2101
|
Hyduk SJ, Cybulsky MI. Alpha 4 integrin signaling activates phosphatidylinositol 3-kinase and stimulates T cell adhesion to intercellular adhesion molecule-1 to a similar extent as CD3, but induces a distinct rearrangement of the actin cytoskeleton. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:696-704. [PMID: 11777963 DOI: 10.4049/jimmunol.168.2.696] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dynamic regulation of beta(2) integrin-dependent adhesion is critical for a wide array of T cell functions. We previously showed that binding of high-affinity alpha(4)beta(1) integrins to VCAM-1 strengthens alpha(L)beta(2) integrin-mediated adhesion to ICAM-1. In this study, we compared beta(2) integrin-mediated adhesion of T cells to ICAM-1 under two different functional contexts: alpha(4) integrin signaling during emigration from blood into tissues and CD3 signaling during adhesion to APCs and target cells. Cross-linking either alpha(4) integrin or CD3 on Jurkat T cells induced adhesion to ICAM-1 of comparable strength. Adhesion was dependent on phosphatidylinositol (PI) 3-kinase but not p44/42 mitogen-activated protein kinase (extracellular regulated kinase 1/2), because it was inhibited by wortmannin and LY294002 but not U0126. These data suggest that PI 3-kinase is a ubiquitous regulator of beta(2) integrin-mediated adhesion. A distinct morphological change consisting of Jurkat cell spreading and extension of filopodia was induced by alpha(4) integrin signaling. In contrast, CD3 induced radial rings of cortical actin polymerization. Inhibitors of PI 3-kinase and extracellular regulated kinase 1/2 did not affect alpha(4) integrin-induced rearrangement of the actin cytoskeleton, but treatment with ionomycin, a Ca(2+) ionophore, modulated cell morphology by reducing filopodia and promoting lamellipodia formation. Qualitatively similar morphological and adhesive changes to those observed with Jurkat cells were observed following alpha(4) integrin or CD3 stimulation of human peripheral blood T cells.
Collapse
Affiliation(s)
- Sharon J Hyduk
- Toronto General Research Institute and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
2102
|
Dustin ML. Membrane domains and the immunological synapse: keeping T cells resting and ready. J Clin Invest 2002. [DOI: 10.1172/jci0214842] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
2103
|
Zhu C, Bao G, Wang N. Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng 2002; 2:189-226. [PMID: 11701511 DOI: 10.1146/annurev.bioeng.2.1.189] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As the basic unit of life, the cell is a biologically complex system, the understanding of which requires a combination of various approaches including biomechanics. With recent progress in cell and molecular biology, the field of cell mechanics has grown rapidly over the last few years. This review synthesizes some of these recent developments to foster new concepts and approaches, and it emphasizes molecular-level understanding. The focuses are on the common themes and interconnections in three related areas: (a) the responses of cells to mechanical forces, (b) the mechanics and kinetics of cell adhesion, and (c) the deformation of biomolecules. Specific examples are also given to illustrate the quantitative modeling used in analyzing biological processes and physiological functions.
Collapse
Affiliation(s)
- C Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA.
| | | | | |
Collapse
|
2104
|
Dustin ML. Membrane domains and the immunological synapse: keeping T cells resting and ready. J Clin Invest 2002; 109:155-60. [PMID: 11805125 PMCID: PMC150844 DOI: 10.1172/jci14842] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Michael L Dustin
- Department of Pathology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA.
| |
Collapse
|
2105
|
Abstract
Efficient unidirectional killing by cytotoxic T lymphocytes (CTL) requires translocation of the microtubule organizing center (MTOC) to the target cell contact site. Here we utilize modulated polarization microscopy and computerized 3D reconstruction of tubulin and LFA-1 immunofluorescence images to investigate how this is accomplished. The results show that the MTOC is drawn vectorially to the contact site by a microtubule sliding mechanism. Once the MTOC arrives at the contact site, it oscillates laterally. Microtubules loop through and anchor to a ring-shaped zone (pSMAC) defined by the dense clustering of LFA-1 at the target contact site. Microtubules that run straight between the MTOC and pSMAC and then turn sharply may indicate the action of a microtubule motor such as dynein.
Collapse
Affiliation(s)
- Jeffrey R Kuhn
- Division of Molecular Cell and Developmental Biology, 141 Patterson Labs, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
2106
|
Sallusto F, Lanzavecchia A. The instructive role of dendritic cells on T-cell responses. ARTHRITIS RESEARCH 2002; 4 Suppl 3:S127-32. [PMID: 12110131 PMCID: PMC3240143 DOI: 10.1186/ar567] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Accepted: 03/04/2002] [Indexed: 12/11/2022]
Abstract
Immune responses are initiated in the T-cell areas of secondary lymphoid organs where naïve T lymphocytes encounter dendritic cells (DCs) that present antigens taken up in peripheral tissues. DCs represent the interface between the universe of foreign and tissue-specific antigens and T lymphocytes, and they are the key players in the regulation of cell-mediated immunity. We discuss how the nature of the DC maturation stimuli and the density and quality of DCs present in the T-cell areas of secondary lymphoid organs determine the magnitude and class of the T-cell response.
Collapse
|
2107
|
Tanaka Y, Altman A. T cell signaling: Protein kinase Cθ the immunological synapse and characterization of SLAT a novel T helper 2-specific adapter protein. Allergol Int 2002. [DOI: 10.1046/j.1440-1592.2002.00261.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
2108
|
Wülfing C, Sumen C, Sjaastad MD, Wu LC, Dustin ML, Davis MM. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat Immunol 2002; 3:42-7. [PMID: 11731799 DOI: 10.1038/ni741] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To initiate an immune response, key receptor-ligand pairs must cluster in "immune synapses" at the T cell-antigen-presenting cell (APC) interface. We visualized the accumulation of a major histocompatibility complex (MHC) class II molecule, I-E(k), at a T cell-B cell interface and found it was dependent on both antigen recognition and costimulation. This suggests that costimulation-driven active transport of T cell surface molecules helps to drive immunological synapse formation. Although only agonist peptide-MHC class II (agonist pMHC class II) complexes can initiate T cell activation, endogenous pMHC class II complexes also appeared to accumulate. To test this directly, we labeled a "null" pMHC class II complex and found that, although it lacked major TCR contact residues, it could be driven into the synapse in a TCR-dependent manner. Thus, low-affinity ligands can contribute to synapse formation and T cell signaling.
Collapse
MESH Headings
- Animals
- Autoantigens/immunology
- B-Lymphocytes/immunology
- CD28 Antigens/immunology
- Calcium Signaling
- Cell Communication/immunology
- Cell Polarity
- Cells, Cultured
- Genes, MHC Class II
- Genes, Reporter
- Green Fluorescent Proteins
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Imaging, Three-Dimensional
- Immunologic Capping
- Isoantigens/immunology
- Ligands
- Luminescent Proteins/analysis
- Luminescent Proteins/genetics
- Lymphocyte Activation/immunology
- Lymphocyte Function-Associated Antigen-1/immunology
- Macromolecular Substances
- Membrane Proteins/metabolism
- Mice
- Microscopy, Fluorescence
- Microscopy, Video
- Models, Immunological
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Transport
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins/analysis
- Recombinant Fusion Proteins/genetics
- Self Tolerance/immunology
- Transfection
Collapse
Affiliation(s)
- Christoph Wülfing
- The Howard Hughes Medical Institute and The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
2109
|
Egen JG, Allison JP. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 2002; 16:23-35. [PMID: 11825563 DOI: 10.1016/s1074-7613(01)00259-x] [Citation(s) in RCA: 381] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CD28 and CTLA-4 engagement with B7 expressed by APCs generates critical regulatory signals for T cell activation. CD28 is expressed on the T cell surface and enhances T cell expansion, while CTLA-4 localizes primarily to an intracellular compartment and inhibits T cell proliferation. We demonstrate that CTLA-4 has several unique trafficking properties that may regulate its ability to attenuate a T cell response. Importantly, accumulation of CTLA-4 at the immunological synapse is proportional to the strength of the TCR signal, suggesting that cells receiving stronger stimuli are more susceptible to CTLA-4-mediated inhibition. This may represent a novel feedback control mechanism in which a stimulatory signal regulates the recruitment of an inhibitory receptor to a functionally relevant site on the cell surface.
Collapse
Affiliation(s)
- Jackson G Egen
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
2110
|
Nambiar MP, Enyedy EJ, Fisher CU, Krishnan S, Warke VG, Gilliland WR, Oglesby RJ, Tsokos GC. Abnormal expression of various molecular forms and distribution of T cell receptor zeta chain in patients with systemic lupus erythematosus. ARTHRITIS AND RHEUMATISM 2002; 46:163-74. [PMID: 11817588 DOI: 10.1002/1529-0131(200201)46:1<163::aid-art10065>3.0.co;2-j] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE T cells from the majority of patients with systemic lupus erythematosus (SLE) display antigen receptor-mediated signaling aberrations associated with defective T cell receptor (TCR) zeta chain expression. The TCR zeta chain, a critical signaling molecule, exists in multiple molecular forms and membrane fractions with distinct functions in antigen-mediated signaling processes. This study was undertaken to investigate the complete spectrum of expression of the different forms and distribution of the TCR zeta chain in SLE T cells. METHODS T cells were isolated from 48 SLE patients and 21 healthy subjects. The expression of various forms of the TCR zeta chain was investigated by immunoblotting with specific antibodies. The lipid raft-associated form of the zeta chain was determined by quantitating the solubilized zeta chain after disruption of the lipid rafts by cholesterol depletion using methyl-betacyclodextrin. The distribution of the zeta chain was investigated by fluorescence microscopy. RESULTS The phosphorylated 21- and 23-kd forms and the detergent-insoluble membrane-associated form of the TCR zeta chain and alternatively spliced zeta chain were significantly decreased in SLE T cells. In contrast, major ubiquitinated forms of the zeta chain were increased in these cells. We also identified up-regulation of a novel 14-kd form of the zeta chain in SLE T cells. Resting SLE T cell membranes had an increased percentage of the residual membrane-bound zeta chain in the lipid rafts. Fluorescence microscopy findings indicated that the residual zeta chain is more clustered on the cell membranes of SLE T cells. CONCLUSION These results suggest that, in addition to the 16-kd form, expression of other molecular forms and fractions of the TCR zeta chain as well as its membrane distribution are abnormal in SLE T cells. Increased lipid raft association and surface clustering of the zeta chain may explain the molecular mechanisms underlying the signaling abnormalities in these cells.
Collapse
|
2111
|
|
2112
|
Abstract
Dendritic cells (DCs) are bone marrow-derived cells of both lymphoid and myeloid stem cell origin that populate all lymphoid organs including the thymus, spleen, and lymph nodes, as well as nearly all nonlymphoid tissues and organs. Although DCs are a moderately diverse set of cells, they all have potent antigen-presenting capacity for stimulating naive, memory, and effector T cells. DCs are members of the innate immune system in that they can respond to dangers in the host environment by immediately generating protective cytokines. Most important, immature DCs respond to danger signals in the microenvironment by maturing, i.e., differentiating, and acquiring the capacity to direct the development of primary immune responses appropriate to the type of danger perceived. The powerful adjuvant activity that DCs possess in stimulating specific CD4 and CD8 T cell responses has made them targets in vaccine development strategies for the prevention and treatment of infections, allograft reactions, allergic and autoimmune diseases, and cancer. This review addresses the origins and migration of DCs to their sites of activity, their basic biology as antigen-presenting cells, their roles in important human diseases and, finally, selected strategies being pursued to harness their potent antigen-stimulating activity.
Collapse
Affiliation(s)
- Mary F Lipscomb
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131-5301, USA.
| | | |
Collapse
|
2113
|
Rengarajan J, Tang B, Glimcher LH. NFATc2 and NFATc3 regulate T(H)2 differentiation and modulate TCR-responsiveness of naïve T(H)cells. Nat Immunol 2002; 3:48-54. [PMID: 11740499 DOI: 10.1038/ni744] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The NFAT family of transcription factors are key regulators of inducible gene expression in the immune system. We examined the function of two NFAT proteins after naïve T helper (T(H)) cell activation. We found that naïve T(H) precursors that are doubly deficient in NFATc2 and NFATc3 intrinsically differentiate into TH(2)-secreting cells, even in the absence of interleukin 4 (IL-4) production. We also found that lack of NFATc2 and NFATc3 obviates the necessity for engagement of CD28 on naïve cells and controls the time required to reach the first cell division upon activation. These results demonstrate a key role for NFATc2 and NFATc3 in modulating T cell receptor responsiveness and regulating subsequent cell division and T(H)2 differentiation.
Collapse
Affiliation(s)
- Jyothi Rengarajan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Ave., FXB-2, Boston, MA 02115-6017, USA
| | | | | |
Collapse
|
2114
|
Dustin ML. The immunological synapse. ARTHRITIS RESEARCH 2002; 4 Suppl 3:S119-25. [PMID: 12110130 PMCID: PMC3240135 DOI: 10.1186/ar559] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Accepted: 12/11/2001] [Indexed: 01/04/2023]
Abstract
T-cell activation requires interaction of T-cell antigen receptors with proteins of the major histocompatibility complex (antigen). This interaction takes place in a specialized cell-cell junction referred to as an immunological synapse. The immunological synapse contains at least two functional domains: a central cluster of engaged antigen receptors and a surrounding ring of adhesion molecules. The segregation of the T-cell antigen receptor (TCR) and adhesion molecules is based on size, with the TCR interaction spanning 15 nm and the lymphocyte-function-associated antigen-1 (LFA-1) interaction spanning 30-40 nm between the two cells. Therefore, the synapse is not an empty gap, but a space populated by both adhesion and signaling molecules. This chapter considers four aspects of the immunological synapse: the role of migration and stop signals, the role of the cytoskeleton, the role of self-antigenic complexes, and the role of second signals.
Collapse
Affiliation(s)
- Michael L Dustin
- Department of Pathology, New York University School of Medicine, Skirball Institute for Biomolecular Medicine, New York 10016, USA.
| |
Collapse
|
2115
|
Andersen PS, Menné C, Mariuzza RA, Geisler C, Karjalainen K. A response calculus for immobilized T cell receptor ligands. J Biol Chem 2001; 276:49125-32. [PMID: 11592972 DOI: 10.1074/jbc.m109396200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affinity determine the level of T cell activation. When fitted to T cell responses against purified ligands immobilized on plastic surfaces, the 2D-affinity model adequately simulated changes in cellular activation as a result of varying ligand affinity and ligand density. These observations further demonstrated the importance of receptor cross-linking density in determining TCR signaling. Moreover, it was found that the functional two-dimensional affinity of TCR ligands was affected by the chemical composition of the ligand-presenting surface. This makes it possible that cell-bound TCR ligands, despite their low affinity in solution, are of optimal two-dimensional affinity thereby allowing effective TCR binding under physiological conditions, i.e. at low ligand densities in cellular interfaces.
Collapse
Affiliation(s)
- P S Andersen
- Institute for Medical Microbiology and Immunology, University of Copenhagen, The Panum Institute, Bldg. 24.2, Blegdamsvej 3C, Copenhagen DK-2200, Denmark.
| | | | | | | | | |
Collapse
|
2116
|
Harris TJ, Ravandi A, Siu CH. Assembly of glycoprotein-80 adhesion complexes in Dictyostelium. Receptor compartmentalization and oligomerization in membrane rafts. J Biol Chem 2001; 276:48764-74. [PMID: 11604403 DOI: 10.1074/jbc.m108030200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phospholipid-anchored membrane glycoprotein (gp)-80 mediates cell-cell adhesion through a homophilic trans-interaction mechanism during Dictyostelium development and is enriched in a Triton X-100-insoluble floating fraction. To elucidate how gp80 adhesion complexes assemble in the plasma membrane, gp80-gp80 and gp80-raft interactions were investigated. A low density raft-like membrane fraction was isolated using a detergent-free method. It was enriched in sterols, the phospholipid-anchored proteins gp80, gp138, and ponticulin, as well as DdCD36 and actin, corresponding to components found in the Triton X-100-insoluble floating fraction. Chemical cross-linking revealed that gp80 oligomers were enriched in the raft-like membrane fraction, implicating stable oligomer-raft interactions. However, gp80 oligomers resisted sterol sequestration and were partially dissociated with Triton X-100, suggesting that compartmentalization in rafts was not solely responsible for their formation. The trans-dimer known to mediate adhesion was identified, but cis-oligomerization predominated and displayed greater accumulation during development. In fact, oligomerization was dependent on the level of gp80 expression and occurred among isolated gp80 extracellular domains, indicating that it was mediated by direct gp80-gp80 interactions. Rafts existed in gp80-null cells and such pre-existent membrane domains may provide optimal microenvironments for gp80 cis-oligomerization and the assembly of adhesion complexes.
Collapse
Affiliation(s)
- T J Harris
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | |
Collapse
|
2117
|
Ohnuma K, Munakata Y, Ishii T, Iwata S, Kobayashi S, Hosono O, Kawasaki H, Dang NH, Morimoto C. Soluble CD26/dipeptidyl peptidase IV induces T cell proliferation through CD86 up-regulation on APCs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6745-55. [PMID: 11739489 DOI: 10.4049/jimmunol.167.12.6745] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD26 is a T cell costimulatory molecule with dipeptidyl peptidase IV enzyme activity in its extracellular region. We have previously reported that the addition of soluble CD26 (sCD26) resulted in enhanced proliferation of peripheral blood T lymphocytes induced by the recall Ag, tetanus toxoid (TT). However, the mechanism involved in this immune enhancement has not yet been elucidated. In this paper, we demonstrate that the enhancing effect of sCD26 on TT-induced T cell proliferation occurred in the early stages of immune response. The cells directly affected by exogenously added sCD26 are the CD14-positive monocytes in the peripheral blood. Mannose-6 phosphate interfered with the uptake of sCD26 into monocytes, suggesting that mannose-6 phosphate/insulin-like growth factor II receptor plays a role in the transportation of sCD26 into monocytes. When sCD26 was added after Ag presentation had taken place, enhancement in TT-induced T cell proliferation was not observed. In addition, enhancement of TT-mediated T cell proliferation by sCD26 does not result from trimming of the MHC-bound peptide on the surface of monocytes. Importantly, we also showed that exogenously added sCD26 up-regulated the expression of the costimulatory molecule CD86 on monocytes through its dipeptidyl peptidase IV activity, and that this increased expression of CD86 was observed at both protein and mRNA level. Therefore, our findings suggest that sCD26 enhances T cell immune response to recall Ag via its direct effect on APCs.
Collapse
Affiliation(s)
- K Ohnuma
- Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2118
|
Zaffran Y, Destaing O, Roux A, Ory S, Nheu T, Jurdic P, Rabourdin-Combe C, Astier AL. CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac, and extracellular signal-regulated kinase mitogen-activated protein kinase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6780-5. [PMID: 11739493 DOI: 10.4049/jimmunol.167.12.6780] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Efficient T cell activation requires at least two signals, one mediated by the engagement of the TCR-CD3 complex and another one mediated by a costimulatory molecule. We recently showed that CD46, a complement regulatory receptor for C3b as well as a receptor for several pathogens, could act as a potent costimulatory molecule for human T cells, highly promoting T cell proliferation. Indeed, we show in this study that CD46/CD3 costimulation induces a synergistic activation of extracellular signal-related kinase mitogen-activated protein kinase. Furthermore, whereas T lymphocytes primarily circulate within the bloodstream, activation may induce their migration toward secondary lymphoid organs or other tissues to encounter APCs or target cells. In this study, we show that CD46/CD3 costimulation also induces drastic morphological changes of primary human T cells, as well as actin relocalization. Moreover, we show that the GTP/GDP exchange factor Vav is phosphorylated upon CD46 stimulation alone, and that CD46/CD3 costimulation induces a synergistic increase of Vav phosphorylation. These results prompted us to investigate whether CD46/CD3 costimulation induced the activation of GTPases from the Rho family. Indeed, we report that the small GTPase Rac is also activated upon CD46/CD3 costimulation, whereas no change of Rho and Cdc42 activity could be detected. Therefore, CD46 costimulation profoundly affects T cell behavior, and these results provide important data concerning the biology of primary human T cells.
Collapse
Affiliation(s)
- Y Zaffran
- Institut National de la Santé et de la Recherche Médicale Unité 503, Centre Européen de Recherche en Virologie et Immunologie, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
2119
|
Buslepp J, Zhao R, Donnini D, Loftus D, Saad M, Appella E, Collins EJ. T cell activity correlates with oligomeric peptide-major histocompatibility complex binding on T cell surface. J Biol Chem 2001; 276:47320-8. [PMID: 11584024 DOI: 10.1074/jbc.m109231200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recognition of virally infected cells by CD8+ T cells requires differentiation between self and nonself peptide-class I major histocompatibility complexes (pMHC). Recognition of foreign pMHC by host T cells is a major factor in the rejection of transplanted organs from the same species (allotransplant) or different species (xenotransplant). AHIII12.2 is a murine T cell clone that recognizes the xenogeneic (human) class I MHC HLA-A2.1 molecule (A2) and the syngeneic murine class I MHC H-2 D(b) molecule (D(b)). Recognition of both A2 and D(b) are peptide-dependent, and the sequences of the peptides recognized have been determined. Alterations in the antigenic peptides bound to A2 cause large changes in AHIII12.2 T cell responsiveness. Crystal structures of three representative peptides (agonist, null, and antagonist) bound to A2 partially explain the changes in AHIII12.2 responsiveness. Using class I pMHC octamers, a strong correlation is seen between T cell activity and the affinity of pMHC complexes for the T cell receptor. However, contrary to previous studies, we see similar half-lives for the pMHC multimers bound to the AHIII12.2 cell surface.
Collapse
Affiliation(s)
- J Buslepp
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
2120
|
Wong AP, Groves JT. Topographical imaging of an intermembrane junction by combined fluorescence interference and energy transfer microscopies. J Am Chem Soc 2001; 123:12414-5. [PMID: 11734045 DOI: 10.1021/ja016677j] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A P Wong
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
2121
|
Fassett MS, Davis DM, Valter MM, Cohen GB, Strominger JL. Signaling at the inhibitory natural killer cell immune synapse regulates lipid raft polarization but not class I MHC clustering. Proc Natl Acad Sci U S A 2001; 98:14547-52. [PMID: 11724921 PMCID: PMC64719 DOI: 10.1073/pnas.211563598] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2001] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cell cytotoxicity is determined by a balance of positive and negative signals. Negative signals are transmitted by NK inhibitory receptors (killer immunoglobulin-like receptors, KIR) at the site of membrane apposition between an NK cell and a target cell, where inhibitory receptors become clustered with class I MHC ligands in an organized structure known as an inhibitory NK immune synapse. Immune synapse formation in NK cells is poorly understood. Because signaling by NK inhibitory receptors could be involved in this process, the human NK tumor line YTS was transfected with signal-competent and signal-incompetent KIR2DL1. The latter were generated by truncating the KIR2DL1 cytoplasmic tail or by introducing mutations in the immunoreceptor tyrosine-based inhibition motifs. The KIR2DL1 mutants retained their ability to cluster class I MHC ligands on NK cell interaction with appropriate target cells. Therefore, receptor-ligand clustering at the inhibitory NK immune synapse occurs independently of KIR2DL1 signal transduction. However, parallel examination of NK cell membrane lipid rafts revealed that KIR2DL1 signaling is critical for blocking lipid raft polarization and NK cell cytotoxicity. Moreover, raft polarization was inhibited by reagents that disrupt microtubules and actin filaments, whereas synapse formation was not. Thus, NK lipid raft polarization and inhibitory NK immune synapse formation occur by fundamentally distinct mechanisms.
Collapse
Affiliation(s)
- M S Fassett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
2122
|
Bromley SK, Iaboni A, Davis SJ, Whitty A, Green JM, Shaw AS, Weiss A, Dustin ML. The immunological synapse and CD28-CD80 interactions. Nat Immunol 2001; 2:1159-66. [PMID: 11713465 DOI: 10.1038/ni737] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
According to the two-signal model of T cell activation, costimulatory molecules augment T cell receptor (TCR) signaling, whereas adhesion molecules enhance TCR-MHC-peptide recognition. The structure and binding properties of CD28 imply that it may perform both functions, blurring the distinction between adhesion and costimulatory molecules. Our results show that CD28 on naïve T cells does not support adhesion and has little or no capacity for directly enhancing TCR-MHC-peptide interactions. Instead of being dependent on costimulatory signaling, we propose that a key function of the immunological synapse is to generate a cellular microenvironment that favors the interactions of potent secondary signaling molecules, such as CD28.
Collapse
Affiliation(s)
- S K Bromley
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
2123
|
Champagne P, Dumont AR, Sékaly RP. Learning to remember: generation and maintenance of T-cell memory. DNA Cell Biol 2001; 20:745-60. [PMID: 11879568 DOI: 10.1089/104454901753438561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Immunologic memory results from a carefully coordinated interplay between cells of the immune system. In this review, we explore various aspects of the nature, generation, and maintenance of T lymphocyte-mediated immunologic memory. In light of the demonstrated heterogeneity of the memory T-cell pool, we hypothesize that subsets of memory T cells instructed to mature to distinct differentiation stages may differ, not only in functional and homing properties, but also in the conditions they require for survival, including antigen persistence and cytokine environment. Hence, according to this hypothesis, distinct memory T-cell subsets result from the nature and timing of the signals provided by the immune environment and occupy distinct niches. Intracellular and extracellular molecular mechanisms that underlie and modulate T-cell memory are discussed.
Collapse
Affiliation(s)
- P Champagne
- Laboratory of Immunology, Université de Montréal and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada
| | | | | |
Collapse
|
2124
|
Shih NY, Li J, Cotran R, Mundel P, Miner JH, Shaw AS. CD2AP localizes to the slit diaphragm and binds to nephrin via a novel C-terminal domain. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:2303-8. [PMID: 11733379 PMCID: PMC1850607 DOI: 10.1016/s0002-9440(10)63080-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD2AP, an adapter protein containing multiple SH3 domains, plays a critical role in kidney function. Mice lacking CD2AP die soon after birth because of kidney failure. In the kidney, CD2AP is expressed in glomerular podocytes, which suggests that it may play a role in a specialized adhesion complex known as the slit diaphragm. One of the major components of the slit diaphragm is nephrin, a podocyte-specific protein. Here we demonstrate that CD2AP localizes to the slit diaphragm in podocytes using immunoelectron microscopy and that nephrin and CD2AP co-immunoprecipitate from a podocyte cell line. The specificity of this interaction was verified by mapping studies, which demonstrated that a novel domain at the C terminus of CD2AP interacts with the C-terminal portion of the nephrin cytoplasmic domain. These studies lend further support to the idea that CD2AP plays a role in the structural integrity of the slit diaphragm.
Collapse
Affiliation(s)
- N Y Shih
- Department of Pathology and Immunology, Renal Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
2125
|
Ajo-Franklin CM, Kam L, Boxer SG. High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast. Proc Natl Acad Sci U S A 2001; 98:13643-8. [PMID: 11717428 PMCID: PMC61094 DOI: 10.1073/pnas.241208698] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2001] [Indexed: 11/18/2022] Open
Abstract
Total internal reflection fluorescence microscopy is widely used to confine the excitation of a complex fluorescent sample very close to the material on which it is supported. By working with high refractive index solid supports, it is possible to confine even further the evanescent field, and by varying the angle of incidence, to obtain quantitative information on the distance of the fluorescent object from the surface. We report the fabrication of hybrid surfaces consisting of nm layers of SiO(2) on lithium niobate (LiNbO(3), n = 2.3). Supported lipid bilayer membranes can be assembled and patterned on these hybrid surfaces as on conventional glass. By varying the angle of incidence of the excitation light, we are able to obtain fluorescent contrast between 40-nm fluorescent beads tethered to a supported bilayer and fluorescently labeled protein printed on the surface, which differ in vertical position by only tens of nm. Preliminary experiments that test theoretical models for the fluorescence-collection factor near a high refractive index surface are presented, and this factor is incorporated into a semiquantitative model used to predict the contrast of the 40-nm bead/protein system. These results demonstrate that it should be possible to profile the vertical location of fluorophores on the nm distance scale in real time, opening the possibility of many experiments at the interface between supported membranes and living cells. Improvements in materials and optical techniques are outlined.
Collapse
Affiliation(s)
- C M Ajo-Franklin
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | | | |
Collapse
|
2126
|
Sjöström A, Eriksson M, Cerboni C, Johansson MH, Sentman CL, Kärre K, Höglund P. Acquisition of external major histocompatibility complex class I molecules by natural killer cells expressing inhibitory Ly49 receptors. J Exp Med 2001; 194:1519-30. [PMID: 11714758 PMCID: PMC2193673 DOI: 10.1084/jem.194.10.1519] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Murine natural killer (NK) cells express inhibitory Ly49 receptors specific for major histocompatibility complex (MHC) class I molecules. We report that during interactions with cells in the environment, NK cells acquired MHC class I ligands from surrounding cells in a Ly49-specific fashion and displayed them at the cell surface. Ligand acquisition sometimes reached 20% of the MHC class I expression on surrounding cells, involved transfer of the entire MHC class I protein to the NK cell, and was independent of whether or not the NK cell expressed the MHC class I ligand itself. We also present indirect evidence for spontaneous MHC class I acquisition in vivo, as well as describe an in vitro coculture system with transfected cells in which the same phenomenon occurred. Functional studies in the latter model showed that uptake of H-2D(d) by Ly49A+ NK cells was accompanied by a partial inactivation of cytotoxic activity in the NK cell, as tested against H-2D(d)-negative target cells. In addition, ligand acquisition did not abrogate the ability of Ly49A+ NK cells to receive inhibitory signals from external H-2D(d) molecules. This study is the first to describe ligand acquisition by NK cells, which parallels recently described phenomena in T and B cells.
Collapse
Affiliation(s)
- A Sjöström
- Microbiology and Tumor Biology Center, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
2127
|
Carlin LM, Eleme K, McCann FE, Davis DM. Intercellular transfer and supramolecular organization of human leukocyte antigen C at inhibitory natural killer cell immune synapses. J Exp Med 2001; 194:1507-17. [PMID: 11714757 PMCID: PMC2193674 DOI: 10.1084/jem.194.10.1507] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
After accumulation of target cell human leukocyte antigen (HLA)-C at inhibitory natural killer (NK) cell immune synapses, some HLA-C transfers from target cells to NK cell plasma membranes and cytoplasm. This unexpected intercellular transfer of HLA-C is dependent on NK receptor recognition, since HLA-Cw6 or -Cw4 but not -Cw3 transfer to an NK transfectant expressing killer Ig-like receptor (KIR)2DL1. Strikingly, live-cell time-lapse laser scanning confocal microscopy shows vesicles containing target cell green fluorescent protein-tagged HLA-C migrating away from immune synapses into NK cells. Unlike clustering of HLA-C at the immune synapse, intercellular transfer of HLA-C is dependent on NK cell ATP, but not target cell ATP. However, the intercellular transfer of HLA-C is not dependent on active polymerization of the actin cytoskeleton. In addition, different arrangements of HLA-C are seen at inhibitory NK immune synapses, and these alter as NK synapses mature, but in a fashion distinct from that seen upon T cell activation.
Collapse
Affiliation(s)
- L M Carlin
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College of Science, Technology, and Medicine, South Kensington, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
2128
|
Sirim P, Zeitlmann L, Kellersch B, Falk CS, Schendel DJ, Kolanus W. Calcium signaling through the beta 2-cytoplasmic domain of LFA-1 requires intracellular elements of the T cell receptor complex. J Biol Chem 2001; 276:42945-56. [PMID: 11559699 DOI: 10.1074/jbc.m103224200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta(2) integrin LFA-1 is an important cell-cell adhesion receptor of the immune system. Evidence suggests that the molecule also participates in signaling and co-stimulatory function. We show here that clustering of the intracellular domain of the beta(2) chain but not of the alpha(L)- or beta(1)-cytoplasmic domains, respectively, triggers intracellular Ca(2+) mobilization in Jurkat cells. A beta(2)-specific NPXF motif, located in the C-terminal portion of the beta(2) tail, is required for Ca(2+) signaling, and we show that this motif is important for the induction of allo-specific target cell lysis by cytotoxic T cells in vitro. Significantly, the Ca(2+)-signaling capacity of the beta(2) integrin is abrogated in T cells that do not express the T cell receptor but may be reconstituted by co-expression of the T cell receptor-zeta chain. Our data suggest a specific function of the cytoplasmic domain of the beta(2) integrin chain in T cell signaling.
Collapse
Affiliation(s)
- P Sirim
- Laboratorium für Molekulare Biologie, Genzentrum der Universität München, Germany
| | | | | | | | | | | |
Collapse
|
2129
|
Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS, Hirst WJ. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6021-30. [PMID: 11698483 DOI: 10.4049/jimmunol.167.10.6021] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumors produce a variety of immunosuppressive factors which can prevent the proliferation and maturation of a number of normal hemopoietic cell types. We have investigated whether primary acute myeloid leukemia (AML) cells have an effect on normal T cell function and signaling. Tumor cell supernatant (TSN) from AML cells inhibited T cell activation and Th1 cytokine production and also prevented activated T cells from entering the cell cycle. These effects occurred in the absence of AML cell-T cell contact. We have demonstrated that AML TSN contained none of the immunosuppressors described to date, namely gangliosides, nitric oxide, TGF-beta, IL-10, vascular endothelial growth factor, or PGs. Furthermore, IL-2 did not overcome the block, despite normal IL-2R expression. However, the effect was overcome by preincubation with inhibitors of protein secretion and abolished by trypsinization, indicating that the active substance includes one or more proteins. To determine the mechanism of inhibition, we have studied many of the major pathways involved in T cell activation and proliferation. We show that nuclear translocation of NFATc and NF-kappaB are markedly reduced in T cells activated in the presence of primary AML cells. In contrast, calcium mobilization and activation of other signal transduction pathways, namely extracellular signal-regulated kinase1/2, p38, and STAT5 were unaffected, but activation of c-Jun N-terminal kinase 1/2 was delayed. Phosphorylation of pRb by cyclin-dependent kinase 6/4-cyclin D and of p130 did not occur and c-Myc, cyclin D3, and p107 were not induced, consistent with cell cycle inhibition early during the transition from G(0) to G(1). Our data indicate that TSN generated by AML cells induces T cell immunosuppression and provides a mechanism by which the leukemic clone could evade T cell-mediated killing.
Collapse
Affiliation(s)
- A G Buggins
- Department of Haematological Medicine, Leukaemia Sciences, Guy's, King's and St. Thomas' School of Medicine, Rayne Institute, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
2130
|
Alonso MA, Millán J. The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J Cell Sci 2001; 114:3957-65. [PMID: 11739628 DOI: 10.1242/jcs.114.22.3957] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Combinatorial association of different lipid species generates microheterogeneity in biological membranes. The association of glycosphingolipids with cholesterol forms membrane microdomains – lipid rafts – that are involved in specialised pathways of protein/lipid transport and signalling. Lipid rafts are normally dispersed in cellular membranes and appear to require specialised machinery to reorganise them to operate. Caveolin-1 and MAL are members of two different protein families involved in reorganisation of lipid rafts for signalling and/or intracellular transport in epithelial cells. T cell activation induces a rapid compartmentalisation of signalling machinery into reorganised rafts that are used as platforms for the assembly of the signalling complex. Costimulatory molecules participate in this process by providing signals that mobilise raft lipids and proteins, and remodel the cytoskeleton to the contact site. As in epithelial cells, rafts are used also as vesicular carriers for membrane trafficking in T lymphocytes. Furthermore, there are potential similarities between the specialised protein machinery underlying raft-mediated processes in T lymphocytes and polarised epithelial cells.
Collapse
Affiliation(s)
- M A Alonso
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049-Madrid, Spain.
| | | |
Collapse
|
2131
|
Bès C, Briant-Longuet L, Cerruti M, De Berardinis P, Devauchelle G, Devaux C, Granier C, Chardès T, DeBerardinis P. Efficient CD4 binding and immunosuppressive properties of the 13B8.2 monoclonal antibody are displayed by its CDR-H1-derived peptide CB1. FEBS Lett 2001; 508:67-74. [PMID: 11707270 DOI: 10.1016/s0014-5793(01)03036-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A systematic exploration of the V(H)2/V(kappa)12-13 variable domains of the anti-CD4 monoclonal antibody (mAb) 13B8.2 was performed by the Spot method to screen for paratope-derived peptides (PDPs) demonstrating CD4 binding ability. Nine peptides, named CB1 to CB9, were identified, synthesized in a cyclic and soluble form and tested for binding to recombinant soluble CD4. Among them, CB1, CB2 and CB8 showed high anti-CD4 activity. Competition studies for CD4 binding indicated that PDPs CB1, CB8, and the parental mAb 13B8.2 recognized the same complementarity determining region (CDR)3-like loop region. PDP CB1 was shown to mimic the biological properties of 13B8.2 mAb in two independent cellular assays, demonstrating inhibitory activities in the micromolar range on antigen presentation and human immunodeficiency virus promoter activation. Our results indicate that the bioactive CDR-H1 PDP CB1 has retained a significant part of the parental 13B8.2 mAb properties and might be a lead for the design of anti-CD4 peptidomimetics of clinical interest.
Collapse
Affiliation(s)
- C Bès
- CNRS-UMR 5094, Faculté de Pharmacie, Institut de Biotechnologie et Pharmacologie, 15 avenue Charles Flahault, 34060 Montpellier Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
2132
|
Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 2001; 15:751-61. [PMID: 11728337 DOI: 10.1016/s1074-7613(01)00234-5] [Citation(s) in RCA: 640] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytotoxic T lymphocytes (CTL) rapidly destroy their targets. Here we show that although target cell death occurs within 5 min of CTL-target cell contact, an immunological synapse similar to that seen in CD4 cells rapidly forms in CTL, with a ring of adhesion proteins surrounding an inner signaling molecule domain. Lytic granule secretion occurs in a separate domain within the adhesion ring, maintaining signaling protein organization during exocytosis. Live and fixed cell studies show target cell plasma membrane markers are transferred to the CTL as the cells separate. Electron microscopy reveals continuities forming membrane bridges between the CTL and target cell membranes, suggesting a possible mechanism for this transfer.
Collapse
Affiliation(s)
- J C Stinchcombe
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
2133
|
Delon J, Kaibuchi K, Germain RN. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 2001; 15:691-701. [PMID: 11728332 DOI: 10.1016/s1074-7613(01)00231-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Formation of the immunological synapse requires TCR signal-dependent protein redistribution. However, the specific molecular mechanisms controlling protein relocation are not well defined. Moesin is a widely expressed phospho-protein that links many transmembrane molecules to the cortical actin cytoskeleton. Here, we demonstrate that TCR-induced exclusion of the large sialoprotein CD43 from the synapse is an active event mediated by its reversible binding to moesin. Our results also reveal that relocalization of moesin is associated with changes in the phosphorylation status of this cytoskeletal adaptor protein. Finally, these findings raise the possibility that the change in moesin localization resulting from TCR engagement modifies the overall topology of the lymphocyte membrane and facilitates molecular interactions at the site of presenting cell contact.
Collapse
Affiliation(s)
- J Delon
- Laboratory of Immunology, Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
2134
|
Abstract
The immunological synapse is characterized by the reorganization of membrane proteins at the immunological synapse. Active cytoskeletal mechanisms are involved in recruiting the TCR, accessory molecules, and the integrin LFA-1 to the contact area. Other molecules like CD43 are excluded from the contact area, but the mechanism of exclusion is unknown. Three papers in this issue of Immunity demonstrate that CD43 exclusion involves the ERM family of cytoskeletal proteins.
Collapse
Affiliation(s)
- A S Shaw
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
2135
|
|
2136
|
Abstract
Nanoscale structural reorganization of a lipid bilayer membrane induced by a chemical recognition event has been imaged using in situ atomic force microscopy (AFM). Supported lipid bilayers, composed of distearylphosphatidylcholine (DSPC) and a synthetic lipid functionalized with a Cu(2+) receptor, phase-separate into nanoscale domains that are distinguishable by the 9 A height difference between the two molecules. Upon binding of Cu(2+) the electrostatic nature of the receptor changes, causing a dispersion of the receptor molecules and subsequent shrinking of the structural features defined by the receptors in the membrane. Complete reversibility of the process was demonstrated through the removal of metal ions with EDTA.
Collapse
Affiliation(s)
- J A Last
- Biomolecular Materials and Interfaces Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | | | | |
Collapse
|
2137
|
Allenspach EJ, Cullinan P, Tong J, Tang Q, Tesciuba AG, Cannon JL, Takahashi SM, Morgan R, Burkhardt JK, Sperling AI. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 2001; 15:739-50. [PMID: 11728336 DOI: 10.1016/s1074-7613(01)00224-2] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The large mucin CD43 is actively excluded from T cell/APC interaction sites, concentrating in a membrane domain distal to the site of TCR engagement. The cytoplasmic region of CD43 was necessary and sufficient for this antipodal movement. ERM cytoskeletal adaptor proteins colocalized with CD43 in this domain. An ERM dominant-negative mutant blocked the distal accumulation of CD43 and another known ERM binding protein, Rho-GDI. Inhibition of ERM function decreased the production of IL-2 and IFNgamma, without affecting PKC(theta) focusing or CD69 upregulation. These results indicate that ERM proteins organize a complex distal to the T cell/APC interaction site and provide evidence that full T cell activation may involve removal of inhibitory proteins from the immunological synapse.
Collapse
Affiliation(s)
- E J Allenspach
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2138
|
Abraham C, Miller J. Molecular mechanisms of IL-2 gene regulation following costimulation through LFA-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5193-201. [PMID: 11673532 DOI: 10.4049/jimmunol.167.9.5193] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The integrin LFA-1 serves as an accessory molecule in T cell activation. In addition to its well-known role as an adhesion molecule, LFA-1 can contribute to T cell activation and up-regulation of IL-2 gene expression. However, the specific mechanisms by which LFA-1 influences T cell activation have not been elucidated. Therefore, we examined the impact of LFA-1:ICAM-1 interactions on transcriptional and posttranscriptional IL-2 gene regulation, using a costimulation-negative cell line transfected with MHC class II alone, or in combination with ICAM-1 or B7-1. IL-2 transcription was assessed utilizing transgenic mice expressing an IL-2 promoter luciferase reporter construct crossed to DO11.10 TCR-transgenic mice, and IL-2 mRNA stability was evaluated by real-time RT-PCR. Comparison of naive and previously activated T cells demonstrates a dramatic increase in IL-2-luciferase transcription in activated T cells that can, in part, be attributed to downstream signaling events. Costimulation through LFA-1 enhances transcription of the transgenic reporter construct across a wide Ag dose range, but does not affect IL-2 mRNA stability. In contrast, CD28 costimulation is clearly mediated through up-regulation of IL-2 transcription and through enhancement of mRNA stability. These results indicate that the primary pathway whereby engagement of LFA-1 through its ligand ICAM-1 up-regulates IL-2 gene expression is through enhanced IL-2 transcription, in the absence of any effect on IL-2 mRNA stabilization.
Collapse
Affiliation(s)
- C Abraham
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
2139
|
Abstract
Astrocytes are the major glial cell within the central nervous system (CNS) and have a number of important physiological properties related to CNS homeostasis. The aspect of astrocyte biology addressed in this review article is the astrocyte as an immunocompetent cell within the brain. The capacity of astrocytes to express class II major histocompatibility complex (MHC) antigens and costimulatory molecules (B7 and CD40) that are critical for antigen presentation and T-cell activation are discussed. The functional role of astrocytes as immune effector cells and how this may influence aspects of inflammation and immune reactivity within the brain follows, emphasizing the involvement of astrocytes in promoting Th2 responses. The ability of astrocytes to produce a wide array of chemokines and cytokines is discussed, with an emphasis on the immunological properties of these mediators. The significance of astrocytic antigen presentation and chemokine/cytokine production to neurological diseases with an immunological component is described.
Collapse
Affiliation(s)
- Y Dong
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | |
Collapse
|
2140
|
Wu M, Fang H, Hwang ST. Cutting edge: CCR4 mediates antigen-primed T cell binding to activated dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4791-5. [PMID: 11673480 DOI: 10.4049/jimmunol.167.9.4791] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The binding of a T cell to an Ag-laden dendritic cell (DC) is a critical step of the acquired immune response. Herein, we address whether a DC-produced chemokine can induce the arrest of T cells on DC under dynamic flow conditions. Ag-primed T cells and a T cell line were observed to rapidly ( approximately 0.5 s) bind to immobilized DC at low shear stress (0.1-0.2 dynes/cm(2)) in a pertussis toxin-sensitive fashion. Quantitatively, Ag-primed T cells displayed 2- to 3-fold enhanced binding to DC compared with unprimed T cells (p < 0.01). In contrast to naive T cells, primed T cell arrest was largely inhibited by pertussis toxin, neutralization of the CC chemokine, macrophage-derived chemokine (CCL22), or by desensitization of the CCL22 receptor, CCR4. Our results demonstrate that DC-derived CCL22 induces rapid binding of activated T cells under dynamic conditions and that Ag-primed and naive T cells fundamentally differ with respect to chemokine-dependent binding to DC.
Collapse
Affiliation(s)
- M Wu
- Dermatology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
2141
|
Dykstra M, Cherukuri A, Pierce SK. Rafts and synapses in the spatial organization of immune cell signaling receptors. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.5.699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Michelle Dykstra
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Anu Cherukuri
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
2142
|
Roumier A, Olivo-Marin JC, Arpin M, Michel F, Martin M, Mangeat P, Acuto O, Dautry-Varsat A, Alcover A. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 2001; 15:715-28. [PMID: 11728334 DOI: 10.1016/s1074-7613(01)00225-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dynamic interactions between membrane and cytoskeleton components are crucial for T cell antigen recognition and subsequent cellular activation. We report here that the membrane-microfilament linker ezrin plays an important role in these processes. First, ezrin relocalizes to the contact area between T cells and stimulatory antigen-presenting cells (APCs), accumulating in F-actin-rich membrane protrusions at the periphery of the immunological synapse. Second, T cell receptor (TCR)-mediated intracellular signals are sufficient to induce ezrin relocalization, indicating that this protein is an effector of TCR signaling. Third, overexpression of the membrane binding domain of ezrin perturbs T cell receptor clustering in the T cell-APC contact area and inhibits the activation of nuclear factor for activated T cells (NF-AT).
Collapse
Affiliation(s)
- A Roumier
- Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
2143
|
Balamuth F, Leitenberg D, Unternaehrer J, Mellman I, Bottomly K. Distinct patterns of membrane microdomain partitioning in Th1 and th2 cells. Immunity 2001; 15:729-38. [PMID: 11728335 DOI: 10.1016/s1074-7613(01)00223-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Here we show that activated Th1 and Th2 cells have distinct patterns of membrane compartmentalization into lipid rafts. TCR complex members are recruited efficiently to rafts and aggregate with rafts at the site of MHC/peptide contact in Th1 cells but not Th2 cells. TCR/raft association in Th1 cells is deficient in the absence of CD4, suggesting that CD4 aids recruitment of the TCR to rafts. We show differential utilization of rafts in Th1 and Th2 cells by cholesterol depletion studies, which alters calcium signaling in Th1 but not Th2 cells. Furthermore, Th2 cells have a decreased ability to respond to low-affinity peptide stimulation. These studies indicate that components of membrane microdomains are differentially regulated in functionally distinct CD4 T cells.
Collapse
Affiliation(s)
- F Balamuth
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
2144
|
Villalba M, Bi K, Rodriguez F, Tanaka Y, Schoenberger S, Altman A. Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. J Cell Biol 2001; 155:331-8. [PMID: 11684704 PMCID: PMC2150846 DOI: 10.1083/jcb.200107080] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Formation of the immunological synapse (IS) in T cells involves large scale molecular movements that are mediated, at least in part, by reorganization of the actin cytoskeleton. Various signaling proteins accumulate at the IS and are localized in specialized membrane microdomains, known as lipid rafts. We have shown previously that lipid rafts cluster and localize at the IS in antigen-stimulated T cells. Here, we provide evidence that lipid raft polarization to the IS depends on an intracellular pathway that involves Vav1, Rac, and actin cytoskeleton reorganization. Thus, lipid rafts did not translocate to the IS in Vav1-deficient (Vav1-/-) T cells upon antigen stimulation. Similarly, T cell receptor transgenic Jurkat T cells also failed to translocate lipid rafts to the IS when transfected with dominant negative Vav1 mutants. Raft polarization induced by membrane-bound cholera toxin cross-linking was also abolished in Jurkat T cells expressing dominant negative Vav1 or Rac mutants and in cells treated with inhibitors of actin polymerization. However, Vav overexpression that induced F-actin polymerization failed to induce lipid rafts clustering. Therefore, Vav is necessary, but not sufficient, to regulate lipid rafts clustering and polarization at the IS, suggesting that additional signals are required.
Collapse
Affiliation(s)
- M Villalba
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
2145
|
Potter TA, Grebe K, Freiberg B, Kupfer A. Formation of supramolecular activation clusters on fresh ex vivo CD8+ T cells after engagement of the T cell antigen receptor and CD8 by antigen-presenting cells. Proc Natl Acad Sci U S A 2001; 98:12624-9. [PMID: 11606747 PMCID: PMC60104 DOI: 10.1073/pnas.221458898] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2001] [Accepted: 08/30/2001] [Indexed: 01/21/2023] Open
Abstract
Upon productive interaction of CD4 T cells with antigen-presenting cells (APCs), receptors and intracellular proteins translocate and form spatially segregated supramolecular activation clusters (SMACs). It is not known whether SMACs are required for CD8 T cell activation. CD8 T cells, unlike CD4 T cells, can be activated by a single peptide-MHC molecule, or by purified monovalent recombinant peptide-MHC molecules. We studied, by three-dimensional digital microscopy, cell conjugates of fresh ex vivo CD8 T cells (obtained from OT-1 mice, which are transgenic for T cell antigen receptor reactive with the complex of H-2K(b) and the ovalbumin octapeptide SIINFEKL) and peptide-pulsed APCs. Remarkably, even in T cell:APC conjugates that were formed in the presence of the lowest concentration of peptide that was sufficient to elicit T cell proliferation and IFN-gamma production; the theta isoform of protein kinase C was clustered in a central SMAC, and lymphocyte function-associated antigen 1 and talin were clustered in the peripheral SMAC. Conjugation of T cells to APCs that were pulsed with concentrations of peptide smaller than that required to activate T cells was greatly reduced, and SMACs were not formed at all. APCs expressing mutant H-2K(b) (Lys(227)) molecules that do not bind CD8 were unable to form stable conjugates with these T cells, even at high peptide concentrations. Thus, although CD8 and CD4 T cells may display different sensitivity to the concentration and oligomerization of surface receptors, SMACs are formed and seem to be required functionally in both cell types. However, unlike CD4 T cells, which can form SMACs without CD4, CD8 T cells from OT-1 transgenic mice depend on their coreceptor, CD8, for the proper formation of SMACs.
Collapse
Affiliation(s)
- T A Potter
- Integrated Department of Immunology, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, CO 80206, USA.
| | | | | | | |
Collapse
|
2146
|
Abstract
Cross-linking of surface receptors in hematopoietic cells results in the enrichment of these receptors in the rafts along with other downstream signaling molecules. A possible explanation how signal is transduced through the plasma membrane has arisen from the concept of raft. From the study of cellular responses in the plasma membrane which enrich members of the Src-family tyrosine kinase, rafts can function as centers of signal transduction by forming patches. Under physiological conditions, these elements synergize to transduce successfully a signal at the plasma membrane. Rafts are suggested to be important in controlling appropriate protein interactions in hematopoietic cells, and aggregation of rafts following receptor ligation may be a general mechanism for promoting immune cell signaling.
Collapse
Affiliation(s)
- Y U Katagiri
- Department of Pathology, National Children's Medical Research Center, Tokyo, Japan
| | | | | |
Collapse
|
2147
|
Winquist RJ, Desai S, Fogal S, Haynes NA, Nabozny GH, Reilly PL, Souza D, Panzenbeck M. The role of leukocyte function-associated antigen-1 in animal models of inflammation. Eur J Pharmacol 2001; 429:297-302. [PMID: 11698049 DOI: 10.1016/s0014-2999(01)01328-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Both preclinical and clinical data have identified leukocyte function-associated antigen-1 (LFA-1) as an important component of inflammatory disease states. We evaluated small molecule inhibitors of this glycoprotein in several animal models in which the inflammatory process is dependent on human or non-human primate LFA-1. (R)-5(4-bromobenzyl)-3(3,5-dichlorophenyl)-1,5-dimethylimidazolidine-2,4-dione, BIRT 377, effectively suppressed the production of human immunoglobulin (IgG) following reconstitution of severe combined immunodeficient (SCID) mice with human peripheral blood mononuclear cells. The BIRT 377 analog, BIX 642, inhibited the cellular infiltrate and increase in skin thickness associated with the delayed-type hypersensitivity reaction in previously immunized squirrel monkeys challenged with antigen. BIX 642 also inhibited the trans-vivo delayed-type hypersensitivity response in the footpads of SCID mice injected with human peripheral blood mononuclear cells and donor-sensitive antigen. These results demonstrate the efficacy of small molecule inhibitors of LFA-1 in preclinical models of inflammation dependent on human or non-human primate LFA-1.
Collapse
Affiliation(s)
- R J Winquist
- Department of Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, CT 06877, USA.
| | | | | | | | | | | | | | | |
Collapse
|
2148
|
Holler PD, Lim AR, Cho BK, Rund LA, Kranz DM. CD8(-) T cell transfectants that express a high affinity T cell receptor exhibit enhanced peptide-dependent activation. J Exp Med 2001; 194:1043-52. [PMID: 11602635 PMCID: PMC2193521 DOI: 10.1084/jem.194.8.1043] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2001] [Accepted: 08/22/2001] [Indexed: 12/31/2022] Open
Abstract
T cells are activated by binding of the T cell receptor (TCR) to a peptide-major histocompatibility complex (MHC) complex (pMHC) expressed on the surface of antigen presenting cells. Various models have predicted that activation is limited to a narrow window of affinities (or dissociation rates) for the TCR-pMHC interaction and that above or below this window, T cells will fail to undergo activation. However, to date there have not been TCRs with sufficiently high affinities in order to test this hypothesis. In this report we examined the activity of a CD8-negative T cell line transfected with a high affinity mutant TCR (K(D) = 10 nM) derived from cytotoxic T lymphocyte clone 2C by in vitro engineering. The results show that despite a 300-fold higher affinity and a 45-fold longer off-rate compared with the wild-type TCR, T cells that expressed the mutant TCRs were activated by peptide. In fact, activation could be detected at significantly lower peptide concentrations than with T cells that expressed the wild-type TCR. Furthermore, binding and functional analyses of a panel of peptide variants suggested that pMHC stability could account for apparent discrepancies between TCR affinity and T cell activity observed in several prior studies.
Collapse
Affiliation(s)
- Phillip D. Holler
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
| | - Alice R. Lim
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
| | - Bryan K. Cho
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
| | - Laurie A. Rund
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
| | - David M. Kranz
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
| |
Collapse
|
2149
|
Mestas J, Hughes CC. Endothelial cell costimulation of T cell activation through CD58-CD2 interactions involves lipid raft aggregation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4378-85. [PMID: 11591762 DOI: 10.4049/jimmunol.167.8.4378] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human endothelial cells (EC) costimulate CD4(+) memory T cell activation through CD58-CD2 interactions. In this study we tested the hypothesis that EC activate distinct costimulatory pathways in T cells that target specific transcription factors. AP-1, composed of fos and jun proteins, is a critical effector of TCR signaling and binds several sites in the IL-2 promoter. EC augment c-fos promoter activity in T cells; however, deletion analysis reveals no transcription factor binding sites in the promoter uniquely responsive to EC costimulation. Overexpression of AP-1 proteins in T cells augments the activity of an AP-1-luciferase reporter gene equally in the absence or the presence of EC costimulation. Interestingly, EC stimulate a similar 2- to 3-fold up-regulation of AP-1, NF-AT, NF-kappaB, and NF-IL-2-luciferase reporters. CD2 mAbs completely block EC effects on all of these pathways, as well as costimulation of IL-2 secretion. We conclude that EC costimulation through CD2 does not trigger a single distinct costimulatory pathway in T cells, but rather, it amplifies several pathways downstream of the TCR. Indeed, we find that early EC costimulation acts "upstream" of the TCR by promoting lipid raft aggregation, thus amplifying TCR signaling. Soluble CD2 mAbs block EC-induced raft aggregation, whereas cross-linking CD2 promotes aggregation. These data are consistent with the critical role of CD2 in organizing the T cell-APC contact zone.
Collapse
Affiliation(s)
- J Mestas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
2150
|
Wang Q, Malherbe L, Zhang D, Zingler K, Glaichenhaus N, Killeen N. CD4 promotes breadth in the TCR repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4311-20. [PMID: 11591754 DOI: 10.4049/jimmunol.167.8.4311] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A diverse population of MHC class II-restricted CD4 lineage T cells develops in mice that lack expression of the CD4 molecule. In this study, we show that the TCR repertoire selected in the absence of CD4 is distinct, but still overlapping in its properties with that selected in the presence of CD4. Immunization of mice lacking CD4 caused the clonal expansion of T cells that showed less breadth in the range of Ag-binding properties exhibited by their TCRs. Specifically, the CD4-deficient Ag-specific TCR repertoire was depleted of TCRs that demonstrated low-affinity binding to their ligands. The data thus suggest a key role for CD4 in broadening the TCR repertoire by potentiating productive TCR signaling and clonal expansion in response to the engagement of low-affinity antigenic ligands.
Collapse
Affiliation(s)
- Q Wang
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|