Spain
| | - Inés Abad
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, 50013, Spain
- Departamento de Producción Animal y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Lourdes Sánchez
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, 50013, Spain
- Departamento de Producción Animal y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, 50013, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50009, Spain
| |
Collapse
|
157
|
Sucu S, Basarir KE, Mihaylov P, Balik E, Lee JTC, Fridell JA, Emamaullee JA, Ekser B. Impact of gut microbiota on liver transplantation. Am J Transplant 2023; 23:1485-1495. [PMID: 37277064 DOI: 10.1016/j.ajt.2023.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
The gut microbiota has been gaining attention due to its interactions with the human body and its role in pathophysiological processes. One of the main interactions is the "gut-liver axis," in which disruption of the gut mucosal barrier seen in portal hypertension and liver disease can influence liver allograft function over time. For example, in patients who are undergoing liver transplantation, preexisting dysbiosis, perioperative antibiotic use, surgical stress, and immunosuppressive use have each been associated with alterations in gut microbiota, potentially impacting overall morbidity and mortality. In this review, studies exploring gut microbiota changes in patients undergoing liver transplantation are reviewed, including both human and experimental animal studies. Common themes include an increase in Enterobacteriaceae and Enterococcaceae species and a decrease in Faecalibacterium prausnitzii and Bacteriodes, while a decrease in the overall diversity of gut microbiota after liver transplantation.
Collapse
Affiliation(s)
- Serkan Sucu
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Kerem E Basarir
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Plamen Mihaylov
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emre Balik
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Jason T C Lee
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan A Fridell
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Juliet A Emamaullee
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
158
|
Regueira-Iglesias A, Balsa-Castro C, Blanco-Pintos T, Tomás I. Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis. Mol Oral Microbiol 2023; 38:347-399. [PMID: 37804481 DOI: 10.1111/omi.12434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
The multi-batch reanalysis approach of jointly reevaluating gene/genome sequences from different works has gained particular relevance in the literature in recent years. The large amount of 16S ribosomal ribonucleic acid (rRNA) gene sequence data stored in public repositories and information in taxonomic databases of the same gene far exceeds that related to complete genomes. This review is intended to guide researchers new to studying microbiota, particularly the oral microbiota, using 16S rRNA gene sequencing and those who want to expand and update their knowledge to optimise their decision-making and improve their research results. First, we describe the advantages and disadvantages of using the 16S rRNA gene as a phylogenetic marker and the latest findings on the impact of primer pair selection on diversity and taxonomic assignment outcomes in oral microbiome studies. Strategies for primer selection based on these results are introduced. Second, we identified the key factors to consider in selecting the sequencing technology and platform. The process and particularities of the main steps for processing 16S rRNA gene-derived data are described in detail to enable researchers to choose the most appropriate bioinformatics pipeline and analysis methods based on the available evidence. We then produce an overview of the different types of advanced analyses, both the most widely used in the literature and the most recent approaches. Several indices, metrics and software for studying microbial communities are included, highlighting their advantages and disadvantages. Considering the principles of clinical metagenomics, we conclude that future research should focus on rigorous analytical approaches, such as developing predictive models to identify microbiome-based biomarkers to classify health and disease states. Finally, we address the batch effect concept and the microbiome-specific methods for accounting for or correcting them.
Collapse
Affiliation(s)
- Alba Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Carlos Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Triana Blanco-Pintos
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
159
|
Najah H, Edelmuth RCL, Riascos MC, Grier A, Al Asadi H, Greenberg JA, Miranda I, Crawford CV, Finnerty BM, Fahey TJ, Zarnegar R. Long-term potassium-competitive acid blockers administration causes microbiota changes in rats. Surg Endosc 2023; 37:7980-7990. [PMID: 37452210 DOI: 10.1007/s00464-023-10269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Vonoprazan is a new potassium-competitive acid blocker (P-CAB) that was recently approved by the FDA. It is associated with a fast onset of action and a longer acid inhibition time. Vonoprazan-containing therapy for helicobacter pylori eradication is highly effective and several studies have demonstrated that a vonoprazan-antibiotic regimen affects gut microbiota. However, the impact of vonoprazan alone on gut microbiota is still unclear.Please check and confirm the authors (Maria Cristina Riascos, Hala Al Asadi) given name and family name are correct. Also, kindly confirm the details in the metadata are correct.Yes they are correct. METHODS: We conducted a prospective randomized 12-week experimental trial with 18 Wistar rats. Rats were randomly assigned to one of 3 groups: (1) drinking water as negative control group, (2) oral vonoprazan (4 mg/kg) for 12 weeks, and (3) oral vonoprazan (4 mg/kg) for 4 weeks, followed by 8 weeks off vonoprazan. To investigate gut microbiota, we carried out a metagenomic shotgun sequencing of fecal samples at week 0 and week 12.Please confirm the inserted city and country name is correct for affiliation 2.Yes it's correct. RESULTS For alpha diversity metrics at week 12, both long and short vonoprazan groups had lower Pielou's evenness index than the control group (p = 0.019); however, observed operational taxonomic units (p = 0.332) and Shannon's diversity index (p = 0.070) were not statistically different between groups. Beta diversity was significantly different in the three groups, using Bray-Curtis (p = 0.003) and Jaccard distances (p = 0.002). At week 12, differences in relative abundance were observed at all levels. At phylum level, short vonoprazan group had less of Actinobacteria (log fold change = - 1.88, adjusted p-value = 0.048) and Verrucomicrobia (lfc = - 1.76, p = 0.009).Please check and confirm that the author (Ileana Miranda) and their respective affiliation 3 details have been correctly identified and amend if necessary.Yes it's correct. At the genus level, long vonoprazan group had more Bacteroidales (lfc = 5.01, p = 0.021) and Prevotella (lfc = 7.79, p = 0.001). At family level, long vonoprazan group had more Lactobacillaceae (lfc = 0.97, p = 0.001), Prevotellaceae (lfc = 8.01, p < 0.001), and less Erysipelotrichaceae (lfc = - 2.9, p = 0.029). CONCLUSION This study provides evidence that vonoprazan impacts the gut microbiota and permits a precise delineation of the composition and relative abundance of the bacteria at all different taxonomic levels.
Collapse
Affiliation(s)
- Haythem Najah
- Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA.
| | - Rodrigo C L Edelmuth
- Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Maria Cristina Riascos
- Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA
| | - Alex Grier
- Microbiome Core Lab of Weill Cornell Medicine, New York, NY, USA
| | - Hala Al Asadi
- Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA
| | - Jacques A Greenberg
- Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA
| | - Ileana Miranda
- Laboratory of Comparative Pathology (LCP), Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, The Rockefeller University, New York, NY, USA
| | - Carl V Crawford
- Division of Gastroenterology and Hepatology, Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | - Brendan M Finnerty
- Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA
| | - Thomas J Fahey
- Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA
| | - Rasa Zarnegar
- Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA
| |
Collapse
|
160
|
Cisternas J, Rodríguez C, Serrano J, Leiva E. Study of the key biotic and abiotic parameters influencing ammonium removal from wastewaters by Fe 3+-mediated anaerobic ammonium oxidation (Feammox). CHEMOSPHERE 2023; 339:139463. [PMID: 37480952 DOI: 10.1016/j.chemosphere.2023.139463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
The release of ammonia (as NH4+) into water bodies causes serious environmental problems. Therefore, the removal of ammonia from wastewater effluents has become a worldwide concern. New autotrophic biological alternatives for ammonia removal could reduce the limitations of conventional organic carbon-dependent nitrification-denitrification methods. Here, the potential of anaerobic ammonium oxidation coupled to Fe3+ reduction (a process known as Feammox) is studied in wastewater treatment plants of the yeast and beer production industry, not related to ammonium or iron treatment. This process is presented as a viable option to improve the efficiency of ammonia removal from wastewater. The results of this study show that enrichments under Feammox conditions achieved removals of 28.19-32.25% of the total NH4+. The highest rates of ammonium removal and Fe3+ reduction were achieved using FeCl3 as iron source and pH = 7.0. Different environmental conditions for the enrichments were studied and it was found that the use of sodium acetate as a carbon source and an incubation temperature of 35 °C presented higher rates of iron reduction and higher increase in nitrate concentration, related to ammonium oxidative processes. Likewise, the presence of relevant species of the iron and nitrogen cycles as Ferrovum myxofaciens, Geobacter spp, Shewanella spp, Albidiferax ferrireducens and Anammox was verified, supporting the findings of this study. These results provide information that may be relevant to the potential applicability of Feammox to treat wastewater with high ammonia load and could help develop cost-effective and environmentally friendly methods for ammonium removal in wastewater treatment plants.
Collapse
Affiliation(s)
- Jaime Cisternas
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| | - Carolina Rodríguez
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Jennyfer Serrano
- Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| | - Eduardo Leiva
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| |
Collapse
|
161
|
Wang S, De Paepe K, Van de Wiele T, Fu X, Wang S, Zhang B, Huang Q. Starch-entrapped microspheres enhance gut microbiome-mediated anti-obesity effects of resistant starch in high-fat diet induced obese C57BL/6J mice. Food Res Int 2023; 172:113215. [PMID: 37689957 DOI: 10.1016/j.foodres.2023.113215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
The prevalence of obesity is growing worldwide and has been extensively linked to gut microbiota dysbiosis. In addition to exercise and physical activity, fiber-rich foods may be a first-line prophylactic to manage obesity. This study investigated in vivo dietary intervention with high-amylose maize starch (HAMS) and starch-entrapped microspheres (MS) to treat high-fat diet induced metabolic disorder and gut microbiome dysbiosis in mice. MS more efficiently controlled body weight as well as adipose tissue mass compared to HAMS. Furthermore, MS significantly reduced blood glucose, insulin, lipid and pro-inflammatory cytokine levels compared to the high-fat diet, while the effects of HAMS were less pronounced. The MS-altered gut microbiota composition favoring Streptococcaceae, Bacilli, Firmicutes and unclassified Clostridiales was predicted to promote fatty acid, pantothenate and Coenzyme A biosynthesis. In line with this, elevated fecal short chain fatty acid (SCFA), in particular, propionate concentration was observed in MS-fed mice. Our study provides novel insights into the mechanistic action of MS on intestinal homeostasis, providing a basis for future dietary therapeutic applications.
Collapse
Affiliation(s)
- Shaokang Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Research Institute, Guangzhou 510555, China.
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Research Institute, Guangzhou 510555, China.
| |
Collapse
|
162
|
Wang F, Hu Y, Chen H, Chen L, Liu Y. Exploring the roles of microorganisms and metabolites in the 30-year aging process of the dried pericarps of Citrus reticulata 'Chachi' based on high-throughput sequencing and comparative metabolomics. Food Res Int 2023; 172:113117. [PMID: 37689884 DOI: 10.1016/j.foodres.2023.113117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
GuangChenpi (GCP), the dried pericarps of Citrus reticulata 'Chachi', has been consumed daily as a food and dietary supplement in China for centuries. Its health benefits are generally recognized to be dependent on storage time. However, the specific roles of microorganisms and metabolites during long-term storage are still unclear. In this study, comparative metabolomics and high-throughput sequencing techniques were used to investigate the effects of co-existing microorganisms on the metabolites in GCP stored from 1 to 30 years. In total, 386 metabolites were identified and characterized. Most compounds were flavonoids (37%), followed by phenolic acids (20%). Seventeen differentially upregulated metabolites were identified as potential key metabolites in GCP, and 8 of them were screened out as key active ingredients by Venn diagram comparative analyses and verified by network pharmacology and molecular docking. In addition, long-term storage could promote the accumulation of secondary metabolites. Regarding the GCP microbiota, Xeromyces dominated the whole 30-year aging process.Moreover, Spearman correlation analysis indicated that Bacillus thuringiensis and Xeromyces bisporus, the dominant bacterial and fungal species, were strongly associated with the key active metabolites. Our results suggested that the change of active ingredients caused by the dominant microbial is one of the mechanisms affecting the GCP aging process. Our study provides novel functional insights and research perspectives on microorganism-associated metabolite changes that may improve the GCP aging process.
Collapse
Affiliation(s)
- Fu Wang
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Yuan Hu
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Hongping Chen
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Lin Chen
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| | - Youping Liu
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| |
Collapse
|
163
|
Ruiz A, Sanahuja I, Andree KB, Furones D, Holhorea PG, Calduch-Giner JA, Pastor JJ, Viñas M, Pérez-Sánchez J, Morais S, Gisbert E. The potential of a combination of pungent spices as a novel supplement in gilthead seabream ( Sparus aurata) diets to aid in the strategic use of fish oil in aquafeeds: a holistic perspective. Front Immunol 2023; 14:1222173. [PMID: 37818366 PMCID: PMC10561386 DOI: 10.3389/fimmu.2023.1222173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023] Open
Abstract
This work studied the potential of a combination of pungent spices (capsicum, black pepper, ginger, and cinnamaldehyde) to be used as a supplement in diets of gilthead seabream (Sparus aurata; 44.1 ± 4.2 g). During 90 days, fish were fed three experimental diets with low inclusion of fish oil and containing poultry fat as the main source of lipids, supplemented with graded levels of the tested supplement: 0 (control), 0.1 (SPICY0.1%), and 0.15% (SPICY0.15%). As a result, the pungent spices enhanced the growth performance, the activity of the bile-salt-activated lipase in the intestine, and decreased fat deposit levels within enterocytes. The SPICY0.1% diet reduced the feed conversion ratio and the perivisceral fat index and lipid deposits in the liver. Moreover, the ratio of docosahexaenoic acid/eicosapentaenoic acid in fillet increased in fish fed the SPICY0.1% diet, while the hepatic levels of docosahexaenoic acid and total n-3 polyunsaturated fatty acids increased in fish fed the SPICY0.15% diet. Furthermore, there was an effect on the expression of some biomarkers related to lipid metabolism in 2-h postprandial fish (fasn, elovl6, scd1b, cyp7a1, lpl, and pparβ), and in 48 h fasted-fish fed with the SPICY0.1% diet, a regulation of the intestinal immune response was indicated. However, no significant differences were found in lipid apparent digestibility and proximate macronutrient composition. The spices did not affect biomarkers of hepatic or oxidative stress. No differences in microbial diversity were found, except for an increase in Simpson's Index in the posterior intestine of fish fed the SPICY0.1% diet, reflected in the increased relative abundance of the phylum Chloroflexi and lower relative abundances of the genera Campylobacter, Corynebacterium, and Peptoniphilus. In conclusion, the supplementation of gilthead seabream diets with pungent spices at an inclusion of 0.1% was beneficial to enhance growth performance and feed utilization; reduce fat accumulation in the visceral cavity, liver, and intestine; and improve the fish health status and condition. Results suggest that the tested supplement can be used as part of a nutritional strategy to promote a more judicious use of fish oil in fish diets due to its decreasing availability and rising costs.
Collapse
Affiliation(s)
- Alberto Ruiz
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
- Ph.D. Program in Aquaculture, Universitat de Barcelona, Barcelona, Spain
| | - Ignasi Sanahuja
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| | - Karl B. Andree
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| | - Dolors Furones
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| | - Paul G. Holhorea
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - Josep A. Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - Jose J. Pastor
- Innovation Division, Animal Science Unit, Lucta S.A. Bellaterra, Spain
| | - Marc Viñas
- Sustainability in Biosystems, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Torre Marimon, Caldes de Montbui, Barcelona, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - Sofia Morais
- Innovation Division, Animal Science Unit, Lucta S.A. Bellaterra, Spain
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| |
Collapse
|
164
|
Murphy KM, Le SM, Wilson AE, Warner DA. The Microbiome as a Maternal Effect: A Systematic Review on Vertical Transmission of Microbiota. Integr Comp Biol 2023; 63:597-609. [PMID: 37218690 DOI: 10.1093/icb/icad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
The microbiome is an interactive and fluctuating community of microbes that colonize and develop across surfaces, including those associated with organismal hosts. A growing number of studies exploring how microbiomes vary in ecologically relevant contexts have recognized the importance of microbiomes in affecting organismal evolution. Thus, identifying the source and mechanism for microbial colonization in a host will provide insight into adaptation and other evolutionary processes. Vertical transmission of microbiota is hypothesized to be a source of variation in offspring phenotypes with important ecological and evolutionary implications. However, the life-history traits that govern vertical transmission are largely unexplored in the ecological literature. To increase research attention to this knowledge gap, we conducted a systematic review to address the following questions: (1) How often is vertical transmission assessed as a contributor to offspring microbiome colonization and development? (2) Do studies have the capacity to address how maternal transmission of microbes affects the offspring phenotype? (3) How do studies vary based on taxonomy and life history of the study organism, as well as the experimental, molecular, and statistical methods employed? Extensive literature searches reveal that many studies examining vertical transmission of microbiomes fail to collect whole microbiome samples from both maternal and offspring sources, particularly for oviparous vertebrates. Additionally, studies should sample functional diversity of microbes to provide a better understanding of mechanisms that influence host phenotypes rather than solely taxonomic variation. An ideal microbiome study incorporates host factors, microbe-microbe interactions, and environmental factors. As evolutionary biologists continue to merge microbiome science and ecology, examining vertical transmission of microbes across taxa can provide inferences on causal links between microbiome variation and phenotypic evolution.
Collapse
Affiliation(s)
- Kaitlyn M Murphy
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Samantha M Le
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
165
|
Linde DA, Schokker D, du Toit CJL, Ramkilawon GD, van Marle-Köster E. The Effect of a Bacillus Probiotic and Essential Oils Compared to an Ionophore on the Rumen Microbiome Composition of Feedlot Cattle. Animals (Basel) 2023; 13:2927. [PMID: 37760327 PMCID: PMC10525249 DOI: 10.3390/ani13182927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The rising concern of antibiotic growth promoter use in livestock has necessitated the investigation into alternative feed additives. The effect of a probiotic and essential oils to an ionophore on the rumen microbiome composition of Bonsmara bulls raised under feedlot conditions was compared. Forty-eight Bonsmara weaners were allocated to four groups: a group with basal diet (CON) and three groups supplemented with monensin (MON), probiotic (PRO), and essential oils (EO). During the 120 days feeding period, rumen content was collected from four animals per group within each phase via a stomach tube for 16S rRNA and internal transcribed spacer (ITS) sequencing as well as volatile fatty acid analysis. In the starter phase, MON had a significantly lower acetate to propionate ratio and a higher Succinivibrionaceae abundance. The abundance of Lachnospiraceae was significantly higher in EO compared to MON. In the finisher phase, PRO had a significantly higher bacterial diversity. The alpha diversity did not differ between the fungal populations of the groups. The abundance of Proteobacteria was the lowest in PRO compared to the other groups. Limited variation was observed between the rumen microbiome composition of monensin compared to the other treatment groups, indicating that these alternatives can be considered.
Collapse
Affiliation(s)
- Dina A. Linde
- Department of Animal Science, University of Pretoria, Pretoria 0043, South Africa
| | - Dirkjan Schokker
- Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA Lelystad, The Netherlands
| | | | | | | |
Collapse
|
166
|
Di Gesù CM, Matz LM, Fultz R, Bolding IJ, Buffington SA. Monospecies probiotic preparation and administration with downstream analysis of sex-specific effects on gut microbiome composition in mice. STAR Protoc 2023; 4:102386. [PMID: 37379217 PMCID: PMC10331592 DOI: 10.1016/j.xpro.2023.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Dysbiosis of the gut microbiome is implicated in the growing burden of non-communicable chronic diseases, including neurodevelopmental disorders, and both preclinical and clinical studies highlight the potential for precision probiotic therapies in their prevention and treatment. Here, we present an optimized protocol for the preparation and administration of Limosilactobacillus reuteri MM4-1A (ATCC-PTA-6475) to adolescent mice. We also describe steps for performing downstream analysis of metataxonomic sequencing data with careful assessment of sex-specific effects on microbiome composition and structure. For complete details on the use and execution of this protocol, please refer to Di Gesù et al.1.
Collapse
Affiliation(s)
- Claudia M Di Gesù
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Lisa M Matz
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Robert Fultz
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ian J Bolding
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Shelly A Buffington
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Microbiome Research, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
167
|
Howe S, Kegley B, Powell J, Chen S, Zhao J. Effect of bovine respiratory disease on the respiratory microbiome: a meta-analysis. Front Cell Infect Microbiol 2023; 13:1223090. [PMID: 37743862 PMCID: PMC10516580 DOI: 10.3389/fcimb.2023.1223090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background Bovine respiratory disease (BRD) is the most devastating disease affecting beef and dairy cattle producers in North America. An emerging area of interest is the respiratory microbiome's relationship with BRD. However, results regarding the effect of BRD on respiratory microbiome diversity are conflicting. Results To examine the effect of BRD on the alpha diversity of the respiratory microbiome, a meta-analysis analyzing the relationship between the standardized mean difference (SMD) of three alpha diversity metrics (Shannon's Diversity Index (Shannon), Chao1, and Observed features (OTUs, ASVs, species, and reads) and BRD was conducted. Our multi-level model found no difference in Chao1 and Observed features SMDs between calves with BRD and controls. The Shannon SMD was significantly greater in controls compared to that in calves with BRD. Furthermore, we re-analyzed 16S amplicon sequencing data from four previously published datasets to investigate BRD's effect on individual taxa abundances. Additionally, based on Bray Curtis and Jaccard distances, health status, sampling location, and dataset were all significant sources of variation. Using a consensus approach based on RandomForest, DESeq2, and ANCOM-BC2, we identified three differentially abundant amplicon sequence variants (ASVs) within the nasal cavity, ASV5_Mycoplasma, ASV19_Corynebacterium, and ASV37_Ruminococcaceae. However, no ASVs were differentially abundant in the other sampling locations. Moreover, based on SECOM analysis, ASV37_Ruminococcaceae had a negative relationship with ASV1_Mycoplasma_hyorhinis, ASV5_Mycoplasma, and ASV4_Mannheimia. ASV19_Corynebacterium had negative relationships with ASV1_Mycoplasma_hyorhinis, ASV4_Mannheimia, ASV54_Mycoplasma, ASV7_Mycoplasma, and ASV8_Pasteurella. Conclusions Our results confirm a relationship between bovine respiratory disease and respiratory microbiome diversity and composition, which provide additional insight into microbial community dynamics during BRD development. Furthermore, as sampling location and sample processing (dataset) can also affect results, consideration should be taken when comparing results across studies.
Collapse
Affiliation(s)
- Samantha Howe
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Beth Kegley
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Jeremy Powell
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Shicheng Chen
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, United States
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
168
|
Lee JY, Kim S, Kim D, Cho Y, Kim KP. The influence of dietary patterns on skin bacterial diversity, composition, and co-occurrence relationships at forearm and neck sites of healthy Korean adults. J Appl Microbiol 2023; 134:lxad211. [PMID: 37699790 DOI: 10.1093/jambio/lxad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
AIMS Diet and nutrition are important aspects of skin physiology and health. However, the influence of diet on the bacterial flora of different skin sites is not well understood. Therefore, we investigated the relationship between dietary patterns (DPs) and skin bacterial flora on the forearm (a dry site) and the neck (a sebaceous site) of healthy Korean adults. METHODS AND RESULTS In metagenomics analysis, Shannon and Simpson indices were higher on the forearm than on the neck and were negatively correlated with the two dominant species, Cutibacterium acnes and Staphylococcus epidermidis, on two skin sites. In addition, the Simpson index of the forearm was positively associated with DP1 (characterized by a high intake of vegetables, mushrooms, meat, fish and shellfish, seaweed, and fat and oil), while that on the neck was negatively associated with DP2 (characterized by a high intake of fast food). A high intake of DP1 was associated with a lower abundance of dominant species, including C. acnes, and higher degrees of the co-occurrence network, whereas a high intake of DP2 was associated with the opposite pattern. CONCLUSIONS Specific diets may impact both skin bacterial diversity and composition, as well as the co-occurrence of bacteria, which may vary across different skin sites.
Collapse
Affiliation(s)
- Ju-Young Lee
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Seayonn Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Dongkyu Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Yunhi Cho
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Kun-Pyo Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
169
|
Guo L, Li Z, Xu J. Effects of Cadmium Stress on Bacterial and Fungal Communities in the Whitefly Bemisia tabaci. Int J Mol Sci 2023; 24:13588. [PMID: 37686394 PMCID: PMC10488276 DOI: 10.3390/ijms241713588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Heavy metal contamination is among the most prominent environmental problems in China, posing serious threats to both ecosystem and human health. Among the diverse heavy metal contaminants, cadmium is the most serious. The whitefly Bemisia tabaci is a cosmopolitan pest capable of causing severe damage to a broad range of agricultural crops, especially vegetables. At present, little is known about the effects of cadmium stress on B. tabaci, including on its bacterial and fungal communities. In the current study, we investigated the effects of cadmium on bacterial and fungal communities in whiteflies. Meta-barcode sequencing of the 16S rRNA gene revealed that the whitefly bacterial community contained 264 operational taxonomic units (OTUs) belonging to 201 known genera and 245 known species. The top five most frequent bacterial genera were Rickettsia, Rhodococcus, Candidatus Portiera, Candidatus Hamiltonella, and Achromobacter. Meta-barcode sequencing of the fungal ITS locus revealed that the whitefly fungal community contained 357 OTUs belonging to 187 known genera and 248 known species. The top five most frequent fungal genera were Wallemia, unclassified_f_Dipodascaceae, Apiotrichum, Penicillium, and unclassified_o_Saccharomycetales. Cadmium exposure reduced the fungal OTU richness but increased the bacterial Shannon and Simpson diversity indices in whiteflies. In addition, upon exposure to cadmium, the microbial community composition in whiteflies changed significantly, with increased prevalence of the bacterial genera Rhodococcus and Exiguobacterium and fungal genus Wallemia. Our results indicate that the whitefly microbiota likely contributed to their adaptation and resistance to cadmium and suggested that whiteflies may contain microbes that could help remediate cadmium contamination in natural environments and agricultural fields.
Collapse
Affiliation(s)
- Litao Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (L.G.); (Z.L.)
| | - Zhimin Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (L.G.); (Z.L.)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
170
|
Mensah L, Petrie B, Scrimshaw M, Cartmell E, Fletton M, Campo P. Influence of solids and hydraulic retention times on microbial diversity and removal of estrogens and nonylphenols in a pilot-scale activated sludge plant. Heliyon 2023; 9:e19461. [PMID: 37809578 PMCID: PMC10558614 DOI: 10.1016/j.heliyon.2023.e19461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
The removal of EDCs in activated sludge processes can be enhanced by increasing solid and hydraulic retention times (SRT and HRT); it has been suggested that the improvement in removal is due to changes in microbial community structure (MCS). Though the influence of SRT and HRT on chemical removal and MCS has been studied in isolation, their synergistic impact on MCS and the removal of estrogens and nonylphenols in activated sludge remains unknown. Hence, we investigated how both parameters influence MCS in activated sludge processes and their ulterior effect on EDC removal. In our study, an activated sludge pilot-plant was fed with domestic sewage fortified with 100 and 1000 ng/L nonylphenols or 2 and 15 ng/L estrogens and operated at 3, 10 and 27 d SRT (constant HRT) and at 8, 16 and 24 h HRT (constant SRT). The MCS was assessed by phospholipid fatty acids (PLFA) analysis, and the archaeal and bacterial diversities were determined by 16S rRNA analysis. From the PLFA, the microbial abundance ranked as follows: Gram-negative > fungi > Gram-positive > actinomycetes whilst 16S rRNA analysis revealed Proteobacteria > Bacteroidetes > Others. Both PLFA and 16S rRNA analysis detected changes in MCS as SRT and HRT were increased. An SRT increment from 3 to 10 d resulted in higher estrone (E1) removal from 19 to 93% and nonylphenol-4-exthoxylate (NP4EO) from 44 to 73%. These findings demonstrate that EDC-removal in activated sludge plants can be optimised where longer SRT (>10 d) and HRT (>8 h) are suitable. We have also demonstrated that PLFA can be used for routine monitoring of changes in MCS in activated sludge plants.
Collapse
Affiliation(s)
- Lawson Mensah
- Environmental Science Department, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bruce Petrie
- Robert Gordon University, Garthdee Rd, Garthdee, Aberdeen, AB10 7AQ, UK
| | - Mark Scrimshaw
- Department of Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Elise Cartmell
- Scottish Water, Castle House, 6 Castle Drive, Carnegie Campus, Dunfermline, KY11 8GG, UK
| | | | - Pablo Campo
- Cranfield Water Science Institute, School of Water, Energy & Environment, Cranfield University, MK43 0AL, UK
| |
Collapse
|
171
|
Andreani A, Beltramo C, Ponzetta MP, Belcari A, Sacchetti P, Acutis PL, Peletto S. Analysis of the bacterial communities associated with pupae and winged or wingless adults of Lipoptena fortisetosa collected from cervids in Italy. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:472-482. [PMID: 36715237 DOI: 10.1111/mve.12644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
The hippoboscid Lipoptena fortisetosa Maa, 1965 is a hematophagous ectoparasite of cervids that can bite humans. This fly is expanding its geographical range and is of concern for animal and human health since it can potentially harbour harmful microorganisms. This study was aimed at characterizing the bacterial communities of L. fortisetosa in its different life-cycle stages. Pupae and wingless adults were collected from cervids hunted in Tuscan-Emilian Apennines (central Italy) and pooled into groups of 10 by life stage (30 individual pupae; 1420 individual wingless adults). Winged flies were caught by sweep netting and separated into five pools of 10 insects. After DNA extraction, the bacterial content of each pool was analysed using 16 S metabarcoding. Results revealed that the composition and relative abundance of different taxa greatly differed in the three analysed groups. Wingless adults showed a high abundance of Bartonella (33.07%), which is almost absent in winged flies and pupae. Among the detected pathogens, four genera of concern for human health were found: Bartonella, Moraxella, Mycobacterium and Rickettsia. Interestingly reads similar to Bartonella bovis, Moraxella osloensis and Arsenophonus lipopteni Operational Taxonomic Unit (OTUs) were detected. These findings suggest the possible role of L. fortisetosa as a reservoir of pathogenic microorganisms, confirming the need for further investigation to ascertain its vectorial capacity.
Collapse
Affiliation(s)
- Annalisa Andreani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Chiara Beltramo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Maria Paola Ponzetta
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Antonio Belcari
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Patrizia Sacchetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| |
Collapse
|
172
|
Cheng C, Nguyen TT, Tang M, Wang X, Jiang C, Liu Y, Gorlov I, Gorlova O, Iafrate J, Lanuti M, Christiani DC, Amos CI. Immune Infiltration in Tumor and Adjacent Non-Neoplastic Regions Codetermines Patient Clinical Outcomes in Early-Stage Lung Cancer. J Thorac Oncol 2023; 18:1184-1198. [PMID: 37146750 PMCID: PMC10528252 DOI: 10.1016/j.jtho.2023.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
INTRODUCTION In recent years, the proportion of patients with NSCLC diagnosed at an early stage has increased continuously. METHODS In this study, we analyzed samples and data collected from 119 samples from 67 early stage patients with NSCLC, including 52 pairs of tumor and adjacent non-neoplastic samples, and performed RNA-sequencing analysis with high sequencing depth. RESULTS We found that immune-related genes were highly enriched among the differentially expressed genes and observed significantly higher inferred immune infiltration levels in adjacent non-neoplastic samples than in tumor samples. In survival analysis, the infiltration of certain immune cell types in tumor, but not adjacent non-neoplastic, samples were associated with overall patient survival, and excitingly, the differential infiltration between paired samples (tumor minus non-neoplastic) was more prognostic than expression in either non-neoplastic or tumor tissues. We also performed B cell receptor (BCR) and T cell receptor (TCR) repertoire analysis and observed more BCR/TCR clonotypes and increased BCR clonality in tumor than in non-neoplastic samples. Finally, we carefully quantified the fraction of the five histologic subtypes in our adenocarcinoma samples and found that higher histologic pattern complexity was associated with higher immune infiltration and low TCR clonality in the tumor-proximal regions. CONCLUSIONS Our results indicated significantly differential immune characteristics between tumor and adjacent non-neoplastic samples and suggested that the two regions provided complementary prognostic values in early-stage NSCLCs.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, Texas; Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas; The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Thinh T Nguyen
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Mabel Tang
- Department of Biosciences, Rice University, Houston, Texas
| | - Xinan Wang
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Yanhong Liu
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ivan Gorlov
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Olga Gorlova
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael Lanuti
- Department of Surgery, Thoracic Surgery Division, Massachusetts General Hospital, Boston, Massachusetts
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, Houston, Texas; Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas; The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
173
|
Angoa-Pérez M, Zagorac B, Francescutti DM, Shaffer ZD, Theis KR, Kuhn DM. Cocaine hydrochloride, cocaine methiodide and methylenedioxypyrovalerone (MDPV) cause distinct alterations in the structure and composition of the gut microbiota. Sci Rep 2023; 13:13754. [PMID: 37612353 PMCID: PMC10447462 DOI: 10.1038/s41598-023-40892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Cocaine is a highly addictive psychostimulant drug of abuse that constitutes an ongoing public health threat. Emerging research is revealing that numerous peripheral effects of this drug may serve as conditioned stimuli for its central reinforcing properties. The gut microbiota is emerging as one of these peripheral sources of input to cocaine reward. The primary objective of the present study was to determine how cocaine HCl and methylenedioxypyrovalerone, both of which powerfully activate central reward pathways, alter the gut microbiota. Cocaine methiodide, a quaternary derivative of cocaine that does not enter the brain, was included to assess peripheral influences on the gut microbiota. Both cocaine congeners caused significant and similar alterations of the gut microbiota after a 10-day course of treatment. Contrary to expectations, the effects of cocaine HCl and MDPV on the gut microbiota were most dissimilar. Functional predictions of metabolic alterations caused by the treatment drugs reaffirmed that the cocaine congeners were similar whereas MDPV was most dissimilar from the other two drugs and controls. It appears that the monoamine transporters in the gut mediate the effects of the treatment drugs. The effects of the cocaine congeners and MDPV on the gut microbiome may form the basis of interoceptive cues that can influence their abuse properties.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Branislava Zagorac
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dina M Francescutti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zachary D Shaffer
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
174
|
Salgado-Hernández E, Ortiz-Ceballos ÁI, Alvarado-Lassman A, Martínez-Hernández S, Rosas-Mendoza ES, Velázquez-Fernández JB, Dorantes-Acosta AE. Energy-saving pretreatments affect pelagic Sargassum composition and DNA metabarcoding reveals the microbial community involved in methane yield. PLoS One 2023; 18:e0289972. [PMID: 37590200 PMCID: PMC10434912 DOI: 10.1371/journal.pone.0289972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
Sargassum spp. flood the Caribbean coastline, causing damage to the local economy and environment. Anaerobic digestion (AD) has been proposed as an attractive option for turning macroalgae into valuable resources. Sargassum spp. has a complex composition that affects the microbial composition involved in AD which generates a low methane yield. This study aimed to improve the methane yield of pelagic Sargassum, using different energy-saving pretreatments and identifying the microbial community associated with methane production. We applied different energy-saving pretreatments to algal biomass and assessed the methane yield using a biomethane potential (BMP) test. The microbial communities involved in the AD of the best- and worst-performing methanogenic systems were analyzed by high-throughput sequencing. The results showed that pretreatment modified the content of inorganic compounds, fibers, and the C:N ratio, which had a strong positive correlation with BMP. The water washing pretreatment resulted in the best methane yield, with an increase of 38%. DNA metabarcoding analysis revealed that the bacterial genera Marinilabiliaceae_uncultured, DMER64, Treponema, and Hydrogenispora, as well as the archaea genera Methanosarcina, RumEn_M2, Bathyarchaeia, and Methanomassiliicocus, dominated the microbial community with a high methane yield. This study is the first to demonstrate the microbial community structure involved in the AD of Sargassum spp. The pretreatments presented in this study can help overcome the limitations associated with methane yield.
Collapse
Affiliation(s)
- Enrique Salgado-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Ángel Isauro Ortiz-Ceballos
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Alejandro Alvarado-Lassman
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Orizaba, Orizaba, Veracruz, Mexico
| | - Sergio Martínez-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | | | - Ana Elena Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
175
|
Mutinda J, Mwamburi SM, Oduor KO, Vincent Omolo M, Ntabo RM, Gathiru JM, Mwangangi J, Nonoh JOM. Profiles of bacterial communities and environmental factors associated with proliferation of malaria vector mosquitoes within the Kenyan Coast. Access Microbiol 2023; 5:acmi000606.v4. [PMID: 37691847 PMCID: PMC10484320 DOI: 10.1099/acmi.0.000606.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Background Since Anopheles mosquitoes which transmit and maintain the malaria parasite breed in the outdoor environment, there is an urgent need to manage these mosquito breeding sites. In order to elaborate more on the ecological landscape of mosquito breeding sites, the bacterial community structure and their interactions with physicochemical factors in mosquito larval habitats was characterised in Kwale County (Kenya), where malaria is endemic. Methods The physical characteristics and water physicochemical parameters of the habitats were determined and recorded. Water samples were also collected from the identified sites for total metagenomic DNA extraction in order to characterise the bacterial communities within the breeding sites. Results and Discussion Sites where mosquito larvae were found were described as positive and those without mosquito larvae as negative. Electrical conductivity, total dissolved solids, salinity and ammonia were lower in the rainy season than in the dry season, which also coincided with a high proportion of positive sites. Pseudomonadota was the most common phyla recovered in all samples followed by Bacteroidota and then Actinomycetota. The presence or absence of mosquito larvae in a potential proliferation site was not related to the bacterial community structure in the sampled sites, but was positively correlated with bacterial richness and evenness. Conclusion Generally, the presence of Anopheles mosquito larvae was found to be positively correlated with rainy season, bacterial richness and evenness, and negatively correlated with electrical conductivity, total dissolved solids, salinity and ammonia. The findings of this study have implications for predicting the potential of environmental water samples to become mosquito proliferation sites.
Collapse
Affiliation(s)
| | - Samuel Mwakisha Mwamburi
- Kenya Marine and Fisheries Research Institute, P.O Box 81651- 80100, English Point, Mkomani, Mombasa, Kenya
| | - Kennedy Omondi Oduor
- Kenya Marine and Fisheries Research Institute, P.O Box 81651- 80100, English Point, Mkomani, Mombasa, Kenya
| | - Maurice Vincent Omolo
- Masinde Muliro University of Science and Technology, Centre for African Medicinal and Nutritional Flora and Fauna (CAMNFF), P.O Box 190-50100, Kakamega, Kenya
| | | | | | - Joseph Mwangangi
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research - Coast, Kilifi P.O. Box 428, Kilifi - 80108, Kenya
| | | |
Collapse
|
176
|
Pratap Singh R, Kumari N, Gupta S, Jaiswal R, Mehrotra D, Singh S, Mukherjee S, Kumar R. Intratumoral Microbiota Changes with Tumor Stage and Influences the Immune Signature of Oral Squamous Cell Carcinoma. Microbiol Spectr 2023; 11:e0459622. [PMID: 37409975 PMCID: PMC10434029 DOI: 10.1128/spectrum.04596-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
Characterization of the oral microbiota profile through various studies has shown an association between the microbiome and oral cancer; however, stage-specific determinants of dynamic changes in microbial communities of oral cancer remain elusive. Additionally, the influence of the intratumoral microbiota on the intratumoral immune system remains largely unexplored. Therefore, this study aims to stratify microbial abundance in the early-onset and subsequent stages of oral cancer and analyze their influence on clinical-pathological and immunological features. The microbiome composition of tissue biopsy samples was identified using 16S rRNA amplicon sequencing, while intratumoral and systemic immune profiling was done with flow cytometry and immunohistochemistry-based analysis. The bacterial composition differed significantly among precancer, early cancer, and late cancer stages with the enrichment of genera Capnocytophaga, Fusobacterium, and Treponema in the cancer group, while Streptococcus and Rothia were enriched in the precancer group. Late cancer stages were significantly associated with Capnocytophaga with high predicting accuracy, while Fusobacterium was associated with early stages of cancer. A dense intermicrobial and microbiome-immune network was observed in the precancer group. At the cellular level, intratumoral immune cell infiltration of B cells and T cells (CD4+ and CD8+) was observed with enrichment of the effector memory phenotype. Naive and effector subsets of tumor-infiltrating lymphocytes (TILs) and related gene expression were found to be distinctly associated with bacterial communities; most importantly, highly abundant bacterial genera of the tumor microenvironment were either negatively correlated or not associated with the effector lymphocytes, which led to the conclusion that the tumor microenvironment favors an immunosuppressive and nonimmunogenic microbiota. IMPORTANCE The gut microbiome has been explored extensively for its importance in the modulation of systemic inflammation and immune response; in contrast, the intratumoral microbiome is less studied for its influence on immunity in cancer. Given the established correlation between intratumoral lymphocyte infiltration and patient survival in cases of solid tumors, it was pertinent to explore the extrinsic factor influencing immune cell infiltration in the tumor. Modulation of intratumoral microbiota could have a beneficial effect on the antitumor immune response. This study stratifies the microbial profile of oral squamous cell carcinoma starting from precancer to late-stage cancer and provides evidence for their immunomodulatory role in the tumor microenvironment. Our results suggest combining microbiome study with immunological signatures of tumors for their prognostic and diagnostic application.
Collapse
Affiliation(s)
- Raghwendra Pratap Singh
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naina Kumari
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Riddhi Jaiswal
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Sudhir Singh
- Department of Radiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Souvik Mukherjee
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Rashmi Kumar
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
177
|
Tsai PH, Wu PC, Li HR, Senthil Kumar KJ, Wang SY. Hirami lemon ( Citrus reticulata var. depressa) modulates the gut-brain axis in a chronic mild stress-induced depression mouse model. Food Funct 2023; 14:7535-7549. [PMID: 37526032 DOI: 10.1039/d3fo01301d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Citrus reticulata var. depressa, commonly known as Hirami lemon, is a native citrus species found in Taiwan and Okinawa islands of Japan. While several Citrus species are known to possess antidepressant activity by modulating the gut microbiota, the antidepressant effect of Hirami lemon and its underlying mechanisms have not been thoroughly investigated. In this study, we explored the potential antidepressant efficacy of the fruit extract (CD) and the essential oil (CDE) from Hirami lemon peel using a chronic mild stress (CMS)-induced mouse model and analyzed the association of gut microbiome changes. Our findings revealed that mice subjected to CMS exhibited anxiety- and depression-like behaviors as assessed by elevated plus-maze and forced swimming tests, respectively. Significantly, oral administration of CDE and CD notably reversed CMS-induced depression- and anxiety-like behaviors in CMS-induced mice. Moreover, compared to the non-stressed group, CMS significantly altered the gut microbiome, characterized by highly diverse bacterial communities, reduced Bacteroidetes, and increased Firmicutes. However, oral administration of CDE and CD restored gut microbiota dysbiosis. We also performed a qualitative analysis of CD and CDE using UPLC-MS and GC-MS, respectively. The CD contained 25 compounds, of which 3 were polymethoxy flavones and flavanones. Three major compounds, nobiletin, tangeretin and hesperidin, accounted for 56.88% of the total relative peak area. In contrast, the CDE contained 11 terpenoids, of which 8 were identified as major compounds, with D-limonene (45.71%) being the most abundant, followed by γ-terpinene (34.65%), linalool (6.46%), p-cymene (2.57%), α-terpineol (2.04%), α-pinene (1.89%), α-terpinolene (1.46%), and β-pinene (1.16%), accounting for 95.94% of the total oil. In conclusion, our study demonstrated the potential of Hirami lemon as a source of natural antidepressant agents for the prevention and treatment of major depressive disorders.
Collapse
Affiliation(s)
- Po-Heng Tsai
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan and Academia Sinica, Taipei, Taiwan.
| | - Pei-Chen Wu
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Ru Li
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - K J Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan and Academia Sinica, Taipei, Taiwan.
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy of Circle Economy, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
178
|
Genova JL, Azevedo LBD, Rupolo PE, Cordeiro FBC, Vilela HLO, Careli PS, de Castro Fidelis Toledo D, Carvalho ST, Kipper M, Rennó LN, Faveri JC, de Oliveira Carvalho PL. β-mannanase supplemented in diets saved 85 to 100 kcal of metabolizable energy/kg, supporting growth performance and improving nutrient digestibility in grower pigs. Sci Rep 2023; 13:12546. [PMID: 37532751 PMCID: PMC10397220 DOI: 10.1038/s41598-023-38776-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
The effects of β-mannanase supplementation in metabolizable energy (ME)-reduced diets containing xylanase-phytase were investigated on growth performance, fecal score, ultra-sounded backfat thickness and loin depth, blood profile, apparent total tract digestibility (ATTD), digesta passage rate, and fecal microbiome in grower pigs (n = 40, 26.09 ± 0.96 kg) randomly assigned within 4 treatments: a control diet containing isolated phytase and xylanase valued at 40 kcal of ME/kg (CD0), CD0 + β-mannanase (0.3 g/kg valued at 30 kcal of ME/kg) (CD70), CD0 + β-mannanase (0.3 g/kg valued at 45 kcal of ME/kg) (CD85), and CD0 + β-mannanase (0.3 g/kg valued at 60 kcal of ME/kg) (CD100). Growth performance was not affected in pigs fed ME-reduced diets containing β-mannanase. Pigs with CD100 had lower serum IL-1β concentration, and higher IL-10 was observed in pigs on CD0 than those fed β-mannanase. Coefficients of ATTD, and ATTD of DM and CP were higher in animals fed CD85 or CD100. Pigs with CD85 had higher alpha diversity richness but lower Firmicutes:Bacteroidota ratio. Acidaminococcaceae and Ruminococcaceae were more abundant in pigs fed CD0, but lower for Christensenellaceae NSJ-63 and NSJ-63 sp014384805. Pigs in CD85 showed higher Bacteroidaceae and Prevotella abundance, and lower for Streptococcaceae and Streptococcus. In conclusion, supplementation of β-mannanase in diets containing xylanase-phytase saved 85 to 100 kcal of ME/kg by supporting growth performance and improving nutrient digestibility in grower pigs.
Collapse
Affiliation(s)
- Jansller Luiz Genova
- Animal Science Department, Universidade Federal de Viçosa, Viçosa, 36570900, Brazil.
| | - Liliana Bury de Azevedo
- Animal Science Department, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, 85960000, Brazil
| | - Paulo Evaristo Rupolo
- Animal Science Department, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, 85960000, Brazil
| | | | | | - Pedro Silva Careli
- Animal Science Department, Universidade Federal de Viçosa, Viçosa, 36570900, Brazil
| | | | - Silvana Teixeira Carvalho
- Animal Science Department, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, 85960000, Brazil
| | - Marcos Kipper
- Elanco Animal Health Incorporated Company, São Paulo, 04794000, Brazil
| | | | - Juliana Canto Faveri
- Animal Science Department, Universidade Federal da Bahia, Salvador, 40110909, Brazil
| | | |
Collapse
|
179
|
Naja K, Anwardeen N, Al-Hariri M, Al Thani AA, Elrayess MA. Pharmacometabolomic Approach to Investigate the Response to Metformin in Patients with Type 2 Diabetes: A Cross-Sectional Study. Biomedicines 2023; 11:2164. [PMID: 37626661 PMCID: PMC10452592 DOI: 10.3390/biomedicines11082164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Metformin constitutes the foundation therapy in type 2 diabetes (T2D). Despite its multiple beneficial effects and widespread use, there is considerable inter-individual variability in response to metformin. Our objective is to identify metabolic signatures associated with poor and good responses to metformin, which may improve our ability to predict outcomes for metformin treatment. In this cross-sectional study, clinical and metabolic data for 119 patients with type 2 diabetes taking metformin were collected from the Qatar Biobank. Patients were empirically dichotomized according to their HbA1C levels into good and poor responders. Differences in the level of metabolites between these two groups were compared using orthogonal partial least square discriminate analysis (OPLS-DA) and linear models. Good responders showed increased levels of sphingomyelins, acylcholines, and glutathione metabolites. On the other hand, poor responders showed increased levels of metabolites resulting from glucose metabolism and gut microbiota metabolites. The results of this study have the potential to increase our knowledge of patient response variability to metformin and carry significant implications for enabling personalized medicine.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | | | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
180
|
Lee JY, Yoon JH, An SH, Cho IH, Lee CW, Jeon YJ, Joo SS, Ban BC, Lee JY, Jung HJ, Kim M, Kim ZH, Jung JY, Kim M, Kong C. Intestinal Immune Cell Populations, Barrier Function, and Microbiomes in Broilers Fed a Diet Supplemented with Chlorella vulgaris. Animals (Basel) 2023; 13:2380. [PMID: 37508157 PMCID: PMC10376636 DOI: 10.3390/ani13142380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to evaluate the effects of dietary Chlorella vulgaris (CV) on the distribution of immune cells, intestinal morphology, intestinal barrier function, antioxidant markers, and the cecal microbiome in 10-day-old broiler chickens. A total of 120 day-old Ross 308 male broiler chicks were assigned to two dietary treatments using a randomized complete block design, with body weight as the blocking factor. Birds fed a diet containing CV showed an increase in CD4+ T cells (p < 0.05) compared to those fed the control diet. The relative mRNA expression of intestinal epithelial barrier function-related markers (occludin and avian β-defensin 5) was elevated (p < 0.05) in the CV-supplemented group compared to the control group. The alpha diversity indices (Chao1 and observed features) of the cecal microbiome in 10-day-old birds increased (p < 0.05), indicating higher richness within the cecal bacterial community. In the microbiome analysis, enriched genera abundance of Clostridium ASF356 and Coriobacteriaceae CHKCI002 was observed in birds fed the diet containing CV compared to those fed the control diet. Taken together, dietary CV supplementation might alter intestinal barrier function, immunity, and microbiomes in 10-day-old broiler chickens.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - June Hyeok Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Su Hyun An
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - In Ho Cho
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Chae Won Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Yun Ji Jeon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Sang Seok Joo
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Byeong Cheol Ban
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Jae-Yeong Lee
- Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hyun Jung Jung
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Minji Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Z-Hun Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea
| | - Ji Young Jung
- Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Changsu Kong
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea
- Research Institute of Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| |
Collapse
|
181
|
Éliás AJ, Barna V, Patoni C, Demeter D, Veres DS, Bunduc S, Erőss B, Hegyi P, Földvári-Nagy L, Lenti K. Probiotic supplementation during antibiotic treatment is unjustified in maintaining the gut microbiome diversity: a systematic review and meta-analysis. BMC Med 2023; 21:262. [PMID: 37468916 DOI: 10.1186/s12916-023-02961-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Probiotics are often used to prevent antibiotic-induced low-diversity dysbiosis, however their effect is not yet sufficiently summarized in this regard. We aimed to investigate the effects of concurrent probiotic supplementation on gut microbiome composition during antibiotic therapy. METHODS We performed a systematic review and meta-analysis of randomized controlled trials reporting the differences in gut microbiome diversity between patients on antibiotic therapy with and without concomitant probiotic supplementation. The systematic search was performed in three databases (MEDLINE (via PubMed), Embase, and Cochrane Central Register of Controlled Trials (CENTRAL)) without filters on 15 October 2021. A random-effects model was used to estimate pooled mean differences (MD) with 95% confidence intervals (CI). This review was registered on PROSPERO (CRD42021282983). RESULTS Of 11,769 identified articles, 15 were eligible in the systematic review and 5 in the meta-analyses. Quantitative data synthesis for Shannon (MD = 0.23, 95% CI: [(-)0.06-0.51]), Chao1 (MD = 11.59 [(-)18.42-41.60]) and observed OTUs (operational taxonomic unit) (MD = 17.15 [(-)9.43-43.73]) diversity indices revealed no significant difference between probiotic supplemented and control groups. Lacking data prevented meta-analyzing other diversity indices; however, most of the included studies reported no difference in the other reported α- and ß-diversity indices between the groups. Changes in the taxonomic composition varied across the eligible studies but tended to be similar in both groups. However, they showed a potential tendency to restore baseline levels in both groups after 3-8 weeks. This is the first meta-analysis and the most comprehensive review of the topic to date using high quality methods. The limited number of studies and low sample sizes are the main limitations of our study. Moreover, there was high variability across the studies regarding the indication of antibiotic therapy and the type, dose, and duration of antimicrobials and probiotics. CONCLUSIONS Our results showed that probiotic supplementation during antibiotic therapy was not found to be influential on gut microbiome diversity indices. Defining appropriate microbiome diversity indices, their standard ranges, and their clinical relevance would be crucial.
Collapse
Affiliation(s)
- Anna Júlia Éliás
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Doctoral School of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Viktória Barna
- Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Cristina Patoni
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dóra Demeter
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Military Hospital Medical Centre, Hungarian Defense Forces, Budapest, Hungary
| | - Dániel Sándor Veres
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Stefania Bunduc
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Bálint Erőss
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - László Földvári-Nagy
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary.
| | - Katalin Lenti
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
182
|
Londoño-Sierra DC, Mesa V, Guzmán NC, Bolívar Parra L, Montoya-Campuzano OI, Restrepo-Mesa SL. Maternal Diet May Modulate Breast Milk Microbiota-A Case Study in a Group of Colombian Women. Microorganisms 2023; 11:1812. [PMID: 37512984 PMCID: PMC10384792 DOI: 10.3390/microorganisms11071812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
There is increasing evidence that the diet and nutritional status of women during pregnancy and lactation can modulate the microbiota of their milk and, therefore, the microbiota of the infant. An observational, descriptive, and cross-sectional study was carried out in a group of lactating women. Dietary intake during gestation and the first trimester of lactation was evaluated, and the microbiota was analyzed by 16S ribosomal RNA (rRNA) sequencing using the Illumina platform. Globally, Streptococcus spp. (32%), Staphylococcus spp. (17.3%), Corynebacterium spp. (5.1%) and Veillonella spp. (3.1%) were the predominant bacterial genera. The consumption of simple carbohydrates in gestation (rho = 0.55, p ≤ 0.01) and lactation (rho = 0.50, p ≤ 0.01) were positively correlated with Enterobacter spp. In lactation, a negative correlation was observed between the intake of simple carbohydrates and the genus Bifidobacterium spp. (rho = -0.51 p ≤ 0.01); furthermore, a positive correlation was identified between the intake of folic acid and Akkermansia spp. (rho = 0.47, p ≤ 0.01). Amplicon sequence variants (ASVs) associated with the delivery mode, employment relationship, the baby's gender, birth weight, the Body Mass Index (BMI) of the breastfeeding woman, and gestational weight gain were recovered as covariates in a linear mixed model. The results of this research showed that the maternal nutritional status and diet of women during gestation and lactation could modulate the microbiota of breast milk.
Collapse
Affiliation(s)
- Diana C Londoño-Sierra
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Antioquia University, Medellín 050010, Colombia
| | - Victoria Mesa
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Antioquia University, Medellín 050010, Colombia
- Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), INSERM, UMR-S 1139, Université Paris Cité, 75006 Paris, France
| | - Nathalia Correa Guzmán
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Antioquia University, Medellín 050010, Colombia
| | - Laura Bolívar Parra
- Probiotics and Bioprospecting Research Group, Faculty of Sciences, National University of Colombia, Medellín 050034, Colombia
| | - Olga I Montoya-Campuzano
- Probiotics and Bioprospecting Research Group, Faculty of Sciences, National University of Colombia, Medellín 050034, Colombia
| | - Sandra L Restrepo-Mesa
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Antioquia University, Medellín 050010, Colombia
| |
Collapse
|
183
|
Lee YH, Kim H, Heo DW, Ahn IS, Park HK. Oral microbiome of the inner surface of face masks and whole saliva during the COVID-19 pandemic. FRONTIERS IN ORAL HEALTH 2023; 4:1178020. [PMID: 37521176 PMCID: PMC10379621 DOI: 10.3389/froh.2023.1178020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Wearing a face mask was strongly recommended during the COVID-19 pandemic. The purpose of this study was to investigate the diversity of the oral microbiome, the abundance of each bacterium on the inner surface of the mask, and the effects of xerostomia on the microbiota. The study was conducted on 55 generally healthy adults (45 women and 10 men, mean age 38.18 ± 12.49 years). Unstimulated flow rate (UFR) and stimulated flow rate (SFR) were measured in whole saliva samples collected for each condition. The 14 major oral bacterial species, including Porphyromonas gingivalis (P. gingivalis), Lactobacillus casei (L. casei), Tannerella forsythia (T. forsythia), and Treponema denticola (T. denticola) on the inner surface of the mask and in the UFR and SFR samples, were analyzed by real-time PCR. We found that the total DNA copy number of oral bacteria was significantly higher in UFR and SFR than in the mask (p < 0.001). On the inner surface of the mask, P. gingivalis and L. casei were the most abundant Gram-negative and Gram-positive species, respectively. The oral microbiome profile of the mask differed from that of the UFR and SFR samples. Shannon's diversity index was also significantly higher in the UFR and SFR than in the mask (2.64 ± 0.78, 2.66 ± 0.76, and 1.26 ± 1.51, respectively, p < 0.001). Shannon's diversity index of UFR and SFR had a significant positive correlation with each other (r = 0.828, p < 0.001), but there was no significant relationship with Shannon's diversity index of mask. Red complex abundance, including P. gingivalis, T. forsythia, and T. denticola, was significantly higher in UFR than in the mask. Interestingly, the DNA copy number of each of the 14 bacteria, the total bacterial amount, and Shannon's diversity index did not differ in the absence or presence of xerostomia (p > 0.05). In summary, oral bacteria migrated to and existed on the inside of the mask, and the presence of xerostomia did not affect the bacterial profiles. The inner surface of the mask had an independent oral microbiome profile, although this showed lower quantity and diversity than the UFR and SFR samples.
Collapse
Affiliation(s)
- Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, Kyung Hee University School of Dentistry, Seoul, Republic of Korea
| | - Hyeongrok Kim
- Life Sciences Lab, Denomics, Seoul, Republic of Korea
| | - Dae Wook Heo
- Life Sciences Lab, Denomics, Seoul, Republic of Korea
| | - In-Suk Ahn
- Life Sciences Lab, Denomics, Seoul, Republic of Korea
| | - Hee-Kyung Park
- Department of Oral Medicine and Oral Diagnosis, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
184
|
Buhaș MC, Candrea R, Gavrilaș LI, Miere D, Tătaru A, Boca A, Cătinean A. Transforming Psoriasis Care: Probiotics and Prebiotics as Novel Therapeutic Approaches. Int J Mol Sci 2023; 24:11225. [PMID: 37446403 DOI: 10.3390/ijms241311225] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with autoimmune pathological characteristics. Recent research has found a link between psoriasis, inflammation, and gut microbiota dysbiosis, and that probiotics and prebiotics provide benefits to patients. This 12-week open-label, single-center clinical trial evaluated the efficacy of probiotics (Bacillus indicus (HU36), Bacillus subtilis (HU58), Bacillus coagulans (SC208), Bacillus licheniformis (SL307), and Bacillus clausii (SC109)) and precision prebiotics (fructooligosaccharides, xylooligosaccharides, and galactooligosaccharides) in patients with psoriasis receiving topical therapy, with an emphasis on potential metabolic, immunological, and gut microbiota changes. In total, 63 patients were evaluated, with the first 42 enrolled patients assigned to the intervention group and the next 21 assigned to the control group (2:1 ratio; non-randomized). There were between-group differences in several patient characteristics at baseline, including age, psoriasis severity (the incidence of severe psoriasis was greater in the intervention group than in the control group), the presence of nail psoriasis, and psoriatic arthritis, though it is not clear whether or how these differences may have affected the study findings. Patients with psoriasis receiving anti-psoriatic local therapy and probiotic and prebiotic supplementation performed better in measures of disease activity, including Psoriasis Area and Severity Index, Dermatology Life Quality Index, inflammatory markers, and skin thickness compared with those not receiving supplementation. Furthermore, in the 15/42 patients in the intervention group who received gut microbiota analysis, the gut microbiota changed favorably following 12 weeks of probiotic and prebiotic supplementation, with a shift towards an anti-inflammatory profile.
Collapse
Affiliation(s)
- Mihaela Cristina Buhaș
- Department of Dermatology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Rareș Candrea
- Master Program in Nutrition and Quality of Life, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Laura Ioana Gavrilaș
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Alexandru Tătaru
- Department of Dermatology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Andreea Boca
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Adrian Cătinean
- Department of Internal Medicine, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Phamacy, 400423 Cluj-Napoca, Romania
| |
Collapse
|
185
|
Roselló-Añón A, Chiappe C, Valverde-Vázquez MR, Sangüesa-Nebot MJ, Gómez-Cabrera MC, Pérez-Martínez G, Doménech-Fernández J. [Translated article] Pilot study to determine the association between gut microbiota and fragility hip fracture. Rev Esp Cir Ortop Traumatol (Engl Ed) 2023; 67:T279-T289. [PMID: 36878282 DOI: 10.1016/j.recot.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/07/2023] [Indexed: 03/07/2023] Open
Abstract
INTRODUCTION Hip fractures are the most common cause of hospital admission to orthopaedic departments in Europe and they generate a major health problem. Therefore, it is of great interest to identify additional risk factors that will help us to better understand the pathophysiology of these fractures and improve our preventive capacity. There is sufficient data to support the theory of modulation of bone mass by gut microbiota (osteomicrobiology); however, there is a lack of human clinical studies directly linking microbiota to hip fracture risk. MATERIAL AND METHODS Observational, analytical, case-control study. The sample consisted of 50 patients and it was distributed as follows: 25 elderly patients with fragility hip fracture and 25 subjects without fracture. The intestinal microbiota was determined by DNA extraction from stool samples and 16S ribosomal DNA sequencing after generation of gene libraries. RESULTS Alpha diversity revealed an elevation of the estimators for the taxonomic class level in the hip fracture group. The orders Bacteroidales, Oscillospirales, Lachnospirales, Peptostreptococcales-Tissierellales and Enterobacterales were the dominant orders in both groups. In patients with fracture, a significant percentage increase in the orders Bacteroidales (p<.001) and Peptostreptococcales-Tissierellales (p<.005) was observed, as well as a decrease in the orders Lachnospirales (p<.001) compared to controls. CONCLUSIONS This study has found an association between a specific microbiota in elderly patients with fragility hip fracture. These findings open the door to new strategies to prevent hip fractures. Modification of the microbiota through probiotics may prove to be an effective method to reduce the risk of hip fracture.
Collapse
Affiliation(s)
- A Roselló-Añón
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova, Valencia, Spain.
| | - C Chiappe
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova, Valencia, Spain
| | - M R Valverde-Vázquez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova, Valencia, Spain
| | - M J Sangüesa-Nebot
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova, Valencia, Spain
| | - M C Gómez-Cabrera
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - G Pérez-Martínez
- Laboratory of Lactic acid Bacteria and Probiotics, Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - J Doménech-Fernández
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova, Valencia, Spain; Universidad Católica de Valencia, Valencia, Spain
| |
Collapse
|
186
|
Ziab M, Chaganti SR, Heath DD. The effects of host quantitative genetic architecture on the gut microbiota composition of Chinook salmon (Oncorhynchus tshawytscha). Heredity (Edinb) 2023; 131:43-55. [PMID: 37179383 PMCID: PMC10313681 DOI: 10.1038/s41437-023-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
The microbiota consists of microbes living in or on an organism and has been implicated in host health and function. Environmental and host-related factors were shown to shape host microbiota composition and diversity in many fish species, but the role of host quantitative architecture across populations and among families within a population is not fully characterized. Here, Chinook salmon were used to determine if inter-population differences and additive genetic variation within populations influenced the gut microbiota diversity and composition. Specifically, hybrid stocks of Chinook salmon were created by crossing males from eight populations with eggs from an inbred line created from self-fertilized hermaphrodite salmon. Based on high-throughput sequencing of the 16S rRNA gene, significant gut microbial community diversity and composition differences were found among the hybrid stocks. Furthermore, additive genetic variance components varied among hybrid stocks, indicative of population-specific heritability patterns, suggesting the potential to select for specific gut microbiota composition for aquaculture purposes. Determining the role of host genetics in shaping their gut microbiota has important implications for predicting population responses to environmental changes and will thus impact conservation efforts for declining populations of Chinook salmon.
Collapse
Affiliation(s)
- Mubarak Ziab
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
| |
Collapse
|
187
|
Roselló-Añón A, Chiappe C, Valverde-Vázquez MR, Sangüesa-Nebot MJ, Gómez-Cabrera MC, Pérez-Martínez G, Doménech-Fernández J. Pilot study to determine the association between gut microbiota and fragility hip fracture. Rev Esp Cir Ortop Traumatol (Engl Ed) 2023; 67:279-289. [PMID: 36642372 DOI: 10.1016/j.recot.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Hip fractures are the most common cause of hospital admission to orthopaedic departments in Europe and they generate a major health problem. Therefore, it is of great interest to identify additional risk factors that will help us to better understand the pathophysiology of these fractures and improve our preventive capacity. There is sufficient data to support the theory of modulation of bone mass by gut microbiota (osteomicrobiology); however, there is a lack of human clinical studies directly linking microbiota to hip fracture risk. MATERIAL AND METHODS Observational, analytical, case-control study. The sample consisted of 50 patients and it was distributed as follows: 25 elderly patients with fragility hip fracture and 25 subjects without fracture. The intestinal microbiota was determined by DNA extraction from stool samples and 16S ribosomal DNA sequencing after generation of gene libraries. RESULTS Alpha diversity revealed an elevation of the estimators for the taxonomic class level in the hip fracture group. The orders Bacteroidales, Oscillospirales, Lachnospirales, Peptostreptococcales-Tissierellales and Enterobacterales were the dominant orders in both groups. In patients with fracture, a significant percentage increase in the orders Bacteroidales (p<.001) and Peptostreptococcales-Tissierellales (p<.005) was observed, as well as a decrease in the orders Lachnospirales (p<.001) compared to controls. CONCLUSIONS This study has found an association between a specific microbiota in elderly patients with fragility hip fracture. These findings open the door to new strategies to prevent hip fractures. Modification of the microbiota through probiotics may prove to be an effective method to reduce the risk of hip fracture.
Collapse
Affiliation(s)
- A Roselló-Añón
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova, Valencia, España.
| | - C Chiappe
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova, Valencia, España
| | - M R Valverde-Vázquez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova, Valencia, España
| | - M J Sangüesa-Nebot
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova, Valencia, España
| | - M C Gómez-Cabrera
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, España
| | - G Pérez-Martínez
- Laboratory of Lactic acid bacteria and Probiotics, Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, España
| | - J Doménech-Fernández
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova, Valencia, España; Universidad Católica de Valencia, Valencia, España
| |
Collapse
|
188
|
Terada M, Uchida M, Suga T, Isaka T. Altered gut microbiota richness in individuals with a history of lateral ankle sprain. Res Sports Med 2023; 31:719-733. [PMID: 35147057 DOI: 10.1080/15438627.2022.2036989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
This study aimed to examine differences in the intestinal microbiota diversity in individuals with and without a history of a lateral ankle sprain (LAS). Fifty male college student athletes with (n=32) and without (n=18) a LAS history participated in this study. Faecal samples were collected in the morning after awakening during an off-season, and faecal microbiota were characterized via bacteria 16S rRNA amplicon sequencing. Alpha-diversity metrics and ß-diversity indices were calculated to assess the gut microbiota diversity. The LAS-history group significantly had lower Chao1 (p=0.020) and abundance-based coverage estimators (p=0.035) indices compared to the control group. Gut microbiota composition was not significantly different between athletes with a LAS history and controls (R2 =0.01, p 0.414). Athletes with a history of LASs had significantly higher proportions of Bacteroides Fragilis (p=0.024) and Ruminococcus Gnavus (p=0.021) compared with controls. The gut microbiota of athletes with a LAS history had less richness compared to controls, indicating potential associations between a LAS and the gut microbiota. This study highlights the potential link of a LAS to global health. This study may help raise awareness of strategies to prevent long-term health-related negative consequences in people suffering from LASs.
Collapse
Affiliation(s)
- Masafumi Terada
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masataka Uchida
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadashi Suga
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadao Isaka
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
189
|
Ma X, Ren B, Yu J, Wang J, Bai L, Li J, Li D, Meng M. Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China. Front Microbiol 2023; 14:1205574. [PMID: 37448571 PMCID: PMC10336218 DOI: 10.3389/fmicb.2023.1205574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Soil microbial communities are critical in regulating grassland biogeochemical cycles and ecosystem functions, but the mechanisms of how environmental factors affect changes in the structural composition and diversity of soil microbial communities in different grassland soil types is not fully understood in northwest Liaoning, China. Methods We investigated the characteristics and drivers of bacterial and fungal communities in 4 grassland soil types with 11 sites across this region using high-throughput Illumina sequencing. Results and Discussion Actinobacteria and Ascomycota were the dominant phyla of bacterial and fungal communities, respectively, but their relative abundances were not significantly different among different grassland soil types. The abundance, number of OTUs, number of species and diversity of both bacterial and fungal communities in warm and temperate ecotone soil were the highest, while the warm-temperate shrub soil had the lowest microbial diversity. Besides, environmental factors were not significantly correlated with soil bacterial Alpha diversity index. However, there was a highly significant negative correlation between soil pH and Shannon index of fungal communities, and a highly significant positive correlation between plant cover and Chao1 index as well as Observed species of fungal communities. Analysis of similarities showed that the structural composition of microbial communities differed significantly among different grassland soil types. Meanwhile, the microbial community structure of temperate steppe-sandy soil was significantly different from that of other grassland soil types. Redundancy analysis revealed that soil total nitrogen content, pH and conductivity were important influencing factors causing changes in soil bacterial communities, while soil organic carbon, total nitrogen content and conductivity mainly drove the differentiation of soil fungal communities. In addition, the degree of connection in the soil bacterial network of grassland was much higher than that in the fungal network and soil bacterial and fungal communities were inconsistently limited by environmental factors. Our results showed that the microbial community structure, composition and diversity of different grassland soil types in northwest Liaoning differed significantly and were significantly influenced by environmental factors. Microbial community structure and the observation of soil total nitrogen and organic carbon content can predict the health changes of grassland ecosystems to a certain extent.
Collapse
|
190
|
Santiago BCF, de Souza ID, Cavalcante JVF, Morais DAA, da Silva MB, Pasquali MADB, Dalmolin RJS. Metagenomic Analyses Reveal the Influence of Depth Layers on Marine Biodiversity on Tropical and Subtropical Regions. Microorganisms 2023; 11:1668. [PMID: 37512841 PMCID: PMC10386303 DOI: 10.3390/microorganisms11071668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of open ocean global-scale studies provided important information about the genomics of oceanic microbial communities. Metagenomic analyses shed light on the structure of marine habitats, unraveling the biodiversity of different water masses. Many biological and environmental factors can contribute to marine organism composition, such as depth. However, much remains unknown about microbial communities' taxonomic and functional features in different water layer depths. Here, we performed a metagenomic analysis of 76 publicly available samples from the Tara Ocean Project, distributed in 8 collection stations located in tropical or subtropical regions, and sampled from three layers of depth (surface water layer-SRF, deep chlorophyll maximum layer-DCM, and mesopelagic zone-MES). The SRF and DCM depth layers are similar in abundance and diversity, while the MES layer presents greater diversity than the other layers. Diversity clustering analysis shows differences regarding the taxonomic content of samples. At the domain level, bacteria prevail in most samples, and the MES layer presents the highest proportion of archaea among all samples. Taken together, our results indicate that the depth layer influences microbial sample composition and diversity.
Collapse
Affiliation(s)
- Bianca C F Santiago
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
| | - Iara D de Souza
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
| | - João Vitor F Cavalcante
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
| | - Diego A A Morais
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
| | - Mikaelly B da Silva
- Food Engineering Department, Federal University of Campina Grande, Campina Grande 58401-490, Brazil
| | | | - Rodrigo J S Dalmolin
- Bioinformatics Multidisciplinary Environment-IMD, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil
- Department of Biochemistry-CB, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
191
|
Sinkevičienė J, Sinkevičiūtė A, Česonienė L, Daubaras R. Fungi Present in the Clones and Cultivars of European Cranberry ( Vaccinium oxycoccos) Grown in Lithuania. PLANTS (BASEL, SWITZERLAND) 2023; 12:2360. [PMID: 37375985 DOI: 10.3390/plants12122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Fungi are associated with the European cranberry (Vaccinium oxycoccos L.) and play important roles in plant growth and disease control, especially in cranberry yields. This article presents the results of a study which was aimed to investigate the diversity of fungi found on different clones and cultivars of the European cranberry grown in Lithuania, causing twigs, leaf diseases and fruit rots. In this study seventeen clones and five cultivars of V. oxycoccos were selected for investigation. Fungi were isolated via the incubation of twigs, leaves and fruit on a PDA medium and identified according to their cultural and morphological characteristics. Microscopic fungi belonging to 14 genera were isolated from cranberry leaves and twigs, with Physalospora vaccinii, Fusarium spp., Mycosphaerella nigromaculans and Monilinia oxycocci being the most frequently isolated fungi. 'Vaiva' and 'Žuvinta' cultivars were the most susceptible to pathogenic fungi during the growing season. Among the clones, 95-A-07 was the most susceptible to Phys. vaccinii, 95-A-08 to M. nigromaculans, 99-Ž-05 to Fusarium spp. and 95-A-03 to M. oxycocci. Microscopic fungi belonging to 12 genera were isolated from cranberry berries. The most prevalent pathogenic fungi M. oxycocci were isolated from the berries of the cultivars 'Vaiva' and 'Žuvinta' and clones 95-A-03 and 96-K-05.
Collapse
Affiliation(s)
- Jolanta Sinkevičienė
- Department of Agroecosystems and Soil Sciences, Agriculture Academy, Vytautas Magnus University, K. Donelaičio Str. 58, LT-44248 Kaunas, Lithuania
- Botanical Garden, Vytautas Magnus University, Z.E. Žiliberio 6, LT-46324 Kaunas, Lithuania
| | - Aušra Sinkevičiūtė
- Faculty of Odontology, Lithuanian University of Health Sciences, J.Lukšos-Daumanto 2, LT-50106 Kaunas, Lithuania
| | - Laima Česonienė
- Botanical Garden, Vytautas Magnus University, Z.E. Žiliberio 6, LT-46324 Kaunas, Lithuania
| | - Remigijus Daubaras
- Botanical Garden, Vytautas Magnus University, Z.E. Žiliberio 6, LT-46324 Kaunas, Lithuania
| |
Collapse
|
192
|
Aya V, Jimenez P, Muñoz E, Ramírez JD. Effects of exercise and physical activity on gut microbiota composition and function in older adults: a systematic review. BMC Geriatr 2023; 23:364. [PMID: 37308839 DOI: 10.1186/s12877-023-04066-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND The characterization and research around the gut microbiome in older people emphasize microbial populations change considerably by losing the diversity of species. Then, this review aims to determine if there is any effect on the gut microbiota of adults older than 65 that starts an exercise intervention or improves physical activity level. Also, this review describes the changes in composition, diversity, and function of the gut microbiota of older subjects that had improved their physical activity level. METHODS The type of studies included in this review were studies describing human gut microbiota responses to any exercise stimulus; cross-sectional studies focused on comparing gut microbiota in older adults with different physical activity levels-from athletes to inactive individuals; studies containing older people (women and men), and studies written in English. This review's primary outcomes of interest were gut microbiota abundance and diversity. RESULTS Twelve cross-sectional studies and three randomized controlled trials were examined. Independently of the type of study, diversity metrics from Alpha and Beta diversity remained without changes in almost all the studies. Likewise, cross-sectional studies do not reflect significant changes in gut microbiota diversity; no significant differences were detected among diverse groups in the relative abundances of the major phyla or alpha diversity measures. Otherwise, relative abundance analysis showed a significant change in older adults who conducted an exercise program for five weeks or more at the genus level. CONCLUSIONS Here, we did not identify significant shifts in diversity metrics; only one study reported a significant difference in Alpha diversity from overweight people with higher physical activity levels. The abundance of some bacteria is higher in aged people, after an exercise program, or in comparison with control groups, especially at the genus and species levels. There needs to be more information related to function and metabolic pathways that can be crucial to understand the effect of exercise and physical activity in older adults. TRIAL REGISTRATION PROSPERO ID: CRD42022331551.
Collapse
Affiliation(s)
- Viviana Aya
- Centro de Investigaciones en Microbiología y Biotecnología de la Universidad del Rosario-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Paula Jimenez
- Centro de Investigaciones en Microbiología y Biotecnología de la Universidad del Rosario-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Enrique Muñoz
- Facultad de Cultura Física, Deporte y Recreación, Universidad Santo Tomas, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología de la Universidad del Rosario-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
193
|
Nikodemova M, Holzhausen EA, Deblois CL, Barnet JH, Peppard PE, Suen G, Malecki KM. The effect of low-abundance OTU filtering methods on the reliability and variability of microbial composition assessed by 16S rRNA amplicon sequencing. Front Cell Infect Microbiol 2023; 13:1165295. [PMID: 37377642 PMCID: PMC10291178 DOI: 10.3389/fcimb.2023.1165295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
PCR amplicon sequencing may lead to detection of spurious operational taxonomic units (OTUs), inflating estimates of gut microbial diversity. There is no consensus in the analytical approach as to what filtering methods should be applied to remove low-abundance OTUs; moreover, few studies have investigated the reliability of OTU detection within replicates. Here, we investigated the reliability of OTU detection (% agreement in detecting OTU in triplicates) and accuracy of their quantification (assessed by coefficient of variation (CV)) in human stool specimens. Stool samples were collected from 12 participants 22-55 years old. We applied several methods for filtering low-abundance OTUs and determined their impact on alpha-diversity and beta-diversity metrics. The reliability of OTU detection without any filtering was only 44.1% (SE=0.9) but increased after filtering low-abundance OTUs. After filtering OTUs with <0.1% abundance in the dataset, the reliability increased to 87.7% (SE=0.6) but at the expense of removing 6.97% reads from the dataset. When filtering was based on individual sample, the reliability increased to 73.1% after filtering OTUs with <10 copies while removing only 1.12% of reads. High abundance OTUs (>10 copies in sample) had lower CV, indicating better accuracy of quantification than low-abundance OTUs. Excluding very low-abundance OTUs had a significant impact on alpha-diversity metrics sensitive to the presence of rare species (observed OTUs, Chao1) but had little impact on relative abundance of major phyla and families and alpha-diversity metrics accounting for both richness and evenness (Shannon, Inverse Simpson). To increase the reliability of microbial composition, we advise removing OTUs with <10 copies in individual samples, particularly in studies where only one subsample per specimen is available for analysis.
Collapse
Affiliation(s)
- Maria Nikodemova
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Elizabeth A. Holzhausen
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Courtney L. Deblois
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jodi H. Barnet
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Paul E. Peppard
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kristen M. Malecki
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
194
|
Yum SJ, Lee HR, Yu SY, Seo DW, Kwon JH, Kim SM, Kim JH, Jeong HG. Characterization of the Bacterial Communities in Cichorium intybus According to Cultivation and Storage Conditions. Microorganisms 2023; 11:1560. [PMID: 37375061 DOI: 10.3390/microorganisms11061560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Chicory leaves (Cichorium intybus) are widely consumed due to their health benefits. They are mainly consumed raw or without adequate washing, which has led to an increase in food-borne illness. This study investigated the taxonomic composition and diversity of chicory leaves collected at different sampling times and sites. The potential pathogenic genera (Sphingomonas, Pseudomonas, Pantoea, Staphylococcus, Escherichia, and Bacillus) were identified on the chicory leaves. We also evaluated the effects of various storage conditions (enterohemorrhagic E. coli contamination, washing treatment, and temperature) on the chicory leaves' microbiota. These results provide an understanding of the microbiota in chicory and could be used to prevent food-borne illnesses.
Collapse
Affiliation(s)
- Su-Jin Yum
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Heoun-Reoul Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seon Yeong Yu
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong Woo Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun Hyeok Kwon
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seung Min Kim
- Division of Human Ecology, Korea National Open University, Seoul 03087, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Hee-Gon Jeong
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
195
|
Galgano S, Conway L, Dalby N, Fellows A, Houdijk JGM. Encapsulated peracetic acid as a valid broad-spectrum antimicrobial alternative, leading to beneficial microbiota compositional changes and enhanced performance in broiler chickens. J Anim Sci Biotechnol 2023; 14:83. [PMID: 37291646 DOI: 10.1186/s40104-023-00881-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/10/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Antimicrobial alternatives are urgently needed, including for poultry production systems. In this study, we tested the potential broad-range antimicrobial alternative peracetic acid, delivered in feed via the hydrolysis of encapsulated precursors through a 28-day study using 375 Ross 308 broiler chickens. We tested two peracetic acid concentrations, 30 and 80 mg/kg on birds housed on re-used litter, and we evaluated the impact of both levels on gut microbial communities, bacterial concentration, antimicrobial resistance genes relative abundance and growth performance when compared to control birds housed on either clean or re-used litter. RESULTS Body weight gain and feed conversion ratio improved in peracetic acid fed birds. At d 28, birds given 30 mg/kg of peracetic acid had a decreased Firmicutes and an increased Proteobacteria abundance in the jejunum, accompanied by an increase in Bacillus, Flavonifractor and Rombustia in the caeca, and a decreased abundance of tetracycline resistance genes. Chicken given 80 mg/kg of peracetic acid had greater caecal abundance of macrolides lincosamides and streptogramins resistance genes. Growth performance on clean litter was reduced compared to re-used litter, which concurred with increased caecal abundance of Blautia, decreased caecal abundance of Escherichia/Shigella, Anaerostipes and Jeotgalicoccus, and greater gene abundance of vancomycin, tetracycline, and macrolides resistance genes. CONCLUSIONS Peracetic acid could be used as a safe broad-spectrum antimicrobial alternative in broilers. Encapsulated precursors were able to reduce the bacterial concentration in the jejunum whilst promoting the proliferation of probiotic genera in the caeca, especially at the low peracetic acid concentrations tested, and improve growth performance. Moreover, our findings offer further insights on potential benefits of rearing birds on re-used litter, suggesting that the latter could be associated with better performance and reduced antimicrobial resistance risk compared to clean litter rearing.
Collapse
Affiliation(s)
- Salvatore Galgano
- Monogastric Science Research Centre, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, Scotland, UK.
| | | | - Nikki Dalby
- Centre for Innovation Excellence in Livestock, York, UK
| | | | - Jos G M Houdijk
- Monogastric Science Research Centre, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, Scotland, UK
| |
Collapse
|
196
|
Corre G, Galy A. Evaluation of diversity indices to estimate clonal dominance in gene therapy studies. Mol Ther Methods Clin Dev 2023; 29:418-425. [PMID: 37251980 PMCID: PMC10220254 DOI: 10.1016/j.omtm.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
In cell and gene therapy, achieving the stable engraftment of an abundant and highly polyclonal population of gene-corrected cells is one of the key factors to ensure the successful and safe treatment of patients. Because integrative vectors have been associated with possible risks of insertional mutagenesis leading to clonal dominance, monitoring the relative abundance of individual vector insertion sites in patients' blood cells has become an important safety assessment, particularly in hematopoietic stem cell-based therapies. Clinical studies often express clonal diversity using various metrics. One of the most commonly used is the Shannon index of entropy. However, this index aggregates two distinct aspects of diversity, the number of unique species and their relative abundance. This property hampers the comparison of samples with different richness. This prompted us to reanalyze published datasets and to model the properties of various indices as applied to the evaluation of clonal diversity in gene therapy. A normalized version of the Shannon index, such as Pielou's index, or Simpson's probability index is robust and useful to compare sample evenness between patients and trials. Clinically meaningful standard values for clonal diversity are herein proposed to facilitate the use of vector insertion site analyses in genomic medicine practice.
Collapse
Affiliation(s)
- Guillaume Corre
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Anne Galy
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| |
Collapse
|
197
|
Luchen CC, Chibuye M, Spijker R, Simuyandi M, Chisenga C, Bosomprah S, Chilengi R, Schultsz C, Mende DR, Harris VC. Impact of antibiotics on gut microbiome composition and resistome in the first years of life in low- to middle-income countries: A systematic review. PLoS Med 2023; 20:e1004235. [PMID: 37368871 PMCID: PMC10298773 DOI: 10.1371/journal.pmed.1004235] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Inappropriate antimicrobial usage is a key driver of antimicrobial resistance (AMR). Low- and middle-income countries (LMICs) are disproportionately burdened by AMR and young children are especially vulnerable to infections with AMR-bearing pathogens. The impact of antibiotics on the microbiome, selection, persistence, and horizontal spread of AMR genes is insufficiently characterized and understood in children in LMICs. This systematic review aims to collate and evaluate the available literature describing the impact of antibiotics on the infant gut microbiome and resistome in LMICs. METHODS AND FINDINGS In this systematic review, we searched the online databases MEDLINE (1946 to 28 January 2023), EMBASE (1947 to 28 January 2023), SCOPUS (1945 to 29 January 2023), WHO Global Index Medicus (searched up to 29 January 2023), and SciELO (searched up to 29 January 2023). A total of 4,369 articles were retrieved across the databases. Duplicates were removed resulting in 2,748 unique articles. Screening by title and abstract excluded 2,666 articles, 92 articles were assessed based on the full text, and 10 studies met the eligibility criteria that included human studies conducted in LMICs among children below the age of 2 that reported gut microbiome composition and/or resistome composition (AMR genes) following antibiotic usage. The included studies were all randomized control trials (RCTs) and were assessed for risk of bias using the Cochrane risk-of-bias for randomized studies tool. Overall, antibiotics reduced gut microbiome diversity and increased antibiotic-specific resistance gene abundance in antibiotic treatment groups as compared to the placebo. The most widely tested antibiotic was azithromycin that decreased the diversity of the gut microbiome and significantly increased macrolide resistance as early as 5 days posttreatment. A major limitation of this study was paucity of available studies that cover this subject area. Specifically, the range of antibiotics assessed did not include the most commonly used antibiotics in LMIC populations. CONCLUSION In this study, we observed that antibiotics significantly reduce the diversity and alter the composition of the infant gut microbiome in LMICs, while concomitantly selecting for resistance genes whose persistence can last for months following treatment. Considerable heterogeneity in study methodology, timing and duration of sampling, and sequencing methodology in currently available research limit insights into antibiotic impacts on the microbiome and resistome in children in LMICs. More research is urgently needed to fill this gap in order to better understand whether antibiotic-driven reductions in microbiome diversity and selection of AMR genes place LMIC children at risk for adverse health outcomes, including infections with AMR-bearing pathogens.
Collapse
Affiliation(s)
- Charlie C. Luchen
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mwelwa Chibuye
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rene Spijker
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Michelo Simuyandi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Caroline Chisenga
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Samuel Bosomprah
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | - Roma Chilengi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia
- Republic of Zambia State House, Lusaka, Zambia
| | - Constance Schultsz
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands
| | - Daniel R. Mende
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands
| | - Vanessa C. Harris
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Internal Medicine, Division of Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
198
|
Ajeethan N, Ali S, Fuller KD, Abbey L, Yurgel SN. Apple Root Microbiome as Indicator of Plant Adaptation to Apple Replant Diseased Soils. Microorganisms 2023; 11:1372. [PMID: 37374874 DOI: 10.3390/microorganisms11061372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
The tree fruit industry in Nova Scotia, Canada, is dominated by the apple (Malus domestica) sector. However, the sector is faced with numerous challenges, including apple replant disease (ARD), which is a well-known problem in areas with intensive apple cultivation. A study was performed using 16S rRNA/18S rRNA and 16S rRNA/ITS2 amplicon sequencing to assess soil- and root-associated microbiomes, respectively, from mature apple orchards and soil microbiomes alone from uncultivated soil. The results indicated significant (p < 0.05) differences in soil microbial community structure and composition between uncultivated soil and cultivated apple orchard soil. We identified an increase in the number of potential pathogens in the orchard soil compared to uncultivated soil. At the same time, we detected a significant (p < 0.05) increase in relative abundances of several potential plant-growth-promoting or biocontrol microorganisms and non-fungal eukaryotes capable of promoting the proliferation of bacterial biocontrol agents in orchard soils. Additionally, the apple roots accumulated several potential PGP bacteria from Proteobacteria and Actinobacteria phyla, while the relative abundances of fungal taxa with the potential to contribute to ARD, such as Nectriaceae and plant pathogenic Fusarium spp., were decreased in the apple root microbiome compared to the soil microbiome. The results suggest that the health of a mature apple tree can be ascribed to a complex interaction between potential pathogenic and plant growth-promoting microorganisms in the soil and on apple roots.
Collapse
Affiliation(s)
- Nivethika Ajeethan
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro NS B2N 5E3, Canada
- Department of Biosystems Technology, Faculty of Technology, University of Jaffna, Kilinochchi 44000, Sri Lanka
| | - Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville NS B4N 1J5, Canada
| | - Keith D Fuller
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville NS B4N 1J5, Canada
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro NS B2N 5E3, Canada
| | - Svetlana N Yurgel
- USDA, ARS, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA
| |
Collapse
|
199
|
Sanghani AD, Patel RK, Dave SR, Tipre DR. Culturable heterotrophic bacterial diversity study from an Indian lignite mine habitat. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:649. [PMID: 37160469 DOI: 10.1007/s10661-023-11176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/29/2023] [Indexed: 05/11/2023]
Abstract
Diversity lifts the productivity of any ecosystem as all the species have a vital role to play that is present within the ecosystem. The characterization is essential to delve into the ecological functions of microbial communities and discover the type of microorganisms present within the ecosystem. As microbial diversity in ecosystems responds to environmental disturbances, it functions as a marker to indicate the change in such ecosystems. Mine ecology differs significantly from other habitats due to the presence of acidic runoff. This paper provides insight into the diversity of cultivable bacteria isolated from lignite mines located in south Gujarat. A total of 67 heterotrophic isolates were successfully cultivated from the collected solid and water samples of the Rajpardi and Tadkeshwar Lignite mine sites. The isolates were characterized morphologically and biochemically, and intra- and extracellular enzyme synthesis were studied. Moreover, the relative density and frequency of cultivated isolates from the samples were calculated. The similarity and evenness of the heterotrophic isolated were studied by calculating diversity indices such as Shannon and Simpson. Alpha diversity was calculated in PAST software to analyse the similarity between the selected two mine sites. This research also explored the relationship between the variance in heterotrophic microbial diversity and substrate utilization richness of the studied lignite mines of Gujarat.
Collapse
Affiliation(s)
- Anjana D Sanghani
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
- Bioinformatics and Supercomputer Lab, Department of Biosciences, Veer Narmad South Gujarat University, Surat, 395007, India
| | - Rajesh K Patel
- Bioinformatics and Supercomputer Lab, Department of Biosciences, Veer Narmad South Gujarat University, Surat, 395007, India
| | - Shailesh R Dave
- Xavier's Research Foundation, Loyola Centre for R & D, St. Xavier College Campus, Navarangpura, Ahmedabad, 380009, India
| | - Devayani R Tipre
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
200
|
van Heule M, Monteiro HF, Bazzazan A, Scoggin K, Rolston M, El-Sheikh Ali H, Weimer BC, Ball B, Daels P, Dini P. Characterization of the equine placental microbial population in healthy pregnancies. Theriogenology 2023; 206:60-70. [PMID: 37187056 DOI: 10.1016/j.theriogenology.2023.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
In spite of controversy, recent studies present evidence that a microbiome is present in the human placenta. However, there is limited information about a potential equine placental microbiome. In the present study, we characterized the microbial population in the equine placenta (chorioallantois) of healthy prepartum (280 days of gestation, n = 6) and postpartum (immediately after foaling, 351 days of gestation, n = 11) mares, using 16S rDNA sequencing (rDNA-seq). In both groups, the majority of bacteria belonged to the phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidota. The five most abundant genera were Bradyrhizobium, an unclassified Pseudonocardiaceae, Acinetobacter, Pantoea, and an unclassified Microbacteriaceae. Alpha diversity (p < 0.05) and beta diversity (p < 0.01) were significantly different between pre- and postpartum samples. Additionally, the abundance of 7 phyla and 55 genera was significantly different between pre- and postpartum samples. These differences suggest an effect of the caudal reproductive tract microbiome on the postpartum placental microbial DNA composition, since the passage of the placenta through the cervix and vagina during normal parturition had a significant influence on the composition of the bacteria found in the placenta when using 16S rDNA-seq. These data support the hypothesis that bacterial DNA is present in healthy equine placentas and opens the possibility for further exploration of the impact of the placental microbiome on fetal development and pregnancy outcome.
Collapse
Affiliation(s)
- Machteld van Heule
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Hugo Fernando Monteiro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ali Bazzazan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kirsten Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Matthew Rolston
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA; Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Population Health and Reproduction, 100K Pathogen Genome Project, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Barry Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Peter Daels
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|