151
|
Li S, Qiu N, Ni A, Hamblin MH, Yin KJ. Role of regulatory non-coding RNAs in traumatic brain injury. Neurochem Int 2024; 172:105643. [PMID: 38007071 PMCID: PMC10872636 DOI: 10.1016/j.neuint.2023.105643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Traumatic brain injury (TBI) is a potentially fatal health event that cannot be predicted in advance. After TBI occurs, it can have enduring consequences within both familial and social spheres. Yet, despite extensive efforts to improve medical interventions and tailor healthcare services, TBI still remains a major contributor to global disability and mortality rates. The prompt and accurate diagnosis of TBI in clinical contexts, coupled with the implementation of effective therapeutic strategies, remains an arduous challenge. However, a deeper understanding of changes in gene expression and the underlying molecular regulatory processes may alleviate this pressing issue. In recent years, the study of regulatory non-coding RNAs (ncRNAs), a diverse class of RNA molecules with regulatory functions, has been a potential game changer in TBI research. Notably, the identification of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs has revealed their potential as novel diagnostic biomarkers and therapeutic targets for TBI, owing to their ability to regulate the expression of numerous genes. In this review, we seek to provide a comprehensive overview of the functions of regulatory ncRNAs in TBI. We also summarize regulatory ncRNAs used for treatment in animal models, as well as miRNAs, lncRNAs, and circRNAs that served as biomarkers for TBI diagnosis and prognosis. Finally, we discuss future challenges and prospects in diagnosing and treating TBI patients in the clinical settings.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Na Qiu
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Andrew Ni
- Warren Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI, 02903, USA
| | - Milton H Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 1212 Webber Hall, 900 University Avenue, Riverside, CA, 92521, USA
| | - Ke-Jie Yin
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
152
|
Doghish AS, Zaki MB, Eldeib MG, Radwan AF, Moussa R, Abdel-Wahab MM, Kizilaslan EZ, Alhamshry NAA, Ashour AE, Elimam H. The potential relevance of long non-coding RNAs in colorectal cancer pathogenesis and treatment: A review focus on signaling pathways. Pathol Res Pract 2024; 253:155044. [PMID: 38141573 DOI: 10.1016/j.prp.2023.155044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequent cancers in incidence and mortality. Despite advances in cancer biology, molecular genetics, and targeted treatments, CRC prognosis and survival have not kept pace. This is usually due to advanced staging and metastases at diagnosis. Thus, great importance has been placed upon understanding the molecular pathophysiology behind the development of CRC, which has highlighted the significance of non-coding RNA's role and associated intracellular signaling pathways in the pathogenesis of the disease. According to recent studies, long non-coding RNAs (lncRNA), a subtype of ncRNAs whose length exceeds 200 nucleotides, have been found to have regulatory functions on multiple levels. Their actions at the transcription, post-transcriptional, translational levels, and epigenetic regulation have made them prime modulators of gene expression. Due to their role in cellular cancer hallmarks, their dysregulation has been linked to several illnesses, including cancer. Furthermore, their clinical relevance has expanded due to their possible detection in blood which has cemented them as potential future biomarkers and thus, potential targets for new therapy. This review will highlight the importance of lncRNAs and related signaling pathways in the development of CRC and their subsequent clinical applications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University - Kantara Branch, 41636 Ismailia, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Maie M Abdel-Wahab
- Department of Biochemistry, Faculty of Pharmacy, Sinai University - Kantara Branch, 41636 Ismailia, Egypt
| | | | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt.
| |
Collapse
|
153
|
Weisser I, Eckberg K, D'Amico S, Buttram D, Aboudehen K. Ablation of Long Noncoding RNA Hoxb3os Exacerbates Cystogenesis in Mouse Polycystic Kidney Disease. J Am Soc Nephrol 2024; 35:41-55. [PMID: 37953472 PMCID: PMC10786614 DOI: 10.1681/asn.0000000000000265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
SIGNIFICANCE STATEMENT Long noncoding RNAs (lncRNAs) are a class of nonprotein coding RNAs with pivotal functions in development and disease. They have emerged as an exciting new drug target category for many common conditions. However, the role of lncRNAs in autosomal dominant polycystic kidney disease (ADPKD) has been understudied. This study provides evidence implicating a lncRNA in the pathogenesis of ADPKD. We report that Hoxb3os is downregulated in ADPKD and regulates mammalian target of rapamycin (mTOR)/Akt pathway in the in vivo mouse kidney. Ablating the expression of Hoxb3os in mouse polycystic kidney disease (PKD) activated mTOR complex 2 (mTORC2) signaling and exacerbated the cystic phenotype. The results from our study provide genetic proof of concept for future studies that focus on targeting lncRNAs as a treatment option in PKD. BACKGROUND ADPKD is a monogenic disorder characterized by the formation of kidney cysts and is primarily caused by mutations in two genes, PKD1 and PKD2 . METHODS In this study, we investigated the role of lncRNA Hoxb3os in ADPKD by ablating its expression in the mouse. RESULTS Hoxb3os -null mice were viable and had grossly normal kidney morphology but displayed activation of mTOR/Akt signaling and subsequent increase in kidney cell proliferation. To determine the role of Hoxb3os in cystogenesis, we crossed the Hoxb3os -null mouse to two orthologous Pkd1 mouse models: Pkhd1/Cre; Pkd1F/F (rapid cyst progression) and Pkd1RC/RC (slow cyst progression). Ablation of Hoxb3os exacerbated cyst growth in both models. To gain insight into the mechanism whereby Hoxb3os inhibition promotes cystogenesis, we performed western blot analysis of mTOR/Akt pathway between Pkd1 single-knockout and Pkd1 - Hoxb3os double-knockout (DKO) mice. Compared with single-knockout, DKO mice presented with enhanced levels of total and phosphorylated Rictor. This was accompanied by increased phosphorylation of Akt at Ser 473 , a known mTORC2 effector site. Physiologically, kidneys from DKO mice displayed between 50% and 60% increase in cell proliferation and cyst number. CONCLUSIONS The results from this study indicate that ablation of Hoxb3os in mouse PKD exacerbates cystogenesis and dysregulates mTORC2.
Collapse
Affiliation(s)
- Ivan Weisser
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Kara Eckberg
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Stephen D'Amico
- Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Daniel Buttram
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Karam Aboudehen
- Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
154
|
Vanamamalai VK, E P, T R K, Sharma S. Integrated analysis of genes and long non-coding RNAs in trachea transcriptome to decipher the host response during Newcastle disease challenge in different breeds of chicken. Int J Biol Macromol 2023; 253:127183. [PMID: 37793531 DOI: 10.1016/j.ijbiomac.2023.127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
Newcastle disease is a highly infectious economically devastating disease caused by Newcastle disease Virus in Chicken (Gallus gallus). Leghorn and Fayoumi are two breeds which show differential resistance patterns towards NDV. This study aims to identify the differentially expressed genes and lncRNAs during NDV challenge which could play a potential role in this differential resistance pattern. A total of 552 genes and 1580 lncRNAs were found to be differentially expressing. Of them, 52 genes were annotated with both Immune related pathways and Gene ontologies. We found that most of these genes were upregulated in Leghorn between normal and challenged chicken but several were down regulated between different timepoints after NDV challenge, while Fayoumi showed no such downregulation. We also observed that higher number of positively correlating lncRNAs was found to be downregulated along with these genes. This shows that although Leghorn is showing higher number of differentially expressed genes in challenged than in non-challenged, most of them were downregulated during the disease between different timepoints. With this we hypothesize that the downregulation of immune related genes and co-expressing lncRNAs could play a significant role behind the Leghorn being comparatively susceptible breed than Fayoumi. The computational pipeline is available at https://github.com/Venky2804/FHSpipe.
Collapse
Affiliation(s)
- Venkata Krishna Vanamamalai
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad 121001, Haryana, India
| | - Priyanka E
- ICAR-Directorate of Poultry Research, Pillar No. 216, Dairy Farm Chowrastha, Rajendra Nagar Road, Rajendranagar mandal, Hyderabad 500030, Telangana, India
| | - Kannaki T R
- ICAR-Directorate of Poultry Research, Pillar No. 216, Dairy Farm Chowrastha, Rajendra Nagar Road, Rajendranagar mandal, Hyderabad 500030, Telangana, India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad 121001, Haryana, India.
| |
Collapse
|
155
|
Wen JL, Ruan ZB, Wang F, Hu Y. Progress of circRNA/lncRNA-miRNA-mRNA axis in atrial fibrillation. PeerJ 2023; 11:e16604. [PMID: 38144204 PMCID: PMC10740593 DOI: 10.7717/peerj.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent arrhythmia that requires effective biomarkers and therapeutic targets for clinical management. In recent years, non-coding RNAs (ncRNAs) have emerged as key players in the pathogenesis of AF, particularly through the ceRNA (competitive endogenous RNA) mechanism. By acting as ceRNAs, ncRNAs can competitively bind to miRNAs and modulate the expression of target mRNAs, thereby influencing the biological behavior of AF. The ceRNA axis has shown promise as a diagnostic and prognostic biomarker for AF. This review provides a comprehensive overview of the roles of ncRNAs in the development and progression of AF, highlighting the intricate crosstalk between different ncRNAs in AF pathophysiology. Furthermore, we discuss the potential implications of targeting the circRNA/lncRNA-miRNA-mRNA axis for the diagnosis, prognosis, and therapeutic intervention of AF.
Collapse
Affiliation(s)
- Jia-le Wen
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Dalian Medical University, Dalian, China
| | - Zhong-bao Ruan
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Fei Wang
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Yuhua Hu
- Dalian Medical University, Dalian, China
| |
Collapse
|
156
|
Al-Obaide MA, Islam S, Al-Obaidi I, Vasylyeva TL. Novel enhancer mediates the RPL36A-HNRNPH2 readthrough loci and GLA gene expressions associated with fabry disease. Front Genet 2023; 14:1229088. [PMID: 38155709 PMCID: PMC10753776 DOI: 10.3389/fgene.2023.1229088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/10/2023] [Indexed: 12/30/2023] Open
Abstract
Fabry disease (FD) is a rare genetic condition caused by mutations in the GLA gene, located on the X chromosome in the RPL36-HNRNPH2 readthrough genomic region. This gene produces an enzyme called alpha-galactosidase A (α-Gal A). When the enzyme does not function properly due to the mutations, it causes harmful substances called globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) to build up in the body's lysosomes. This accumulation can damage the kidneys, heart, eyes, and nervous system. Recent studies have shown that the RPL36A-HNRNPH2 readthrough loci, which include RPL36A and HNRNPH2 genes, as well as the regulatory sequence known as the GLA-HNRNPH2 bidirectional promoter, may also play a role in FD. However, the involvement of enhancer RNAs (eRNAs) in FD is still poorly understood despite their known role in various diseases. To investigate this further, we studied an RPL36A enhancer called GH0XJ101390 and showed its genomic setting in the RPL36-HNRNPH2 readthrough region; the eRNA is rich in Homotypic Clusters of TFBSs (HCTs) type and hosts a CpG Island (CGI). To test the functional correlation further with GLA, RPL36A, and HNRNPH2, we used siRNAs to knock down GH0XJ101390 in human kidney embryonic cells 293T. The results showed a significant decrease in RPL36A and GLA expression and a non-significant decrease in HNRNPH2 expression. These findings could have important implications for understanding the regulatory mechanisms of GH0XJ101390 and its potential role in FD. A better understanding of these mechanisms may improve diagnostic and therapeutic methods for FD, which could ultimately benefit patients with this rare condition.
Collapse
Affiliation(s)
| | | | | | - Tetyana L. Vasylyeva
- Department of Pediatrics, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| |
Collapse
|
157
|
Drozdov A, Lebedev E, Adonin L. Comparative Analysis of Bivalve and Sea Urchin Genetics and Development: Investigating the Dichotomy in Bilateria. Int J Mol Sci 2023; 24:17163. [PMID: 38138992 PMCID: PMC10742642 DOI: 10.3390/ijms242417163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
This comprehensive review presents a comparative analysis of early embryogenesis in Protostomia and Deuterostomia, the first of which exhibit a mosaic pattern of development, where cells are fated deterministically, while Deuterostomia display a regulatory pattern of development, where the fate of cells is indeterminate. Despite these fundamental differences, there are common transcriptional mechanisms that underline their evolutionary linkages, particularly in the field of functional genomics. By elucidating both conserved and unique regulatory strategies, this review provides essential insights into the comparative embryology and developmental dynamics of these groups. The objective of this review is to clarify the shared and distinctive characteristics of transcriptional regulatory mechanisms. This will contribute to the extensive areas of functional genomics, evolutionary biology and developmental biology, and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
- Anatoliy Drozdov
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
| | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
158
|
Li Z, Tian JM, Chu Y, Zhu HY, Wang JJ, Huang J. Long non-coding RNA PVT1 (PVT1) affects the expression of CCND1 and promotes doxorubicin resistance in osteosarcoma cells. J Bone Oncol 2023; 43:100512. [PMID: 38021073 PMCID: PMC10665705 DOI: 10.1016/j.jbo.2023.100512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Acquired drug-resistance is the major risk factor for poor prognosis and short-term survival in patients with osteosarcoma (OS). Accumulating evidence has revealed that long noncoding RNAs (lncRNAs), including plasmacytoma variant translocation 1 (PVT1), play potential regulatory roles in the malignant development of OS. Considering the subcellular distribution of PVT1 as both nuclear and cytoplasmic lncRNA, a thorough exploration of its extensive mechanisms becomes essential. Methods The GEO database was utilized for the acquisition of gene expression data, which was subsequently analyzed to fulfill the research objectives. The subcellular localization of PVT1 in OS cells was determined using fluorescence in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the sensitivity of OS cells to doxorubicin was comprehensively evaluated through measurements of cell viability, site-specific proliferation capacity, and the relative expression abundance of multidrug resistance-related proteins (MRPs). In order to investigate the differential response of OS cells with varying levels of PVT1 expression to doxorubicin, pulmonary metastasis mice models were established for in vivo studies. Molecular interactions were further examined using the dual-luciferase assay and RNA immunoprecipitation assay (RIP) to analyze the binding sites of miR-15a-5p and miR-15b-5p on PVT1 and G1/S-specific cyclinD1 (CCND1) mRNA. Furthermore, the chromatin immunoprecipitation (ChIP) and dual-luciferase assay were employed to assess the transcriptional activation of the proto-oncogene c-myc (MYC) on the CCND1 promoter and identify the corresponding binding sites. Results In doxorubicin resistant OS cells, transcription levels of PVT1, MYC and CCND1 were significantly higher than those in original cells. In vivo experiments demonstrated that OS cells rich in PVT1 expression exhibited enhanced tumorigenicity and resistance to doxorubicin. In vitro experiments, it has been observed that overexpression of PVT1 in OS cells is accompanied by an upregulation of CCND1, thereby facilitating resistance to doxorubicin. Nonetheless, this PVT1-induced resistance can be effectively attenuated by the knockdown of CCND1. Mechanistically, PVT1 functions as a competitive endogenous RNA (ceRNA) that influences the expression of CCND1 by inhibiting the degradation function of miR-15a-5p and miR-15b-5p on CCND1 mRNA. Additionally, as a neighboring gene of MYC, PVT1 plays a role in maintaining MYC protein stability, which further enhances MYC-dependent CCND1 transcriptional activity. Conclusion The resistance of OS cells to doxorubicin is facilitated by PVT1, which enhances the expression of CCND1 through a dual mechanism. This findings offer a novel perspective for comprehending the intricate regulatory mechanisms of long non-coding RNA in influencing the expression of coding genes.
Collapse
Affiliation(s)
- Zi Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Ming Tian
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Chu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Yi Zhu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun-Jie Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
159
|
Saadh MJ, Almoyad MAA, Arellano MTC, Maaliw RR, Castillo-Acobo RY, Jalal SS, Gandla K, Obaid M, Abdulwahed AJ, Ibrahem AA, Sârbu I, Juyal A, Lakshmaiya N, Akhavan-Sigari R. Long non-coding RNAs: controversial roles in drug resistance of solid tumors mediated by autophagy. Cancer Chemother Pharmacol 2023; 92:439-453. [PMID: 37768333 DOI: 10.1007/s00280-023-04582-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023]
Abstract
Current genome-wide studies have indicated that a great number of long non-coding RNAs (lncRNAs) are transcribed from the human genome and appeared as crucial regulators in a variety of cellular processes. Many studies have displayed a significant function of lncRNAs in the regulation of autophagy. Autophagy is a macromolecular procedure in cells in which intracellular substrates and damaged organelles are broken down and recycled to relieve cell stress resulting from nutritional deprivation, irradiation, hypoxia, and cytotoxic agents. Autophagy can be a double-edged sword and play either a protective or a damaging role in cells depending on its activation status and other cellular situations, and its dysregulation is related to tumorigenesis in various solid tumors. Autophagy induced by various therapies has been shown as a unique mechanism of resistance to anti-cancer drugs. Growing evidence is showing the important role of lncRNAs in modulating drug resistance via the regulation of autophagy in a variety of cancers. The role of lncRNAs in drug resistance of cancers is controversial; they may promote or suppress drug resistance via either activation or inhibition of autophagy. Mechanisms by which lncRNAs regulate autophagy to affect drug resistance are different, mainly mediated by the negative regulation of micro RNAs. In this review, we summarize recent studies that investigated the role of lncRNAs/autophagy axis in drug resistance of different types of solid tumors.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11831, Jordan
| | | | | | - Renato R Maaliw
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines
| | | | - Sarah Salah Jalal
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, University of Chaitanya, Hanamkonda, India
| | | | | | - Azher A Ibrahem
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115, Iași, Romania.
| | - Ashima Juyal
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
160
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
161
|
Fu W, Gu H, Ye Y. Long Noncoding RNA MIAT Modulates Chronic Retinal Ischemia-Reperfusion Injury in Mice via the microRNA-203-3p/SNAI2 Axis. Chem Res Toxicol 2023; 36:1683-1692. [PMID: 37870436 DOI: 10.1021/acs.chemrestox.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Retinal ischemia-reperfusion injury (RIRI) is a vital pathological process of multiple ocular diseases. This study aimed at investigating the effects of the MIAT/miR-203-3p/SNAI2 axis on RIRI. RIRI was produced by inducing an exceedingly high intraocular pressure (IOP) in mice. Mouse retinal ganglion cells (RGCs) were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic in vitro models. Relevant oligonucleotides or plasmids were transfected into OGD/R-induced RGCs in vitro or injected into RIRI mice models in vivo via a vitreous cavity. The findings of our paper indicated that MIAT and SNAI2 were highly expressed and miR-203-3p was lowly expressed in mouse RIRI tissues and OGD/R-induced RGCs. Interfering MIAT promoted the viability of OGD/R-induced RGCs, decreased apoptosis, and reduced oxidative stress in vitro. Silencing MIAT increased retinal neuronal cell numbers and decreased retinal neuronal cell apoptosis in mouse RIRI tissues in vivo. MIAT sponged miR-203-3p, and miR-203-3p targeted and inhibited SNAI2 expression. SNAI2 up-regulation or miR-203-3p down-regulation reversed the protective effects of MIAT down-regulation on RIRI in mice and OGD/R-induced RGCs. MIAT sponges miR-203-3p upregulated the expression of SNAI2, thereby promoting RIRI in mice. In summary, MIAT may be a therapeutic target for the treatment of chronic RIRI.
Collapse
Affiliation(s)
- Weina Fu
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Hong Gu
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yunyan Ye
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| |
Collapse
|
162
|
Stacey VM, Kõks S. Genome-Wide Differential Transcription of Long Noncoding RNAs in Psoriatic Skin. Int J Mol Sci 2023; 24:16344. [PMID: 38003532 PMCID: PMC10671291 DOI: 10.3390/ijms242216344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) may contribute to the formation of psoriatic lesions. The present study's objective was to identify long lncRNA genes that are differentially expressed in patient samples of psoriasis through computational analysis techniques. By using previously published RNA sequencing data from psoriatic and healthy patients (n = 324), we analysed the differential expression of lncRNAs to determine transcripts of heightened expression. We computationally screened lncRNA transcripts as annotated by GENCODE across the human genome and compared transcription in psoriatic and healthy samples from two separate studies. We observed 54 differentially expressed genes as seen in two independent datasets collected from psoriasis and healthy patients. We also identified the differential expression of LINC01215 and LINC1206 associated with the cell cycle pathway and psoriasis pathogenesis. SH3PXD2A-AS1 was identified as a participant in the STAT3/SH3PXD2A-AS1/miR-125b/STAT3 positive feedback loop. Both the SH3PXD2A-AS1 and CERNA2 genes have already been recognised as part of the IFN-γ signalling pathway regulation. Additionally, EPHA1-AS1, CYP4Z2P and SNHG12 gene upregulation have all been previously linked to inflammatory skin diseases. Differential expression of various lncRNAs affects the pathogenesis of psoriasis. Further characterisation of lncRNAs and their functions are important for developing our understanding of psoriasis.
Collapse
Affiliation(s)
- Valerie M. Stacey
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
163
|
Sun X, Tang M, Xu L, Luo X, Shang Y, Duan W, Huang Z, Jin C, Chen G. Genome-wide identification of long non-coding RNAs and their potential functions in radish response to salt stress. Front Genet 2023; 14:1232363. [PMID: 38028592 PMCID: PMC10656690 DOI: 10.3389/fgene.2023.1232363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are increasingly recognized as cis- and trans-acting regulators of protein-coding genes in plants, particularly in response to abiotic stressors. Among these stressors, high soil salinity poses a significant challenge to crop productivity. Radish (Raphanus sativus L.) is a prominent root vegetable crop that exhibits moderate susceptibility to salt stress, particularly during the seedling stage. Nevertheless, the precise regulatory mechanisms through which lncRNAs contribute to salt response in radish remain largely unexplored. In this study, we performed genome-wide identification of lncRNAs using strand-specific RNA sequencing on radish fleshy root samples subjected to varying time points of salinity treatment. A total of 7,709 novel lncRNAs were identified, with 363 of them displaying significant differential expression in response to salt application. Furthermore, through target gene prediction, 5,006 cis- and 5,983 trans-target genes were obtained for the differentially expressed lncRNAs. The predicted target genes of these salt-responsive lncRNAs exhibited strong associations with various plant defense mechanisms, including signal perception and transduction, transcription regulation, ion homeostasis, osmoregulation, reactive oxygen species scavenging, photosynthesis, phytohormone regulation, and kinase activity. Notably, this study represents the first comprehensive genome-wide analysis of salt-responsive lncRNAs in radish, to the best of our knowledge. These findings provide a basis for future functional analysis of lncRNAs implicated in the defense response of radish against high salinity, which will aid in further understanding the regulatory mechanisms underlying radish response to salt stress.
Collapse
Affiliation(s)
- Xiaochuan Sun
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Mingjia Tang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Luo
- Guizhou Institute of Biotechnology, Guizhou Province Academy of Agricultural Sciences, Guiyang, China
| | - Yutong Shang
- Guizhou Institute of Biotechnology, Guizhou Province Academy of Agricultural Sciences, Guiyang, China
| | - Weike Duan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zhinan Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Cong Jin
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Guodong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
164
|
Ghaedrahmati F, Nasrolahi A, Najafi S, Mighani M, Anbiyaee O, Haybar H, Assareh AR, Kempisty B, Dzięgiel P, Azizidoost S, Farzaneh M. Circular RNAs-mediated angiogenesis in human cancers. Clin Transl Oncol 2023; 25:3101-3121. [PMID: 37039938 DOI: 10.1007/s12094-023-03178-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Circular RNAs (circRNAs) as small non-coding RNAs with cell, tissue, or organ-specific expression accomplish a broad array of functions in physiological and pathological processes such as cancer development. Angiogenesis, a complicated multistep process driving a formation of new blood vessels, speeds up tumor progression by supplying nutrients as well as energy. Abnormal expression of circRNAs reported to affect tumor development through impressing angiogenesis. Such impacts are introduced as constant with different tumorigenic features known as "hallmarks of cancer". In addition, deregulated circRNAs show possibilities to prognosis and diagnosis both in the prophecy of prognosis in malignancies and also their prejudice from healthy individuals. In the present review article, we have evaluated the angiogenic impacts and anti-angiogenic managements of circRNAs in human cancers.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mighani
- School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, US
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
165
|
Wang Z, Cui Y, Wang F, Xu L, Yan Y, Tong X, Yan H. DNA methylation-regulated LINC02587 inhibits ferroptosis and promotes the progression of glioma cells through the CoQ-FSP1 pathway. BMC Cancer 2023; 23:989. [PMID: 37848823 PMCID: PMC10580646 DOI: 10.1186/s12885-023-11502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are considered key players in the formation and development of tumors. Herein, Gene Expression Profiling Interactive Analysis (GEPIA) was employed as a bioinformatics technology. LINC02587 is differentially expressed in bladder urothelial cancer, glioblastoma, lung adenocarcinoma, lung SCC, melanoma, and other tumor tissue and cells. However, its impact on the emergence of glioma and its mechanism is remaining elusive. METHODS Some of the in vitro assays employed in this study were the CCK-8 / Annexin-V / Transwell assays, colony formation, and wound healing, together with Western blot (WB) evaluation. MSP / BSP assays were employed for assessing the CpG island's methylation status in the LINC02587 promoter. Through transcriptome, ferroptosis-related experiments, and WB evaluation, it was confirmed that LINC02587 is correlated with the regulation of ferroptosis in tumor cells, and CoQ-Fsp1 is one of its regulatory pathways. Moreover, the underlined in-vitro results were further validated by in-vivo studies. RESULTS The current study shows that the promoter sequence of LINC02587 is regulated by methylation. The silencing of LINC02587 can inhibit cellular proliferative, migrative, and invasive properties, and induce ferroptosis within gliomas through the CoQ-FSP1 pathway. CONCLUSIONS LINC02587 is likely to be a novel drug target in treating glioma.
Collapse
Affiliation(s)
- Zhengang Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, Weifang, Shan Dong, 261000, China
| | - Yang Cui
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China
- Department of Neurosurgery, Hebei Yanda Hospital, Langfang, He Bei, China
| | - Fanchen Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Lixia Xu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Yan Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China.
- Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China.
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China.
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| |
Collapse
|
166
|
Srivastava A, Srivastava A, Singh RK. Insight into the Epigenetics of Kaposi's Sarcoma-Associated Herpesvirus. Int J Mol Sci 2023; 24:14955. [PMID: 37834404 PMCID: PMC10573522 DOI: 10.3390/ijms241914955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 10/15/2023] Open
Abstract
Epigenetic reprogramming represents a series of essential events during many cellular processes including oncogenesis. The genome of Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic herpesvirus, is predetermined for a well-orchestrated epigenetic reprogramming once it enters into the host cell. The initial epigenetic reprogramming of the KSHV genome allows restricted expression of encoded genes and helps to hide from host immune recognition. Infection with KSHV is associated with Kaposi's sarcoma, multicentric Castleman's disease, KSHV inflammatory cytokine syndrome, and primary effusion lymphoma. The major epigenetic modifications associated with KSHV can be labeled under three broad categories: DNA methylation, histone modifications, and the role of noncoding RNAs. These epigenetic modifications significantly contribute toward the latent-lytic switch of the KSHV lifecycle. This review gives a brief account of the major epigenetic modifications affiliated with the KSHV genome in infected cells and their impact on pathogenesis.
Collapse
Affiliation(s)
- Anusha Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ankit Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajnish Kumar Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Faculty of Medical Sciences, Charotar University of Science and Technology, Changa 388421, Gujarat, India
| |
Collapse
|
167
|
Yu H, Pan Y, Dai M, Wang X, Chen H. Mesenchymal Stem Cell-Originated Exosomal Lnc A2M-AS1 Alleviates Hypoxia/Reperfusion-Induced Apoptosis and Oxidative Stress in Cardiomyocytes. Cardiovasc Drugs Ther 2023; 37:891-904. [PMID: 35543792 DOI: 10.1007/s10557-022-07339-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-derived exosomes play significant roles in ameliorating cardiac damage after myocardial ischemia-reperfusion (I/R) injury. Long non-coding RNA alpha-2-macroglobulin antisense RNA 1 (Lnc A2M-AS1) was found that might protect against myocardial I/R. However, whether Lnc A2M-AS1 delivery via MSC-derived exosomes could also regulate myocardial I/R injury remains unknown. METHODS Exosomes were isolated by ultracentrifugation, and qualified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. Hypoxia/reoxygenation (H/R) treatment in human cardiomyocytes was used to mimic the process of myocardial I/R in vitro. The viability and apoptosis of cardiomyocytes were detected using cell counting kit-8, flow cytometry, and Western blot assays. The contents of lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD) were evaluated using corresponding commercial kits. The quantitative real-time polymerase chain reaction and Western blot were used to determine the expression levels of Lnc A2M-AS1, microRNA (miR)-556-5p, and X-linked inhibitor of apoptosis protein (XIAP). The binding interaction between miR-556-5p and Lnc A2M-AS1 or XIAP was confirmed by the dual-luciferase reporter, RIP and pull-down assays. RESULTS Exosomes isolated from hMSCs (hMSCs-exo) attenuated H/R-induced apoptosis and oxidative stress in cardiomyocytes. Lnc A2M-AS1 was lowly expressed in AMI patients and H/R-induced cardiomyocytes. Besides, Lnc A2M-AS1 was detectable in hMSCs-exo, exosomes derived from Lnc A2M-AS1-transfected hMSCs weakened H/R-induced apoptosis and oxidative stress, and enhanced the protective action of hMSCs-exo on H/R-induced cardiomyocytes. Further mechanism analysis showed that Lnc A2M-AS1 acted as a sponge for miR-556-5p to increase XIAP expression level. Importantly, miR-556-5p overexpression or XIAP knockdown reversed the action of exosomal Lnc A2M-AS1 on H/R-induced cardiomyocytes. CONCLUSION Lnc A2M-AS1 delivery via MSC-derived exosomes ameliorated H/R-induced cardiomyocyte apoptosis and oxidative stress via regulating miR-556-5p/XIAP, opening a new window into the pathogenesis of myocardial I/R injury.
Collapse
Affiliation(s)
- Hang Yu
- Department of Cardiovascular Surgery Intensive Care Unit, The Second Affiliated Hospital of Hainan Medical College, Haikou City, Hainan Province, China
| | - Yuxiang Pan
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical College, Haikou City, Hainan Province, China
| | - Mingming Dai
- Department of Neurology Three Areas, The Second Affiliated Hospital of Hainan Medical College, Haikou City, Hainan Province, China
| | - Xiaoqi Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Hainan Medical College, No. 368 Yehai Avenue, Longhua District, Haikou City, 570105, Hainan Province, China.
| | - Haibo Chen
- Department of Blood Transfusion, The Second Affiliated Hospital of Hainan Medical College, No. 368 Yehai Avenue, Longhua District, Haikou City, 570105, Hainan Province, China.
| |
Collapse
|
168
|
Cheng SLH, Xu H, Ng JHT, Chua NH. Systemic movement of long non-coding RNA ELENA1 attenuates leaf senescence under nitrogen deficiency. NATURE PLANTS 2023; 9:1598-1606. [PMID: 37735255 DOI: 10.1038/s41477-023-01521-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Nitrogen is an essential macronutrient that is absorbed by roots and stored in leaves, mainly as ribulose-1,5-bisphosphate carboxylase/oxygenase1,2. During nitrogen deficiency (-N), plants activate leaf senescence for source-to-sink nitrogen remobilization for adaptative growth3-6. However, how -N signals perceived by roots are propagated to shoots remains underexplored. We found that ELF18-INDUCED LONG NONCODING RNA 1 (ELENA1) is -N inducible and attenuates -N-induced leaf senescence in Arabidopsis. Analysis of plants expressing the ELENA1 promoter β-glucuronidase fusion gene showed that ELENA1 is transcribed specifically in roots under -N. Reciprocal grafting of the wild type and elena1 demonstrated that ELENA1 functions systemically. ELENA1 dissociates the MEDIATOR SUBUNIT 19a-ORESARA1 transcriptional complex, thereby calibrating senescence progression. Our observations establish the systemic regulation of leaf senescence by a root-derived long non-coding RNA under -N in Arabidopsis.
Collapse
Affiliation(s)
- Steven Le Hung Cheng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Haiying Xu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Janelle Hui Ting Ng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, School of Medicine, National University of Singapore, Singapore, Singapore.
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
169
|
Alluli A, Rijnbout St James W, Eidelman DH, Baglole CJ. Dynamic relationship between the aryl hydrocarbon receptor and long noncoding RNA balances cellular and toxicological responses. Biochem Pharmacol 2023; 216:115745. [PMID: 37597813 DOI: 10.1016/j.bcp.2023.115745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor activated by endogenous ligands and xenobiotic chemicals. Once the AhR is activated, it translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT) and binds to xenobiotic response elements (XRE) to promote gene transcription, notably the cytochrome P450 CYP1A1. The AhR not only mediates the toxic effects of environmental chemicals, but also has numerous putative physiological functions. This dichotomy in AhR biology may be related to reciprocal regulation of long non-coding RNA (lncRNA). lncRNA are defined as transcripts more than 200 nucleotides in length that do not encode a protein but are implicated in many physiological processes such as cell differentiation, cell proliferation, and apoptosis. lncRNA are also linked to disease pathogenesis, particularly the development of cancer. Recent studies have revealed that AhR activation by environmental chemicals affects the expression and function of lncRNA. In this article, we provide an overview of AhR signaling pathways activated by diverse ligands and highlight key differences in the putative biological versus toxicological response of AhR activation. We also detail the functions of lncRNA and provide current data on their regulation by the AhR. Finally, we outline how overlap in function between AhR and lncRNA may be one way in which AhR can be both a regulator of endogenous functions but also a mediator of toxicological responses to environmental chemicals. Overall, more research is still needed to fully understand the dynamic interplay between the AhR and lncRNA.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - Willem Rijnbout St James
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Canada; Department of Medicine, McGill University, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada; Department of Medicine, McGill University, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
170
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
171
|
Shirokikh NE, Jensen KB, Thakor N. Editorial: RNA machines. Front Genet 2023; 14:1290420. [PMID: 37829284 PMCID: PMC10565666 DOI: 10.3389/fgene.2023.1290420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kirk Blomquist Jensen
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
172
|
Le LTT, Nhu CXT. The Role of Long Non-Coding RNAs in Cardiovascular Diseases. Int J Mol Sci 2023; 24:13805. [PMID: 37762106 PMCID: PMC10531487 DOI: 10.3390/ijms241813805] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNA molecules longer than 200 nucleotides that regulate gene expression at the transcriptional, post-transcriptional, and translational levels. Abnormal expression of lncRNAs has been identified in many human diseases. Future improvements in diagnostic, prognostic, and therapeutic techniques will be facilitated by a deeper understanding of disease etiology. Cardiovascular diseases (CVDs) are the main cause of death globally. Cardiac development involves lncRNAs, and their abnormalities are linked to many CVDs. This review examines the relationship and function of lncRNA in a variety of CVDs, including atherosclerosis, myocardial infarction, myocardial hypertrophy, and heart failure. Therein, the potential utilization of lncRNAs in clinical diagnostic, prognostic, and therapeutic applications will also be discussed.
Collapse
Affiliation(s)
- Linh T. T. Le
- Biotechnology Department, Ho Chi Minh City Open University, Ho Chi Minh City 70000, Vietnam;
| | | |
Collapse
|
173
|
Sun J, Si S, Ru J, Wang X. DeepdlncUD: Predicting regulation types of small molecule inhibitors on modulating lncRNA expression by deep learning. Comput Biol Med 2023; 163:107226. [PMID: 37450966 DOI: 10.1016/j.compbiomed.2023.107226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/31/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Targeting lncRNAs by small molecules (SM-lncR) to alter their expression levels has emerged as an important therapeutic modality for disease treatment. To date, no computational tools have been dedicated to predicting small molecule-mediated upregulation or downregulation of lncRNA expression. Here, we introduce DeepdlncUD, which integrates predictions of nine deep learning algorithms together, to infer the regulation types of small molecules on modulating lncRNA expression. Through systematic optimization on a training set of 771 upregulation and 739 downregulation SM-lncR pairs, each encoding 1369 sequence, representational, and physiochemical features, this method outperforms a recently released program, DeepsmirUD, by achieving 0.674 in AUC (area under the receiver operating characteristic curve), 0.722 in AUCPR (area under the precision-recall curve), 0.681 in F1-score, and 0.516 in Jaccard Index on a test set of 222 SM-lncR pairs. By extracting 125 upregulation and 46 downregulation SM-lncR pairs that involve disease-associated lncRNAs, DeepdlncUD is shown to gain an accuracy of 0.700 in the pathological context. Using connectivity scores, around half of the small molecules are correctly estimated as drugs to treat lncRNA-regulated diseases. This tool can be run at a fast speed to assist the discovery of potential small molecule drugs of lncRNA targets on a large scale. DeepdlncUD is publicly available at https://github.com/2003100127/deepdlncud.
Collapse
Affiliation(s)
- Jianfeng Sun
- Botnar Research Centre, University of Oxford, Headington, Oxford, OX3 7LD, UK.
| | - Shuyue Si
- School of Mathematics and Physics, Xi'an Jiaotong-liverpool University, Renai, Suzhou, 215028, China
| | - Jinlong Ru
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
174
|
Li Y, Li H, Wang L, Xie W, Yuan D, Wen Z, Zhang T, Lai J, Xiong Z, Shan Y, Jiang W. The p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop mediates vasoactive intestinal peptide effects on osteoarthritis chondrocytes. Int Immunopharmacol 2023; 122:110518. [PMID: 37392568 DOI: 10.1016/j.intimp.2023.110518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Loss and dysfunction of articular chondrocytes, which disrupt the homeostasis of extracellular matrix formation and breakdown, promote the onset of osteoarthritis (OA). Targeting inflammatory pathways is an important therapeutic strategy for OA. Vasoactive intestinal peptide (VIP) is an immunosuppressive neuropeptide with potent anti-inflammatory effects; however, its role and mechanism in OA remain unclear. In this study, microarray expression profiling from the Gene Expression Omnibus database and integrative bioinformatics analyses were performed to identify differentially expressed lncRNAs in OA samples. qRT-PCR validation of the top ten different expressed lncRNAs indicated that the expression level of intergenic non-protein coding RNA 2203 (LINC02203, also named LOC727924) was the highest in OA cartilage compared to normal cartilage. Hence, the LOC727924 function was further investigated. LOC727924 was upregulated in OA chondrocytes, with a dominant sub-localization in the cytoplasm. In OA chondrocytes, LOC727924 knockdown boosted cell viability, suppressed cell apoptosis, reactive oxygen species (ROS) accumulation, increased aggrecan and collagen II, decreased matrix metallopeptidase (MMP)-3/13 and ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS)-4/5 levels, and reduced the levels of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). LOC727924 could interact with the microRNA 26a (miR-26a)/ karyopherin subunit alpha 3 (KPNA3) axis by competitively targeting miR-26a for KPNA3 binding, therefore down-regulating miR-26a and upregulating KPNA3; in OA chondrocytes, miR-26a inhibition partially abolished LOC727924 knockdown effects on chondrocytes. miR-26a inhibited the nuclear translocation of p65 through targeting KPNA3 and p65 transcriptionally activated LOC727924, forming a p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop to modulate OA chondrocyte phenotypes. In vitro, VIP improved OA chondrocyte proliferation and functions, down-regulated LOC727924, KPNA3, and p65 expression, and upregulated miR-26a expression; in vivo, VIP ameliorated destabilization of the medial meniscus (DMM)-induced damages on the mouse knee joint, down-regulated KPNA3, inhibited the nuclear translocation of p65. In conclusion, the p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop modulates OA chondrocyte apoptosis, ROS accumulation, extracellular matrix (ECM) deposition, and inflammatory response in vitro and OA development in vivo, being one of the mechanisms mediating VIP ameliorating OA.
Collapse
Affiliation(s)
- Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lijie Wang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dongliang Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Zeqin Wen
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tiancheng Zhang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jieyu Lai
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Zixuan Xiong
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Yunhan Shan
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Wei Jiang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| |
Collapse
|
175
|
Zhu P, Liu B, Fan Z. Noncoding RNAs in tumorigenesis and tumor therapy. FUNDAMENTAL RESEARCH 2023; 3:692-706. [PMID: 38933287 PMCID: PMC11197782 DOI: 10.1016/j.fmre.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2024] Open
Abstract
Tumorigenesis is a complicated process in which numerous modulators are involved in different ways. Previous studies have focused primarily on tumor-associated protein-coding genes such as oncogenes and tumor suppressor genes, as well as their associated oncogenic pathways. However, noncoding RNAs (ncRNAs), rising stars in diverse physiological and pathological processes, have recently emerged as additional modulators in tumorigenesis. In this review, we focus on two typical kinds of ncRNAs: long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). We describe the molecular patterns of ncRNAs and focus on the roles of ncRNAs in cancer stem cells (CSCs), tumor cells, and tumor environmental cells. CSCs are a small subset of tumor cells and are generally considered to be cells that initiate tumorigenesis, and dozens of ncRNAs have been defined as critical modulators in CSC maintenance and oncogenesis. Moreover, ncRNAs are widely involved in oncogenetic processes, including sustaining proliferation, resisting cell death, genome instability, metabolic disorders, immune escape and metastasis. We also discuss the potential applications of ncRNAs in tumor diagnosis and therapy. The progress in ncRNA research greatly improves our understanding of ncRNAs in oncogenesis and provides new potential targets for future tumor therapy.
Collapse
Affiliation(s)
- Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Benyu Liu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
176
|
Lu Z, Xu J, Cao B, Jin C. Long non-coding RNA SOX21-AS1: A potential tumor oncogene in human cancers. Pathol Res Pract 2023; 249:154774. [PMID: 37633003 DOI: 10.1016/j.prp.2023.154774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Emerging data have proposed that the aberrant level of long noncoding RNAs (lncRNA) is related to the onset and progression of cancer. Among them, lncRNA SOX21-AS1 was shown to upregulate and seem to be a novel oncogene in various cancer, including ovarian cancer, lung cancer, breast cancer, pancreatic cancer, osteosarcoma, and melanoma. Available data indicated that SRY-box transcription factor 21 antisense divergent transcript 1 (SOX21-AS1) mostly acts as a competing endogenous RNA (ceRNA) to inhibit the level of its target microRNAs (miRNAs), leading to upregulation of their targets. In addition, SOX21-AS1 is engaged in various signaling pathways like transforming growth factor-β (TGF-β) signaling, Wnt signaling, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling. Moreover, this lncRNA was revealed to be correlated with the clinicopathological features of affected patients. SOX21-AS1 was also proved to enhance the resistance of ovarian cancer cells to cisplatin chemotherapy. SOX21-AS1 is markedly associated with poor prognosis and low survival of patients, proposing that it may be a prognostic and diagnostic biomarker in cancer. Overexpression of SOX21-AS1 is related to various cancer-related pathways, like epithelial mesenchymal transition (EMT), invasion, migration, apoptosis, and cell cycle arrest. In this work, we aimed to discuss the biogenesis, function, and underlying molecular mechanism of SOX21-AS1 in cancer progression as well as its potential as a prognostic and diagnostic biomarker in human cancers.
Collapse
Affiliation(s)
- Zhengyu Lu
- Department of Orthopedics, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China
| | - Jin Xu
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
| | - Binhao Cao
- Department of Orthopedics, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China
| | - Chongqiang Jin
- Department of Orthopedics, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China.
| |
Collapse
|
177
|
Weiss E, Schrüfer A, Tocantins C, Diniz MS, Novakovic B, van Bergen AS, Kulovic‐Sissawo A, Saffery R, Boon RA, Hiden U. Higher gestational weight gain delays wound healing and reduces expression of long non-coding RNA KLRK1-AS1 in neonatal endothelial progenitor cells. J Physiol 2023; 601:3961-3974. [PMID: 37470310 PMCID: PMC10952284 DOI: 10.1113/jp284871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
High gestational weight gain (GWG) is a cardiovascular risk factor and may disturb neonatal endothelial function. Long non-coding RNAs (lncRNAs) regulate gene expression epigenetically and can modulate endothelial function. Endothelial colony forming cells (ECFCs), circulating endothelial precursors, are a recruitable source of endothelial cells and sustain endothelial function, vascular growth and repair. We here investigated whether higher GWG affects neonatal ECFC function and elucidated the role of lncRNAs herein. Wound healing of umbilical cord blood-derived ECFCs after pregnancies with GWG <13 kg versus >13 kg was determined in a scratch assay and based on monolayer impedance after electric wounding (electric cell-substrate impedance sensing, ECIS). LncRNA expression was analysed by RNA sequencing. The function of killer cell lectin-like receptor K1 antisense RNA (KLRK1-AS1) was investigated after siRNA-based knockdown. Closure of the scratch was delayed by 25% (P = 0.041) in the higher GWG group and correlated inversely with GWG (R = -0.538, P = 0.012) in all subjects (n = 22). Similarly, recovery of the monolayer barrier after electric wounding was delayed (-11% after 20 h; P = 0.014; n = 15). Several lncRNAs correlated with maternal GWG, the most significant one being KLRK1-AS1 (log2 fold change = -0.135, P < 0.001, n = 35). KLRK1-AS1 knockdown (n = 4) reduced barrier recovery after electric wounding by 21% (P = 0.029) and KLRK1-AS1 expression correlated with the time required for wound healing for both scratch (R = 0.447, P = 0.033) and impedance-based assay (R = 0.629, P = 0.014). Higher GWG reduces wound healing of neonatal ECFCs, and lower levels of the lncRNA KLRK1-AS1 may underlie this. KEY POINTS: Maternal cardiovascular risk factors such as diabetes, obesity and smoking in pregnancy disturb fetal endothelial function, and we here investigated whether also high gestational weight gain (GWG) has an impact on fetal endothelial cells. Circulating endothelial progenitor cells (endothelial colony forming cells, ECFCs) are highly abundant in the neonatal blood stream and serve as a circulating pool for vascular growth and repair. We revealed that higher GWG delays wound healing capacity of ECFCs in vitro. We identified the regulatory RNA lncRNA KLRK1-AS1 as a link between GWG and delayed ECFC wound healing. Our data show that high GWG, independent of pre-pregnancy BMI, affects neonatal ECFC function.
Collapse
Affiliation(s)
- Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and GynaecologyMedical University of GrazGrazAustria
- Research Unit Early Life Determinants (ELiD)Medical University of GrazGrazAustria
| | - Anna Schrüfer
- Perinatal Research Laboratory, Department of Obstetrics and GynaecologyMedical University of GrazGrazAustria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and GynaecologyMedical University of GrazGrazAustria
- CNC‐Center for Neuroscience and Cell Biology, CIBB‐Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC)University of CoimbraCoimbraPortugal
| | - Mariana Simoes Diniz
- Perinatal Research Laboratory, Department of Obstetrics and GynaecologyMedical University of GrazGrazAustria
- CNC‐Center for Neuroscience and Cell Biology, CIBB‐Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC)University of CoimbraCoimbraPortugal
| | - Boris Novakovic
- Molecular Immunity, Infection and Immunity ThemeMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Anke S. van Bergen
- Department of PhysiologyAmsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesMicrocirculationAmsterdamThe Netherlands
| | - Azra Kulovic‐Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and GynaecologyMedical University of GrazGrazAustria
- Research Unit Early Life Determinants (ELiD)Medical University of GrazGrazAustria
| | - Richard Saffery
- Molecular Immunity, Infection and Immunity ThemeMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Reinier A. Boon
- Department of PhysiologyAmsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesMicrocirculationAmsterdamThe Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular MedicineGoethe University Frankfurt am MainFrankfurt am MainGermany
- German Centre for Cardiovascular Research DZHKPartner site Frankfurt Rhein/MainFrankfurt am MainGermany
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and GynaecologyMedical University of GrazGrazAustria
- Research Unit Early Life Determinants (ELiD)Medical University of GrazGrazAustria
| |
Collapse
|
178
|
Ashrafizadeh M, Mohan CD, Rangappa S, Zarrabi A, Hushmandi K, Kumar AP, Sethi G, Rangappa KS. Noncoding RNAs as regulators of STAT3 pathway in gastrointestinal cancers: Roles in cancer progression and therapeutic response. Med Res Rev 2023; 43:1263-1321. [PMID: 36951271 DOI: 10.1002/med.21950] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/09/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Nagamangala Taluk, India
| | - Ali Zarrabi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Sariyer, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology, Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, University of Tehran, Tehran, Iran
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
179
|
Alahdal M, Elkord E. Non-coding RNAs in cancer immunotherapy: Predictive biomarkers and targets. Clin Transl Med 2023; 13:e1425. [PMID: 37735815 PMCID: PMC10514379 DOI: 10.1002/ctm2.1425] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND To date, standardising clinical predictive biomarkers for assessing the response to immunotherapy remains challenging due to variations in personal genetic signatures, tumour microenvironment complexities and epigenetic onco-mechanisms. MAIN BODY Early monitoring of key non-coding RNA (ncRNA) biomarkers may help in predicting the clinical efficacy of cancer immunotherapy and come up with standard predictive ncRNA biomarkers. For instance, reduced miR-125b-5p level in the plasma of non-small cell lung cancer patients treated with anti-PD-1 predicts a positive outcome. The level of miR-153 in the plasma of colorectal cancer patients treated with chimeric antigen receptor T lymphocyte (CAR-T) cell therapy may indicate the activation of T-cell killing activity. miR-148a-3p and miR-375 levels may forecast favourable responses to CAR-T-cell therapy in B-cell acute lymphoblastic leukaemia. In cancer patients treated with the GPC3 peptide vaccine, serum levels of miR-1228-5p, miR-193a-5p and miR-375-3p were reported as predictive biomarkers of good response and improved overall survival. Therefore, there is a critical need for further studies to elaborate on the key ncRNA biomarkers that have the potential to predict early clinical responses to immunotherapy. CONCLUSION This review summarises important predictive ncRNA biomarkers that were reported in cancer patients treated with different immunotherapeutic modalities, including monoclonal antibodies, small molecule inhibitors, cancer vaccines and CAR-T cells. In addition, a concise discussion on forthcoming perspectives is provided, outlining technical approaches for the optimal utilisation of immunomodulatory ncRNA biomarkers as predictive tools and therapeutic targets.
Collapse
Affiliation(s)
- Murad Alahdal
- Johns Hopkins All Children's Hospital, StPetersburgFloridaUSA
- Department of OncologySydney Kimmel Cancer CenterSchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Eyad Elkord
- Department of Applied BiologyCollege of ScienceUniversity of SharjahUniversity CitySharjahUnited Arab Emirates
- Biomedical Research CenterSchool of ScienceEngineering and EnvironmentUniversity of SalfordManchesterUK
| |
Collapse
|
180
|
Abdellatif AAH, Scagnetti G, Younis MA, Bouazzaoui A, Tawfeek HM, Aldosari BN, Almurshedi AS, Alsharidah M, Rugaie OA, Davies MPA, Liloglou T, Ross K, Saleem I. Non-coding RNA-directed therapeutics in lung cancer: Delivery technologies and clinical applications. Colloids Surf B Biointerfaces 2023; 229:113466. [PMID: 37515959 DOI: 10.1016/j.colsurfb.2023.113466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Lung cancer is one of the most aggressive and deadliest health threats. There has been an increasing interest in non-coding RNA (ncRNA) recently, especially in the areas of carcinogenesis and tumour progression. However, ncRNA-directed therapies are still encountering obstacles on their way to the clinic. In the present article, we provide an overview on the potential of targeting ncRNA in the treatment of lung cancer. Then, we discuss the delivery challenges and recent approaches enabling the delivery of ncRNA-directed therapies to the lung cancer cells, where we illuminate some advanced technologies including chemically-modified oligonucleotides, nuclear targeting, and three-dimensional in vitro models. Furthermore, advanced non-viral delivery systems recruiting nanoparticles, biomimetic delivery systems, and extracellular vesicles are also highlighted. Lastly, the challenges limiting the clinical trials on the therapeutic targeting of ncRNAs in lung cancer and future directions to tackle them are explored.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Giulia Scagnetti
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Medical Clinic, Hematology/Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, P.O. Box 991, Unaizah, Al Qassim 51911, Saudi Arabia
| | - Michael P A Davies
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | | | - Kehinde Ross
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK; Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK; Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
181
|
Zhang T, Yue G, Tian X, Xu Y, Li Z. LncSUMO1P3 exacerbates malignant behaviors of esophageal squamous cell carcinoma cells via miR-486-5p/PHF8/CD151. Heliyon 2023; 9:e19110. [PMID: 37809985 PMCID: PMC10558295 DOI: 10.1016/j.heliyon.2023.e19110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/10/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a malignancy usually associated with smoking or alcohol consumption. The involvement of long noncoding RNAs (lncRNAs) in the regulation of tumor development and metastasis through molecular mechanisms has been unveiled by accumulating evidence. However, the function of lncRNA SUMO1 Pseudogene 3 (lncSUMO1P3) essential to ESCC development remains obscure. Methods Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot (WB) analysis were done to measure RNA and protein levels. Functional assays were carried out to examine the changes in ESCC cell phenotype. Supported by bioinformatics analysis, mechanism assays were done for assessment of putative interactions among different genes. Results LlncSUMO1P3 was aberrantly up-regulated in ESCC cell lines, and lncSUMO1P3 deficiency could hamper cell proliferation, migration and invasion as well as epithelial-mesenchymaltransition (EMT) in ESCC while lncSUMO1P3 overexpression led to the opposite consequences. LncSUMO1P3 could competitively bind to microRNA-486-5p (miR-486-5p) or PHD finger protein 8 (PHF8) to modulate CD151 expression. CD151 was also verified to regulate ESCC cell biological behaviors. Conclusion Our study revealed that lncSUMO1P3, up-regulated in ESCC cells, could sponge miR-486-5p and recruit PHF8 to up-regulate CD151, thus influencing the malignant behaviors of ESCC cells.
Collapse
Affiliation(s)
- Tingyou Zhang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Guojun Yue
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xin Tian
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ying Xu
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhongwen Li
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| |
Collapse
|
182
|
Bilan F, Amini M, Doustvandi MA, Tohidast M, Baghbanzadeh A, Hosseini SS, Mokhtarzadeh A, Baradaran B. Simultaneous suppression of miR-21 and restoration of miR-145 in gastric cancer cells; a promising strategy for inhibition of cell proliferation and migration. BIOIMPACTS : BI 2023; 14:27764. [PMID: 38505672 PMCID: PMC10945301 DOI: 10.34172/bi.2023.27764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 03/21/2024]
Abstract
Introduction Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. microRNAs are a group of regulatory non-coding RNAs that are involved in GC progression. miR-145 as a tumor suppressor and miR-21 as an oncomiR were shown to be dysregulated in many cancers including GC. This research aimed to enhance the expression of miR-145 while reducing the expression of miR-21 and examine their impact on the proliferation, apoptosis, and migration of GC cells. Methods KATO III cells with high expression levels of miR-21-5p and low expression of miR-145-5p were selected. These cells were then transfected with either miR-145-5p mimics or anti-miR-21-5p, alone or in combination. Afterward, the cell survival rate was determined using the MTT assay, while apoptosis induction was investigated through V-FITC/PI and DAPI staining. Additionally, cell migration was examined using the wound healing assay, and cell cycle progression was analyzed through flow cytometry. Furthermore, gene expression levels were quantified utilizing the qRT-PCR technique. Results The study's findings indicated that the co-replacement of miR-145-5p and anti-miR-21-5p led to a decrease in cell viability and the induction of apoptosis in GC cells. This was achieved via modulating the expression of Bax and Bcl-2, major cell survival regulators. Additionally, the combination therapy significantly increased sub-G1 cell cycle arrest and reduced cell migration by downregulating MMP-9 expression as an epithelial-mesenchymal transition marker. This study provides evidence for the therapeutic possibility of the combination of miR-145-5p and anti-miR-21-5p and also suggests that they could inhibit cell proliferation by modulating the PTEN/AKT1 signaling pathway. Conclusion Our research revealed that utilizing miR-145-5p and anti-miR-21-5p together could be a promising therapeutic approach for treating GC.
Collapse
Affiliation(s)
- Farzaneh Bilan
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
183
|
Zhang Y, Shi S, Lin C, Che L, Li Y, Zeng Q, Lin W. Lncrna CASC11 aggravates diabetic nephropathy via targeting FoxO1. J Med Biochem 2023; 42:476-483. [PMID: 37790209 PMCID: PMC10542706 DOI: 10.5937/jomb0-42345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 10/05/2023] Open
Abstract
Background To explore the biological effects of CASC11 on aggravating diabetic nephropathy (DN) by regulating FoxO1 (forkhead transcription factor O1). Methods Serum levels of CASC11 and FoxO1 in DN patients were detected. The possibility of CASC11 in predicting the onset of DN was analyzed by depicting ROC curves. Correlation between CASC11 and FoxO1 was evaluated by Pearson correlation test. After intervening CASC11 and FoxO1 levels, we found that changes in proliferative and migratory abilities in high glucose (HG)induced kidney mesangial cells were determined respectively. Protein levels of TGF-β1 and Smads regulated by both CASC11 and FoxO1 were examined by Western blot.
Collapse
Affiliation(s)
- Yun Zhang
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| | - Shuhan Shi
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| | - Changda Lin
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| | - Lishuang Che
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| | - Yuangen Li
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| | - Quanzuan Zeng
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| | - Weiyuan Lin
- Second Affiliated Hospital of Fujian Medical University, Department of Renal Medicine, Quanzhou, China
| |
Collapse
|
184
|
Batugedara G, Lu XM, Hristov B, Abel S, Chahine Z, Hollin T, Williams D, Wang T, Cort A, Lenz T, Thompson TA, Prudhomme J, Tripathi AK, Xu G, Cudini J, Dogga S, Lawniczak M, Noble WS, Sinnis P, Le Roch KG. Novel insights into the role of long non-coding RNA in the human malaria parasite, Plasmodium falciparum. Nat Commun 2023; 14:5086. [PMID: 37607941 PMCID: PMC10444892 DOI: 10.1038/s41467-023-40883-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
The complex life cycle of Plasmodium falciparum requires coordinated gene expression regulation to allow host cell invasion, transmission, and immune evasion. Increasing evidence now suggests a major role for epigenetic mechanisms in gene expression in the parasite. In eukaryotes, many lncRNAs have been identified to be pivotal regulators of genome structure and gene expression. To investigate the regulatory roles of lncRNAs in P. falciparum we explore the intergenic lncRNA distribution in nuclear and cytoplasmic subcellular locations. Using nascent RNA expression profiles, we identify a total of 1768 lncRNAs, of which 718 (~41%) are novels in P. falciparum. The subcellular localization and stage-specific expression of several putative lncRNAs are validated using RNA-FISH. Additionally, the genome-wide occupancy of several candidate nuclear lncRNAs is explored using ChIRP. The results reveal that lncRNA occupancy sites are focal and sequence-specific with a particular enrichment for several parasite-specific gene families, including those involved in pathogenesis and sexual differentiation. Genomic and phenotypic analysis of one specific lncRNA demonstrate its importance in sexual differentiation and reproduction. Our findings bring a new level of insight into the role of lncRNAs in pathogenicity, gene regulation and sexual differentiation, opening new avenues for targeted therapeutic strategies against the deadly malaria parasite.
Collapse
Affiliation(s)
- Gayani Batugedara
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Xueqing M Lu
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Borislav Hristov
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, USA
| | - Steven Abel
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Zeinab Chahine
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Thomas Hollin
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Desiree Williams
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Tina Wang
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Anthony Cort
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Todd Lenz
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Trevor A Thompson
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Jacques Prudhomme
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Abhai K Tripathi
- Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Guoyue Xu
- Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | - Sunil Dogga
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | | | | | - Photini Sinnis
- Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Karine G Le Roch
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
185
|
Gebrie A. Transposable elements as essential elements in the control of gene expression. Mob DNA 2023; 14:9. [PMID: 37596675 PMCID: PMC10439571 DOI: 10.1186/s13100-023-00297-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Interspersed repetitions called transposable elements (TEs), commonly referred to as mobile elements, make up a significant portion of the genomes of higher animals. TEs contribute in controlling the expression of genes locally and even far away at the transcriptional and post-transcriptional levels, which is one of their significant functional effects on gene function and genome evolution. There are different mechanisms through which TEs control the expression of genes. First, TEs offer cis-regulatory regions in the genome with their inherent regulatory features for their own expression, making them potential factors for controlling the expression of the host genes. Promoter and enhancer elements contain cis-regulatory sites generated from TE, which function as binding sites for a variety of trans-acting factors. Second, a significant portion of miRNAs and long non-coding RNAs (lncRNAs) have been shown to have TEs that encode for regulatory RNAs, revealing the TE origin of these RNAs. Furthermore, it was shown that TE sequences are essential for these RNAs' regulatory actions, which include binding to the target mRNA. By being a member of cis-regulatory and regulatory RNA sequences, TEs therefore play essential regulatory roles. Additionally, it has been suggested that TE-derived regulatory RNAs and cis-regulatory regions both contribute to the evolutionary novelty of gene regulation. Additionally, these regulatory systems arising from TE frequently have tissue-specific functions. The objective of this review is to discuss TE-mediated gene regulation, with a particular emphasis on the processes, contributions of various TE types, differential roles of various tissue types, based mostly on recent studies on humans.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia.
| |
Collapse
|
186
|
Azizidoost S, Abouali Gale Dari M, Ghaedrahmati F, Razani Z, Keivan M, Mohammad Jafari R, Najafian M, Farzaneh M. Functional Roles of lncRNAs in Recurrent Pregnancy Loss: A Review Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2023; 17:218-225. [PMID: 37577902 PMCID: PMC10439990 DOI: 10.22074/ijfs.2022.559132.1339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 12/26/2022] [Indexed: 08/15/2023]
Abstract
Recurrent pregnancy loss (RPL) or recurrent miscarriage is the failure of pregnancy before 20-24 weeks that influences around 2-5% of couples. Several genetic, immunological, environmental and physical factors may influence RPL. Although various traditional methods have been used to treat post-implantation failures, identifying the mechanisms underlying RPL may improve an effective treatment. Recent evidence suggested that gene expression alterations presented essential roles in the occurrence of RPL. It has been found that long non-coding RNAs (lncRNAs) play functional roles in pregnancy pathologies, such as recurrent miscarriage. lncRNAs can function as dynamic scaffolds, modulate chromatin function, guide and bind to microRNAs (miRNAs) or transcription factors. lncRNAs, by targeting various miRNAs and mRNAs, play essential roles in the progression or suppression of RPL. Therefore, targeting lncRNAs and their downstream targets might be a suitable strategy for diagnosis and treatment of RPL. In this review, we summarized emerging roles of several lncRNAs in stimulation or suppression of RPL.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Razani
- Department of Animal Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mona Keivan
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Mohammad Jafari
- Department of Obstetrics and Gynecology, Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Najafian
- Department of Obstetrics and Gynecology, Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
187
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
188
|
Batista da Silva I, Aciole Barbosa D, Kavalco KF, Nunes LR, Pasa R, Menegidio FB. Discovery of putative long non-coding RNAs expressed in the eyes of Astyanax mexicanus (Actinopterygii: Characidae). Sci Rep 2023; 13:12051. [PMID: 37491348 PMCID: PMC10368750 DOI: 10.1038/s41598-023-34198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/25/2023] [Indexed: 07/27/2023] Open
Abstract
Astyanax mexicanus is a well-known model species, that has two morphotypes, cavefish, from subterranean rivers and surface fish, from surface rivers. They are morphologically distinct due to many troglomorphic traits in the cavefish, such as the absence of eyes. Most studies on A. mexicanus are focused on eye development and protein-coding genes involved in the process. However, lncRNAs did not get the same attention and very little is known about them. This study aimed to fill this knowledge gap, identifying, describing, classifying, and annotating lncRNAs expressed in the embryo's eye tissue of cavefish and surface fish. To do so, we constructed a concise workflow to assemble and evaluate transcriptomes, annotate protein-coding genes, ncRNAs families, predict the coding potential, identify putative lncRNAs, map them and predict interactions. This approach resulted in the identification of 33,069 and 19,493 putative lncRNAs respectively mapped in cavefish and surface fish. Thousands of these lncRNAs were annotated and identified as conserved in human and several species of fish. Hundreds of them were validated in silico, through ESTs. We identified lncRNAs associated with genes related to eye development. This is the case of a few lncRNAs associated with sox2, which we suggest being isomorphs of the SOX2-OT, a lncRNA that can regulate the expression of sox2. This work is one of the first studies to focus on the description of lncRNAs in A. mexicanus, highlighting several lncRNA targets and opening an important precedent for future studies focusing on lncRNAs expressed in A. mexicanus.
Collapse
Affiliation(s)
- Iuri Batista da Silva
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - David Aciole Barbosa
- Integrated Biotechnology Center, University of Mogi das Cruzes (UMC), Av. Dr. Cândido X. de Almeida and Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil
| | - Karine Frehner Kavalco
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - Luiz R Nunes
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, 09606-045, Brazil
| | - Rubens Pasa
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil.
| | - Fabiano B Menegidio
- Integrated Biotechnology Center, University of Mogi das Cruzes (UMC), Av. Dr. Cândido X. de Almeida and Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil.
| |
Collapse
|
189
|
Liu K, Ma X, Zhao L, Lai X, Chen J, Lang X, Han Q, Wan X, Li C. Comprehensive transcriptomic analysis of three varieties with different brown planthopper-resistance identifies leaf sheath lncRNAs in rice. BMC PLANT BIOLOGY 2023; 23:367. [PMID: 37480003 PMCID: PMC10362764 DOI: 10.1186/s12870-023-04374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been brought great attention for their crucial roles in diverse biological processes. However, systematic identification of lncRNAs associated with specialized rice pest, brown planthopper (BPH), defense in rice remains unexplored. RESULTS In this study, a genome-wide high throughput sequencing analysis was performed using leaf sheaths of susceptible rice Taichung Native 1 (TN1) and resistant rice IR36 and R476 with and without BPH feeding. A total of 2283 lncRNAs were identified, of which 649 lncRNAs were differentially expressed. During BPH infestation, 84 (120 in total), 52 (70 in total) and 63 (94 in total) of differentially expressed lncRNAs were found only in TN1, IR36 and R476, respectively. Through analyzing their cis-, trans-, and target mimic-activities, not only the lncRNAs targeting resistance genes (NBS-LRR and RLKs) and transcription factors, but also the lncRNAs acting as the targets of the well-studied stress-related miRNAs (miR2118, miR528, and miR1320) in each variety were identified. Before the BPH feeding, 238 and 312 lncRNAs were found to be differentially expressed in TN1 vs. IR36 and TN1 vs. R476, respectively. Among their putative targets, the plant-pathogen interaction pathway was significantly enriched. It is speculated that the resistant rice was in a priming state by the regulation of lncRNAs. Furthermore, the lncRNAs extensively involved in response to BPH feeding were identified by Weighted Gene Co-expression Network Analysis (WGCNA), and the possible regulation networks of the key lncRNAs were constructed. These lncRNAs regulate different pathways that contribute to the basal defense and specific resistance of rice to the BPH. CONCLUSION In summary, we identified the specific lncRNAs targeting the well-studied stress-related miRNAs, resistance genes, and transcription factors in each variety during BPH infestation. Additionally, the possible regulating network of the lncRNAs extensively responding to BPH feeding revealed by WGCNA were constructed. These findings will provide further understanding of the regulatory roles of lncRNAs in BPH defense, and lay a foundation for functional research on the candidate lncRNAs.
Collapse
Affiliation(s)
- Kai Liu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaozhi Ma
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Luyao Zhao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaofeng Lai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jie Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingxuan Lang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Qunxin Han
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Chunmei Li
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
190
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17-25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
191
|
Petkovic A, Erceg S, Munjas J, Ninic A, Vladimirov S, Davidovic A, Vukmirovic L, Milanov M, Cvijanovic D, Mitic T, Sopic M. LncRNAs as Regulators of Atherosclerotic Plaque Stability. Cells 2023; 12:1832. [PMID: 37508497 PMCID: PMC10378138 DOI: 10.3390/cells12141832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Current clinical data show that, despite constant efforts to develop novel therapies and clinical approaches, atherosclerotic cardiovascular diseases (ASCVD) are still one of the leading causes of death worldwide. Advanced and unstable atherosclerotic plaques most often trigger acute coronary events that can lead to fatal outcomes. However, despite the fact that different plaque phenotypes may require different treatments, current approaches to prognosis, diagnosis, and classification of acute coronary syndrome do not consider the diversity of plaque phenotypes. Long non-coding RNAs (lncRNAs) represent an important class of molecules that are implicated in epigenetic control of numerous cellular processes. Here we review the latest knowledge about lncRNAs' influence on plaque development and stability through regulation of immune response, lipid metabolism, extracellular matrix remodelling, endothelial cell function, and vascular smooth muscle function, with special emphasis on pro-atherogenic and anti-atherogenic lncRNA functions. In addition, we present current challenges in the research of lncRNAs' role in atherosclerosis and translation of the findings from animal models to humans. Finally, we present the directions for future lncRNA-oriented research, which may ultimately result in patient-oriented therapeutic strategies for ASCVD.
Collapse
Affiliation(s)
- Aleksa Petkovic
- Clinical-Hospital Centre "Dr Dragiša Mišović-Dedinje", 11000 Belgrade, Serbia
| | - Sanja Erceg
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Ninic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Davidovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
- Department for Internal Medicine, Faculty of Dentistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Luka Vukmirovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Marko Milanov
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Dane Cvijanovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Tijana Mitic
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
192
|
Thompson TA, Chahine Z, Le Roch KG. The role of long noncoding RNAs in malaria parasites. Trends Parasitol 2023; 39:517-531. [PMID: 37121862 PMCID: PMC11695068 DOI: 10.1016/j.pt.2023.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/02/2023]
Abstract
The human malaria parasites, including Plasmodium falciparum, persist as a major cause of global morbidity and mortality. The recent stalling of progress toward malaria elimination substantiates a need for novel interventions. Controlled gene expression is central to the parasite's numerous life cycle transformations and adaptation. With few specific transcription factors (TFs) identified, crucial roles for chromatin states and epigenetics in parasite transcription have become evident. Although many chromatin-modifying enzymes are known, less is known about which factors mediate their impacts on transcriptional variation. Like those of higher eukaryotes, long noncoding RNAs (lncRNAs) have recently been shown to have integral roles in parasite gene regulation. This review aims to summarize recent developments and key findings on the role of lncRNAs in P. falciparum.
Collapse
Affiliation(s)
- Trevor A Thompson
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA.
| |
Collapse
|
193
|
Segal D, Dostie J. The Talented LncRNAs: Meshing into Transcriptional Regulatory Networks in Cancer. Cancers (Basel) 2023; 15:3433. [PMID: 37444543 DOI: 10.3390/cancers15133433] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
As a group of diseases characterized by uncontrollable cell growth, cancer is highly multifaceted in how it overrides checkpoints controlling proliferation. Amongst the regulators of these checkpoints, long non-coding RNAs (lncRNAs) can have key roles in why natural biological processes go haywire. LncRNAs represent a large class of regulatory transcripts that can localize anywhere in cells. They were found to affect gene expression on many levels from transcription to mRNA translation and even protein stability. LncRNA participation in such control mechanisms can depend on cell context, with given transcripts sometimes acting as oncogenes or tumor suppressors. Importantly, the tissue-specificity and low expression levels of lncRNAs make them attractive therapeutic targets or biomarkers. Here, we review the various cellular processes affected by lncRNAs and outline molecular strategies they use to control gene expression, particularly in cancer and in relation to transcription factors.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
194
|
Kim Y, Lee M. Deep Learning Approaches for lncRNA-Mediated Mechanisms: A Comprehensive Review of Recent Developments. Int J Mol Sci 2023; 24:10299. [PMID: 37373445 DOI: 10.3390/ijms241210299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
This review paper provides an extensive analysis of the rapidly evolving convergence of deep learning and long non-coding RNAs (lncRNAs). Considering the recent advancements in deep learning and the increasing recognition of lncRNAs as crucial components in various biological processes, this review aims to offer a comprehensive examination of these intertwined research areas. The remarkable progress in deep learning necessitates thoroughly exploring its latest applications in the study of lncRNAs. Therefore, this review provides insights into the growing significance of incorporating deep learning methodologies to unravel the intricate roles of lncRNAs. By scrutinizing the most recent research spanning from 2021 to 2023, this paper provides a comprehensive understanding of how deep learning techniques are employed in investigating lncRNAs, thereby contributing valuable insights to this rapidly evolving field. The review is aimed at researchers and practitioners looking to integrate deep learning advancements into their lncRNA studies.
Collapse
Affiliation(s)
- Yoojoong Kim
- School of Computer Science and Information Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Minhyeok Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
195
|
Saquib M, Agnihotri P, Biswas S. Interrelated grid of non-coding RNA: An important aspect in Rheumatoid Arthritis pathogenesis. Mol Biol Rep 2023:10.1007/s11033-023-08543-w. [PMID: 37294467 DOI: 10.1007/s11033-023-08543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Inflammation and autoimmunity are the root cause of rheumatoid arthritis, a destructive disease of joints. Multiple biomolecules are involved in the pathogenesis of RA and are related to various events of molecular biology. RNA is a versatile biomolecule, playing numerous roles at structural, functional, and regulatory stages to maintain cellular homeostasis. The involvement of RNA (coding/non-coding) in disease development and progression has left a wide whole to fill with newer approaches. Non-coding RNAs belong to the housekeeping and regulatory categories and both have their specific roles, and their alteration causes specific implications in disease pathogenesis. Housekeeping RNAs, rRNA, tRNA and regulatory RNA, micro-RNA, circular RNA, piRNA and long non-coding RNA were found to be important regulators of inflammation. They work at the pre-and post-transcriptional levels and were found to be more intriguing to study their regulatory impact on disease pathogenesis. The review addresses a question on how the non-coding RNA gets involved in early RA pathogenesis and can be utilized to know their targets to understand the disease better and make way towards the unresolved mystery of RA development.
Collapse
Affiliation(s)
- Mohd Saquib
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prachi Agnihotri
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sagarika Biswas
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Integrative and Functional Biology Department CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110 007, India.
| |
Collapse
|
196
|
Liu J, Wei L, Feng S. Research progress of non-coding RNAs in vegetable responses to abiotic stresses. Gene 2023:147537. [PMID: 37301448 DOI: 10.1016/j.gene.2023.147537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Vegetable crops play a crucial role in agricultural production, providing essential vitamins and minerals necessary for a healthy diet. Recently, there has been growing interest in cultivating vegetable varieties with outstanding agricultural and economic traits. However, vegetable production is often exposed to various abiotic stresses like soil drought, temperature fluctuations, and heavy metal stress, which can negatively impact yield and quality. While previous research has investigated the physiological responses of vegetable crops to such stressors, less attention has been given to genetic networks. Plants respond to environmental stress mainly by adapting first and then reacting, thereby enhancing their resistance to stress. Typically, different abiotic stresses trigger epigenetic changes, which can regulate non-coding RNAs. Therefore, studying the epigenetic mechanisms of vegetable crop responses to abiotic stress can provide insights into the molecular response mechanisms of plants under stress. This knowledge has practical applications in breeding vegetable crops for resistance. This article summarizes the primary research findings on the regulation of non-coding RNAs and their expression levels in vegetable crops exposed to abiotic stresses to guide molecular breeding approaches for vegetable crops.
Collapse
Affiliation(s)
- Jipeng Liu
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Liang Wei
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Shengjun Feng
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
197
|
Tan L, Gao R, Chen X, Geng Y, Yin X, Peng C, Mu X, Su Y, Zhang Y, Li F, He J. lincRNA RP24-315D19.10 promotes endometrial decidualization via upregulation of hnRNPA2B1. Biochim Biophys Acta Mol Basis Dis 2023:166762. [PMID: 37295480 DOI: 10.1016/j.bbadis.2023.166762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Decidualization is a critical process for successful pregnancy. Disorders in this process are tightly associated with adverse pregnancy outcomes including spontaneous abortion. However, the potential molecular mechanisms of lncRNAs underlying this process are yet to be fully elucidated. In this study, we utilized RNA sequencing (RNA-seq) to identify differentially expressed lncRNAs during endometrial decidualization with a pregnant mouse model. Based on RNA-seq analysis, weighted gene co-expression network analysis (WGCNA) was performed to construct the lncRNA-mRNA co-expression network and to identify decidualization-associated hub lncRNAs. Through comprehensive screening and validation, we identified a novel lncRNA, RP24-315D19.10 and studied its function in primary mouse endometrial stromal cells (mESCs). lncRNA RP24-315D19.10 was highly expressed during decidualization. Knockdown of RP24-315D19.10 significantly inhibited mESCs decidualization in vitro. Mechanistically, RNA pull-down and RNA immunoprecipitation assays indicated that cytoplasmic RP24-315D19.10 could bind to hnRNPA2B1, thereby upregulating hnRNPA2B1 expression. Site-directed mutagenesis followed by biolayer interferometry analysis additionally illustrated that hnRNPA2B1 protein specifically bound to the ~-142ccccc~-167 region of the RP24-315D19.10 sequence. hnRPA2B1 deficiency impairs mESCs decidualization in vitro and we found that the inhibition in decidualization caused by RP24-315D19.10 knockdown was rescued by hnRNPA2B1 overexpression. Moreover, the expression of hnRNPA2B1 in spontaneous abortion women with deficient decidualization was significantly lower than that in healthy individuals, suggesting that hnRNPA2B1 may be involved in the development and progression of spontaneous abortion caused by decidualization failure. Collectively, our study indicates RP24-315D19.10 is a critical regulator for endometrial decidualization and RP24-315D19.10-regulated hnRNPA2B1 might be a new mark of decidualization-related spontaneous abortion.
Collapse
Affiliation(s)
- Liping Tan
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xin Yin
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yan Su
- Department of Laboratory Medicine, Women and Children's Hospital of Chongqing Medical University/Chongqing Health Center for Women and Children, Chongqing, China
| | - Yan Zhang
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
198
|
Huang LA, Lin C, Yang L. Plumbing mysterious RNAs in "dark genome" for the conquest of human diseases. Mol Ther 2023; 31:1577-1595. [PMID: 37165619 PMCID: PMC10278048 DOI: 10.1016/j.ymthe.2023.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Next-generation sequencing has revealed that less than 2% of transcribed genes are translated into proteins, with a large portion transcribed into noncoding RNAs (ncRNAs). Among these, long noncoding RNAs (lncRNAs) represent the largest group and are pervasively transcribed throughout the genome. Dysfunctions in lncRNAs have been found in various diseases, highlighting their potential as therapeutic, diagnostic, and prognostic targets. However, challenges, such as unknown molecular mechanisms and nonspecific immune responses, and issues of drug specificity and delivery present obstacles in translating lncRNAs into clinical applications. In this review, we summarize recent publications that have explored lncRNA functions in human diseases. We also discuss challenges and future directions for developing lncRNA treatments, aiming to bridge the gap between functional studies and clinical potential and inspire further exploration in the field.
Collapse
Affiliation(s)
- Lisa A Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
199
|
Li C, Lai X, Yu X, Xiong Z, Chen J, Lang X, Feng H, Wan X, Liu K. Plant long noncoding RNAs: Recent progress in understanding their roles in growth, development, and stress responses. Biochem Biophys Res Commun 2023; 671:270-277. [PMID: 37311264 DOI: 10.1016/j.bbrc.2023.05.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023]
Abstract
Long noncoding RNA (lncRNA) transcripts are longer than 200 nt and are not translated into proteins. LncRNAs function in a wide variety of processes in plants and animals, but, perhaps because of their lower expression and conservation levels, plant lncRNAs had attracted less attention than protein-coding mRNAs. Now, recent studies have made remarkable progress in identifying lncRNAs and understanding their functions. In this review, we discuss a number of lncRNAs that have important functions in growth, development, reproduction, responses to abiotic stresses, and regulation of disease and insect resistance in plants. Additionally, we describe the known mechanisms of action of plant lncRNAs according to their origins within the genome. This review thus provides a guide for identifying and functionally characterizing new lncRNAs in plants.
Collapse
Affiliation(s)
- Chunmei Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaofeng Lai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xuanyue Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhiwen Xiong
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jie Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingxuan Lang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Haotian Feng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaorong Wan
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Kai Liu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
200
|
Orro A, Trombetti GA. High-Accuracy ncRNA Function Prediction via Deep Learning Using Global and Local Sequence Information. Biomedicines 2023; 11:1631. [PMID: 37371726 DOI: 10.3390/biomedicines11061631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The prediction of the biological function of non-coding ribonucleic acid (ncRNA) is an important step towards understanding the regulatory mechanisms underlying many diseases. Since non-coding RNAs are present in great abundance in human cells and are functionally diverse, developing functional prediction tools is necessary. With recent advances in non-coding RNA biology and the availability of complete genome sequences for a large number of species, we now have a window of opportunity for studying non-coding RNA biology. However, the computational methods used to predict the non-coding RNA functions are mostly either scarcely accurate, when based on sequence information alone, or prohibitively expensive in terms of computational burden when a secondary structure prediction is needed. We propose a novel computational method to predict the biological function of non-coding RNA genes that is based on a collection of deep network architectures utilizing solely ncRNA sequence information and which does not rely on or require expensive secondary ncRNA structure information. The approach presented in this work exhibits comparable or superior accuracy to methods that employ both sequence and structural features, at a much lower computational cost.
Collapse
Affiliation(s)
- Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Gabriele A Trombetti
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| |
Collapse
|