151
|
Fernandez M, Nigro M, Travagli A, Pasquini S, Vincenzi F, Varani K, Borea PA, Merighi S, Gessi S. Strategies for Drug Delivery into the Brain: A Review on Adenosine Receptors Modulation for Central Nervous System Diseases Therapy. Pharmaceutics 2023; 15:2441. [PMID: 37896201 PMCID: PMC10610137 DOI: 10.3390/pharmaceutics15102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The blood-brain barrier (BBB) is a biological barrier that protects the central nervous system (CNS) by ensuring an appropriate microenvironment. Brain microvascular endothelial cells (ECs) control the passage of molecules from blood to brain tissue and regulate their concentration-versus-time profiles to guarantee proper neuronal activity, angiogenesis and neurogenesis, as well as to prevent the entry of immune cells into the brain. However, the BBB also restricts the penetration of drugs, thus presenting a challenge in the development of therapeutics for CNS diseases. On the other hand, adenosine, an endogenous purine-based nucleoside that is expressed in most body tissues, regulates different body functions by acting through its G-protein-coupled receptors (A1, A2A, A2B and A3). Adenosine receptors (ARs) are thus considered potential drug targets for treating different metabolic, inflammatory and neurological diseases. In the CNS, A1 and A2A are expressed by astrocytes, oligodendrocytes, neurons, immune cells and ECs. Moreover, adenosine, by acting locally through its receptors A1 and/or A2A, may modulate BBB permeability, and this effect is potentiated when both receptors are simultaneously activated. This review showcases in vivo and in vitro evidence supporting AR signaling as a candidate for modifying endothelial barrier permeability in the treatment of CNS disorders.
Collapse
Affiliation(s)
- Mercedes Fernandez
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | | | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| |
Collapse
|
152
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
153
|
Mishra K, Rana R, Tripathi S, Siddiqui S, Yadav PK, Yadav PN, Chourasia MK. Recent Advancements in Nanocarrier-assisted Brain Delivery of Phytochemicals Against Neurological Diseases. Neurochem Res 2023; 48:2936-2968. [PMID: 37278860 DOI: 10.1007/s11064-023-03955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Despite ongoing advancements in research, the inability of therapeutics to cross the blood-brain barrier (BBB) makes the treatment of neurological disorders (NDs) a challenging task, offering only partial symptomatic relief. Various adverse effects associated with existing approaches are another significant barrier that prompts the usage of structurally diverse phytochemicals as preventive/therapeutic lead against NDs in preclinical and clinical settings. Despite numerous beneficial properties, phytochemicals suffer from poor pharmacokinetic profile which limits their pharmacological activity and necessitates the utility of nanotechnology for efficient drug delivery. Nanocarriers have been shown to be proficient carriers that can enhance drug delivery, bioavailability, biocompatibility, and stability of phytochemicals. We, thus, conducted a meticulous literature survey using several electronic databases to gather relevant studies in order to provide a comprehensive summary about the use of nanocarriers in delivering phytochemicals as a treatment approach for NDs. Additionally, the review highlights the mechanisms of drug transport of nanocarriers across the BBB and explores their potential future applications in this emerging field.
Collapse
Affiliation(s)
- Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shourya Tripathi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Prem N Yadav
- Division of Neuro Science & Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
154
|
Del Campo Fonseca A, Glück C, Droux J, Ferry Y, Frei C, Wegener S, Weber B, El Amki M, Ahmed D. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat Commun 2023; 14:5889. [PMID: 37735158 PMCID: PMC10514062 DOI: 10.1038/s41467-023-41557-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
The intricate and delicate anatomy of the brain poses significant challenges for the treatment of cerebrovascular and neurodegenerative diseases. Thus, precise local drug delivery in hard-to-reach brain regions remains an urgent medical need. Microrobots offer potential solutions; however, their functionality in the brain remains restricted by limited imaging capabilities and complications within blood vessels, such as high blood flows, osmotic pressures, and cellular responses. Here, we introduce ultrasound-activated microrobots for in vivo navigation in brain vasculature. Our microrobots consist of lipid-shelled microbubbles that autonomously aggregate and propel under ultrasound irradiation. We investigate their capacities in vitro within microfluidic-based vasculatures and in vivo within vessels of a living mouse brain. These microrobots self-assemble and execute upstream motion in brain vasculature, achieving velocities up to 1.5 µm/s and moving against blood flows of ~10 mm/s. This work represents a substantial advance towards the therapeutic application of microrobots within the complex brain vasculature.
Collapse
Affiliation(s)
- Alexia Del Campo Fonseca
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Jeanne Droux
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, 8091, Switzerland
| | - Yann Ferry
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - Carole Frei
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - Susanne Wegener
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, 8091, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland.
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, 8091, Switzerland.
| | - Daniel Ahmed
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
| |
Collapse
|
155
|
Qiao G, Gulisashvili D, Jablonska A, Zhao G, Janowski M, Walczak P, Liang Y. 3D printing-based frugal manufacturing of glass pipettes for minimally invasive delivery of therapeutics to the brain. NEUROPROTECTION 2023; 1:58-65. [PMID: 37771648 PMCID: PMC10538625 DOI: 10.1002/nep3.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/04/2023] [Indexed: 09/30/2023]
Abstract
Objective Intracerebral delivery of agents in liquid form is usually achieved through commercially available and durable metal needles. However, their size and texture may contribute to mechanical brain damage. Glass pipettes with a thin tip may significantly reduce injection-associated brain damage but require access to prohibitively expensive programmable pipette pullers. This study is to remove the economic barrier to the application of minimally invasive delivery of therapeutics to the brain, such as chemical compounds, viral vectors, and cells. Methods We took advantage of the rapid development of free educational online resources and emerging low-cost 3D printers by designing an affordable pipette puller (APP) to remove the cost obstacle. Results We showed that our APP could produce glass pipettes with a sharp tip opening down to 20 μm or less, which is sufficiently thin for the delivery of therapeutics into the brain. A pipeline from pipette pulling to brain injection using low-cost and open-source equipment was established to facilitate the application of the APP. Conclusion In the spirit of frugal science, our device may democratize glass pipette-puling and substantially promote the application of minimally invasive and precisely controlled delivery of therapeutics to the brain for finding more effective therapies of brain diseases.
Collapse
Affiliation(s)
- Guanda Qiao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David Gulisashvili
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna Jablonska
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Guiling Zhao
- Laboratory of Molecular Cardiology, Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
156
|
Ashraf SS, Hosseinpour Sarmadi V, Larijani G, Naderi Garahgheshlagh S, Ramezani S, Moghadamifar S, Mohebi SL, Brouki Milan P, Haramshahi SMA, Ahmadirad N, Amini N. Regenerative medicine improve neurodegenerative diseases. Cell Tissue Bank 2023; 24:639-650. [PMID: 36527565 DOI: 10.1007/s10561-022-10062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Regenerative medicine is a subdivision of medicine that improves methods to regrow, repair or replace unhealthy cells and tissues to return to normal function. Cell therapy, gene therapy, nanomedicine as choices used to cure neurodegenerative disease. Recently, studies related to the treatment of neurodegenerative disorders have been focused on stem cell therapy and Nano-drugs beyond other than regenerative medicine. Hence, by data from experimental models and clinical trials, we review the impact of stem cell therapy, gene therapy, and nanomedicine on the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). Indeed, improved knowledge and continued research on gene therapy and nanomedicine in treating Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis lead to advancements in effective and practical treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Seyedeh Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Naderi Garahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ramezani
- Neuroscience Research Center, Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Guilan, Iran
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soraya Moghadamifar
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Seyedeh Lena Mohebi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
157
|
Nagri S, Rice O, Chen Y. Nanomedicine strategies for central nervous system (CNS) diseases. FRONTIERS IN BIOMATERIALS SCIENCE 2023; 2:1215384. [PMID: 38938851 PMCID: PMC11210682 DOI: 10.3389/fbiom.2023.1215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The blood-brain barrier (BBB) is a crucial part of brain anatomy as it is a specialized, protective barrier that ensures proper nutrient transport to the brain, ultimately leading to regulating proper brain function. However, it presents a major challenge in delivering pharmaceuticals to treat central nervous system (CNS) diseases due to this selectivity. A variety of different vehicles have been designed to deliver drugs across this barrier to treat neurodegenerative diseases, greatly impacting the patient's quality of life. The two main types of vehicles used to cross the BBB are polymers and liposomes, which both encapsulate pharmaceuticals to allow them to transcytose the cells of the BBB. For Alzheimer's disease, Parkinson's disease, multiple sclerosis, and glioblastoma brain cancer, there are a variety of different nanoparticle treatments in development that increase the bioavailability and targeting ability of existing drugs or new drug targets to decrease symptoms of these diseases. Through these systems, nanomedicine offers a new way to target specific tissues, especially for the CNS, and treat diseases without the systemic toxicity that often comes with medications used currently.
Collapse
Affiliation(s)
- Shreya Nagri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Olivia Rice
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
158
|
Sun B, Sawant H, Borthakur A, Bihl JC. Emerging therapeutic role of gut microbial extracellular vesicles in neurological disorders. Front Neurosci 2023; 17:1241418. [PMID: 37621715 PMCID: PMC10445154 DOI: 10.3389/fnins.2023.1241418] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Extracellular vesicles (EVs) serve as cell-to-cell and inter-organ communicators by conveying proteins and nucleic acids with regulatory functions. Emerging evidence shows that gut microbial-released EVs play a pivotal role in the gut-brain axis, bidirectional communication, and crosstalk between the gut and the brain. Increasing pre-clinical and clinical evidence suggests that gut bacteria-released EVs are capable of eliciting distinct signaling to the brain with the ability to cross the blood-brain barrier, exerting regulatory function on brain cells such as neurons, astrocytes, and microglia, via their abundant and diversified protein and nucleic acid cargo. Conversely, EVs derived from certain species of bacteria, particularly from gut commensals with probiotic properties, have recently been shown to confer distinct therapeutic effects on various neurological disorders. Thus, gut bacterial EVs may be both a cause of and therapy for neuropathological complications. This review marshals the basic, clinical, and translational studies that significantly contributed to our up-to-date knowledge of the therapeutic potential of gut microbial-derived EVs in treating neurological disorders, including strokes, Alzheimer's and Parkinson's disease, and dementia. The review also discusses the newer insights in recent studies focused on developing superior therapeutic microbial EVs via genetic manipulation and/or dietary intervention.
Collapse
Affiliation(s)
- Bowen Sun
- Departments of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Harshal Sawant
- Departments of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Alip Borthakur
- Departments of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Ji Chen Bihl
- Departments of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
159
|
Farheen M, Akhter MH, Chitme H, Suliman M, Jaremko M, Emwas AH. Surface-Modified Biobased Polymeric Nanoparticles for Dual Delivery of Doxorubicin and Gefitinib in Glioma Cell Lines. ACS OMEGA 2023; 8:28165-28184. [PMID: 37576633 PMCID: PMC10413376 DOI: 10.1021/acsomega.3c01375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023]
Abstract
Glioma is a malignant form of brain cancer that is challenging to treat due to the progressive growth of glial cells. To target overexpressed folate receptors in glioma brain tumors, we designed and investigated doxorubicin-gefitinib nanoparticles (Dox-Gefit NPs) and folate conjugated Dox-Gefit NPs (Dox-Gefit NPs-F). Dox-Gefit NPs and Dox-Gefit NPs-F were characterized by multiple techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), proton nuclear magnetic resonance (1H NMR), and transmission electron microscopy (TEM). In vitro release profiles were measured at both physiological and tumor endosomal pH. The cytotoxicity of the Dox-Gefit NP formulations was measured against C6 and U87 glioma cell lines. A hemolysis assay was performed to investigate biocompatibility of the formulations, and distribution of the drugs in different organs was also estimated. The Dox-Gefit NPs and Dox-Gefit NPs-F were 109.45 ± 7.26 and 120.35 ± 3.65 nm in size and had surface charges of -18.0 ± 3.27 and -20.0 ± 8.23 mV, respectively. Dox-Gefit NPs and Dox-Gefit NPs-F significantly reduced the growth of U87 cells, with IC50 values of 9.9 and 3.2 μM. Similarly, growth of the C6 cell line was significantly reduced, with IC50 values of 8.43 and 3.31 μM after a 24 h incubation, in Dox-Gefit NPs and Dox-Gefit NPs-F, respectively. The percentage drug releases of Dox and Gefit from Dox-Gefit NPs at pH 7.4 were 60.87 ± 0.59 and 68.23 ± 0.1%, respectively. Similarly, at pH 5.4, Dox and Gefit releases from NPs were 70.87 ± 0.28 and 69.24 ± 0.12%, respectively. Biodistribution analysis revealed that more Dox and Gefit were present in the brain than in the other organs. The functionalized NPs inhibited the growth of glioma cells due to high drug concentrations in the brain. Folate conjugated NPs of Dox-Gefit could be a treatment option in glioma therapy.
Collapse
Affiliation(s)
- Ms Farheen
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun, Uttrakhand 248009, India
| | - Md Habban Akhter
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun, Uttrakhand 248009, India
| | - Havagiray Chitme
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun, Uttrakhand 248009, India
| | - Muath Suliman
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Labs, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| |
Collapse
|
160
|
Elkomy MH, Abo El-Ela FI, Zaki RM, Alsaidan OA, Elmowafy M, Zafar A, Shalaby K, Abdelgawad MA, Omar HA, Salama R, Eid HM. Intranasal Nanotransferosomal Gel for Quercetin Brain Targeting: II. Antidepressant Effect in an Experimental Animal Model. Pharmaceutics 2023; 15:2095. [PMID: 37631309 PMCID: PMC10457845 DOI: 10.3390/pharmaceutics15082095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Quercetin (QER) demonstrated antidepressant effects in rats exhibiting anxiety and depressive-like behaviors. In an attempt to improve QER's antidepressant activity, a QER-loaded transferosome (QER-TFS) thermosensitive gel for intranasal administration was formulated and optimized. The therapeutic effectiveness of the optimized formulation was assessed in a depressed rat model by conducting a behavioral analysis. Behavioral study criteria such as immobility, swimming, climbing, sucrose intake, number of crossed lines, rearing, active interaction, and latency to feed were all considerably enhanced by intranasal treatment with the QER-TFS in situ gel in contrast to other formulations. A nasal histopathological study indicated that the QER-TFS thermosensitive gel was safe for the nasal mucosa. An immunohistochemical analysis showed that the animals treated with the QER-TFS thermosensitive gel had the lowest levels of c-fos protein expression, and brain histopathological changes in the depressed rats were alleviated. According to pharmacodynamic, immunohistochemical, and histopathological experiments, the intranasal administration of the QER-TFS thermosensitive gel substantially alleviated depressive symptoms in rats. However, extensive preclinical investigations in higher animal models are needed to anticipate its effectiveness in humans.
Collapse
Affiliation(s)
- Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Omar A. Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (O.A.A.); (M.E.); (A.Z.); (K.S.)
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Hany A. Omar
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Rania Salama
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia;
- Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
161
|
Tan TYC, Lim XY, Norahmad NA, Chanthira Kumar H, Teh BP, Lai NM, Syed Mohamed AF. Neurological Applications of Celery ( Apium graveolens): A Scoping Review. Molecules 2023; 28:5824. [PMID: 37570794 PMCID: PMC10420906 DOI: 10.3390/molecules28155824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Apium graveolens is an indigenous plant in the family Apiaceae, or Umbelliferae, that contains many active compounds. It has been used traditionally to treat arthritic conditions, gout, and urinary infections. The authors conducted a scoping review to assess the quality of available evidence on the overall effects of celery when treating neurological disorders. A systematic search was performed using predetermined keywords in selected electronic databases. The 26 articles included upon screening consisted of 19 in vivo studies, 1 published clinical trial, 4 in vitro studies and 2 studies comprising both in vivo and in vitro methods. A. graveolens and its bioactive phytoconstituent, 3-n-butylphthalide (NBP), have demonstrated their effect on neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke-related neurological complications, depression, diabetes-related neurological complications, and epilepsy. The safety findings were minimal, showing that NBP is safe for up to 18 weeks at 15 mg/kg in animal studies, while there were adverse effects (7%) reported when consuming NBP for 24 weeks at 600 mg daily in human trials. In conclusion, the safety of A. graveolens extract and NBP can be further investigated clinically on different neurological disorders based on their potential role in different targeted pathways.
Collapse
Affiliation(s)
- Terence Yew Chin Tan
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Shah Alam 40170, Malaysia
| | - Xin Yi Lim
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Shah Alam 40170, Malaysia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Shah Alam 40170, Malaysia
| | - Hemahwathy Chanthira Kumar
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Shah Alam 40170, Malaysia
| | - Bee Ping Teh
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Shah Alam 40170, Malaysia
| | - Nai Ming Lai
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- School of Medicine, Taylor’s University, Subang Jaya 47100, Malaysia
| | - Ami Fazlin Syed Mohamed
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Shah Alam 40170, Malaysia
| |
Collapse
|
162
|
van Vliet EF, Knol MJ, Schiffelers RM, Caiazzo M, Fens MHAM. Levodopa-loaded nanoparticles for the treatment of Parkinson's disease. J Control Release 2023; 360:212-224. [PMID: 37343725 DOI: 10.1016/j.jconrel.2023.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) resulting in dopamine (DA) deficiency, which manifests itself in motor symptoms including tremors, rigidity and bradykinesia. Current PD treatments aim at symptom reduction through oral delivery of levodopa (L-DOPA), a precursor of DA. However, L-DOPA delivery to the brain is inefficient and increased dosages are required as the disease progresses, resulting in serious side effects like dyskinesias. To improve PD treatment efficacy and to reduce side effects, recent research focuses on the encapsulation of L-DOPA into polymeric- and lipid-based nanoparticles (NPs). These formulations can protect L-DOPA from systemic decarboxylation into DA and improve L-DOPA delivery to the central nervous system. Additionally, NPs can be modified with proteins, peptides and antibodies specifically targeting the blood-brain barrier (BBB), thereby reducing required dosages and free systemic DA. Alternative delivery approaches for NP-encapsulated L-DOPA include intravenous (IV) administration, transdermal delivery using adhesive patches and direct intranasal administration, facilitating increased therapeutic DA concentrations in the brain. This review provides an overview of the recent advances for NP-mediated L-DOPA delivery to the brain, and debates challenges and future perspectives on the field.
Collapse
Affiliation(s)
- Emile F van Vliet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Maarten J Knol
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | | | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
163
|
Ghorai SM, Deep A, Magoo D, Gupta C, Gupta N. Cell-Penetrating and Targeted Peptides Delivery Systems as Potential Pharmaceutical Carriers for Enhanced Delivery across the Blood-Brain Barrier (BBB). Pharmaceutics 2023; 15:1999. [PMID: 37514185 PMCID: PMC10384895 DOI: 10.3390/pharmaceutics15071999] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Among the challenges to the 21st-century health care industry, one that demands special mention is the transport of drugs/active pharmaceutical agents across the blood-brain barrier (BBB). The epithelial-like tight junctions within the brain capillary endothelium hinder the uptake of most pharmaceutical agents. With an aim to understand more deeply the intricacies of cell-penetrating and targeted peptides as a powerful tool for desirable biological activity, we provide a critical review of both CPP and homing/targeted peptides as intracellular drug delivery agents, especially across the blood-brain barrier (BBB). Two main peptides have been discussed to understand intracellular drug delivery; first is the cell-penetrating peptides (CPPs) for the targeted delivery of compounds of interest (primarily peptides and nucleic acids) and second is the family of homing peptides, which specifically targets cells/tissues based on their overexpression of tumour-specific markers and are thus at the heart of cancer research. These small, amphipathic molecules demonstrate specific physical and chemical modifications aimed at increased ease of cellular internalisation. Because only a limited number of drug molecules can bypass the blood-brain barrier by free diffusion, it is essential to explore all aspects of CPPs that can be exploited for crossing this barrier. Considering siRNAs that can be designed against any target RNA, marking such molecules with high therapeutic potential, we present a synopsis of the studies on synthetic siRNA-based therapeutics using CPPs and homing peptides drugs that can emerge as potential drug-delivery systems as an upcoming requirement in the world of pharma- and nutraceuticals.
Collapse
Affiliation(s)
- Soma Mondal Ghorai
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India
| | - Auroni Deep
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India
| | - Devanshi Magoo
- Department of Chemistry, Hindu College, University of Delhi, Delhi 110007, India
| | - Chetna Gupta
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, WI 53705, USA
| |
Collapse
|
164
|
Kaurav H, Verma D, Bansal A, Kapoor DN, Sheth S. Progress in drug delivery and diagnostic applications of carbon dots: a systematic review. Front Chem 2023; 11:1227843. [PMID: 37521012 PMCID: PMC10375716 DOI: 10.3389/fchem.2023.1227843] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Carbon dots (CDs), which have particle size of less than 10 nm, are carbon-based nanomaterials that are used in a wide range of applications in the area of novel drug delivery in cancer, ocular diseases, infectious diseases, and brain disorders. CDs are biocompatible, eco-friendly, easy to synthesize, and less toxic with excellent chemical inertness, which makes them very good nanocarrier system to deliver multi-functional drugs effectively. A huge number of researchers worldwide are working on CDs-based drug delivery systems to evaluate their versatility and efficacy in the field of pharmaceuticals. As a result, there is a tremendous increase in our understanding of the physicochemical properties, diagnostic and drug delivery aspects of CDs, which consequently has led us to design and develop CDs-based theranostic system for the treatment of multiple disorders. In this review, we aim to summarize the advances in application of CDs as nanocarrier including gene delivery, vaccine delivery and antiviral delivery, that has been carried out in the last 5 years.
Collapse
Affiliation(s)
- Hemlata Kaurav
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Dhriti Verma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Amit Bansal
- Formulation Research and Development, Perrigo Company Plc, Allegan, MI, United States
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| |
Collapse
|
165
|
Hegde MM, Sandbhor P, J. A, Gota V, Goda JS. Insight into lipid-based nanoplatform-mediated drug and gene delivery in neuro-oncology and their clinical prospects. Front Oncol 2023; 13:1168454. [PMID: 37483515 PMCID: PMC10357293 DOI: 10.3389/fonc.2023.1168454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Tumors of the Central nervous System (CNS) are a spectrum of neoplasms that range from benign lesions to highly malignant and aggressive lesions. Despite aggressive multimodal treatment approaches, the morbidity and mortality are high with dismal survival outcomes in these malignant tumors. Moreover, the non-specificity of conventional treatments substantiates the rationale for precise therapeutic strategies that selectively target infiltrating tumor cells within the brain, and minimize systemic and collateral damage. With the recent advancement of nanoplatforms for biomaterials applications, lipid-based nanoparticulate systems present an attractive and breakthrough impact on CNS tumor management. Lipid nanoparticles centered immunotherapeutic agents treating malignant CNS tumors could convene the clear need for precise treatment strategies. Immunotherapeutic agents can selectively induce specific immune responses by active or innate immune responses at the local site within the brain. In this review, we discuss the therapeutic applications of lipid-based nanoplatforms for CNS tumors with an emphasis on revolutionary approaches in brain targeting, imaging, and drug and gene delivery with immunotherapy. Lipid-based nanoparticle platforms represent one of the most promising colloidal carriers for chemotherapeutic, and immunotherapeutic drugs. Their current application in oncology especially in brain tumors has brought about a paradigm shift in cancer treatment by improving the antitumor activity of several agents that could be used to selectively target brain tumors. Subsequently, the lab-to-clinic transformation and challenges towards translational feasibility of lipid-based nanoplatforms for drug and gene/immunotherapy delivery in the context of CNS tumor management is addressed.
Collapse
Affiliation(s)
- Manasa Manjunath Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Puja Sandbhor
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Aishwarya J.
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Vikram Gota
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Jayant S. Goda
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
166
|
Nikiforova A, Sedov I. Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits. Int J Mol Sci 2023; 24:11152. [PMID: 37446329 DOI: 10.3390/ijms241311152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The ability to detect and monitor amyloid deposition in the brain using non-invasive imaging techniques provides valuable insights into the early diagnosis and progression of Alzheimer's disease and helps to evaluate the efficacy of potential treatments. Magnetic resonance imaging (MRI) is a widely available technique offering high-spatial-resolution imaging. It can be used to visualize amyloid deposits with the help of amyloid-binding diagnostic agents injected into the body. In recent years, a number of amyloid-targeted MRI probes have been developed, but none of them has entered clinical practice. We review the advances in the field and deduce the requirements for the molecular structure and properties of a diagnostic probe candidate. These requirements make up the base for the rational design of MRI-active small molecules targeting amyloid deposits. Particular attention is paid to the novel cryo-EM structures of the fibril aggregates and their complexes, with known binders offering the possibility to use computational structure-based design methods. With continued research and development, MRI probes may revolutionize the diagnosis and treatment of neurodegenerative diseases, ultimately improving the lives of millions of people worldwide.
Collapse
Affiliation(s)
- Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| |
Collapse
|
167
|
Altendorfer-Kroath T, Hummer J, Kollmann D, Boulgaropoulos B, Raml R, Birngruber T. Quantification of the Therapeutic Antibody Ocrelizumab in Mouse Brain Interstitial Fluid Using Cerebral Open Flow Microperfusion and Simultaneous Monitoring of the Blood-Brain Barrier Integrity. Pharmaceutics 2023; 15:1880. [PMID: 37514066 PMCID: PMC10383368 DOI: 10.3390/pharmaceutics15071880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing relevance of improved therapeutic monoclonal antibodies (mAbs) to treat neurodegenerative diseases has strengthened the need to reliably measure their brain pharmacokinetic (PK) profiles. The aim of this study was, therefore, to absolutely quantify the therapeutic antibody ocrelizumab (OCR) as a model antibody in mouse brain interstitial fluid (ISF), and to record its PK profile by using cerebral open flow microperfusion (cOFM). Further, to monitor the blood-brain barrier (BBB) integrity using an endogenous antibody with a similar molecular size as OCR. The study was conducted on 13 male mice. Direct and absolute OCR quantification was performed with cOFM in combination with zero flow rate, and subsequent bioanalysis of the obtained cerebral ISF samples. For PK profile recording, cerebral ISF samples were collected bi-hourly, and brain tissue and plasma were collected once at the end of the sampling period. The BBB integrity was monitored during the entire PK profile recording by using endogenous mouse immunoglobulin G1. We directly and absolutely quantified OCR and recorded its brain PK profile over 96 h. The BBB remained intact during the PK profile recording. The resulting data provide the basis for reliable PK assessment of therapeutic antibodies in the brain thus favoring the further development of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Thomas Altendorfer-Kroath
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Joanna Hummer
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Denise Kollmann
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Beate Boulgaropoulos
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Reingard Raml
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Thomas Birngruber
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| |
Collapse
|
168
|
Yang Y, Cheng N, Luo Q, Shao N, Ma X, Chen J, Luo L, Xiao Z. How Nanotherapeutic Platforms Play a Key Role in Glioma? A Comprehensive Review of Literature. Int J Nanomedicine 2023; 18:3663-3694. [PMID: 37427368 PMCID: PMC10327925 DOI: 10.2147/ijn.s414736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastoma (GBM), a highly aggressive form of brain cancer, is considered one of the deadliest cancers, and even with the most advanced medical treatments, most affected patients have a poor prognosis. However, recent advances in nanotechnology offer promising avenues for the development of versatile therapeutic and diagnostic nanoplatforms that can deliver drugs to brain tumor sites through the blood-brain barrier (BBB). Despite these breakthroughs, the use of nanoplatforms in GBM therapy has been a subject of great controversy due to concerns over the biosafety of these nanoplatforms. In recent years, biomimetic nanoplatforms have gained unprecedented attention in the biomedical field. With advantages such as extended circulation times, and improved immune evasion and active targeting compared to conventional nanosystems, bionanoparticles have shown great potential for use in biomedical applications. In this prospective article, we endeavor to comprehensively review the application of bionanomaterials in the treatment of glioma, focusing on the rational design of multifunctional nanoplatforms to facilitate BBB infiltration, promote efficient accumulation in the tumor, enable precise tumor imaging, and achieve remarkable tumor suppression. Furthermore, we discuss the challenges and future trends in this field. Through careful design and optimization of nanoplatforms, researchers are paving the way toward safer and more effective therapies for GBM patients. The development of biomimetic nanoplatform applications for glioma therapy is a promising avenue for precision medicine, which could ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yongqing Yang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Nianlan Cheng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Qiao Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xiaocong Ma
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
169
|
Wei Y, Xia X, Li H, Gao H. Influence factors on and potential strategies to amplify receptor-mediated nanodrug delivery across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1713-1730. [PMID: 37542516 DOI: 10.1080/17425247.2023.2245332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION A major challenge in treating central nervous system (CNS) disorders is to achieve adequate drug delivery across the blood-brain barrier (BBB). Receptor-mediated nanodrug delivery as a Trojan horse strategy has become an exciting approach. However, these nanodrugs do not accumulate significantly in the brain parenchyma, which greatly limits the therapeutic effect of drugs. Amplifying the efficiency of receptor-mediated nanodrug delivery across the BBB becomes the holy grail in the treatment of CNS disorders. AREAS COVERED In this review, we tend to establish links between dynamic BBB and receptor-mediated nanodrug delivery, starting with the delivery processes across the BBB, describing factors affecting nanodrug delivery efficiency, and summarizing potential strategies that may amplify delivery efficiency. EXPERT OPINION Receptor-mediated nanodrug delivery is a common approach to significantly enhance the efficiency of brain-targeting delivery. As BBB is constantly undergoing changes, it is essential to investigate the impact of diseases on the effectiveness of brain-targeting nanodrug delivery. More critically, there are several barriers to achieving brain-targeting nanodrug delivery in the five stages of receptor-mediated transcytosis (RMT), and the impacts can be conflicting, requiring intricate balance. Further studies are also needed to investigate the material toxicity of nanodrugs to address the issue of clinical translation.
Collapse
Affiliation(s)
- Ya Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
170
|
Vanbilloen WJF, Rechberger JS, Anderson JB, Nonnenbroich LF, Zhang L, Daniels DJ. Nanoparticle Strategies to Improve the Delivery of Anticancer Drugs across the Blood-Brain Barrier to Treat Brain Tumors. Pharmaceutics 2023; 15:1804. [PMID: 37513992 PMCID: PMC10383584 DOI: 10.3390/pharmaceutics15071804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Primary brain and central nervous system (CNS) tumors are a diverse group of neoplasms that occur within the brain and spinal cord. Although significant advances in our understanding of the intricate biological underpinnings of CNS neoplasm tumorigenesis and progression have been made, the translation of these discoveries into effective therapies has been stymied by the unique challenges presented by these tumors' exquisitely sensitive location and the body's own defense mechanisms (e.g., the brain-CSF barrier and blood-brain barrier), which normally protect the CNS from toxic insult. These barriers effectively prevent the delivery of therapeutics to the site of disease. To overcome these obstacles, new methods for therapeutic delivery are being developed, with one such approach being the utilization of nanoparticles. Here, we will cover the current state of the field with a particular focus on the challenges posed by the BBB, the different nanoparticle classes which are under development for targeted CNS tumor therapeutics delivery, and strategies which have been developed to bypass the BBB and enable effective therapeutics delivery to the site of disease.
Collapse
Affiliation(s)
- Wouter J. F. Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
| | - Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacob B. Anderson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
171
|
Assi AA, Farrag MMY, Badary DM, Allam EAH, Nicola MA. Protective effects of curcumin and Ginkgo biloba extract combination on a new model of Alzheimer's disease. Inflammopharmacology 2023; 31:1449-1464. [PMID: 36856916 PMCID: PMC10229698 DOI: 10.1007/s10787-023-01164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative illnesses, and yet, no workable treatments have been discovered to prevent or reverse AD. Curcumin (CUR), the major polyphenolic compound of turmeric (Curcuma longa) rhizomes, and Ginkgo biloba extract (GBE) are natural substances derived from conventional Chinese herbs that have long been shown to provide therapeutic advantages for AD. The uptake of curcumin into the brain is severely restricted by its low ability to cross the blood-brain barrier (BBB). Meanwhile, GBE has been shown to improve BBB permeability. The present study evaluated the neuroprotective effects and pharmacokinetic profile of curcumin and GBE combination to find out whether GBE can enhance curcumin's beneficial effects in AD by raising its brain concentration. Results revealed that CUR + GBE achieved significantly higher levels of curcumin in the brain and plasma after 30 min and 1 h of oral administration, compared to curcumin alone, and this was confirmed by reversed phase high-performance liquid chromatography (RP-HPLC). The effect of combined oral treatment, for 28 successive days, on cognitive function and other AD-like alterations was studied in scopolamine-heavy metal mixtures (SCO + HMM) AD model in rats. The combination reversed at least, partially on the learning and memory impairment induced by SCO + HMM. This was associated with a more pronounced inhibitory effect on acetylcholinesterase (AChE), caspase-3, hippocampal amyloid beta (Aβ1-42), and phosphorylated tau protein (p-tau) count, and pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukine-1beta (IL-1β), as compared to the curcumin alone-treated group. Additionally, the combined treatment significantly decreased lipid peroxidation (MDA) and increased levels of reduced glutathione (GSH), when compared with the curcumin alone. These findings support the concept that the combination strategy might be an alternative therapy in the management/prevention of neurological disorders. This study sheds light on a new approach for exploring new phyto-therapies for AD and emphasizes that more research should focus on the synergic effects of herbal drugs in future.
Collapse
Affiliation(s)
- Abdel-Azim Assi
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt, 71524
| | - Magda M Y Farrag
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt, 71524
| | - Dalia M Badary
- Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Essmat A H Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Mariam A Nicola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
172
|
Lam XJ, Xu B, Yeo PL, Cheah PS, Ling KH. Mitochondria dysfunction and bipolar disorder: From pathology to therapy. IBRO Neurosci Rep 2023; 14:407-418. [PMID: 37388495 PMCID: PMC10300489 DOI: 10.1016/j.ibneur.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/08/2023] [Indexed: 07/01/2023] Open
Abstract
Bipolar disorder (BD) is one of the major psychiatric diseases in which the impairment of mitochondrial functions has been closely connected or associated with the disease pathologies. Different lines of evidence of the close connection between mitochondria dysfunction and BD were discussed with a particular focus on (1) dysregulation of energy metabolism, (2) effect of genetic variants, (3) oxidative stress, cell death and apoptosis, (4) dysregulated calcium homeostasis and electrophysiology, and (5) current as well as potential treatments targeting at restoring mitochondrial functions. Currently, pharmacological interventions generally provide limited efficacy in preventing relapses or recovery from mania or depression episodes. Thus, understanding mitochondrial pathology in BD will lead to novel agents targeting mitochondrial dysfunction and formulating new effective therapy for BD.
Collapse
Affiliation(s)
- Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, 132 Daxuecheng Outer Ring E Rd, Panyu Qu, Guangzhou Shi, Guangdong 511434, People's Republic of China
| | - Pei-Ling Yeo
- School of Postgraduate Studies and Research, International Medical University, 126, Jalan Jalil Perkasa 19, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
173
|
Silant'ev VE, Shmelev ME, Belousov AS, Patlay AA, Shatilov RA, Farniev VM, Kumeiko VV. How to Develop Drug Delivery System Based on Carbohydrate Nanoparticles Targeted to Brain Tumors. Polymers (Basel) 2023; 15:polym15112516. [PMID: 37299315 DOI: 10.3390/polym15112516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Brain tumors are the most difficult to treat, not only because of the variety of their forms and the small number of effective chemotherapeutic agents capable of suppressing tumor cells, but also limited by poor drug transport across the blood-brain barrier (BBB). Nanoparticles are promising drug delivery solutions promoted by the expansion of nanotechnology, emerging in the creation and practical use of materials in the range from 1 to 500 nm. Carbohydrate-based nanoparticles is a unique platform for active molecular transport and targeted drug delivery, providing biocompatibility, biodegradability, and a reduction in toxic side effects. However, the design and fabrication of biopolymer colloidal nanomaterials have been and remain highly challenging to date. Our review is devoted to the description of carbohydrate nanoparticle synthesis and modification, with a brief overview of the biological and promising clinical outcomes. We also expect this manuscript to highlight the great potential of carbohydrate nanocarriers for drug delivery and targeted treatment of gliomas of various grades and glioblastomas, as the most aggressive of brain tumors.
Collapse
Affiliation(s)
- Vladimir E Silant'ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Laboratory of Electrochemical Processes, Institute of Chemistry, FEB RAS, 690022 Vladivostok, Russia
| | - Mikhail E Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Andrei S Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Aleksandra A Patlay
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Roman A Shatilov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Vladislav M Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Vadim V Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, 690041 Vladivostok, Russia
| |
Collapse
|
174
|
Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther 2023; 8:217. [PMID: 37231000 PMCID: PMC10212980 DOI: 10.1038/s41392-023-01481-w] [Citation(s) in RCA: 429] [Impact Index Per Article: 214.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Blood-brain barrier (BBB) is a natural protective membrane that prevents central nervous system (CNS) from toxins and pathogens in blood. However, the presence of BBB complicates the pharmacotherapy for CNS disorders as the most chemical drugs and biopharmaceuticals have been impeded to enter the brain. Insufficient drug delivery into the brain leads to low therapeutic efficacy as well as aggravated side effects due to the accumulation in other organs and tissues. Recent breakthrough in materials science and nanotechnology provides a library of advanced materials with customized structure and property serving as a powerful toolkit for targeted drug delivery. In-depth research in the field of anatomical and pathological study on brain and BBB further facilitates the development of brain-targeted strategies for enhanced BBB crossing. In this review, the physiological structure and different cells contributing to this barrier are summarized. Various emerging strategies for permeability regulation and BBB crossing including passive transcytosis, intranasal administration, ligands conjugation, membrane coating, stimuli-triggered BBB disruption, and other strategies to overcome BBB obstacle are highlighted. Versatile drug delivery systems ranging from organic, inorganic, and biologics-derived materials with their synthesis procedures and unique physio-chemical properties are summarized and analyzed. This review aims to provide an up-to-date and comprehensive guideline for researchers in diverse fields, offering perspectives on further development of brain-targeted drug delivery system.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| |
Collapse
|
175
|
Mullagulova A, Shaimardanova A, Solovyeva V, Mukhamedshina Y, Chulpanova D, Kostennikov A, Issa S, Rizvanov A. Safety and Efficacy of Intravenous and Intrathecal Delivery of AAV9-Mediated ARSA in Minipigs. Int J Mol Sci 2023; 24:ijms24119204. [PMID: 37298156 DOI: 10.3390/ijms24119204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is a hereditary neurodegenerative disease characterized by demyelination and motor and cognitive impairments due to deficiencies of the lysosomal enzyme arylsulfatase A (ARSA) or the saposin B activator protein (SapB). Current treatments are limited; however, gene therapy using adeno-associated virus (AAV) vectors for ARSA delivery has shown promising results. The main challenges for MLD gene therapy include optimizing the AAV dosage, selecting the most effective serotype, and determining the best route of administration for ARSA delivery into the central nervous system. This study aims to evaluate the safety and efficacy of AAV serotype 9 encoding ARSA (AAV9-ARSA) gene therapy when administered intravenously or intrathecally in minipigs, a large animal model with anatomical and physiological similarities to humans. By comparing these two administration methods, this study contributes to the understanding of how to improve the effectiveness of MLD gene therapy and offers valuable insights for future clinical applications.
Collapse
Affiliation(s)
- Aysilu Mullagulova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alisa Shaimardanova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya Solovyeva
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yana Mukhamedshina
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Daria Chulpanova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexander Kostennikov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaza Issa
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Albert Rizvanov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
176
|
Won S, An J, Song H, Im S, You G, Lee S, Koo KI, Hwang CH. Transnasal targeted delivery of therapeutics in central nervous system diseases: a narrative review. Front Neurosci 2023; 17:1137096. [PMID: 37292158 PMCID: PMC10246499 DOI: 10.3389/fnins.2023.1137096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 06/10/2023] Open
Abstract
Currently, neurointervention, surgery, medication, and central nervous system (CNS) stimulation are the main treatments used in CNS diseases. These approaches are used to overcome the blood brain barrier (BBB), but they have limitations that necessitate the development of targeted delivery methods. Thus, recent research has focused on spatiotemporally direct and indirect targeted delivery methods because they decrease the effect on nontarget cells, thus minimizing side effects and increasing the patient's quality of life. Methods that enable therapeutics to be directly passed through the BBB to facilitate delivery to target cells include the use of nanomedicine (nanoparticles and extracellular vesicles), and magnetic field-mediated delivery. Nanoparticles are divided into organic, inorganic types depending on their outer shell composition. Extracellular vesicles consist of apoptotic bodies, microvesicles, and exosomes. Magnetic field-mediated delivery methods include magnetic field-mediated passive/actively-assisted navigation, magnetotactic bacteria, magnetic resonance navigation, and magnetic nanobots-in developmental chronological order of when they were developed. Indirect methods increase the BBB permeability, allowing therapeutics to reach the CNS, and include chemical delivery and mechanical delivery (focused ultrasound and LASER therapy). Chemical methods (chemical permeation enhancers) include mannitol, a prevalent BBB permeabilizer, and other chemicals-bradykinin and 1-O-pentylglycerol-to resolve the limitations of mannitol. Focused ultrasound is in either high intensity or low intensity. LASER therapies includes three types: laser interstitial therapy, photodynamic therapy, and photobiomodulation therapy. The combination of direct and indirect methods is not as common as their individual use but represents an area for further research in the field. This review aims to analyze the advantages and disadvantages of these methods, describe the combined use of direct and indirect deliveries, and provide the future prospects of each targeted delivery method. We conclude that the most promising method is the nose-to-CNS delivery of hybrid nanomedicine, multiple combination of organic, inorganic nanoparticles and exosomes, via magnetic resonance navigation following preconditioning treatment with photobiomodulation therapy or focused ultrasound in low intensity as a strategy for differentiating this review from others on targeted CNS delivery; however, additional studies are needed to demonstrate the application of this approach in more complex in vivo pathways.
Collapse
Affiliation(s)
- Seoyeon Won
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongyeon An
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hwayoung Song
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Subin Im
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Geunho You
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seungho Lee
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyo-in Koo
- Major of Biomedical Engineering, Department of Electrical, Electronic, and Computer Engineering, University of Ulsan, Ulsan, Republic of Korea
| | - Chang Ho Hwang
- Department of Physical and Rehabilitation Medicine, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
177
|
Prakash R, Vyawahare A, Sakla R, Kumari N, Kumar A, Ansari MM, Jori C, Waseem A, Siddiqui AJ, Khan MA, Robertson AAB, Khan R, Raza SS. NLRP3 Inflammasome-Targeting Nanomicelles for Preventing Ischemia-Reperfusion-Induced Inflammatory Injury. ACS NANO 2023; 17:8680-8693. [PMID: 37102996 DOI: 10.1021/acsnano.3c01760] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a disease process that affects several vital organs. There is widespread agreement that the NLRP3 inflammasome pathway plays a crucial role in the development of I/R injury. We have developed transferrin-conjugated, pH-responsive nanomicelles for the entrapment of MCC950 drug. These nanomicelles specifically bind to the transferrin receptor 1 (TFR1) expressed on the cells of the blood-brain barrier (BBB) and thus help the cargo to cross the BBB. Furthermore, the therapeutic potential of nanomicelles was assessed using in vitro, in ovo, and in vivo models of I/R injury. Nanomicelles were injected into the common carotid artery (CCA) of a middle cerebral artery occlusion (MCAO) rat model to achieve maximum accretion of nanomicelles into the brain as blood flows toward the brain in the CCA. The current study reveals that the treatment with nanomicelles significantly alleviates the levels of NLRP3 inflammasome biomarkers which were found to be increased in oxygen-glucose deprivation (OGD)-treated SH-SY5Y cells, the I/R-damaged right vitelline artery (RVA) of chick embryos, and the MCAO rat model. The supplementation with nanomicelles significantly enhanced the overall survival of MCAO rats. Overall, nanomicelles exerted therapeutic effects against I/R injury, which might be due to the suppression of the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ravi Prakash
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Akshay Vyawahare
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Rahul Sakla
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Neha Kumari
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Chandrashekhar Jori
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Abu Junaid Siddiqui
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | | | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
- Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| |
Collapse
|
178
|
Khare P, Edgecomb SX, Hamadani CM, E L Tanner E, Manickam DS. Lipid nanoparticle-mediated drug delivery to the brain. Adv Drug Deliv Rev 2023; 197:114861. [PMID: 37150326 DOI: 10.1016/j.addr.2023.114861] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Lipid nanoparticles (LNPs) have revolutionized the field of drug delivery through their applications in siRNA delivery to the liver (Onpattro) and their use in the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines. While LNPs have been extensively studied for the delivery of RNA drugs to muscle and liver targets, their potential to deliver drugs to challenging tissue targets such as the brain remains underexplored. Multiple brain disorders currently lack safe and effective therapies and therefore repurposing LNPs could potentially be a game changer for improving drug delivery to cellular targets both at and across the blood-brain barrier (BBB). In this review, we will discuss (1) the rationale and factors involved in optimizing LNPs for brain delivery, (2) ionic liquid-coated LNPs as a potential approach for increasing LNP accumulation in the brain tissue and (3) considerations, open questions and potential opportunities in the development of LNPs for delivery to the brain.
Collapse
Affiliation(s)
- Purva Khare
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Sara X Edgecomb
- Department of Chemistry and Biochemistry, The University of Mississippi, MS
| | | | - Eden E L Tanner
- Department of Chemistry and Biochemistry, The University of Mississippi, MS.
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA.
| |
Collapse
|
179
|
Zhong X, Wei G, Liu B, Wang C, Wang J, Lu Y, Cui W, Guo H. Polyhedral Oligomeric Silsesquioxane-Based Nanoparticles for Efficient Chemotherapy of Glioblastoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207248. [PMID: 36725316 DOI: 10.1002/smll.202207248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Indexed: 05/04/2023]
Abstract
Glioblastoma (GBM) is the most common lethal brain tumor with dismal treatment outcomes and poor response to chemotherapy. As the regulatory center of cytogenetics and metabolism, most tumor chemotherapeutic molecules exert therapeutic effects in the nucleus. Nanodrugs showing the nuclear aggregation effect are expected to eliminate and fundamentally suppress tumor cells. In this study, a nanodrug delivery system based on polyhedral oligomeric silsesquioxane (POSS) is introduced to deliver drugs into the nuclei of GBM cells, effectively enhancing the therapeutic efficacy of chemotherapy. The nanoparticles are modified with folic acid and iRGD peptides molecules to improve their tumor cell targeting and uptake via receptor-mediated endocytosis. Nuclear aggregation allows for the direct delivery of chemotherapeutic drug temozolomide (TMZ) to the tumor cell nuclei, resulting in more significant DNA damage and inhibition of tumor cell proliferation. Herein, TMZ-loaded POSS nanoparticles can significantly improve the survival of GBM-bearing mice. Therefore, the modified POSS nanoparticles may serve as a promising drug-loaded delivery platform to improve chemotherapy outcomes in GBM patients.
Collapse
Affiliation(s)
- Xiangyang Zhong
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Gang Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Boyang Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chenyang Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Hongbo Guo
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
180
|
Wang W, Zhang H, Wei L, Ma Y, Jiang H, Yuen CNT, Zhang J, Wu H, Shu Y. Microcystin-leucine arginine causes brain injury and functional disorder in Lithobates catesbeianus tadpoles by oxidative stress and inflammation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106509. [PMID: 36989925 DOI: 10.1016/j.aquatox.2023.106509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a toxin commonly found in eutrophic waters worldwide, but its potential effects on amphibian brain toxicity and exposure mechanisms are unclear. In this study, Lithobates catesbeianus tadpoles were exposed to MC-LR for 30 days at realistic ambient concentrations (0, 0.5, and 2 µg/L) to reveal its effects on brain health. The MC-LR bioaccumulation in the brain increased in dependence on the concentration of MC-LR exposure. Exposure to 0.5 and 2 µg/L MC-LR resulted in a significant down-regulation of the expression of structural components of the blood-brain barrier (CLDN1), while the expression of genes associated with inflammation (NLRP3, TNF, IL-1β, and CXCL12) was significantly up-regulated with increased number of eosinophils. In the hippocampal and hypothalamic regions, the number of vacuolated neuropils increased with increasing MC-LR exposure concentration, while the expression of genes associated with neuronal development (LGALS1, CACNA2D2, and NLGN4X) and neurotransmitter transmission (SLC6A13 and AChE) was significantly down-regulated. Moreover, the levels of neurotransmitters (5-HT, glutamate, GABA, and ACh) were significantly reduced. These results provide strong evidence that MC-LR exposure at realistic ambient concentrations of 0.5 and 2 µg/L can break the blood-brain barrier and raise the accumulation of MC-LR in the brain tissue, causing structural damage and functional disorder to brain neurons. Further, based on transcriptomic and biochemical analysis, it was revealed that MC-LR exposure induces DNA damage through oxidative stress and may be an important pathway causing brain structural damage and functional disorder. Overall, this study demonstrates the significant effects of MC-LR on the brain tissue of amphibians, highlighting the sensitivity of amphibians to MC-LR.
Collapse
Affiliation(s)
- Wenchao Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Luting Wei
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yi Ma
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Calista N T Yuen
- State Key Laboratory in Marine Pollution Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jihui Zhang
- School of Food Science and Biology Engineering, Wuhu Institute of Technology, Wuhu, Anhui 241000, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
181
|
Han S, Wang JTW, Yavuz E, Zam A, Rouatbi N, Utami RN, Liam-Or R, Griffiths A, Dickson W, Sosabowski J, Al-Jamal KT. Spatiotemporal tracking of gold nanorods after intranasal administration for brain targeting. J Control Release 2023; 357:606-619. [PMID: 37061195 PMCID: PMC10390340 DOI: 10.1016/j.jconrel.2023.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Intranasal administration is becoming increasingly more attractive as a fast delivery route to the brain for therapeutics circumventing the blood-brain barrier (BBB). Gold nanorods (AuNRs) demonstrate unique optical and biological properties compared to other gold nanostructures due to their high aspect ratio. In this study, we investigated for the first time the brain region-specific distribution of AuNRs and their potential as a drug delivery platform for central nervous system (CNS) therapy following intranasal administration to mice using a battery of analytical and imaging techniques. AuNRs were functionalized with a fluorescent dye (Cyanine5, Cy5) or a metal chelator (diethylenetriaminepentaacetic dianhydride, DTPA anhydride) to complex with Indium-111 via a PEG spacer for optical and nuclear imaging, respectively. Direct quantification of gold was achieved by inductively coupled plasma mass spectrometry. Rapid AuNRs uptake in mice brains was observed within 10 min following intranasal administration which gradually reduced over time. This was confirmed by the 3 imaging/analytical techniques. Autoradiography of sagittal brain sections suggested entry to the brain via the olfactory bulb followed by diffusion to other brain regions within 1 h of administration. The presence of AuNR in glioblastoma (GBM) tumors following intranasal administration was also proven which opens doors for AuNRs applications, as nose-to-brain drug delivery carriers, for treatment of a range of CNS diseases.
Collapse
Affiliation(s)
- Shunping Han
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Emine Yavuz
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; Advanced Technology Research and Application Center, Selcuk University, Aleaddin Keykubat Yerleskesi, Akademi Mah. Yeni Istanbul Cad. No: 355/C, Selcuklu, Konya, Turkey
| | - Alaa Zam
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Nadia Rouatbi
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Rifka Nurul Utami
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Revadee Liam-Or
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Alexander Griffiths
- London Metallomics Facility, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Wayne Dickson
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom; London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Jane Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom.
| |
Collapse
|
182
|
Lim Kee Chang W, Chan TG, Raguseo F, Mishra A, Chattenton D, de Rosales RTM, Long NJ, Morse SV. Rapid short-pulses of focused ultrasound and microbubbles deliver a range of agent sizes to the brain. Sci Rep 2023; 13:6963. [PMID: 37117169 PMCID: PMC10147927 DOI: 10.1038/s41598-023-33671-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Focused ultrasound and microbubbles can non-invasively and locally deliver therapeutics and imaging agents across the blood-brain barrier. Uniform treatment and minimal adverse bioeffects are critical to achieve reliable doses and enable safe routine use of this technique. Towards these aims, we have previously designed a rapid short-pulse ultrasound sequence and used it to deliver a 3 kDa model agent to mouse brains. We observed a homogeneous distribution in delivery and blood-brain barrier closing within 10 min. However, many therapeutics and imaging agents are larger than 3 kDa, such as antibody fragments and antisense oligonucleotides. Here, we evaluate the feasibility of using rapid short-pulses to deliver higher-molecular-weight model agents. 3, 10 and 70 kDa dextrans were successfully delivered to mouse brains, with decreasing doses and more heterogeneous distributions with increasing agent size. Minimal extravasation of endogenous albumin (66.5 kDa) was observed, while immunoglobulin (~ 150 kDa) and PEGylated liposomes (97.9 nm) were not detected. This study indicates that rapid short-pulses are versatile and, at an acoustic pressure of 0.35 MPa, can deliver therapeutics and imaging agents of sizes up to a hydrodynamic diameter between 8 nm (70 kDa dextran) and 11 nm (immunoglobulin). Increasing the acoustic pressure can extend the use of rapid short-pulses to deliver agents beyond this threshold, with little compromise on safety. This study demonstrates the potential for deliveries of higher-molecular-weight therapeutics and imaging agents using rapid short-pulses.
Collapse
Affiliation(s)
- William Lim Kee Chang
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2BP, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK
| | - Tiffany G Chan
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2BP, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK
| | - Federica Raguseo
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK
| | - Aishwarya Mishra
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SW1 7EH, UK
| | - Dani Chattenton
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2BP, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, London, SM2 5NG, UK
| | - Rafael T M de Rosales
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SW1 7EH, UK
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK
| | - Sophie V Morse
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2BP, UK.
| |
Collapse
|
183
|
Ou A, Wang Y, Zhang J, Huang Y. Living Cells and Cell-Derived Vesicles: A Trojan Horse Technique for Brain Delivery. Pharmaceutics 2023; 15:pharmaceutics15041257. [PMID: 37111742 PMCID: PMC10145830 DOI: 10.3390/pharmaceutics15041257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Brain diseases remain a significant global healthcare burden. Conventional pharmacological therapy for brain diseases encounters huge challenges because of the blood-brain barrier (BBB) limiting the delivery of therapeutics into the brain parenchyma. To address this issue, researchers have explored various types of drug delivery systems. Cells and cell derivatives have attracted increasing interest as "Trojan horse" delivery systems for brain diseases, owing to their superior biocompatibility, low immunogenicity, and BBB penetration properties. This review provided an overview of recent advancements in cell- and cell-derivative-based delivery systems for the diagnosis and treatment of brain diseases. Additionally, it discussed the challenges and potential solutions for clinical translation.
Collapse
Affiliation(s)
- Ante Ou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuewei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
184
|
Alsegiani AS, Shah ZA. Development and validation of LC-MS/MS method for determining the metabolic stability, pharmacokinetics, and dose proportionality of a novel anti-inflammatory cofilin inhibitor. J Pharm Biomed Anal 2023; 226:115258. [PMID: 36709658 PMCID: PMC9975030 DOI: 10.1016/j.jpba.2023.115258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
A novel small molecule cofilin inhibitor (SZ-3) has recently become the focus of investigation for targeting neuroinflammation in different neurodegenerative diseases. In the present study, the metabolic stability, blood-brain barrier (BBB) penetration, and tissue concentration of SZ-3 were evaluated to support our future studies. In silico drug metabolism prediction was investigated using the StarDrop WhichP450 module. LC-MS/MS method was developed and validated to quantify the SZ-3 for in-vitro and in-vivo studies. The in-vitro metabolic stability was performed using human liver microsomes (HLMs), and the in-vivo pharmacokinetics were investigated in mice after a single intraperitoneal (IP) injection or oral (P.O.) administration, followed by a collection of blood and brain samples at different time points. The dose-proportionality was also evaluated after a single IP injection of three ascending doses (5, 10, and 25 mg/kg). In-vitro results showed that SZ-3 has a moderate intrinsic clearance (Clint) value of 17.42 ml/min/mg with a half-life (t1/2) value of 39.77 mins, indicative of good bioavailability. In vivo study revealed that SZ-3 was rapidly absorbed, entered the brain, and yielded a good concentration of the unbound drug after IP and oral administration. However, the higher maximum concentration (Cmax) values of IP and P.O. (2244 ng/ml and 1069 ng/g, respectively) revealed that the IP administration led to higher blood and brain concentrations than the P.O. Furthermore, Cmax and area under the curve (AUC) of SZ-3 increased in a dose-proportional manner between the three ascending doses. These results will guide us in optimizing the dosing regimen for future SZ-3 pharmacological studies targeting neuroinflammation.
Collapse
Affiliation(s)
- Amsha S Alsegiani
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
185
|
Na Y, Zhang N, Zhong X, Gu J, Yan C, Yin S, Lei X, Zhao J, Geng F. Polylactic-co-glycolic acid-based nanoparticles modified with peptides and other linkers cross the blood-brain barrier for targeted drug delivery. Nanomedicine (Lond) 2023; 18:125-143. [PMID: 36916394 DOI: 10.2217/nnm-2022-0287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Because of the blood-brain barrier, only a limited fraction of drugs can penetrate the brain. As a result, there is a need to take larger doses of the drug, which may result in numerous undesirable side effects. Over the past few decades, a plethora of research has been conducted to address this issue. In recent years, the field of nanomedicine research has reported promising findings. Currently, numerous types of polylactic-co-glycolic acid-based drug-delivery systems are being studied, and great progress has been made in the modification of their surfaces with a variety of ligands. In this review, the authors highlight the preparation of polylactic-co-glycolic acid-based nanoparticles and single- and dual-targeted peptide modifications for site-specific drug delivery into the brain.
Collapse
Affiliation(s)
- Yue Na
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.,Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, 214071, China
| | - Xinyu Zhong
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Jinlian Gu
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Chang Yan
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Shun Yin
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Xia Lei
- Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, 214071, China
| | - Jihui Zhao
- College of Pharmacy, Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Fang Geng
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| |
Collapse
|
186
|
Expression analysis and targets prediction of microRNAs in OGD/R treated astrocyte-derived exosomes by smallRNA sequencing. Genomics 2023; 115:110594. [PMID: 36863417 DOI: 10.1016/j.ygeno.2023.110594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Astrocytes activate and crosstalk with neurons influencing inflammatory responses following ischemic stroke. The distribution, abundance, and activity of microRNAs in astrocytes-derived exosomes after ischemic stroke remains largely unknown. In this study, exosomes were extracted from primary cultured mouse astrocytes via ultracentrifugation, and exposed to oxygen glucose deprivation/re‑oxygenation injury to mimic experimental ischemic stroke. SmallRNAs from astrocyte-derived exosomes were sequenced, and differentially expressed microRNAs were randomly selected and verified by stem-loop real time quantitative polymerase chain reaction. We found that 176 microRNAs, including 148 known and 28 novel microRNAs, were differentially expressed in astrocyte-derived exosomes following oxygen glucose deprivation/re‑oxygenation injury. In gene ontology enrichment, Kyoto encyclopedia of genes and genomes pathway analyses, and microRNA target gene prediction analyses, these alteration in microRNAs were associated to a broad spectrum of physiological functions including signaling transduction, neuroprotection and stress responses. Our findings warrant further investigating of these differentially expressed microRNAs in human diseases particularly ischemic stroke.
Collapse
|
187
|
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR; Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR; Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| |
Collapse
|
188
|
Gastrointestinally absorbable lactoferrin-heparin conjugate with anti-angiogenic activity for treatment of brain tumor. J Control Release 2023; 355:730-744. [PMID: 36764526 DOI: 10.1016/j.jconrel.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Glioblastoma multiforme (GBM) is a central nervous system disease with poor prognosis. Curative treatments for GBM involve chemotherapy, radiotherapy, and surgical pathways. Recently, antiangiogenic therapy through medications has been tried to slow tumor growth, but the drugs can induce side effects. To overcome these limitations, we developed a new orally absorbable form of heparin that can attenuate angiogenic activity by binding to growth factors around the tumor tissue. We conjugated lactoferrin (Lf) to heparin because Lf can be orally absorbed, and it interacts with the lactoferrin receptor (Lf-R) expressed on the intestine, blood-brain barrier (BBB), and glioma tumor masses. We successfully conjugated Lf and heparin by amide bond formation, as evidenced by advanced physicochemical properties such as pharmacokinetics and stability in acidic condition. This new material inhibited angiogenesis in vitro without toxicity. In addition, Lf-heparin administered orally to GBM orthotopic mice was absorbed in the small intestine and delivered specifically to the brain tumor by receptor transcytosis (Lf-R). Lf-heparin further attenuated angiogenesis progression in GBM orthotopic mice. Based on these results, Lf-heparin shows potential as a new oral medication for treatment of glioblastoma.
Collapse
|
189
|
Ashique S, Afzal O, Yasmin S, Hussain A, Altamimi MA, Webster TJ, Altamimi ASA. Strategic nanocarriers to control neurodegenerative disorders: Concept, challenges, and future perspective. Int J Pharm 2023; 633:122614. [PMID: 36646255 DOI: 10.1016/j.ijpharm.2023.122614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Various neurodegenerative diseases (parkinson, huntington, alzheimer, and amyotrophic lateral sclerosis) are becoming serious global health challenges. Despite various treatment options, successful delivery and effective outcomes have been challenged with several physiological-anatomical barriers, formulation related issues, post-administration hurdles, regulatory constraints, physical hurdles, environmental issues, and safety concern. In the present review, we addressed a brief understanding of pathological and normal condition of blood brain barrier (BBB), rational for brain delivery using nanocarriers, major challenges, advantages of nanomedicine, critical aspects of nanomedicine to translate from bed to clinics, and strategic approaches for improved delivery across BBB. The review addressed various mechanistic perspective for delivery of drug loaded nanocarriers across BBB. Moreover, several reports have been published wherein phytomedicine, exosomes, magnetic nanopartilces, functionalized nanocarriers, cationic nanopartilces, and nano-phytomedicine were investigated for remarkable improvement in neurological disorders. These findings are informative for healthcare professionals, researchers, and scientists working in the domains. The successful application and convincing outcomes of nanomedicines were envisaged with clinical trials conducted on various drugs intended to control neurological disorders (NDs). Conclusively, the review addressed comprehensive findings on various aspects of drug loaded nanocarrier delivery across BBB, considerable risks, potential therapeutic benefits, clinical trial based outcomes, and recent advances followed by future perspectives.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut-250103, UP, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, King Khalid University, Abha 61441, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Engineering, Hebei University of Technology, Tianjin, China
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
190
|
Gagliardi M, Vincenzi A, Baroncelli L, Cecchini M. Stabilized Reversed Polymeric Micelles as Nanovector for Hydrophilic Compounds. Polymers (Basel) 2023; 15:946. [PMID: 36850229 PMCID: PMC9966941 DOI: 10.3390/polym15040946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Small hydrophilic drugs are widely used for systemic administration, but they suffer from poor absorption and fast clearance. Their nanoencapsulation can improve biodistribution, targeted delivery, and pharmaceutical efficacy. Hydrophilics are effectively encapsulated in compartmented particles, such as liposomes or extracellular vesicles, which are biocompatible but poorly customizable. Polymeric vectors can form compartmental structures, also being functionalizable. Here, we report a system composed of polymeric stabilized reversed micelles for hydrophilic drugs encapsulation. We optimized the preparation procedure, and calculated the critical micellar concentration. Then, we developed a strategy for stabilization that improves micelle stability upon dilution. We tested the drug loading and delivery capabilities with creatine as a drug molecule. Prepared stabilized reversed micelles had a size of around 130 nm and a negative z-potential around -16 mV, making them functional as a drug carrier. The creatine cargo increased micelle size and depended on the loading conditions. The higher amount of loaded creatine was around 60 μg/mg of particles. Delivery tests indicated full release within three days in micelles with the lower cargo, while higher loadings can provide a sustained release for longer times. Obtained results are interesting and encouraging to test the same system with different drug cargoes.
Collapse
Affiliation(s)
- Mariacristina Gagliardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Agnese Vincenzi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| |
Collapse
|
191
|
Kong C, Chang WS. Preclinical Research on Focused Ultrasound-Mediated Blood-Brain Barrier Opening for Neurological Disorders: A Review. Neurol Int 2023; 15:285-300. [PMID: 36810473 PMCID: PMC9944161 DOI: 10.3390/neurolint15010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Several therapeutic agents for neurological disorders are usually not delivered to the brain owing to the presence of the blood-brain barrier (BBB), a special structure present in the central nervous system (CNS). Focused ultrasound (FUS) combined with microbubbles can reversibly and temporarily open the BBB, enabling the application of various therapeutic agents in patients with neurological disorders. In the past 20 years, many preclinical studies on drug delivery through FUS-mediated BBB opening have been conducted, and the use of this method in clinical applications has recently gained popularity. As the clinical application of FUS-mediated BBB opening expands, it is crucial to understand the molecular and cellular effects of FUS-induced microenvironmental changes in the brain so that the efficacy of treatment can be ensured, and new treatment strategies established. This review describes the latest research trends in FUS-mediated BBB opening, including the biological effects and applications in representative neurological disorders, and suggests future directions.
Collapse
Affiliation(s)
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
192
|
Cell-Membrane-Coated Nanoparticles for Targeted Drug Delivery to the Brain for the Treatment of Neurological Diseases. Pharmaceutics 2023; 15:pharmaceutics15020621. [PMID: 36839943 PMCID: PMC9960717 DOI: 10.3390/pharmaceutics15020621] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Neurological diseases (NDs) are a significant cause of disability and death in the global population. However, effective treatments still need to be improved for most NDs. In recent years, cell-membrane-coated nanoparticles (CMCNPs) as drug-targeting delivery systems have become a research hotspot. Such a membrane-derived, nano drug-delivery system not only contributes to avoiding immune clearance but also endows nanoparticles (NPs) with various cellular and functional mimicries. This review article first provides an overview of the function and mechanism of single/hybrid cell-membrane-derived NPs. Then, we highlight the application and safety of CMCNPs in NDs. Finally, we discuss the challenges and opportunities in the field.
Collapse
|
193
|
An Update on Peripheral Blood Extracellular Vesicles as Biomarkers for Parkinson's Disease Diagnosis. Neuroscience 2023; 511:131-146. [PMID: 36435476 DOI: 10.1016/j.neuroscience.2022.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is the world's second primary neurodegenerative disease, and the diagnosis and treatment of PD have become mainstream research. Over the past decades, several studies have identified potential biomarkers for diagnosing PD. Among them, extracellular vesicles (EVs) can carry specific biomarkers reflecting the physiological and pathological state of the body. Due to the blood-brain barrier (BBB) limitation, peripheral blood is limited in diagnosing neurodegenerative diseases. With the increasing research on EVs, their ability to pass through BBB indicated that peripheral blood could depict disease status like cerebrospinal fluid (CSF). Peripheral blood is a clinically available sample and has recently been widely used by researchers in various studies. In this review, we summarized previous studies on PD diagnosis biomarkers in peripheral blood EVs and evaluated their diagnostic value. Some EV surface markers were also described, which can extract EVs from specific cell origins. In addition, the combination of several biomarkers demonstrated good diagnostic performance in PD diagnosis compared with a single biomarker, suggesting the focus of future research.
Collapse
|
194
|
Gugleva V, Andonova V. Drug delivery to the brain – lipid nanoparticles-based approach. PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e98838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The complex structure of the human brain defines it as one of the most inaccessible organs in terms of drug delivery. The blood-brain barrier (BBB) represents a microvascular network involved in transporting substances between the blood and the central nervous system (CNS) – enabling the entry of nutrients and simultaneously restricting the influx of pathogens and toxins. However, its role as a protective shield for CNS also restricts drug access to the brain. Since many drugs cannot cross the BBB due to unsuitable physicochemical characteristics (i.e., high molecular weight, aqueous solubility, etc.), different technological strategies have been developed to ensure sufficient drug bioavailability. Among these, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are promising approaches thanks to their lipid nature, facilitating their brain uptake, small sizes, and the possibilities for subsequent functionalization to achieve targeted delivery. The review focuses on applying SLNs and NLCs as nanocarriers for brain delivery, outlining the physiological factors of BBB and the physicochemical characteristics of nanocarriers influencing this process. Recent advances in this area have also been summarized.
Collapse
|
195
|
da Silva TN, de Lima EV, Barradas TN, Testa CG, Picciani PH, Figueiredo CP, do Carmo FA, Clarke JR. Nanosystems for gene therapy targeting brain damage caused by viral infections. Mater Today Bio 2023; 18:100525. [PMID: 36619201 PMCID: PMC9816812 DOI: 10.1016/j.mtbio.2022.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Several human pathogens can cause long-lasting neurological damage. Despite the increasing clinical knowledge about these conditions, most still lack efficient therapeutic interventions. Gene therapy (GT) approaches comprise strategies to modify or adjust the expression or function of a gene, thus providing therapy for human diseases. Since recombinant nucleic acids used in GT have physicochemical limitations and can fail to reach the desired tissue, viral and non-viral vectors are applied to mediate gene delivery. Although viral vectors are associated to high levels of transfection, non-viral vectors are safer and have been further explored. Different types of nanosystems consisting of lipids, polymeric and inorganic materials are applied as non-viral vectors. In this review, we discuss potential targets for GT intervention in order to prevent neurological damage associated to infectious diseases as well as the role of nanosized non-viral vectors as agents to help the selective delivery of these gene-modifying molecules. Application of non-viral vectors for delivery of GT effectors comprise a promising alternative to treat brain inflammation induced by viral infections.
Collapse
Affiliation(s)
| | - Emanuelle V. de Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Thaís Nogueira Barradas
- Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Carla G. Testa
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Paulo H.S. Picciani
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ, 21941-598, Brazil
| | - Claudia P. Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Flavia A. do Carmo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Corresponding author.
| | - Julia R. Clarke
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Corresponding author. Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
196
|
Stem Cell-derived Extracellular Vesicles: A Promising Nano Delivery Platform to the Brain? Stem Cell Rev Rep 2023; 19:285-308. [PMID: 36173500 DOI: 10.1007/s12015-022-10455-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
A very important cause of the frustration with drug therapy for central nervous system (CNS) diseases is the failure of drug delivery. The blood-brain barrier (BBB) prevents most therapeutic molecules from entering the brain while maintaining CNS homeostasis. Scientists are keen to develop new brain drug delivery systems to solve this dilemma. Extracellular vesicles (EVs), as a class of naturally derived nanoscale vesicles, have been extensively studied in drug delivery due to their superior properties. This review will briefly present current brain drug delivery strategies, including invasive and non-invasive techniques that target the brain, and the application of nanocarriers developed for brain drug delivery in recent years, especially EVs. The cellular origin of EVs affects the surface protein, size, yield, luminal composition, and other properties of EVs, which are also crucial in determining whether EVs are useful as drug carriers. Stem cell-derived EVs, which inherit the properties of parental cells and avoid the drawbacks of cell therapy, have always been favored by researchers. Thus, in this review, we will focus on the application of stem cell-derived EVs for drug delivery in the CNS. Various nucleic acids, proteins, and small-molecule drugs are loaded into EVs with or without modification and undergo targeted delivery to the brain to achieve their therapeutic effects. In addition, the challenges facing the clinical application of EVs as drug carriers will also be discussed. The directions of future efforts may be to improve drug loading efficiency and precise targeting.
Collapse
|
197
|
Lai MC, Liu WY, Liou SS, Liu IM. Hispidin in the Medicinal Fungus Protects Dopaminergic Neurons from JNK Activation-Regulated Mitochondrial-Dependent Apoptosis in an MPP +-Induced In Vitro Model of Parkinson's Disease. Nutrients 2023; 15:nu15030549. [PMID: 36771255 PMCID: PMC9920671 DOI: 10.3390/nu15030549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Degenerative diseases of the brain include Parkinson's disease (PD), which is associated with moveable signs and is still incurable. Hispidin belongs to polyphenol and originates primarily from the medicinal fungi Inonotus and Phellinus, with distinct biological effects. In the study, MES23.5 cells were induced by 1-methyl-4-phenylpyridinium (MPP+) to build a cell model of PD in order to detect the protective effect of hispdin and to specify the underlying mechanism. Pretreatment of MES23.5 cells with 1 h of hispdin at appropriate concentrations, followed by incubation of 24 h with 2 μmol/L MPP+ to induce cell damage. MPP+ resulted in reactive oxygen species production that diminished cell viability and dopamine content. Mitochondrial dysfunction in MS23.5 cells exposed to MPP+ was observed, indicated by inhibition of activity in the mitochondrial respiratory chain complex I, the collapse of potential in mitochondrial transmembrane, and the liberation of mitochondrial cytochrome c. Enabling C-Jun N-terminal kinase (JNK), reducing Bcl-2/Bax, and enhancing caspase-9/caspase-3/PARP cleavage were also seen by MPP+ induction associated with increased DNA fragmentation. All of the events mentioned above associated with MPP+-mediated mitochondrial-dependent caspases cascades were attenuated under cells pretreatment with hispidin (20 µmol/L); similar results were obtained during cell pretreatment with pan-JNK inhibitor JNK-IN-8 (1 µmol/L) or JNK3 inhibitor SR3576 (25 µmol/L). The findings show that hispidin has neuroprotection against MPP+-induced mitochondrial dysfunction and cellular apoptosis and suggest that hispidin can be seen as an assist in preventing PD.
Collapse
Affiliation(s)
- Mei-Chou Lai
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan
| | - Wayne-Young Liu
- Department of Urology, Jen-Ai Hospital, Taichung 41265, Taiwan
- Center for Basic Medical Science, Collage of Health Science, Central Taiwan University of Science and Technology, Taichung City 406053, Taiwan
| | - Shorong-Shii Liou
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan
| | - I-Min Liu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan
- Correspondence: ; Tel.: +886-8-7624002
| |
Collapse
|
198
|
Jo S, Sun IC, Ahn CH, Lee S, Kim K. Recent Trend of Ultrasound-Mediated Nanoparticle Delivery for Brain Imaging and Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:120-137. [PMID: 35184560 DOI: 10.1021/acsami.1c22803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In view of the fact that the blood-brain barrier (BBB) prevents the transport of imaging probes and therapeutic agents to the brain and thus hinders the diagnosis and treatment of brain-related disorders, methods of circumventing this problem (e.g., ultrasound-mediated nanoparticle delivery) have drawn much attention. Among the related techniques, focused ultrasound (FUS) is a favorite means of enhancing drug delivery via transient BBB opening. Photoacoustic brain imaging relies on the conversion of light into heat and the detection of ultrasound signals from contrast agents, offering the benefits of high resolution and large penetration depth. The extensive versatility and adjustable physicochemical properties of nanoparticles make them promising therapeutic agents and imaging probes, allowing for successful brain imaging and treatment through the combined action of ultrasound and nanoparticulate agents. FUS-induced BBB opening enables nanoparticle-based drug delivery systems to efficiently access the brain. Moreover, photoacoustic brain imaging using nanoparticle-based contrast agents effectively visualizes brain morphologies or diseases. Herein, we review the progress in the simultaneous use of nanoparticles and ultrasound in brain research, revealing the potential of ultrasound-mediated nanoparticle delivery for the effective diagnosis and treatment of brain disorders.
Collapse
Affiliation(s)
- SeongHoon Jo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Cheol-Hee Ahn
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Republic of Korea
| | - Sangmin Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul02447, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
199
|
Lin MS, Wang YC, Chen WJ, Kung WM. Impact of gut-brain interaction in emerging neurological disorders. World J Clin Cases 2023; 11:1-6. [PMID: 36687174 PMCID: PMC9846976 DOI: 10.12998/wjcc.v11.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
The central nervous system (CNS) is a reservoir of immune privilege. Specialized immune glial cells are responsible for maintenance and defense against foreign invaders. The blood-brain barrier (BBB) prevents detrimental pathogens and potentially overreactive immune cells from entering the periphery. When the double-edged neuroinflammatory response is overloaded, it no longer has the protective function of promoting neuroregeneration. Notably, microbiota and its derivatives may emerge as pathogen-associated molecular patterns of brain pathology, causing microbiome-gut-brain axis dysregulation from the bottom-up. When dysbiosis of the gastrointestinal flora leads to subsequent alterations in BBB permeability, peripheral immune cells are recruited to the brain. This results in amplification of neuroinflammatory circuits in the brain, which eventually leads to specific neurological disorders. Aggressive treatment strategies for gastrointestinal disorders may protect against specific immune responses to gastrointestinal disorders, which can lead to potential protective effects in the CNS. Accordingly, this study investigated the mutual effects of microbiota and the gut-brain axis, which may provide targeting strategies for future disease treatment.
Collapse
Affiliation(s)
- Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
| | - Yao-Chin Wang
- Department of Emergency, Min-Sheng General Hospital, Taoyuan 33044, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
| | - Woon-Man Kung
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
| |
Collapse
|
200
|
Georgiou C, Cai Z, Alsaden N, Cho H, Behboudi M, Winnik MA, Rutka JT, Reilly RM. Treatment of Orthotopic U251 Human Glioblastoma Multiforme Tumors in NRG Mice by Convection-Enhanced Delivery of Gold Nanoparticles Labeled with the β-Particle-Emitting Radionuclide, 177Lu. Mol Pharm 2023; 20:582-592. [PMID: 36516432 PMCID: PMC9812026 DOI: 10.1021/acs.molpharmaceut.2c00815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we investigated convection-enhanced delivery (CED) of 23 ± 3 nm gold nanoparticles (AuNPs) labeled with the β-particle-emitting radionuclide 177Lu (177Lu-AuNPs) for treatment of orthotopic U251-Luc human glioblastoma multiforme (GBM) tumors in NRG mice. The cytotoxicity in vitro of 177Lu-AuNPs (0.0-2.0 MBq, 4 × 1011 AuNPs) on U251-Luc cells was also studied by a clonogenic survival assay, and DNA double-strand breaks (DSBs) caused by β-particle emissions of 177Lu were measured by confocal immunofluorescence microscopy for γH2AX. NRG mice with U251-Luc tumors in the right cerebral hemisphere of the brain were treated by CED of 1.1 ± 0.2 MBq of 177Lu-AuNPs (4 × 1011 AuNPs). Control mice received unlabeled AuNPs or normal saline. Tumor retention of 177Lu-AuNPs was assessed by single-photon emission computed tomography/computed tomography (SPECT/CT) imaging and biodistribution studies. Radiation doses were estimated for the tumor, brain, and other organs. The effectiveness for treating GBM tumors was determined by bioluminescence imaging (BLI) and T2-weighted magnetic resonance imaging (MRI) and by Kaplan-Meier median survival. Normal tissue toxicity was assessed by monitoring body weight and hematology and blood biochemistry analyses at 14 d post-treatment. 177Lu-AuNPs (2.0 MBq, 4 × 1011 AuNPs) decreased the clonogenic survival of U251-Luc cells to 0.005 ± 0.002 and increased DNA DSBs by 14.3-fold compared to cells treated with unlabeled AuNPs or normal saline. A high proportion of 177Lu-AuNPs was retained in the U251-Luc tumor in NRG mice up to 21 d with minimal re-distribution to the brain or other organs. The radiation dose in the tumor was high (599 Gy). The dose in the normal right cerebral hemisphere of the brain excluding the tumor was 93-fold lower (6.4 Gy), and 2000-3000-fold lower doses were calculated for the contralateral left cerebral hemisphere (0.3 Gy) or cerebellum (0.2 Gy). The doses in peripheral organs were <0.1 Gy. BLI revealed almost complete tumor growth arrest in mice treated with 177Lu-AuNPs, while tumors grew rapidly in control mice. MRI at 28 d post-treatment and histological staining showed no visible tumor in mice treated with 177Lu-AuNPs but large GBM tumors in control mice. All control mice reached a humane endpoint requiring sacrifice within 39 d (normal saline) or 45 d post-treatment (unlabeled AuNPs), while 5/8 mice treated with 177Lu-AuNPs survived up to 150 d. No normal tissue toxicity was observed in mice treated with 177Lu-AuNPs. We conclude that CED of 177Lu-AuNPs was highly effective for treating U251-Luc human GBM tumors in the brain in NRG mice at amounts that were non-toxic to normal tissues. These 177Lu-AuNPs administered by CED hold promise for treating patients with GBM to prevent recurrence and improve long-term outcome.
Collapse
Affiliation(s)
- Constantine
J. Georgiou
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, OntarioM5S 3M2, Canada
| | - Zhongli Cai
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, OntarioM5S 3M2, Canada
| | - Noor Alsaden
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, OntarioM5S 3M2, Canada
| | - Hyungjun Cho
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Minou Behboudi
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, OntarioM5S 3M2, Canada
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - James T. Rutka
- Division
of Neurosurgery, The Hospital for Sick Children, 555 University Avenue, Toronto, OntarioM5G 1X8, Canada,Division
of Neurosurgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Toronto, OntarioM5T 1P5, Canada
| | - Raymond M. Reilly
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, OntarioM5S 3M2, Canada,Department
of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, Toronto, OntarioM5S 1A8, Canada,Joint Department
of Medical Imaging and Princess Margaret Cancer Centre, University Health Network, Toronto, OntarioM5G 2C1, Canada,
| |
Collapse
|