2351
|
Cirri P, Chiarugi P. Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 2011; 1:482-497. [PMID: 21984967 PMCID: PMC3186047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/08/2011] [Indexed: 05/31/2023] Open
Abstract
Valid experimental evidence has recently shown that progression of malignant tumors does not depend exclusively on cell-autonomous properties of the cancer cells, but is also deeply influenced by tumor stroma reactivity and undergoes a strict microenvironmental control. Beside structural environmental components as extracellular matrix (ECM) or hypoxia, stromal cells as macrophages, endothelial cells, and cancer-associated fibroblasts (CAFs) play a definite role in cancer progression. This review summarizes our current knowledge on the role of CAFs in tumor progression towards an aggressive phenotype, with particular emphasis on invasiveness, stemness, and preparation of metastatic niche. The controversial origins of CAFs as well as the therapeutical implications of targeting CAFs for anticancer therapy are discussed.
Collapse
Affiliation(s)
- Paolo Cirri
- Department of Biochemical Science, University of Florence viale Morgagni 50, 50134 Florence, Italy
| | | |
Collapse
|
2352
|
Yates CC, Bodnar R, Wells A. Matrix control of scarring. Cell Mol Life Sci 2011; 68:1871-81. [PMID: 21390544 DOI: 10.1007/s00018-011-0663-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/24/2011] [Accepted: 02/22/2011] [Indexed: 02/06/2023]
Abstract
Repair of wounds usually results in restoration of organ function, even if suboptimal. However, in a minority of situations, the healing process leads to significant scarring that hampers homeostasis and leaves the tissue compromised. This scar is characterized by an excess of matrix deposition that remains poorly organized and weakened. While we know much of the early stages of the repair process, the transition to wound resolution that limits scar formation is poorly understood. This is particularly true of the inducers of scar formation. Here, we present a hypothesis that it is the matrix itself that is a primary driver of scar, rather than being simply the result of other cellular dysregulations.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
2353
|
Abstract
Here, we define dynamic reciprocity (DR) as an ongoing, bidirectional interaction among cells and their surrounding microenvironment. In this review, we posit that DR is especially meaningful during wound healing as the DR-driven biochemical, biophysical, and cellular responses to injury play pivotal roles in regulating tissue regenerative responses. Such cell-extracellular matrix interactions not only guide and regulate cellular morphology, but also cellular differentiation, migration, proliferation, and survival during tissue development, including, e.g., embryogenesis, angiogenesis, as well as during pathologic processes including cancer, diabetes, hypertension, and chronic wound healing. Herein, we examine DR within the wound microenvironment while considering specific examples across acute and chronic wound healing. This review also considers how a number of hypotheses that attempt to explain chronic wound pathophysiology may be understood within the DR framework. The implications of applying the principles of DR to optimize wound care practice and future development of innovative wound healing therapeutics are also briefly considered.
Collapse
Affiliation(s)
- Gregory S. Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, FL
| | - Jeffrey M. Davidson
- Department of Pathology, Vanderbilt University Medical Center and Research Service, VA Tennessee Valley Healthcare System, Nashville, TN
| | - Robert S. Kirsner
- Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, FL
| | - Paul Bornstein
- Departments of Biochemistry and Medicine, University of Washington, Seattle, WA
| | - Ira M. Herman
- Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
2354
|
Kular L, Pakradouni J, Kitabgi P, Laurent M, Martinerie C. The CCN family: A new class of inflammation modulators? Biochimie 2011; 93:377-88. [DOI: 10.1016/j.biochi.2010.11.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/24/2010] [Indexed: 01/12/2023]
|
2355
|
Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 2011; 4:165-78. [PMID: 21324931 PMCID: PMC3046088 DOI: 10.1242/dmm.004077] [Citation(s) in RCA: 1130] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dynamic remodeling of the extracellular matrix (ECM) is essential for development, wound healing and normal organ homeostasis. Life-threatening pathological conditions arise when ECM remodeling becomes excessive or uncontrolled. In this Perspective, we focus on how ECM remodeling contributes to fibrotic diseases and cancer, which both present challenging obstacles with respect to clinical treatment, to illustrate the importance and complexity of cell-ECM interactions in the pathogenesis of these conditions. Fibrotic diseases, which include pulmonary fibrosis, systemic sclerosis, liver cirrhosis and cardiovascular disease, account for over 45% of deaths in the developed world. ECM remodeling is also crucial for tumor malignancy and metastatic progression, which ultimately cause over 90% of deaths from cancer. Here, we discuss current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression, and how improving our understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies. This can only be achieved through the use of appropriate in vitro and in vivo models to mimic disease, and with technologies that enable accurate monitoring, imaging and quantification of the ECM.
Collapse
Affiliation(s)
- Thomas R. Cox
- Cancer Research UK Tumour Cell Signalling Unit, Section of Cell and Molecular Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Janine T. Erler
- Cancer Research UK Tumour Cell Signalling Unit, Section of Cell and Molecular Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
2356
|
Dangaria SJ, Ito Y, Yin L, Valdré G, Luan X, Diekwisch TG. Apatite microtopographies instruct signaling tapestries for progenitor-driven new attachment of teeth. Tissue Eng Part A 2011; 17:279-90. [PMID: 20795795 PMCID: PMC3029000 DOI: 10.1089/ten.tea.2010.0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/25/2010] [Indexed: 01/06/2023] Open
Abstract
Dimension and structure of extracellular matrix surfaces have powerful influences on cell shape, adhesion, and gene expression. Here we show that natural tooth root topographies induce integrin-mediated extracellular matrix signaling cascades in tandem with cell elongation and polarization to generate physiological periodontium-like tissues. In this study we replanted surface topography instructed periodontal progenitors into rat alveolar bone sockets for 8 and 16 weeks, resulting in complete reattachment of tooth roots to the surrounding alveolar bone with a periodontal fiber apparatus closely matching physiological controls along the entire root surface. Displacement studies and biochemical analyses confirmed that progenitor-based engineered periodontal tissues were similar to control teeth and uniquely derived from preimplantation green fluorescent protein (GFP)-labeled progenitors. Together, these studies illustrate the capacity of natural extracellular surface topographies to instruct progenitor cell populations to fully regenerate complex cellular and structural morphologies of tissues once lost to disease. We suggest that our strategy could be used for the replantation of teeth lost due to trauma or as a novel approach for tooth replacement using tooth-shaped replicas.
Collapse
Affiliation(s)
- Smit J. Dangaria
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, Illinois
- Department of Bioengineering, University of Illinois, Chicago, Illinois
| | - Yoshihiro Ito
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - LeiLei Yin
- Department of Microscopy Core, University of Illinois at Urbana Champaign, Urbana, Illinois
| | - Giovanni Valdré
- Laboratory of Biomaterials and Applied Crystallography, Department of Earth Sciences, University of Bologna, Bologna, Italy
| | - Xianghong Luan
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Thomas G.H. Diekwisch
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, Illinois
- Department of Bioengineering, University of Illinois, Chicago, Illinois
| |
Collapse
|
2357
|
Abstract
The development of multicellular organisms, as well as maintenance of organ architecture and function, requires robust regulation of cell fates. This is in part achieved by conserved signaling pathways through which cells process extracellular information and translate this information into changes in proliferation, differentiation, migration, and cell shape. Gene deletion studies in higher eukaryotes have assigned critical roles for components of the extracellular matrix (ECM) and their cellular receptors in a vast number of developmental processes, indicating that a large proportion of this signaling is regulated by cell-ECM interactions. In addition, genetic alterations in components of this signaling axis play causative roles in several human diseases. This review will discuss what genetic analyses in mice and lower organisms have taught us about adhesion signaling in development and disease.
Collapse
Affiliation(s)
- Sara A Wickström
- Paul Gerson Una Group, Skin Homeostasis and Ageing, Max Planck Institute for Biology of Ageing, 50937 Cologne, Germany.
| | | | | |
Collapse
|
2358
|
Choi HR, Cho KA, Kang HT, Lee JB, Kaeberlein M, Suh Y, Chung IK, Park SC. Restoration of senescent human diploid fibroblasts by modulation of the extracellular matrix. Aging Cell 2011; 10:148-57. [PMID: 21108727 DOI: 10.1111/j.1474-9726.2010.00654.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human diploid fibroblasts have the capacity to complete a finite number of cell divisions before entering a state of replicative senescence characterized by growth arrest, changes in morphology, and altered gene expression. Herein, we report that interaction with extracellular matrix (ECM) from young cells is sufficient to restore aged, senescent cells to an apparently youthful state. The identity of the restored cells as having been derived from senescent cells has been confirmed by a variety of methods, including time lapse live cell imaging and DNA finger print analysis. In addition to cell morphology, phenotypic restoration was assessed by resumption of proliferative potential, growth factor responsiveness, reduction of intracellular reactive oxygen species levels, recovery of mitochondrial membrane potential, and increased telomere length. Mechanistically, we find that both Ku and SIRT1 are induced during restoration and are required for senescent cells to return to a youthful phenotype. These observations demonstrate that human cellular senescence is profoundly influenced by cues from the ECM, and that senescent cell plasticity is much greater than that was previously believed to be the case.
Collapse
Affiliation(s)
- Hae Ri Choi
- Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
2359
|
Kang L, Ayala JE, Lee-Young RS, Zhang Z, James FD, Neufer PD, Pozzi A, Zutter MM, Wasserman DH. Diet-induced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin alpha2beta1 in mice. Diabetes 2011; 60:416-26. [PMID: 21270253 PMCID: PMC3028340 DOI: 10.2337/db10-1116] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The hypothesis that high-fat (HF) feeding causes skeletal muscle extracellular matrix (ECM) remodeling in C57BL/6J mice and that this remodeling contributes to diet-induced muscle insulin resistance (IR) through the collagen receptor integrin α(2)β(1) was tested. RESEARCH DESIGN AND METHODS The association between IR and ECM remodeling was studied in mice fed chow or HF diet. Specific genetic and pharmacological murine models were used to study effects of HF feeding on ECM in the absence of IR. The role of ECM-integrin interaction in IR was studied using hyperinsulinemic-euglycemic clamps on integrin α(2)β(1)-null (itga2(-/-)), integrin α(1)β(1)-null (itga1(-/-)), and wild-type littermate mice fed chow or HF. Integrin α(2)β(1) and integrin α(1)β(1) signaling pathways have opposing actions. RESULTS HF-fed mice had IR and increased muscle collagen (Col) III and ColIV protein; the former was associated with increased transcript, whereas the latter was associated with reduced matrix metalloproteinase 9 activity. Rescue of muscle IR by genetic muscle-specific mitochondria-targeted catalase overexpression or by the phosphodiesterase 5a inhibitor, sildenafil, reversed HF feeding effects on ECM remodeling and increased muscle vascularity. Collagen remained elevated in HF-fed itga2(-/-) mice. Nevertheless, muscle insulin action and vascularity were increased. Muscle IR in HF-fed itga1(-/-) mice was unchanged. Insulin sensitivity in chow-fed itga1(-/-) and itga2(-/-) mice was not different from wild-type littermates. CONCLUSIONS ECM collagen expansion is tightly associated with muscle IR. Studies with itga2(-/-) mice provide mechanistic insight for this association by showing that the link between muscle IR and increased collagen can be uncoupled by the absence of collagen-integrin α(2)β(1) interaction.
Collapse
Affiliation(s)
- Li Kang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
2360
|
Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nat Protoc 2011; 6:187-213. [PMID: 21293460 DOI: 10.1038/nprot.2010.189] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe the use of a microfabricated cell culture substrate, consisting of a uniform array of closely spaced, vertical, elastomeric microposts, to study the effects of substrate rigidity on cell function. Elastomeric micropost substrates are micromolded from silicon masters comprised of microposts of different heights to yield substrates of different rigidities. The tips of the elastomeric microposts are functionalized with extracellular matrix through microcontact printing to promote cell adhesion. These substrates, therefore, present the same topographical cues to adherent cells while varying substrate rigidity only through manipulation of micropost height. This protocol describes how to fabricate the silicon micropost array masters (~2 weeks to complete) and elastomeric substrates (3 d), as well as how to perform cell culture experiments (1-14 d), immunofluorescence imaging (2 d), traction force analysis (2 d) and stem cell differentiation assays (1 d) on these substrates in order to examine the effect of substrate rigidity on stem cell morphology, traction force generation, focal adhesion organization and differentiation.
Collapse
|
2361
|
Mendes-de-Aguiar CBN, Alchini R, Zucco JK, Costa-Silva B, Decker H, Alvarez-Silva M, Tasca CI, Trentin AG. Impaired astrocytic extracellular matrix distribution under congenital hypothyroidism affects neuronal development in vitro. J Neurosci Res 2011; 88:3350-60. [PMID: 20839308 DOI: 10.1002/jnr.22481] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes clearly play a role in neuronal development. An indirect mechanism of thyroid hormone (T3) in the regulation of neuronal development mediated by astrocytes has been proposed. T3 alters the production and organization of the extracellular matrix (ECM) proteins and proteoglycans, producing a high-quality substrate for neuronal differentiation. The present study investigated the effect of hypothyroidism on the astrocyte production of fibronectin (FN) and laminin (LN) as well as their involvement in neuronal growth and neuritogenesis. Our results demonstrated that the amount of both FN and LN were significantly reduced in cultures of hypothyroid astrocytes from rat cerebellum compared with normal cells. This effect was accompanied by reduced numbers of neurons and neuritogenesis. Similarly, the proportions of neurons and neurons with neurites were reduced in cultures on ECM prepared from hypothyroid astrocytes in comparison with normal cells. The proportion of both normal and hypothyroid neurons is strongly reduced in astrocyte ECM compared with cocultures on astrocyte monolayers, suggesting that extracellular factors other than ECM proteins are involved in this process. Moreover, treatment of hypothyroid astrocytic cultures with T3 restored the area of both FN and LN immunostaining to normal levels and partially reestablished neuronal survival and neuritogenesis. Taken together, our results demonstrated that hypothyroidism involves impairment of the astrocytic microenvironment and affects the production of ECM proteins. Thus, hypothyroidism is implicated in impaired neuronal development.
Collapse
Affiliation(s)
- Cláudia Beatriz Nedel Mendes-de-Aguiar
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
2362
|
Jung JP, Moyano JV, Collier JH. Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices. Integr Biol (Camb) 2011; 3:185-96. [PMID: 21249249 DOI: 10.1039/c0ib00112k] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrices (ECMs) are complex materials, containing at least dozens of different macromolecules that are assembled together, thus complicating their optimization towards applications in 3D cell culture or tissue engineering. The natural complexity of ECMs has limited cell-matrix investigations predominantly to experiments where only one matrix component is adjusted at a time, making it difficult to uncover interactions between different matrix components or to efficiently determine optimal matrix compositions for specific desired biological responses. Here we have developed modular synthetic ECMs based on peptide self-assembly whose incorporation of multiple different peptide ligands can be adjusted. The peptides can co-assemble in a wide range of combinations to form hydrogels of uniform morphology and consistent mechanical properties, but with precisely varied mixtures of peptide ligands. The modularity of this system in turn enabled multi-factorial experimental designs for investigating interactions between these ligands and for determining a multi-peptide matrix formulation that maximized endothelial cell growth. In cultures of HUVECs, we observed a previously unknown antagonistic interaction between the laminin-derived peptide YIGSR and RGDS-mediated cell attachment and growth. We also identified an optimized combination of self-assembled peptides bearing the ligands RGDS and IKVAV that led to endothelial cell growth equivalent to that on native full-length fibronectin. Both of these findings would have been challenging to uncover using more traditional one-factor-at-a-time analyses.
Collapse
Affiliation(s)
- Jangwook P Jung
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Mail code 5032, Chicago, IL 60637, USA
| | | | | |
Collapse
|
2363
|
Yu JA, Foley FC, Amack JD, Turner CE. The cell adhesion-associated protein Git2 regulates morphogenetic movements during zebrafish embryonic development. Dev Biol 2011; 349:225-37. [PMID: 21034731 PMCID: PMC3053038 DOI: 10.1016/j.ydbio.2010.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/13/2010] [Accepted: 10/19/2010] [Indexed: 01/24/2023]
Abstract
Signaling through cell adhesion complexes plays a critical role in coordinating cytoskeletal remodeling necessary for efficient cell migration. During embryonic development, normal morphogenesis depends on a series of concerted cell movements; but the roles of cell adhesion signaling during these movements are poorly understood. The transparent zebrafish embryo provides an excellent system to study cell migration during development. Here, we have identified zebrafish git2a and git2b, two new members of the GIT family of genes that encode ArfGAP proteins associated with cell adhesions. Loss-of-function studies revealed an essential role for Git2a in zebrafish cell movements during gastrulation. Time-lapse microscopy analysis demonstrated that antisense depletion of Git2a greatly reduced or arrested cell migration towards the vegetal pole of the embryo. These defects were rescued by expression of chicken GIT2, indicating a specific and conserved role for Git2 in controlling embryonic cell movements. Git2a knockdown embryos showed defects in cell morphology that were associated with reduced cell contractility. We show that Git2a is required for phosphorylation of myosin light chain (MLC), which regulates myosin II-mediated cell contractility. Consistent with this, embryos treated with Blebbistatin-a small molecule inhibitor for myosin II activity-exhibited cell movement defects similar to git2a knockdown embryos. These observations provide in vivo evidence of a physiologic role for Git2a in regulating cell morphogenesis and directed cell migration via myosin II activation during zebrafish embryonic development.
Collapse
Affiliation(s)
- Jianxin A. Yu
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210
| | - Fiona C. Foley
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
2364
|
Monkley SJ, Kostourou V, Spence L, Petrich B, Coleman S, Ginsberg MH, Pritchard CA, Critchley DR. Endothelial cell talin1 is essential for embryonic angiogenesis. Dev Biol 2011; 349:494-502. [PMID: 21081121 PMCID: PMC3025397 DOI: 10.1016/j.ydbio.2010.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 11/30/2022]
Abstract
Using Tln1(fl/fl);CreER mice, we show that tamoxifen-induced inactivation of the talin1 gene throughout the embryo produces an angiogenesis phenotype that is restricted to newly forming blood vessels. The phenotype has a rapid onset in early embryos, resulting in vessel defects by 48 h and death of the embryo within 72 h. Very similar vascular defects were obtained using a Tie2-Cre endothelial cell-specific Tln1 knockout, a phenotype that was rescued by expression of a Tln1 mini-gene in endothelial cells. We show that endothelial cells, unlike most other cell types, do not express talin2, which can compensate for loss of talin1, and demonstrate for the first time that endothelial cells in vivo lacking talin1 are unable to undergo the cell spreading and flattening required to form vessels.
Collapse
Affiliation(s)
- Susan J Monkley
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
2365
|
VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood 2011; 117:3709-19. [PMID: 21239704 DOI: 10.1182/blood-2010-11-316752] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Here, we demonstrate a novel, direct-acting, and synergistic role for 3 hematopoietic stem cell cytokines: stem cell factor, interleukin-3, and stromal derived factor-1α, in controlling human endothelial cell (EC) tube morphogenesis, sprouting, and pericyte-induced tube maturation under defined serum-free conditions in 3-dimensional matrices. Angiogenic cytokines such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) alone or VEGF/FGF combinations do not support these responses. In contrast, VEGF and FGF prime EC responses to hematopoietic cytokines via up-regulation of c-Kit, IL-3Rα, and C-X-C chemokine receptor type 4 from either human ECs or embryonic quail vessel explants. In support of these findings, EC Runx1 is demonstrated to be critical in coordinating vascular morphogenic responses by controlling hematopoietic cytokine receptor expression. Combined blockade of hematopoietic cytokines or their receptors in vivo leads to blockade of developmental vascularization in quail embryos manifested by vascular hemorrhage and disrupted vascular remodeling events in multiple tissue beds. This work demonstrates a unique role for hematopoietic stem cell cytokines in vascular tube morphogenesis and sprouting and further demonstrates a novel upstream priming role for VEGF and FGF to facilitate the action of promorphogenic hematopoietic cytokines.
Collapse
|
2366
|
Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 2011; 6:e15978. [PMID: 21246050 PMCID: PMC3016411 DOI: 10.1371/journal.pone.0015978] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/01/2010] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cell (MSC) differentiation is regulated in part by tissue stiffness, yet MSCs can often encounter stiffness gradients within tissues caused by pathological, e.g., myocardial infarction ∼8.7±1.5 kPa/mm, or normal tissue variation, e.g., myocardium ∼0.6±0.9 kPa/mm; since migration predominantly occurs through physiological rather than pathological gradients, it is not clear whether MSC differentiate or migrate first. MSCs cultured up to 21 days on a hydrogel containing a physiological gradient of 1.0±0.1 kPa/mm undergo directed migration, or durotaxis, up stiffness gradients rather than remain stationary. Temporal assessment of morphology and differentiation markers indicates that MSCs migrate to stiffer matrix and then differentiate into a more contractile myogenic phenotype. In those cells migrating from soft to stiff regions however, phenotype is not completely determined by the stiff hydrogel as some cells retain expression of a neural marker. These data may indicate that stiffness variation, not just stiffness alone, can be an important regulator of MSC behavior.
Collapse
|
2367
|
Davis GE, Stratman AN, Sacharidou A. Molecular Control of Vascular Tube Morphogenesis and Stabilization: Regulation by Extracellular Matrix, Matrix Metalloproteinases, and Endothelial Cell–Pericyte Interactions. BIOPHYSICAL REGULATION OF VASCULAR DIFFERENTIATION AND ASSEMBLY 2011. [DOI: 10.1007/978-1-4419-7835-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2368
|
Todorovic V, Finnegan E, Freyer L, Zilberberg L, Ota M, Rifkin DB. Long form of latent TGF-β binding protein 1 (Ltbp1L) regulates cardiac valve development. Dev Dyn 2011; 240:176-87. [PMID: 21181942 PMCID: PMC3012267 DOI: 10.1002/dvdy.22521] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transforming Growth Factor β (TGF-β) is crucial for valve development and homeostasis. The long form of Latent TGF-β binding protein 1 (LTBP1L) covalently binds all TGF-β isoforms and regulates their bioavailability. Ltbp1L expression analysis during valvulogenesis revealed two patterns of Ltbp1L production: an early one (E9.5-11.5) associated with endothelial-to-mesenchymal transformation (EMT); and a late one (E12.5 to birth) contemporaneous with valve remodeling. Similarly, histological analysis of Ltbp1L(-/-) developing valves identified two different pathologies: generation of hypoplastic endocardial cushions in early valvulogenesis, followed by development of hyperplastic valves in late valvulogenesis. Ltbp1L promotes valve EMT, as Ltbp1L absence yields hypoplastic endocardial cushions in vivo and attenuated EMT in vitro. Ltbp1L(-/-) valve hyperplasia in late valvuogenesis represents a consequence of prolonged EMT. We demonstrate that Ltbp1L is a major regulator of Tgf-β activity during valvulogenesis since its absence results in a perturbed Tgf-β pathway that causes all Ltbp1L(-/-) valvular defects.
Collapse
Affiliation(s)
- Vesna Todorovic
- Department of Cell Biology, NYU Langone Medical Center, New York, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|
2369
|
Davis GE. Angiogenesis and Proteinases: Influence on Vascular Morphogenesis, Stabilization and Regression. DRUG DISCOVERY TODAY. DISEASE MODELS 2011; 8:13-20. [PMID: 22125567 PMCID: PMC3223910 DOI: 10.1016/j.ddmod.2011.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteinases play a key role during angiogenesis and have been implicated in vascular morphogenesis, stabilization and regression. Major advances have identified specific proteinases and their inhibitors that separately control these processes. Relevant proteinases include cell surface or soluble metalloproteinases, serine proteinases and cathepsins that affect these events and a critical issue concerns how these proteinases are balanced by their inhibitors to affect tissue vascularization. Importantly, heterotypic communication of endothelial cells with vessel supporting cells such as pericytes controls proteinase and inhibitor expression to regulate these processes.
Collapse
Affiliation(s)
- George E. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Dalton Cardiovascular Research Center, Columbia, MO 65212
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Dalton Cardiovascular Research Center, Columbia, MO 65212
| |
Collapse
|
2370
|
Abstract
Collagens are the most abundant proteins in mammals. The collagen family comprises 28 members that contain at least one triple-helical domain. Collagens are deposited in the extracellular matrix where most of them form supramolecular assemblies. Four collagens are type II membrane proteins that also exist in a soluble form released from the cell surface by shedding. Collagens play structural roles and contribute to mechanical properties, organization, and shape of tissues. They interact with cells via several receptor families and regulate their proliferation, migration, and differentiation. Some collagens have a restricted tissue distribution and hence specific biological functions.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, Université Lyon 1, Lyon, 69367, France.
| |
Collapse
|
2371
|
Desiniotis A, Kyprianou N. Significance of talin in cancer progression and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:117-47. [PMID: 21749900 DOI: 10.1016/b978-0-12-386039-2.00004-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Upon detachment from the extracellular matrix, tumor epithelial cells and tumor-associated endothelial cells are capable of overcoming anoikis, gain survival benefits, and hence contribute to the process of metastasis. The focal-adhesion complex formation recruits the association of key adaptor proteins such as FAK (focal-adhesion kinase). Vimentin, paxillin, and talin are responsible for mediating the interaction between the actin cytoskeleton and integrins. Talin is an early-recruited focal-adhesion player that is of structural and functional significance in mediating interactions with integrin cytoplasmic tails leading to destabilization of the transmembrane complex and resulting in rearrangements in the extracellular integrin compartments that mediate integrin activation. Talin-mediated integrin activation plays a definitive role in integrin-mediated signaling and induction of downstream survival pathways leading to protection from anoikis and consequently resulting in cancer progression to metastasis. We recently reported that talin expression is significantly increased in prostate cancer compared with benign and normal prostate tissue and that this overexpression correlates with progression to metastatic disease implicating a prognostic value for talin during tumor progression. At the molecular level, talin is functionally associated with enhanced survival and proliferation pathways and confers anoikis resistance and metastatic spread of primary tumor cells via activation of the Akt survival pathway. In this review, we discuss the growing evidence surrounding the value of talin as a prognostic marker of cancer progression to metastasis and as therapeutic target in advanced prostate cancer, as well as the current understanding of mechanisms regulating its signaling activity in cancer.
Collapse
Affiliation(s)
- Andreas Desiniotis
- Department of Surgery/Urology, and Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, USA
| | | |
Collapse
|
2372
|
Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. NATURE NANOTECHNOLOGY 2011; 6:13-22. [PMID: 21151110 PMCID: PMC4059057 DOI: 10.1038/nnano.2010.246] [Citation(s) in RCA: 893] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tissue engineering aims at developing functional substitutes for damaged tissues and organs. Before transplantation, cells are generally seeded on biomaterial scaffolds that recapitulate the extracellular matrix and provide cells with information that is important for tissue development. Here we review the nanocomposite nature of the extracellular matrix, describe the design considerations for different tissues and discuss the impact of nanostructures on the properties of scaffolds and their uses in monitoring the behaviour of engineered tissues. We also examine the different nanodevices used to trigger certain processes for tissue development, and offer our view on the principal challenges and prospects of applying nanotechnology in tissue engineering.
Collapse
Affiliation(s)
- Tal Dvir
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children’s Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Brian P. Timko
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children’s Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children’s Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
2373
|
Feitosa NM, Richardson R, Bloch W, Hammerschmidt M. Basement membrane diseases in zebrafish. Methods Cell Biol 2011; 105:191-222. [PMID: 21951531 DOI: 10.1016/b978-0-12-381320-6.00008-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Basement membranes (BMs) are a complex, sheet-like network of specialized extracellular matrix that underlies epithelial cells and surrounds muscle cells. They provide adherence between neighboring tissues, permit some flexibility of these adherent structures, and can act as a store for growth factors and as a guide for cell migration. The BM is not just a static structure; its deposition and remodeling are important for many processes including embryonic development, immune response, and wound healing. To date, dysfunction in BM deposition or remodeling has been linked to many human congenital disorders and diseases, affecting many different tissues in the body, including malformations, dystrophies, and cancer. However, many questions remain to be answered on the role BM proteins, and their mutations, play in the pathogenesis of human disease. In recent years, the zebrafish (Danio rerio) has emerged as a powerful animal model for human development and disease. In the first part of this chapter, we provide an overview of described defects caused by BM dysfunction in zebrafish, including development and function of notochord, muscle, central nervous system, skin, cardiovascular system, and kidney. In the second part, we will describe details of methods used to visualize and assess the structure of the BM in zebrafish, and to functionally analyze its different components.
Collapse
|
2374
|
Yu H, Mouw JK, Weaver VM. Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol 2011; 21:47-56. [PMID: 20870407 PMCID: PMC3014395 DOI: 10.1016/j.tcb.2010.08.015] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/21/2010] [Accepted: 08/31/2010] [Indexed: 02/04/2023]
Abstract
Cancer cells exist in a constantly evolving tissue microenvironment of diverse cell types within a proteinaceous extracellular matrix. As tumors evolve, the physical forces within this complex microenvironment change, with pleiotropic effects on both cell- and tissue-level behaviors. Recent work suggests that these biomechanical factors direct tissue development and modulate tissue homeostasis, and, when altered, crucially influence tumor evolution. In this review, we discuss the biomechanical regulation of cell and tissue homeostasis from the molecular, cellular and tissue levels, including how modifications of this physical dialogue could contribute to cancer etiology. Because of the broad impact of biomechanical factors on cell and tissue functions, an understanding of tumor evolution from the biomechanical perspective should improve risk assessment, clinical diagnosis and the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hongmei Yu
- Department of Surgery, University of California at San Francisco, San Francisco, CA 94143
- Center for Bioengineering and Tissue Regeneration, University of California at San Francisco, San Francisco, CA 94143
| | - Janna Kay Mouw
- Department of Surgery, University of California at San Francisco, San Francisco, CA 94143
- Center for Bioengineering and Tissue Regeneration, University of California at San Francisco, San Francisco, CA 94143
| | - Valerie M. Weaver
- Department of Surgery, University of California at San Francisco, San Francisco, CA 94143
- Center for Bioengineering and Tissue Regeneration, University of California at San Francisco, San Francisco, CA 94143
- Department of Anatomy and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA 94143
| |
Collapse
|
2375
|
Joddar B, Ito Y. Biological modifications of materials surfaces with proteins for regenerative medicine. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10984g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2376
|
Abstract
Biochemical patterning and morphogenetic movements coordinate the design of embryonic development. The molecular processes that pattern and closely control morphogenetic movements are today becoming well understood. Recent experimental evidence demonstrates that mechanical cues generated by morphogenesis activate mechanotransduction pathways, which in turn regulate cytoskeleton remodeling, cell proliferation, tissue differentiation. From Drosophila oocytes and embryos to Xenopus and mouse embryos and Arabidopsis meristem, here we review the developmental processes known to be activated in vivo by the mechanical strains associated to embryonic multicellular tissue morphogenesis. We describe the genetic, mechanical, and magnetic tools that have allowed the testing of mechanical induction in development by a step-by-step uncoupling of genetic inputs from mechanical inputs in embryogenesis. We discuss the known underlying molecular mechanisms involved in such mechanotransduction processes, including the Armadillo/β-catenin activation of Twist and the Fog-dependent stabilization of Myosin-II. These mechanotransduction processes are associated with a variety of physiological functions, such as mid-gut differentiation, mesoderm invagination and skeletal joint differentiation in embryogenesis, cell migration and internal pressure regulation during oogenesis, and meristem morphogenesis. We describe how the conservation of associated mechanosensitive pathways in embryonic and adult tissues opens new perspectives on mechanical involvement, potentially in evolution, and in cancer progression.
Collapse
Affiliation(s)
- Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, Paris, France
| |
Collapse
|
2377
|
Rychly J. Biointerface Technology. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
2378
|
Abstract
Cell migration is required for a wide variety of processes from bacteria seeking for food to correct patterning of neuronal networks. The ability to sense external cues is critical for cells to get directions and reach their goals. So far, studies on chemotaxis have mainly focused their attention on individual cells and therefore available tools are designed to monitor cell behavior at the single cell level. However, as collective cell migration is now widely accepted as a main mode of cell migration from development to cancer, the question of how chemotaxis is achieved has also to be asked on a bigger scale. Here, we present two chemotaxis assays suitable for single cells, cell sheets, and cell explants. Using a simple combination of heparin-coated beads and high vacuum silicone grease, these techniques can be adapted to a wide variety of culture conditions. They allow time-lapse study, high-resolution microscopy, and can be set up at no extra cost.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London, UK
| | | |
Collapse
|
2379
|
Davis GE, Stratman AN, Sacharidou A, Koh W. Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:101-65. [PMID: 21482411 DOI: 10.1016/b978-0-12-386041-5.00003-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many studies reveal a fundamental role for extracellular matrix-mediated signaling through integrins and Rho GTPases as well as matrix metalloproteinases (MMPs) in the molecular control of vascular tube morphogenesis in three-dimensional (3D) tissue environments. Recent work has defined an endothelial cell (EC) lumen signaling complex of proteins that controls these vascular morphogenic events. These findings reveal a signaling interdependence between Cdc42 and MT1-MMP to control the 3D matrix-specific process of EC tubulogenesis. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels in 3D matrices that are utilized to remodel EC-lined tubes through EC motility and could facilitate processes such as flow-induced remodeling and arteriovenous EC sorting and differentiation. Within vascular guidance tunnels, key dynamic interactions occur between ECs and pericytes to affect vessel remodeling, diameter, and vascular basement membrane matrix assembly, a fundamental process necessary for endothelial tube maturation and stabilization. Thus, the EC lumen and tube formation mechanism coordinates the concomitant establishment of a network of vascular tubes within tunnel spaces to allow for flow responsiveness, EC-mural cell interactions, and vascular extracellular matrix assembly to control the development of the functional microcirculation.
Collapse
Affiliation(s)
- George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | | | | | | |
Collapse
|
2380
|
Liu ZM, Gu Q, Xu ZK, Groth T. Synergistic effect of polyelectrolyte multilayers and osteogenic growth medium on differentiation of human mesenchymal stem cells. Macromol Biosci 2010; 10:1043-54. [PMID: 20602423 DOI: 10.1002/mabi.201000086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Layer-by-layer assembly of biogenic polyelectrolytes (PEL) was carried out on the surface of poly (L-lactide) to generate polyelectrolyte multilayers (PEM) that foster osteogenic differentiation of human mesenchymal stem cell (hMSC). Gelatin (GEL), hyaluronic acid (HA) and heparin (HEP) were chosen as polyanions, while chitosan (CHI) was employed as polycation. Multilayer formation was monitored by surface plasmon resonance and water contact angle measurements showing that layer formation process and surface wetting properties depended on the type of polyanions. While HEP as strong PEL led to thicker and more hydrophilic PEM, layer mass was lower for weak polyanions GEL and HA. Short-term adhesion studies with hMSC showed strong adhesion and spreading of cells on PEM composed of GEL/CHI and low spreading, motile phenotype and aggregation of hMSC on HEP/CHI or HA/CHI. Long term studies over three weeks were carried out to follow growth and differentiation of hMSC on the PEM. Weak osteogenic differentiation of hMSC was observed on GEL/CHI if cells were cultured in normal medium while no osteogenic phenotypes were observed on HEP/CHI or HA/CHI. When cells were cultured in osteogenic differentiation medium, however, PEM composed of HEP/CHI or HA/CHI promoted differentiation of hMSC towards osteoblasts, while PEM composed of GEL/CHI failed to do so. Overall, the composition of PEMs can be used as additional tool to control osteogenic differentiation of hMSC.
Collapse
Affiliation(s)
- Zhen-Mei Liu
- Biomedical Materials Group, Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
2381
|
Jung Y, Kissil JL, McCarty JH. β8 integrin and band 4.1B cooperatively regulate morphogenesis of the embryonic heart. Dev Dyn 2010; 240:271-7. [DOI: 10.1002/dvdy.22513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
2382
|
Nucera C, Lawler J, Hodin R, Parangi S. The BRAFV600E mutation: what is it really orchestrating in thyroid cancer? Oncotarget 2010; 1:751-756. [PMID: 21321384 PMCID: PMC3074562 DOI: 10.18632/oncotarget.210] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/31/2010] [Indexed: 11/25/2022] Open
Abstract
BRAFV600E is a constitutively active onco-kinase and is the most common genetic alteration in papillary thyroid carcinoma (PTC), and in anaplastic thyroid carcinoma as well, albeit at a lower frequency. The BRAFV600E mutation in some studies has been significantly associated with extra-thyroidal extension, metastases, recurrence, and mortality in patients with PTC. A recent genome-wide expression profiling approach (Gene Set Enrichment Analysis (GSEA)) and in vitro and in vivo functional studies revealed that BRAFV600E affects extracellular matrix composition (i.e. increased expression of some collagens and laminins) and promotes thyroid cancer migration and invasion. BRAFV600E through the phospho-MEK1/2 and phospho-ERK1/2 pathway may control a network of genes crucial in integrating and regulating the extracellular and intracellular signaling in thyroid cancer cells, which may be fundamental to trigger an abnormal cell differentiation/totipotency and shape/polarity, and contribute to tumor aggressiveness mechanisms (i.e. cell adhesion, migration, and invasion). Increasing our knowledge of BRAFV600E-modulated ECM genes and targeting the subset of genes essential for tumor aggressiveness will help establish a novel paradigm for treatment of thyroid cancers harboring BRAFV600E. Furthermore, identifying downstream events from the BRAFV600E/ERK1/2 pathway will eventually identify novel biomarkers that can be used to correlate with disease outcome and overall survival.
Collapse
Affiliation(s)
- Carmelo Nucera
- Thyroid Cancer Research Laboratory, Endocrine Surgery Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jack Lawler
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Richard Hodin
- Thyroid Cancer Research Laboratory, Endocrine Surgery Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sareh Parangi
- Thyroid Cancer Research Laboratory, Endocrine Surgery Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2383
|
Kasten A, Müller P, Bulnheim U, Groll J, Bruellhoff K, Beck U, Steinhoff G, Möller M, Rychly J. Mechanical integrin stress and magnetic forces induce biological responses in mesenchymal stem cells which depend on environmental factors. J Cell Biochem 2010; 111:1586-97. [DOI: 10.1002/jcb.22890] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
2384
|
Dynamics of podosome stiffness revealed by atomic force microscopy. Proc Natl Acad Sci U S A 2010; 107:21016-21. [PMID: 21081699 DOI: 10.1073/pnas.1007835107] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Podosomes are unique cellular entities specifically found in macrophages and involved in cell-matrix interactions, matrix degradation, and 3D migration. They correspond to a core of F-actin surrounded at its base by matrix receptors. To investigate the structure/function relationships of podosomes, soft lithography, atomic force microscopy (AFM), and correlative fluorescence microscopy were used to characterize podosome physical properties in macrophages differentiated from human blood monocytes. Podosome formation was restricted to delineated areas with micropatterned fibrinogen to facilitate AFM analyses. Podosome height and stiffness were measured with great accuracy in living macrophages (578 ± 209 nm and 43.8 ± 9.3 kPa) and these physical properties were independent of the nature of the underlying matrix. In addition, time-lapse AFM revealed that podosomes harbor two types of overlapping periodic stiffness variations throughout their lifespan, which depend on F-actin and myosin II activity. This report shows that podosome biophysical properties are amenable to AFM, allowing the study of podosomes in living macrophages at nanoscale resolution and the analysis of their intimate dynamics. Such an approach opens up perspectives to better understand the mechanical functionality of podosomes under physiological and pathological contexts.
Collapse
|
2385
|
Candela M, Fiori J, Dipalo S, Brigidi P. Development of a high-performance affinity chromatography-based method to study the biological interaction between whole micro-organisms and target proteins. Lett Appl Microbiol 2010; 51:678-82. [PMID: 21054446 DOI: 10.1111/j.1472-765x.2010.02953.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The bacteria-host molecular cross-talk is the matter of primary importance both in pathogenesis and in commensalism. Principally based on immunological methods, the methodologies commonly utilized for these studies are laborious and require specific antibodies. Here, we developed a new high-performance affinity chromatography (HPAC)-based approach that allows a direct measure of the interaction between whole bacterial cells and host molecules. METHODS AND RESULTS Bifidobacterium lactis BI07 cells immobilized on amino-derivatized silica beads were utilized as stationary phase in a high-performance affinity chromatography approach. The analytes plasminogen, collagen I and collagen IV were injected, and interactions were evaluated by the insertion in an HPLC system with UV detection. According to our data, Bif. lactis BI07 is capable of interacting with plasminogen, while it does not exhibit any binding activity to collagen I and IV. CONCLUSIONS In this study, we implemented a high-performance affinity chromatography-based method to characterize the biological interaction between whole micro-organisms and target proteins. SIGNIFICANCE AND IMPACT OF THE STUDY With respect to the approaches commonly utilized to study the interaction between bacteria and host proteins, this HPAC-based approach is fast and cheaper than other methods and allows a direct measure of the interaction between bacterial cells and target molecules.
Collapse
Affiliation(s)
- M Candela
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
2386
|
|
2387
|
Ikeda Y, Taveira-DaSilva AM, Pacheco-Rodriguez G, Steagall WK, El-Chemaly S, Gochuico BR, May RM, Hathaway OM, Li S, Wang JA, Darling TN, Stylianou M, Moss J. Erythropoietin-driven proliferation of cells with mutations in the tumor suppressor gene TSC2. Am J Physiol Lung Cell Mol Physiol 2010; 300:L64-72. [PMID: 21036916 DOI: 10.1152/ajplung.00095.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is characterized by cystic lung destruction, resulting from proliferation of smooth-muscle-like cells, which have mutations in the tumor suppressor genes TSC1 or TSC2. Among 277 LAM patients, severe disease was associated with hypoxia and elevated red blood cell indexes that accompanied reduced pulmonary function. Because high red cell indexes could result from hypoxemia-induced erythropoietin (EPO) production, and EPO is a smooth muscle cell mitogen, we investigated effects of EPO in human cells with genetic loss of tuberin function, and we found that EPO increased proliferation of human TSC2-/-, but not of TSC2+/-, cells. A discrete population of cells grown from explanted lungs was characterized by the presence of EPO receptor and loss of heterozygosity for TSC2, consistent with EPO involvement. In LAM cells from lung nodules, EPO was localized to the extracellular matrix, supporting evidence for activation of an EPO-driven signaling pathway. Although the high red cell mass of LAM patients could be related to advanced disease, we propose that EPO, synthesized in response to episodic hypoxia, may increase disease progression by enhancing the proliferation of LAM cells.
Collapse
Affiliation(s)
- Yoshihiko Ikeda
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2388
|
Régent M, Planus E, Bouin AP, Bouvard D, Brunner M, Faurobert E, Millon-Frémillon A, Block MR, Albiges-Rizo C. Specificities of β1 integrin signaling in the control of cell adhesion and adhesive strength. Eur J Cell Biol 2010; 90:261-9. [PMID: 20971526 DOI: 10.1016/j.ejcb.2010.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 11/26/2022] Open
Abstract
Cells exert actomyosin contractility and cytoskeleton-dependent force in response to matrix stiffness cues. Cells dynamically adapt to force by modifying their behavior and remodeling their microenvironment. This adaptation is favored by integrin activation switch and their ability to modulate their clustering and the assembly of an intracellular hub in response to force. Indeed integrins are mechanoreceptors and mediate mechanotransduction by transferring forces to specific adhesion proteins into focal adhesions which are sensitive to tension and activate intracellular signals. α(5)β(1) integrin is considered of major importance for the formation of an elaborate meshwork of fibronectin fibrils and for the extracellular matrix deposition and remodeling. Here we summarize recent progress in the study of mechanisms regulating the activation cycle of β(1) integrin and the specificity of α(5)β(1) integrin in mechanotransduction.
Collapse
Affiliation(s)
- Myriam Régent
- INSERM U823 Institut Albert Bonniot, Université Joseph Fourier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
2389
|
Jiao Y, Novozhilova E, Karlén A, Muhr J, Olivius P. Olfactory ensheathing cells promote neurite outgrowth from co-cultured brain stem slice. Exp Neurol 2010; 229:65-71. [PMID: 20974131 DOI: 10.1016/j.expneurol.2010.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/19/2010] [Accepted: 10/15/2010] [Indexed: 01/01/2023]
Abstract
Cell therapy aiming at the replacement of degenerated neurons is a very attractive approach. By using an established in vitro organotypic brain stem (BS) slice culture we screen for candidate donor cells, some of them being further functionally assessed in in vivo models of sensorineural hearing loss. Both in vitro and in vivo systems show that implanted cells face challenges of survival, targeted migration, differentiation and functional integration with the host tissue. Low success rates are possibly due to the lack of necessary neurotrophic factors, adhesion molecules and guiding cues. Olfactory ensheathing cells (OECs) have been shown to express a number of neurotrophic factors and to promote axonal growth through cell to cell interactions. In the present study we co-cultured OECs with organotypic BS slice in order to see if OECs can serve as a facilitator when screening candidate donor cells in an organotypic culture setup. Here we show that OECs when co-cultured with the auditory BS slice not only promote neurite outgrowth from the cochlear nucleus (CN) region of the BS slice but also support cells by having BS slice axons growing along their processes. These findings further suggest that OECs may enhance survival and targeted migration of candidate donor cells suitable for cell therapy in vitro and in vivo. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Yu Jiao
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
2390
|
Abstract
The demonstration that fibrillin-1 mutations perturb transforming growth factor (TGF)-β bioavailability/signaling in Marfan syndrome (MFS) changed the view of the extracellular matrix as a passive structural support to a dynamic modulator of cell behavior. In this issue, Nistala et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201003089) advance this concept by demonstrating how fibrillin-1 and -2 regulate TGF-β and bone morphogenetic protein (BMP) action during osteoblast maturation.
Collapse
Affiliation(s)
- Daniel B Rifkin
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
2391
|
Räsänen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res 2010; 316:2713-22. [DOI: 10.1016/j.yexcr.2010.04.032] [Citation(s) in RCA: 396] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 12/21/2022]
|
2392
|
Castillo-Briceño P, Arizcun-Arizcun M, Meseguer J, Mulero V, García-Ayala A. Correlated expression profile of extracellular matrix-related molecules during the inflammatory response of the teleost fish gilthead seabream. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1051-1058. [PMID: 20488200 DOI: 10.1016/j.dci.2010.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 05/29/2023]
Abstract
Extracellular matrix (ECM) components, in addition to their structural functions, interact with cell surface receptors and intracellular components to modulate the transduction of signals for cell growth, differentiation, migration, proliferation, polarization, apoptosis and inflammation. Our previous findings in the gilthead seabream (Sparus aurata L.), a marine seasonal hermaphrodite teleost fish, have shown that both endocrine and immune stimuli modulate the expression of matrix metalloproteases (MMPs) and tissue inhibitors of MMP (TIMPs). In addition, collagen type I (COL1) induces the expression of some pro-inflammatory cytokines and MMPs in professional phagocytes. Consequently, in this study we use real-time RT-PCR to analyze the gene expression profile of several ECM-related molecules (MMP-2, -9 and -13, TIMP-2a, and -2b, COL1A1, and integrin beta1a) in different organs of adult specimens as well as in response to innate immune challenges. Our results showed that liver had the lowest basal levels of them, although they were clearly modulated during injury and infection. In the same way, ECM-related molecules seem to participate in pro-inflammatory processes, being of particular interest COL1 which is synthesized by immune cells and is able to act as autocrine/paracrine stimulus for them. Lastly, we propose that the observed correlations between ECM-related molecules during the inflammatory response should be considered to obtain a more accurate picture of their roles in this process.
Collapse
|
2393
|
Lu Z, Zreiqat H. The Osteoconductivity of Biomaterials Is Regulated by Bone Morphogenetic Protein 2 Autocrine Loop Involving α2β1 Integrin and Mitogen-Activated Protein Kinase/Extracellular Related Kinase Signaling Pathways. Tissue Eng Part A 2010; 16:3075-84. [DOI: 10.1089/ten.tea.2010.0204] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- ZuFu Lu
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney, Sydney, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney, Sydney, Australia
| |
Collapse
|
2394
|
|
2395
|
Abstract
The laminin receptor Integrin alpha6beta1 anchors adult neural stem cells to the niche vasculature. In this issue of Cell Stem Cell, Lathia et al. (2010) show that glioblastoma stem cells highly express integrin alpha6 and that their interaction with laminin on endothelial cells directly regulates their tumorigenic capacity.
Collapse
|
2396
|
Worthley DL, Giraud AS, Wang TC. The extracellular matrix in digestive cancer. CANCER MICROENVIRONMENT 2010; 3:177-85. [PMID: 21209783 DOI: 10.1007/s12307-010-0053-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 09/06/2010] [Indexed: 01/01/2023]
Abstract
The extracellular components of the cancer microenvironment play a critical role in tumor initiation, progression and invasion. In this review we examine the normal formation and function of the basement membrane and extracellular matrix. We characterize the interactions between the matrix and the epithelium and explore the causes and consequences of the extracellular remodeling that accompanies carcinogenesis. Finally, we address the therapeutic possibilities of incorporating matrix as well as epithelial strategies in the management of digestive cancer.
Collapse
|
2397
|
Chautard E, Fatoux-Ardore M, Ballut L, Thierry-Mieg N, Ricard-Blum S. MatrixDB, the extracellular matrix interaction database. Nucleic Acids Res 2010; 39:D235-40. [PMID: 20852260 PMCID: PMC3013758 DOI: 10.1093/nar/gkq830] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
MatrixDB (http://matrixdb.ibcp.fr) is a freely available database focused on interactions established by extracellular proteins and polysaccharides. Only few databases report protein-polysaccharide interactions and, to the best of our knowledge, there is no other database of extracellular interactions. MatrixDB takes into account the multimeric nature of several extracellular protein families for the curation of interactions, and reports interactions with individual polypeptide chains or with multimers, considered as permanent complexes, when appropriate. MatrixDB is a member of the International Molecular Exchange consortium (IMEx) and has adopted the PSI-MI standards for the curation and the exchange of interaction data. MatrixDB stores experimental data from our laboratory, data from literature curation, data imported from IMEx databases, and data from the Human Protein Reference Database. MatrixDB is focused on mammalian interactions, but aims to integrate interaction datasets of model organisms when available. MatrixDB provides direct links to databases recapitulating mutations in genes encoding extracellular proteins, to UniGene and to the Human Protein Atlas that shows expression and localization of proteins in a large variety of normal human tissues and cells. MatrixDB allows researchers to perform customized queries and to build tissue- and disease-specific interaction networks that can be visualized and analyzed with Cytoscape or Medusa.
Collapse
Affiliation(s)
- Emilie Chautard
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université Lyon 1, IFR 128 Biosciences Gerland-Lyon Sud, 7 passage du Vercors 69367, Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
2398
|
Avvedimento EV, Gabrielli A. Stiff and tight skin: a rear window into fibrosis without inflammation. Sci Transl Med 2010; 2:23ps13. [PMID: 20375002 DOI: 10.1126/scitranslmed.3000949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this issue of Science Translational Medicine, a report by Loeys et al. on mutations in the fibrillin-1 gene in patients with skin fibrosis (stiff skin) adds a new piece of information on a connective tissue disorder that resembles systemic sclerosis, an autoimmune disease characterized by skin fibrosis and visceral organ involvement. Here, we discuss the implications of these findings, as well as new opportunities for targeted therapy for fibrosis.
Collapse
Affiliation(s)
- Enrico V Avvedimento
- Department of Biologia e Patologia Molecolare e Cellulare, Universita Federico II Medical School, Naples, Italy.
| | | |
Collapse
|
2399
|
Kruegel J, Miosge N. Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci 2010; 67:2879-95. [PMID: 20428923 PMCID: PMC2921489 DOI: 10.1007/s00018-010-0367-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 01/11/2023]
Abstract
More than three decades ago, basement membranes (BMs) were described as membrane-like structures capable of isolating a cell from and connecting a cell to its environment. Since this time, it has been revealed that BMs are specialized extracellular matrices (sECMs) with unique components that support important functions including differentiation, proliferation, migration, and chemotaxis of cells during development. The composition of these sECM is as unique as the tissues to which they are localized, opening the possibility that such matrices can fulfill distinct functions. Changes in BM composition play significant roles in facilitating the development of various diseases. Furthermore, tissues have to provide sECM for their stem cells during development and for their adult life. Here, we briefly review the latest research on these unique sECM and their components with a special emphasis on embryonic and adult stem cells and their niches.
Collapse
Affiliation(s)
- Jenny Kruegel
- Tissue Regeneration Work Group, Department of Prosthodontics, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Nicolai Miosge
- Tissue Regeneration Work Group, Department of Prosthodontics, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
2400
|
Maller O, Martinson H, Schedin P. Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. J Mammary Gland Biol Neoplasia 2010; 15:301-18. [PMID: 20811805 DOI: 10.1007/s10911-010-9189-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/16/2010] [Indexed: 12/25/2022] Open
Abstract
The mammary gland is an excellent model system to study the interplay between stroma and epithelial cells because of the gland's unique postnatal development and its distinct functional states. This review focuses on the contribution of the extracellular matrix (ECM) to stromal-epithelial interactions in the mammary gland. We describe how ECM physical properties, protein composition, and proteolytic state impact mammary gland architecture as well as provide instructive cues that influence the function of mammary epithelial cells during pubertal gland development and throughout adulthood. Further, based on recent proteomic analyses of mammary ECM, we describe known mammary ECM proteins and their potential functions, as well as describe several ECM proteins not previously recognized in this organ. ECM proteins are discussed in the context of the morphologically-distinct stromal subcompartments: the basal lamina, the intra- and interlobular stroma, and the fibrous connective tissue. Future studies aimed at in-depth qualitative and quantitative characterization of mammary ECM within these various subcompartments is required to better elucidate the function of ECM in normal as well as in pathological breast tissue.
Collapse
Affiliation(s)
- Ori Maller
- Department of Medicine, Division of Medical Oncology, University of Colorado-Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | | | | |
Collapse
|