201
|
Chiu PKF, Lee EKC, Chan MTY, Chan WHC, Cheung MH, Lam MHC, Ma ESK, Poon DMC. Genetic Testing and Its Clinical Application in Prostate Cancer Management: Consensus Statements from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology. Front Oncol 2022; 12:962958. [PMID: 35924163 PMCID: PMC9339641 DOI: 10.3389/fonc.2022.962958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background In recent years, indications for genetic testing in prostate cancer (PC) have expanded from patients with a family history of prostate and/or related cancers to those with advanced castration-resistant disease, and even to early PC patients for determination of the appropriateness of active surveillance. The current consensus aims to provide guidance to urologists, oncologists and pathologists working with Asian PC patients on who and what to test for in selected populations. Methods A joint consensus panel from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology was convened over a series of 5 physical and virtual meetings. A background literature search on genetic testing in PC was performed in PubMed, ClinicalKey, EBSCOHost, Ovid and ProQuest, and three working subgroups were formed to review and present the relevant evidence. Meeting agendas adopted a modified Delphi approach to ensure that discussions proceed in a structured, iterative and balanced manner, which was followed by an anonymous voting on candidate statements. Of 5 available answer options, a consensus statement was accepted if ≥ 75% of the panelists chose “Accept Completely” (Option A) or “Accept with Some Reservation” (Option B). Results The consensus was structured into three parts: indications for testing, testing methods, and therapeutic implications. A list of 35 candidate statements were developed, of which 31 were accepted. The statements addressed questions on the application of PC genetic testing data and guidelines to Asian patients, including patient selection for germline testing, selection of gene panel and tissue sample, provision of genetic counseling, and use of novel systemic treatments in metastatic castration-resistant PC patients. Conclusion This consensus provides guidance to urologists, oncologists and pathologists working with Asian patients on indications for genetic testing, testing methods and technical considerations, and associated therapeutic implications.
Collapse
Affiliation(s)
- Peter K. F. Chiu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eric K. C. Lee
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong SAR, China
| | - Marco T. Y. Chan
- Division of Urology, Department of Surgery, Tuen Mun Hospital, Hong Kong SAR, China
| | - Wilson H. C. Chan
- Division of Urology, Department of Surgery, United Christian Hospital, Hong Kong SAR, China
| | - M. H. Cheung
- Division of Urology, Department of Surgery, Tseung Kwan O Hospital, Hong Kong SAR, China
| | - Martin H. C. Lam
- Department of Oncology, United Christian Hospital, Hong Kong SAR, China
| | - Edmond S. K. Ma
- Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Darren M. C. Poon
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
- *Correspondence: Darren M. C. Poon,
| |
Collapse
|
202
|
Blas L, Shiota M, Eto M. Current status and future perspective on the management of metastatic castration-sensitive prostate cancer. Cancer Treat Res Commun 2022; 32:100606. [PMID: 35835707 DOI: 10.1016/j.ctarc.2022.100606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Since 1941, the standard treatment for metastatic castration-sensitive prostate cancer (mCSPC) was androgen deprivation therapy (ADT) by surgical or medical castration with or without first-generation antiandrogen. However, the efficacy of ADT does not last in most cases. In the 2010s, de-intensification by intermittent ADT was evaluated by RCTs for mCSPC to mitigate the treatment-emerged burdens. However, intermittent ADT failed to show non-inferiority in OS for mCSPC and is an optional treatment for selected patients with mCSPC. The treatment for patients with mCSPC has improved in the last years. Currently, based on the evidence from RCTs, intensification treatment by adding docetaxel, novel androgen receptor pathway inhibitors and multimodal treatment using radiotherapy to the primary have become new standard treatments for mCSPC. Furthermore, ongoing RCTs have been investigating the clinical values of more intensified treatments by combining multiple effective treatment for mCSPC. In addition, novel treatment using immunotherapeutics such as anti-PD-1 antibody and precision medicine approach using novel imaging and genomic marker has been investigated vigorously. Thus, we review current treatment evidence obtained by RCTs that included patients with mCSPC. The future key to mCSPC treatment could be personalized medicine including translational and clinical medicine aspects, with molecular testing to assess the biological tumor behavior to optimize clinical decision-making.
Collapse
Affiliation(s)
- Leandro Blas
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
203
|
Yu EY, Kolinsky MP, Berry WR, Retz M, Mourey L, Piulats JM, Appleman LJ, Romano E, Gravis G, Gurney H, Bögemann M, Emmenegger U, Joshua AM, Linch M, Sridhar S, Conter HJ, Laguerre B, Massard C, Li XT, Schloss C, Poehlein CH, de Bono JS. Pembrolizumab Plus Docetaxel and Prednisone in Patients with Metastatic Castration-resistant Prostate Cancer: Long-term Results from the Phase 1b/2 KEYNOTE-365 Cohort B Study. Eur Urol 2022; 82:22-30. [PMID: 35397952 DOI: 10.1016/j.eururo.2022.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Patients with metastatic castration-resistant prostate cancer (mCRPC) frequently receive docetaxel after they develop resistance to abiraterone or enzalutamide and need more efficacious treatments. OBJECTIVE To evaluate the efficacy and safety of pembrolizumab plus docetaxel and prednisone in patients with mCRPC. DESIGN, SETTING, AND PARTICIPANTS The trial included patients with mCRPC in the phase 1b/2 KEYNOTE-365 cohort B study who were chemotherapy naïve and who experienced failure of or were intolerant to ≥4 wk of abiraterone or enzalutamide for mCRPC with progressive disease within 6 mo of screening. INTERVENTION Pembrolizumab 200 mg intravenously (IV) every 3 wk (Q3W), docetaxel 75 mg/m2 IV Q3W, and prednisone 5 mg orally twice daily. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoints were safety, the prostate-specific antigen (PSA) response rate, and the objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) by blinded independent central review (BICR). Secondary endpoints included time to PSA progression; the disease control rate (DCR) and duration of response (DOR) according to RECIST v1.1 by BICR; ORR, DCR, DOR, and radiographic progression-free survival (rPFS) according to Prostate Cancer Working Group 3-modified RECIST v1.1 by BICR; and overall survival (OS). RESULTS AND LIMITATIONS Among 104 treated patients, 52 had measurable disease. The median time from allocation to data cutoff (July 9, 2020) was 32.4 mo, during which 101 patients discontinued treatment, 81 (78%) for disease progression. The confirmed PSA response rate was 34% and the confirmed ORR (RECIST v1.1) was 23%. Median rPFS and OS were 8.5 mo and 20.2 mo, respectively. Treatment-related adverse events (TRAEs) occurred in 100 patients (96%). Grade 3-5 TRAEs occurred in 46 patients (44%). Seven AE-related deaths (6.7%) occurred (2 due to treatment-related pneumonitis). Limitations of the study include the single-arm design and small sample size. CONCLUSIONS Pembrolizumab plus docetaxel and prednisone demonstrated antitumor activity in chemotherapy-naïve patients with mCRPC treated with abiraterone or enzalutamide for mCRPC. Safety was consistent with profiles for the individual agents. Further investigation is warranted. PATIENT SUMMARY We evaluated the efficacy and safety of the anti-PD-1 antibody pembrolizumab combined with the chemotherapy drug docetaxel and the steroid prednisone for patients with metastatic prostate cancer resistant to androgen deprivation therapy , and who never received chemotherapy. The combination showed antitumor activity and manageable safety in this patient population. This trial is registered on ClinicalTrials.gov as NCT02861573.
Collapse
Affiliation(s)
- Evan Y Yu
- Department of Medicine, Division of Oncology, University of Washington and Fred Hutchinson Cancer Research Center, G4-830, Seattle, WA, USA.
| | | | - William R Berry
- Department of Medical Oncology, Duke Cancer Center Cary, Cary, NC, USA
| | - Margitta Retz
- Department of Urology, Rechts der Isar Medical Center, Technical University of Munich, Munich, Germany
| | - Loic Mourey
- Department of Medical Oncology, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Josep M Piulats
- Department of Medical Oncology, Catalan Institute of Oncology, Barcelona, Spain
| | - Leonard J Appleman
- Department of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emanuela Romano
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - Gwenaelle Gravis
- Department of Medical Oncology, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France
| | - Howard Gurney
- Department of Medical Oncology, Macquarie University, Sydney, NSW, Australia
| | - Martin Bögemann
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Urban Emmenegger
- Division of Medical Oncology, Odette Cancer Centre and Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anthony M Joshua
- Department of Medical Oncology, Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
| | - Mark Linch
- Department of Oncology, University College London Hospital and UCL Cancer Institute, London, UK
| | - Srikala Sridhar
- Cancer Clinical Research Unit, UHN Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Henry J Conter
- Department of Medical Oncology, University of Western Ontario, Brampton, ON, Canada
| | - Brigitte Laguerre
- Department of Medical Oncology, Centre Eugene Marquis, Rennes, France
| | - Christophe Massard
- Department of Drug Development, Gustave Roussy Cancer Campus and Université Paris-Sud, Villejuif, France; Department of Medical Oncology, Gustave Roussy Cancer Campus and Université Paris-Sud, Villejuif, France
| | - Xin Tong Li
- Department of Medical Oncology, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Charles Schloss
- Department of Medical Oncology, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Johann S de Bono
- Division of Clinical Studies, The Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| |
Collapse
|
204
|
Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021). Lancet Oncol 2022; 23:899-909. [DOI: 10.1016/s1470-2045(22)00278-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
|
205
|
Zurita AJ, Graf RP, Villacampa G, Raskina K, Sokol E, Jin D, Antonarakis ES, Li G, Huang RSP, Casanova-Salas I, Vivancos A, Carles J, Ross JS, Schrock AB, Oxnard GR, Mateo J. Genomic Biomarkers and Genome-Wide Loss-of-Heterozygosity Scores in Metastatic Prostate Cancer Following Progression on Androgen-Targeting Therapies. JCO Precis Oncol 2022; 6:e2200195. [PMID: 35820087 PMCID: PMC9307307 DOI: 10.1200/po.22.00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To study the impact of standard-of-care hormonal therapies on metastatic prostate cancer (mPC) clinical genomic profiles in real-world practice, with a focus on homologous recombination-repair (HRR) genes. PATIENTS AND METHODS Targeted next-generation sequencing of 1,302 patients with mPC was pursued using the FoundationOne or FoundationOne CDx assays. Longitudinal clinical data for correlative analysis were curated via technology-enabled abstraction of electronic health records. Genomic biomarkers, including individual gene aberrations and genome-wide loss-of-heterozygosity (gLOH) scores, were compared according to biopsy location and time of sample acquisition (androgen deprivation therapy [ADT]-naïve, ADT-progression and post-ADT, and novel hormonal therapies [NHT]-progression), using chi-square and Wilcoxon rank-sum tests. Multivariable analysis used linear regression. False-discovery rate of 0.05 was applied to account for multiple comparisons. RESULTS Eight hundred forty (65%), 132 (10%), and 330 (25%) biopsies were ADT-naïve, ADT-progression, and NHT-progression, respectively. Later-stage samples were enriched for AR, MYC, TP53, PTEN, and RB1 aberrations (all adjusted P values < .05), but prevalence of HRR-related BRCA2, ATM, and CDK12 aberrations remained stable. Primary and metastatic ADT-naïve biopsies presented similar prevalence of TP53 (36% v 31%) and BRCA2 (8% v 7%) aberrations; 81% of ADT-naïve BRCA2-mutated samples presented BRCA2 biallelic loss. Higher gLOH scores were independently associated with HRR genes (BRCA2, PALB2, and FANCA), TP53, and RB1 aberrations, and with prior exposure to hormonal therapies in multivariable analysis. CONCLUSION Prevalence of HRR-gene aberrations remains stable along mPC progression, supporting the use of diagnostic biopsies to guide poly (ADP-ribose) polymerase inhibitor treatment in metastatic castration-resistant prostate cancer. gLOH scores increase with emerging resistance to hormonal therapies, independently of individual HRR gene mutations.
Collapse
Affiliation(s)
- Amado J Zurita
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Guillermo Villacampa
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | | | | | | | | | - Gerald Li
- Foundation Medicine Inc, Cambridge, MA
| | | | - Irene Casanova-Salas
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Jeffrey S Ross
- Foundation Medicine Inc, Cambridge, MA.,SUNY Upstate Medical University, Syracuse, NY
| | | | | | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| |
Collapse
|
206
|
Hatano K, Nonomura N. Genomic Profiling of Prostate Cancer: An Updated Review. World J Mens Health 2022; 40:368-379. [PMID: 34448375 PMCID: PMC9253799 DOI: 10.5534/wjmh.210072] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 12/24/2022] Open
Abstract
Understanding the genomic profiling of prostate cancer is crucial, owing to the emergence of precision medicine to guide therapeutic approaches. Over the last decade, integrative genomic profiling of prostate tumors has provided insights that improve the understanding and treatment of the disease. Minimally invasive liquid biopsy procedures have emerged to investigate cancer-related molecules with the advantage of detecting heterogeneity as well as acquired resistance in cancer. The metastatic castration-resistant prostate cancer (mCRPC) tumors have a highly complex genomic landscape compared to primary prostate tumors; a number of mCRPC harbor clinically actionable molecular alterations, including DNA damage repair (e.g., BRCA1/2 and ATM) and PTEN/phosphoinositide 3-kinase signaling. Heterogeneity in the genomic landscape of prostate cancer has become apparent and genomic alterations of TP53, RB1, AR, and cell cycle pathway are associated with poor clinical outcomes in patients. Prostate cancer with mutant SPOP shows a distinct pattern of genomic alterations, associating with better clinical outcomes. Several genomic profiling tests, which can be used in the clinic, are approved by the U.S. Food and Drug Administration, including MSK-IMPACT, FoundationOne CDx, and FoundationOne Liquid CDx. Here, we review emerging evidence for genomic profiling of prostate cancer, especially focusing on associations between genomic alteration and clinical outcome, liquid biopsy, and actionable molecular alterations.
Collapse
Affiliation(s)
- Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
207
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
208
|
Finch A, Clark R, Vesprini D, Lorentz J, Kim RH, Thain E, Fleshner N, Akbari MR, Cybulski C, Narod SA. An appraisal of genetic testing for prostate cancer susceptibility. NPJ Precis Oncol 2022; 6:43. [PMID: 35732815 PMCID: PMC9217944 DOI: 10.1038/s41698-022-00282-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Most criteria for genetic testing for prostate cancer susceptibility require a prior diagnosis of prostate cancer, in particular cases with metastatic disease are selected. Advances in the field are expected to improve outcomes through tailored treatments for men with advanced prostate cancer with germline pathogenic variants, although these are not currently offered in the curative setting. A better understanding of the value of genetic testing for prostate cancer susceptibility in screening, for early detection and prevention is necessary. We review and summarize the literature describing germline pathogenic variants in genes associated with increased prostate cancer risk and aggressivity. Important questions include: what is our ability to screen for and prevent prostate cancer in a man with a germline pathogenic variant and how does knowledge of a germline pathogenic variant influence treatment of men with nonmetastatic disease, with hormone-resistant disease and with metastatic disease? The frequency of germline pathogenic variants in prostate cancer is well described, according to personal and family history of cancer and by stage and grade of disease. The role of these genes in aggressive prostate cancer is also discussed. It is timely to consider whether or not genetic testing should be offered to all men with prostate cancer. The goals of testing are to facilitate screening for early cancers in unaffected high-risk men and to prevent advanced disease in men with cancer.
Collapse
Affiliation(s)
- Amy Finch
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Roderick Clark
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Division of Urology, University of Toronto, Ontario, Canada
| | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Justin Lorentz
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Raymond H Kim
- Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emily Thain
- Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neil Fleshner
- Division of Urology, Departments of Surgery and Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada.
| |
Collapse
|
209
|
Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br J Cancer 2022; 127:1394-1402. [PMID: 35715640 PMCID: PMC9553885 DOI: 10.1038/s41416-022-01881-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Liquid biopsy has been established as a powerful, minimally invasive, tool to detect clinically actionable aberrations across numerous cancer types in real-time. With the development of new therapeutic agents in prostate cancer (PC) including DNA repair targeted therapies, this is especially attractive. However, there is unclarity on how best to screen for PC, improve risk stratification and ultimately how to treat advanced disease. Therefore, there is an urgent need to develop better biomarkers to help guide oncologists' decisions in these settings. Circulating tumour cells (CTCs), exosomes and cell-free DNA/RNA (cfDNA/cfRNA) analysis, including epigenetic features such as methylation, have all shown potential in prognostication, treatment response assessment and detection of emerging mechanisms of resistance. However, there are still challenges to overcome prior to implementing liquid biopsies in routine clinical practice such as preanalytical considerations including blood collection and storage, the cost of CTC isolation and enrichment, low-circulating tumour content as a limitation for genomic analysis and how to better interpret the sequencing data generated. In this review, we describe an overview of the up-to-date clinical opportunities in the management of PC through blood-based liquid biopsies and the next steps for its implementation in personalised treatment guidance.
Collapse
|
210
|
Yuen KC, Tran B, Anton A, Hamidi H, Costello AJ, Corcoran NM, Lawrentschuk N, Rainey N, Semira MCG, Gibbs P, Mariathasan S, Sandhu S, Kadel EE. Molecular classification of hormone-sensitive and castration-resistant prostate cancer, using nonnegative matrix factorization molecular subtyping of primary and metastatic specimens. Prostate 2022; 82:993-1002. [PMID: 35435276 PMCID: PMC9321082 DOI: 10.1002/pros.24346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Despite the rapidly evolving therapeutic landscape, immunotherapy has demonstrated limited activity in prostate cancer. A greater understanding of the molecular landscape, particularly the expression of immune-related pathways, will inform future immunotherapeutic strategies. Consensus nonnegative matrix factorization (cNMF) is a novel model of molecular classification analyzing gene expression data, focusing on biological interpretation of metagenes and selecting meaningful clusters. OBJECTIVE We aimed to identify molecular subtypes of prostate cancer using cNMF and correlate these with existing biomarkers to inform future immunotherapeutic strategies. METHODS A cohort of archival tumor specimens from hormone-sensitive and castration-resistant disease was studied. Whole transcriptomic profiles were generated using TruSeq RNA Access technology and subjected to cNMF. Comprehensive genomic profiling was performed with the FoundationOne assay. NMF subtypes were characterized by gene expression pathways, genomic alterations and correlated with clinical data, then applied to The Cancer Genome Atlas data set. RESULTS We studied 164 specimens, including 52 castration-resistant and 13 paired primary/metastatic specimens. cNMF identified four distinct subtypes. NMF1 (19%) is enriched for immune-related and stromal-related pathways with transforming growth factor β (TGFβ) signature. NMF2 (36%) is associated with FOXO-mediated transcription signature and AKT signaling, NMF3 (26%) is enriched for ribosomal RNA processing, while NMF4 (19%) is enriched for cell cycle and DNA-repair pathways. The most common gene alterations included TMPRSS22 (42%), TP53 (23%), and DNA-repair genes (19%), occurring across all subtypes. NMF4 is significantly enriched for MYC and Wnt-signaling gene alterations. TMB, CD8 density, and PD-L1 expression were low overall. NMF1 and NMF4 were NMF2 was associated with superior overall survival. CONCLUSIONS Using cNMF, we identified four molecularly distinct subtypes which may inform treatment selection. NMF1 demonstrates the most inflammatory signature with asuppressive TGFβ signature, suggesting potential benefit with immunotherapy combination strategies targeting TGFβ and PD-(L)1. Prospective studies are required to evaluate the use of this novel model to molecularly stratify patients for optimal treatment selection.
Collapse
Affiliation(s)
- Kobe C. Yuen
- Department of Oncology Biomarker DevelopmentGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Ben Tran
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Angelyn Anton
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Eastern HealthMelbourneVictoriaAustralia
| | - Habib Hamidi
- Department of Oncology Biomarker DevelopmentGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Anthony J. Costello
- Royal Melbourne HospitalMelbourneVictoriaAustralia
- Department of SurgeryThe University of MelbourneMelbourneVictoriaAustralia
- Australian Prostate CentreNorth MelbourneVictoriaAustralia
| | - Niall M. Corcoran
- Royal Melbourne HospitalMelbourneVictoriaAustralia
- Department of SurgeryThe University of MelbourneMelbourneVictoriaAustralia
| | - Nathan Lawrentschuk
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Royal Melbourne HospitalMelbourneVictoriaAustralia
- Department of SurgeryThe University of MelbourneMelbourneVictoriaAustralia
| | - Natalie Rainey
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Marie C. G. Semira
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Peter Gibbs
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Sanjeev Mariathasan
- Department of Oncology Biomarker DevelopmentGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Edward E. Kadel
- Department of Oncology Biomarker DevelopmentGenentech, Inc.South San FranciscoCaliforniaUSA
| |
Collapse
|
211
|
Mulvey A, Muggeo-Bertin E, Berthold DR, Herrera FG. Overcoming Immune Resistance With Radiation Therapy in Prostate Cancer. Front Immunol 2022; 13:859785. [PMID: 35603186 PMCID: PMC9115849 DOI: 10.3389/fimmu.2022.859785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/31/2022] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer is the second most common cancer in men and represents a significant healthcare burden worldwide. Therapeutic options in the metastatic castration-resistant setting remain limited, despite advances in androgen deprivation therapy, precision medicine and targeted therapies. In this review, we summarize the role of immunotherapy in prostate cancer and offer perspectives on opportunities for future development, based on current knowledge of the immunosuppressive tumor microenvironment. Furthermore, we discuss the potential for synergistic therapeutic strategies with modern radiotherapy, through modulation of the tumor microenvironment. Emerging clinical and pre-clinical data suggest that radiation can convert immune desert tumors into an inflamed immunological hub, potentially sensitive to immunotherapy.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Emilien Muggeo-Bertin
- Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Dominik R Berthold
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Fernanda G Herrera
- Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research - Lausanne Branch, Lausanne, Switzerland
| |
Collapse
|
212
|
Sankar K, Ye JC, Li Z, Zheng L, Song W, Hu-Lieskovan S. The role of biomarkers in personalized immunotherapy. Biomark Res 2022; 10:32. [PMID: 35585623 PMCID: PMC9118650 DOI: 10.1186/s40364-022-00378-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors have revolutionized cancer therapeutic paradigm and substantially improved the survival of patients with advanced malignancies. However, a significant limitation is the wide variability in clinical response. MAIN TEXT Several biomarkers have been evaluated in prior and ongoing clinical trials to investigate their prognostic and predictive role of patient response, nonetheless, most have not been comprehensively incorporated into clinical practice. We reviewed published data regarding biomarkers that have been approved by the United States Food and Drug Administration as well as experimental tissue and peripheral blood biomarkers currently under investigation. We further discuss the role of current biomarkers to predict response and response to immune checkpoint inhibitors and the promise of combination biomarker strategies. Finally, we discuss ideal biomarker characteristics, and novel platforms for clinical trial design including enrichment and stratification strategies, all of which are exciting and dynamic to advance the field of precision immuno-oncology. CONCLUSION Incorporation and standardization of strategies to guide selection of combination biomarker approaches will facilitate expansion of the clinical benefit of immune checkpoint inhibitor therapy to appropriate subsets of cancer patients.
Collapse
Affiliation(s)
- Kamya Sankar
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jing Christine Ye
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Lei Zheng
- Johns Hopkins University, Baltimore, MD, USA
| | - Wenru Song
- Kira Pharmaceuticals, Cambridge, MA, USA
| | - Siwen Hu-Lieskovan
- Division of Medical Oncology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, Salt Lake City, UT, USA.
| |
Collapse
|
213
|
Chen H, Lin R, Lin W, Chen Q, Ye D, Li J, Feng J, Cheng W, Zhang M, Qi Y. An immune gene signature to predict prognosis and immunotherapeutic response in lung adenocarcinoma. Sci Rep 2022; 12:8230. [PMID: 35581376 PMCID: PMC9114138 DOI: 10.1038/s41598-022-12301-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
Lung adenocarcinoma is one of the most common malignant tumors worldwide. The purpose of this study was to construct a stable immune gene signature for prediction of prognosis (IGSPP) and response to immune checkpoint inhibitors (ICIs) therapy in LUAD patients. Five genes were screened by weighted gene coexpression network analysis, Cox regression and LASSO regression analyses and were used to construct the IGSPP. The survival rate of the IGSPP low-risk group was higher than that of the IGSPP high-risk group. Multivariate Cox regression analysis showed that IGSPP could be used as an independent prognostic factor for the overall survival of LUAD patients. IGSPP genes were enriched in cell cycle pathways. IGSPP gene mutation rates were higher in the high-risk group. CD4 memory-activated T cells, M0 and M1 macrophages had higher infiltration abundance in the high-risk group, which was associated with poor overall survival. In contrast, the abundance of resting CD4 memory T cells, monocytes, resting dendritic cells and resting mast cells associated with a better prognosis was higher in the low-risk group. TIDE scores and the expressions of different immune checkpoints showed that patients in the high-risk IGSPP group benefited more from ICIs treatment. In short, an IGSPP of LUAD was constructed and characterized. It could be used to predict the prognosis and benefits of ICIs treatment in LUAD patients.
Collapse
Affiliation(s)
- Hongquan Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Renxi Lin
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Weibin Lin
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Qing Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Dongjie Ye
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Jing Li
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Department of Pathology, Fujian Provincial Maternity Hospital, Fuzhou, 350012, Fujian, China
| | - Jinan Feng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471099, Henan, China
| | - Wenxiu Cheng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Mingfang Zhang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Yuanlin Qi
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
214
|
Gao Y, Wang G, Chen Y, Zhang M, Gao W, Shang Z, Niu Y. Identification of Neoantigens and Construction of Immune Subtypes in Prostate Adenocarcinoma. Front Genet 2022; 13:886983. [PMID: 35547260 PMCID: PMC9081437 DOI: 10.3389/fgene.2022.886983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Messenger ribonucleic acid (mRNA) vaccine has been considered as a potential therapeutic strategy and the next research hotspot, but their efficacy against prostate adenocarcinoma (PRAD) remains undefined. This study aimed to find potential antigens of PRAD for mRNA vaccine development and identify suitable patients for vaccination through immunophenotyping. Methods: Gene expression profiles and clinical information were obtained from TCGA and ICGC. GEPIA2 was used to calculate the prognostic index of the selected antigens. The genetic alterations were compared on cBioPortal and the correlation between potential antigen and immune infiltrating cells was explored by TIMER. ConsensusClusterPlus was used to construct a consistency matrix, and identify the immune subtypes. Graph learning-based dimensional reduction was performed to depict immune landscape. Boruta algorithm and LASSO logistic analysis were used to screen PRAD patients who may benefit from mRNA vaccine. Results: Seven potential tumor antigens selected were significantly positively associated with poor prognosis and the antigen-presenting immune cells (APCs) in PRAD, including ADA, FYN, HDC, NFKBIZ, RASSF4, SLC6A3, and UPP1. Five immune subtypes of PRAD were identified by differential molecular, cellular, and clinical characteristics in both cohorts. C3 and C5 had immune “hot” and immunosuppressive phenotype, On the contrary, C1&C2 had immune “cold” phenotype. Finally, the immune landscape characterization showed the immune heterogeneity among patients with PRAD. Conclusions: ADA, FYN, HDC, NFKBIZ, RASSF4, SLC6A3, and UPP1 are potential antigens for mRNA vaccine development against PRAD, and patients in type C1 and C2 are suitable for vaccination.
Collapse
Affiliation(s)
- Yukui Gao
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guixin Wang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yanzhuo Chen
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mingpeng Zhang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wenlong Gao
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
215
|
Ge R, Wang Z, Cheng L. Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance. NPJ Precis Oncol 2022; 6:31. [PMID: 35508696 PMCID: PMC9068628 DOI: 10.1038/s41698-022-00272-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is characterized by a high degree of heterogeneity, which poses a major challenge to precision therapy and drug development. In this review, we discuss how nongenetic factors contribute to heterogeneity of prostate cancer. We also discuss tumor heterogeneity and phenotypic switching related to anticancer therapies. Lastly, we summarize the challenges targeting the tumor environments, and emphasize that continued exploration of tumor heterogeneity is needed in order to offer a personalized therapy for advanced prostate cancer patients.
Collapse
Affiliation(s)
- Rongbin Ge
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zongwei Wang
- Department of Surgery, Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
216
|
Lozano R, Olmos D, Castro E. Implications of DNA damage repair alterations for the management of prostate cancer. Curr Opin Urol 2022; 32:302-310. [PMID: 35266912 DOI: 10.1097/mou.0000000000000983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review, we summarize the prevalence of alterations in DNA damage repair (DDR) genes in prostate cancer, their clinical significance, the therapeutic strategies developed to take advantage of the impaired tumour ability to repair DNA and the diagnostic approaches available to identify patients likely to benefit from DDR-targeting agents. RECENT FINDINGS DDR alterations are more frequent in metastatic than in localized prostate cancer and some of them associate with aggressive disease whereas the significance of others remain unclear. The most appropriate management approach for DDR-defective prostate cancer patients is unknown. Clinical trials have demonstrated the efficacy of different poly-ADP ribose polymerase inhibitors (PARPi) to treat metastatic castration-resistant prostate cancer patients with BRCA1/2 alterations, although there may be other DDR alterations that sensitize patients to these drugs. Multiple strategies to target DDR defects are being investigated, including PARPi in combination, platinum-based chemotherapy and immunotherapy, both in earlier and late disease stages. Optimization of molecular testing is paramount for the implementation of precision oncology in prostate cancer. SUMMARY Certain DDR defects present in prostate cancer have prognostic and therapeutic implications whereas the significance of other DDR alterations is yet to be elucidated.
Collapse
Affiliation(s)
- Rebeca Lozano
- Department of Medical Oncology, Salamanca University Hospital, Salamanca
| | - David Olmos
- Department of Medical Oncology, 12 Octubre University Hospital, Madrid
- Research Institute Hospital 12 de Octubre, Madrid
- Genitourinary Cancers Traslational Research Group, Institute of Biomedical Research in Malaga (IBIMA), Malaga
| | - Elena Castro
- Genitourinary Cancers Traslational Research Group, Institute of Biomedical Research in Malaga (IBIMA), Malaga
- Department of Medical Oncology, Virgen de la Victoria University Hospital, Malaga, Spain
| |
Collapse
|
217
|
de la Calle CM, Bhanji Y, Pavlovich CP, Isaacs WB. The role of genetic testing in prostate cancer screening, diagnosis, and treatment. Curr Opin Oncol 2022; 34:212-218. [PMID: 35238838 DOI: 10.1097/cco.0000000000000823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review provides an overview of the current role of genetic testing in prostate cancer screening, diagnosis, and treatment. RECENT FINDINGS Recent studies have uncovered few but highly penetrant rare pathogenic mutations (RPMs), in genes, such as BRCA2, with strong prostate cancer risk and outcomes associations. Over 260 single nucleotide polymorphisms (SNPs) have also been identified, each associated with small incremental prostate cancer risk and when combined in a polygenic risk score (PRS), they provide strong prostate cancer risk prediction but do not seem to predict outcomes. Tumor tissue sequencing can also help identify actionable somatic mutations in many patients with advanced prostate cancer and inform on their risk of harboring a germline pathogenic mutation. SUMMARY RPM testing, PRS testing, and tumor sequencing all have current and/or potential future roles in personalized prostate cancer care.
Collapse
Affiliation(s)
- Claire M de la Calle
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
218
|
Shimizu K, Sano T, Mizuno K, Sunada T, Makita N, Hagimoto H, Goto T, Sawada A, Fujimoto M, Ichioka K, Ogawa O, Kobayashi T, Akamatsu S. A case of microsatellite instability-high clinically advanced castration-resistant prostate cancer showing a remarkable response to pembrolizumab sustained over at least 18 months. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006194. [PMID: 35487690 PMCID: PMC9235847 DOI: 10.1101/mcs.a006194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 12/02/2022] Open
Abstract
Defective DNA mismatch repair genes can lead to microsatellite instability (MSI)-high status in prostate cancer (PC). Accumulation of replication errors in DNA leads to the production of abundant neoantigens, which could be targets for immune checkpoint inhibitors (CPIs). However, the incidence of MSI-high PC is low, and not all patients show a satisfactory therapeutic response to CPIs. Here, we present the case of a patient with MSI-high castration-resistant PC who showed a remarkable and durable response to pembrolizumab. The patient was resistant to abiraterone, docetaxel, and cabazitaxel and was suffering from multiple tumor-associated or treatment-related complications, such as urinary tract infection, infective endocarditis, and uncontrollable prostatic hemorrhage. Soon after the start of pembrolizumab therapy, the patient showed a dramatic decrease in prostate-specific antigen from 35.67 ng/mL to an undetectable level and a remarkable reduction in the size of a massive prostate mass and lymph node metastases, with an absence of treatment-related complications. Specimens from the transurethral resection of prostate cancer during cabazitaxel treatment for control of prostate bleeding and also that from the prostate biopsy at initial diagnosis revealed MSI-high status. Immunohistochemistry showed loss of MSH2 and MSH6, and whole-exome sequencing revealed an approximate tumor mutation burden of 61 mutations/Mb as well as biallelic loss of MSH2. Pembrolizumab could show a significant effect even in a heavily treated patient with MSI-high advanced PC. Accumulation of detailed clinical and genomic information of cases of MSI-high PC treated with pembrolizumab is necessary for optimal patient selection.
Collapse
Affiliation(s)
| | | | - Kei Mizuno
- Kyoto University Graduate School of Medicine
| | | | | | | | | | | | | | | | - Osamu Ogawa
- Kyoto University Graduate School of Medicine
| | | | | |
Collapse
|
219
|
Czajkowski D, Szmyd R, Gee HE. Impact of DNA damage response defects in cancer cells on response to immunotherapy and radiotherapy. J Med Imaging Radiat Oncol 2022; 66:546-559. [PMID: 35460184 PMCID: PMC9321602 DOI: 10.1111/1754-9485.13413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
The DNA damage response (DDR) is a complex set of downstream pathways triggered in response to DNA damage to maintain genomic stability. Many tumours exhibit mutations which inactivate components of the DDR, making them prone to the accumulation of DNA defects. These can both facilitate the development of tumours and provide potential targets for novel therapeutic interventions. The inhibition of the DDR has been shown to induce radiosensitivity in certain cancers, rendering them susceptible to treatment with radiotherapy and improving the therapeutic window. Moreover, DDR defects are a strong predictor of patient response to immune checkpoint inhibition (ICI). The ability to target the DDR selectively has the potential to expand the tumour neoantigen repertoire, thus increasing tumour immunogenicity and facilitating a CD8+ T and NK cell response against cancer cells. Combinatorial approaches, which seek to integrate DDR inhibition with radiotherapy and immunotherapy, have shown promise in early trials. Further studies are necessary to understand these synergies and establish reliable biomarkers.
Collapse
Affiliation(s)
| | - Radosław Szmyd
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre Westmead, Sydney, New South Wales, Australia
| | - Harriet E Gee
- University of Sydney, Sydney, New South Wales, Australia.,Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
220
|
Keisner SV. Rucaparib and olaparib for the treatment of prostate cancer: A clinician's guide to choice of therapy. J Oncol Pharm Pract 2022; 28:1624-1633. [PMID: 35440240 DOI: 10.1177/10781552221094308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This review will provide an overview of the use rucaparib and olaparib in patients with metastatic castration resistant prostate cancer (mCRPC) with the goal to assist the clinician's decision-making process when considering these agents for an individual patient. DATA SOURCES Searches were conducted in PubMed, relevant meeting abstracts, clinicaltrials.gov, and United States Food and Drug Administration (FDA) documents to identify literature published through July 1, 2021, related to use of rucaparib and olaparib for treatment of prostate cancer. DATA SUMMARY In May 2020, the FDA approved rucaparib and olaparib for treatment of mCRPC that is homologous recombination repair (HRR)-deficient. Both agents are approved for previously-treated patients, but there are notable differences in strength of evidence, outcomes studied, required HRR alteration, and required prior therapies. In patients who qualify for therapy, additional factors that may help guide choice of PARP inhibitor include baseline organ function, drug interaction potential, toxicity profiles, and financial factors. CONCLUSIONS Rucaparib and olaparib have the potential to improve outcomes for patients with HRR-deficient mCRPC. Differences in strength of evidence and patient- and drug-specific characteristics will assist the clinician when choosing between agents.
Collapse
Affiliation(s)
- Sidney Veach Keisner
- Department of Pharmacy Practice, College of Pharmacy, 12215University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
221
|
Siddiqui BA, Subudhi SK, Sharma P. Anti-PD-L1 plus enzalutamide does not improve overall survival in prostate cancer. Cell Rep Med 2022; 3:100613. [PMID: 35492243 PMCID: PMC9044095 DOI: 10.1016/j.xcrm.2022.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The addition of atezolizumab (anti-PD-L1) to enzalutamide (androgen receptor antagonist) did not prolong survival in metastatic prostate cancer.1 Efficacy with immunotherapies in prostate cancer will require additional studies to elucidate and target mechanisms of resistance within the prostate tumor microenvironment.
Collapse
Affiliation(s)
- Bilal A. Siddiqui
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sumit K. Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Corresponding author
| |
Collapse
|
222
|
Mar N, Uchio E, Kalebasty AR. Use of immunotherapy in clinical management of genitourinary cancers - a review. Cancer Treat Res Commun 2022; 31:100564. [PMID: 35472699 DOI: 10.1016/j.ctarc.2022.100564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Checkpoint inhibitors targeting PD-1/PD-L1 and CTLA-4 have revolutionized oncologic care delivery, including clinical management of genitourinary malignancies. Despite significant associated improvement in patient outcomes, molecular heterogeneity of tumors, variable tumor engagement with the immune response, and unique patient factors likely account for different clinical responses to immunotherapy agents. A search for predictive biomarkers of treatment response to checkpoint inhibitors is underway and several candidates, although imperfect, have been identified. Multiple checkpoint inhibitors have received approval as monotherapies or in combination with other agents in genitourinary cancers and clinical trial data continues to rapidly evolve. This review summarizes key published evidence involving use of checkpoint inhibitors in management of urothelial carcinoma, renal cell carcinoma, prostate adenocarcinoma, and penile squamous cell carcinoma. This review aims to help oncology practitioners develop an up-to-date, evidence-based approach to using these agents when managing patients with genitourinary cancers in clinical practice.
Collapse
Affiliation(s)
- Nataliya Mar
- University of California Irvine, Division of Hematology/Oncology, USA.
| | - Edward Uchio
- University of California Irvine, Department of Urology, USA
| | | |
Collapse
|
223
|
Chen C, Chen Y, Jin X, Ding Y, Jiang J, Wang H, Yang Y, Lin W, Chen X, Huang Y, Teng L. Identification of Tumor Mutation Burden, Microsatellite Instability, and Somatic Copy Number Alteration Derived Nine Gene Signatures to Predict Clinical Outcomes in STAD. Front Mol Biosci 2022; 9:793403. [PMID: 35480879 PMCID: PMC9037630 DOI: 10.3389/fmolb.2022.793403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Genomic features, including tumor mutation burden (TMB), microsatellite instability (MSI), and somatic copy number alteration (SCNA), had been demonstrated to be involved with the tumor microenvironment (TME) and outcome of gastric cancer (GC). We obtained profiles of TMB, MSI, and SCNA by processing 405 GC data from The Cancer Genome Atlas (TCGA) and then conducted a comprehensive analysis though “iClusterPlus.” A total of two subgroups were generated, with distinguished prognosis, somatic mutation burden, copy number changes, and immune landscape. We revealed that Cluster1 was marked by a better prognosis, accompanied by higher TMB, MSIsensor score, TMEscore, and lower SCNA burden. Based on these clusters, we screened 196 differentially expressed genes (DEGs), which were subsequently projected into univariate Cox survival analysis. We constructed a 9-gene immune risk score (IRS) model using LASSO-penalized logistic regression. Moreover, the prognostic prediction of IRS was verified by receiver operating characteristic (ROC) curve analysis and nomogram plot. Another independent Gene Expression Omnibus (GEO) contained specimens from 109 GC patients was designed as an external validation. Our works suggested that the 9‐gene‐signature prediction model, which was derived from TMB, MSI, and SCNA, was a promising predictive tool for clinical outcomes in GC patients. This novel methodology may help clinicians uncover the underlying mechanisms and guide future treatment strategies.
Collapse
Affiliation(s)
- Chuanzhi Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden
| | - Xin Jin
- Department of Breast Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Yongfeng Ding
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjie Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wu Lin
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangliu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Lisong Teng,
| |
Collapse
|
224
|
Wyvekens N, Tsai HK, Sholl LM, Tucci J, Giannico GA, Gordetsky JB, Hirsch MS, Barletta JA, Acosta AM. Histopathologic and Genetic Features of Mismatch Repair-Deficient High-Grade Prostate Cancer. Histopathology 2022; 80:1050-1060. [PMID: 35395112 DOI: 10.1111/his.14645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
AIMS Mismatch repair (MMR) deficiency is commonly caused by functional inactivation of MLH1, PMS2, MSH2 or MSH6. The morphologic and molecular correlates of MMR deficiency have been extensively characterized in certain tumor types such as colorectal and endometrial adenocarcinoma. In contrast, the histologic and molecular features of MMR-deficient prostate cancer remain incompletely described. In this study, we evaluated 19 MMR-deficient prostate cancers, including 11 cases without prior systemic treatment. METHODS AND RESULTS All treatment-naïve cases (11/11, 100%) were Grade Group 4-5 and had predominant cribriform and/or solid growth patterns. Solid components (any amount) and tumor infiltrating lymphocytes were seen in 7/11 (64%) of these cases each. In 68 MMR-proficient Grade Group 5 prostate cancers, predominant cribriform or solid growth patterns, solid components (any amount) and tumor infiltrating lymphocytes were seen at significantly lower frequencies (31/68, 46%; 9/68, 13% and 6/62, 9%, respectively; p<0.001 for all comparisons). Molecular evaluation of 19 cases demonstrated that MMR-deficiency was secondary to functional loss of MSH2/MSH6 and MLH1/PMS2 in 15 cases (79%) and 4 cases (21%), respectively. Definite or likely germline mutations were present in 4 cases (4/19, 21%). TMPRSS2::ERG rearrangements were identified in 2 cases (2/19, 11%). Recurrent cancer-relevant somatic mutations included (but were not limited to) ATM, TP53, FOXA1, RB1, BRCA2 and PTEN. CONCLUSIONS MMR deficiency was most commonly secondary to inactivation of MSH2/MSH6 in this study. Importantly, MMR-deficient high-grade prostatic adenocarcinomas had morphologic features that might be useful to identify selected cases for MMR IHC.
Collapse
Affiliation(s)
- Nicolas Wyvekens
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison K Tsai
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan Tucci
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giovanna A Giannico
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer B Gordetsky
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Justine A Barletta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andres M Acosta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
225
|
Thoman ME, Salari K. Key Notes on Pembrolizumab and Docetaxel Combination Therapy for Metastatic Castration-Resistant Prostate Cancer. Eur Urol 2022; 82:31-33. [PMID: 35396162 DOI: 10.1016/j.eururo.2022.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Maxton E Thoman
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keyan Salari
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
226
|
Kaur HB, Vidotto T, Mendes AA, Salles DC, Isaacs WB, Antonarakis ES, Lotan TL. Association between pathogenic germline mutations in BRCA2 and ATM and tumor-infiltrating lymphocytes in primary prostate cancer. Cancer Immunol Immunother 2022; 71:943-951. [PMID: 34533610 PMCID: PMC9254167 DOI: 10.1007/s00262-021-03050-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/05/2021] [Indexed: 01/15/2023]
Abstract
Pathogenic mutations in homologous recombination (HR) DNA repair genes may be associated with increased tumor mutational burden and numbers of tumor-infiltrating lymphocytes (TIL). Though HR-deficient prostate tumors have been anecdotally associated with improved responses to immunotherapy, it is unclear whether HR mutations or HR deficiency (HRD) scores predict for increased T-cell densities in this cancer. We evaluated 17 primary prostate tumors from patients with pathogenic germline BRCA2 mutations (gBRCA2) and 21 primary prostate tumors from patients with pathogenic germline ATM (gATM) mutations, which were compared to 19 control tumors lacking HR gene mutations, as well as the TCGA prostate cancer cohort. HRD score was estimated by targeted sequencing (gBRCA2 and gATM) or by SNP microarray (TCGA). Tumor-associated T-cell densities were assessed using validated automated digital image analysis of CD8 and FOXP3 immunostaining (gBRCA2 or gATM) or by methylCIBERSORT (TCGA). CD8 + and FOXP3 + T-cell densities were significantly correlated with each other in gBRCA2 and gATM cases. There was no significant difference between CD8 + or FOXP3 + TIL densities in gBRCA2 or gATM cases compared to controls. In the TCGA cohort, HRD score was associated with predicted CD8 + and FOXP3 + TILs. Associations were also seen for HRD score and TIL density among the germline-mutated cases. In contrast to mismatch repair-deficient primary prostate tumors, cancers from germline BRCA2 or ATM mutation carriers do not appear to be associated with elevated TIL density. However, measures of genomic scarring, such as HRD score, may be associated with increased tumor-infiltrating T-cells.
Collapse
Affiliation(s)
- Harsimar B Kaur
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thiago Vidotto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrianna A Mendes
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniela C Salles
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Isaacs
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, CRB2, Room 316, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, CRB2, Room 316, 1550 Orleans Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
227
|
Slootbeek PHJ, Kloots ISH, Smits M, van Oort IM, Gerritsen WR, Schalken JA, Ligtenberg MJL, Grünberg K, Kroeze LI, Bloemendal HJ, Mehra N. Impact of molecular tumour board discussion on targeted therapy allocation in advanced prostate cancer. Br J Cancer 2022; 126:907-916. [PMID: 34912074 PMCID: PMC8927341 DOI: 10.1038/s41416-021-01663-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Molecular tumour boards (MTB) optimally match oncological therapies to patients with genetic aberrations. Prostate cancer (PCa) is underrepresented in these MTB discussions. This study describes the impact of routine genetic profiling and MTB referral on the outcome of PCa patients in a tertiary referral centre. METHODS All PCa patients that received next-generation sequencing results and/or were discussed at an MTB between Jan 1, 2017 and Jan 1, 2020 were included. Genetically matched therapies (GMT) in clinical trials or compassionate use were linked to actionable alterations. Response to these agents was retrospectively evaluated. RESULTS Out of the 277 genetically profiled PCa patients, 215 (78%) were discussed in at least one MTB meeting. A GMT was recommended to 102 patients (47%), of which 63 patients (62%) initiated the GMT. The most recommended therapies were PARP inhibitors (n = 74), programmed death-(ligand) 1 inhibitors (n = 21) and tyrosine kinase inhibitors (n = 19). Once started, 41.3% had a PFS of ≥6 months, 43.5% a PSA decline ≥50% and 38.5% an objective radiographic response. CONCLUSION Recommendation for a GMT is achieved in almost half of the patients with advanced prostate cancer, with GMT initiation leading to durable responses in over 40% of patients. These data justify routine referral of selected PCa patients to MTB's.
Collapse
Affiliation(s)
- Peter H J Slootbeek
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Medical Oncology, Nijmegen, The Netherlands
- Radboud University Medical Centre, Radboud institute for Molecular Life sciences, Department of Experimental Urology, Nijmegen, The Netherlands
| | - Iris S H Kloots
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Medical Oncology, Nijmegen, The Netherlands
| | - Minke Smits
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Medical Oncology, Nijmegen, The Netherlands
| | - Inge M van Oort
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Urology, Nijmegen, The Netherlands
| | - Winald R Gerritsen
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Medical Oncology, Nijmegen, The Netherlands
| | - Jack A Schalken
- Radboud University Medical Centre, Radboud institute for Molecular Life sciences, Department of Experimental Urology, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Radboud University Medical Centre, Radboud Institute for Molecular Life sciences, Department of Pathology, Nijmegen, The Netherlands
- Radboud University Medical Centre, Radboud Institute for Molecular Life sciences, Department of Human Genetics, Nijmegen, The Netherlands
| | - Katrien Grünberg
- Radboud University Medical Centre, Radboud Institute for Molecular Life sciences, Department of Pathology, Nijmegen, The Netherlands
| | - Leonie I Kroeze
- Radboud University Medical Centre, Radboud Institute for Molecular Life sciences, Department of Pathology, Nijmegen, The Netherlands
| | - Haiko J Bloemendal
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Medical Oncology, Nijmegen, The Netherlands
| | - Niven Mehra
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Medical Oncology, Nijmegen, The Netherlands.
| |
Collapse
|
228
|
Understanding of Immune Escape Mechanisms and Advances in Cancer Immunotherapy. JOURNAL OF ONCOLOGY 2022; 2022:8901326. [PMID: 35401745 PMCID: PMC8989557 DOI: 10.1155/2022/8901326] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022]
Abstract
Tumor immune escape has emerged as the most significant barrier to cancer therapy. A thorough understanding of tumor immune escape therapy mechanisms is critical for further improving clinical treatment strategies. Currently, research indicates that combining several immunotherapies can boost antitumor efficacy and encourage T cells to play a more active part in the immune assault. To generate a more substantial therapeutic impact, it can establish an ideal tumor microenvironment (TME), encourage T cells to play a role, prevent T cell immune function reversal, and minimize tumor immune tolerance. In this review, we will examine the mechanisms of tumor immune escape and the limits of tumor immune escape therapy, focusing on the current development of immunotherapy based on tumor immune escape mechanisms. Individualized tumor treatment is becoming increasingly apparent as future treatment strategies. In addition, we forecast the future research direction of cancer and the clinical approach for cancer immunotherapy. It will serve as a better reference for researchers working in cancer therapy research.
Collapse
|
229
|
Cattrini C, Caffo O, De Giorgi U, Mennitto A, Gennari A, Olmos D, Castro E. Apalutamide, Darolutamide and Enzalutamide for Nonmetastatic Castration-Resistant Prostate Cancer (nmCRPC): A Critical Review. Cancers (Basel) 2022; 14:1792. [PMID: 35406564 PMCID: PMC8997634 DOI: 10.3390/cancers14071792] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Nonmetastatic castration-resistant prostate cancer (nmCRPC) represents a condition in which patients with prostate cancer show biochemical progression during treatment with androgen-deprivation therapy (ADT) without signs of radiographic progression according to conventional imaging. The SPARTAN, ARAMIS and PROSPER trials showed that apalutamide, darolutamide and enzalutamide, respectively, prolong metastasis-free survival (MFS) and overall survival (OS) of nmCRPC patients with a short PSA doubling time, and these antiandrogens have been recently introduced in clinical practice as a new standard of care. No direct comparison of these three agents has been conducted to support treatment choice. In addition, a significant proportion of nmCRPC on conventional imaging is classified as metastatic with new imaging modalities such as the prostate-specific membrane antigen positron emission tomography (PSMA-PET). Some experts posit that these "new metastatic" patients should be treated as mCRPC, resizing the impact of nmCRPC trials, whereas other authors suggest that they should be treated as nmCRPC patients, based on the design of pivotal trials. This review discusses the most convincing evidence regarding the use of novel antiandrogens in patients with nmCRPC and the implications of novel imaging techniques for treatment selection.
Collapse
Affiliation(s)
- Carlo Cattrini
- Department of Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Medical Oncology, Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Orazio Caffo
- Department of Medical Oncology, Santa Chiara Hospital, 38122 Trento, Italy;
| | - Ugo De Giorgi
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Alessia Mennitto
- Department of Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Medical Oncology, Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
| | - Alessandra Gennari
- Department of Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Medical Oncology, Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
| | - David Olmos
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
| | - Elena Castro
- Genitourinary Cancer Translational Research Group, Instituto de Investigación Biomédica de Málaga, 29010 Málaga, Spain
- UGCI Medical Oncology, Hospitales Universitarios Virgen de la Victoria y Regional de Málaga, 29010 Málaga, Spain
| |
Collapse
|
230
|
Ionescu F, Zhang J, Wang L. Clinical Applications of Liquid Biopsy in Prostate Cancer: From Screening to Predictive Biomarker. Cancers (Basel) 2022; 14:1728. [PMID: 35406500 PMCID: PMC8996910 DOI: 10.3390/cancers14071728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer (PC) remains the most common malignancy and the second most common cause of cancer death in men. As a result of highly variable biological behavior and development of resistance to available agents under therapeutic pressure, optimal management is often unclear. Traditional surgical biopsies, even when augmented by genomic studies, may fail to provide adequate guidance for clinical decisions as these can only provide a snapshot of a dynamic process. Additionally, surgical biopsies are cumbersome to perform repeatedly and often involve risk. Liquid biopsies (LB) are defined as the analysis of either corpuscular (circulating tumor cells, extracellular vesicles) or molecular (circulating DNA or RNA) tumor-derived material. LB could more precisely identify clinically relevant alterations that characterize the metastatic potential of tumors, predict response to specific treatments or actively monitor for the emergence of resistance. These tests can potentially be repeated as often as deemed necessary and can detect real-time response to treatment with minimal inconvenience to the patient. In the current review, we consider common clinical scenarios to describe available LB assays in PC as a platform to explore existing evidence for their use in guiding decision making and to discuss current limitations to their adoption in the clinic.
Collapse
Affiliation(s)
- Filip Ionescu
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
231
|
Fletcher CE, Deng L, Orafidiya F, Yuan W, Lorentzen MPGS, Cyran OW, Varela-Carver A, Constantin TA, Leach DA, Dobbs FM, Figueiredo I, Gurel B, Parkes E, Bogdan D, Pereira RR, Zhao SG, Neeb A, Issa F, Hester J, Kudo H, Liu Y, Philippou Y, Bristow R, Knudsen K, Bryant RJ, Feng FY, Reed SH, Mills IG, de Bono J, Bevan CL. A non-coding RNA balancing act: miR-346-induced DNA damage is limited by the long non-coding RNA NORAD in prostate cancer. Mol Cancer 2022; 21:82. [PMID: 35317841 PMCID: PMC8939142 DOI: 10.1186/s12943-022-01540-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND miR-346 was identified as an activator of Androgen Receptor (AR) signalling that associates with DNA damage response (DDR)-linked transcripts in prostate cancer (PC). We sought to delineate the impact of miR-346 on DNA damage, and its potential as a therapeutic agent. METHODS RNA-IP, RNA-seq, RNA-ISH, DNA fibre assays, in vivo xenograft studies and bioinformatics approaches were used alongside a novel method for amplification-free, single nucleotide-resolution genome-wide mapping of DNA breaks (INDUCE-seq). RESULTS miR-346 induces rapid and extensive DNA damage in PC cells - the first report of microRNA-induced DNA damage. Mechanistically, this is achieved through transcriptional hyperactivation, R-loop formation and replication stress, leading to checkpoint activation and cell cycle arrest. miR-346 also interacts with genome-protective lncRNA NORAD to disrupt its interaction with PUM2, leading to PUM2 stabilisation and its increased turnover of DNA damage response (DDR) transcripts. Confirming clinical relevance, NORAD expression and activity strongly correlate with poor PC clinical outcomes and increased DDR in biopsy RNA-seq studies. In contrast, miR-346 is associated with improved PC survival. INDUCE-seq reveals that miR-346-induced DSBs occur preferentially at binding sites of the most highly-transcriptionally active transcription factors in PC cells, including c-Myc, FOXA1, HOXB13, NKX3.1, and importantly, AR, resulting in target transcript downregulation. Further, RNA-seq reveals widespread miR-346 and shNORAD dysregulation of DNA damage, replication and cell cycle processes. NORAD drives target-directed miR decay (TDMD) of miR-346 as a novel genome protection mechanism: NORAD silencing increases mature miR-346 levels by several thousand-fold, and WT but not TDMD-mutant NORAD rescues miR-346-induced DNA damage. Importantly, miR-346 sensitises PC cells to DNA-damaging drugs including PARP inhibitor and chemotherapy, and induces tumour regression as a monotherapy in vivo, indicating that targeting miR-346:NORAD balance is a valid therapeutic strategy. CONCLUSIONS A balancing act between miR-346 and NORAD regulates DNA damage and repair in PC. miR-346 may be particularly effective as a therapeutic in the context of decreased NORAD observed in advanced PC, and in transcriptionally-hyperactive cancer cells.
Collapse
Affiliation(s)
- C E Fletcher
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK.
| | - L Deng
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - F Orafidiya
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - W Yuan
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - M P G S Lorentzen
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - O W Cyran
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - A Varela-Carver
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - T A Constantin
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - D A Leach
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - F M Dobbs
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
- Broken String Biosciences, Unit AB303, Level 3, BioData Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - I Figueiredo
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - B Gurel
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - E Parkes
- Institute for Radiation Oncology, Department of Oncology, University of Oxford, London, UK
| | - D Bogdan
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - R R Pereira
- Translational Oncogenomics, Manchester Cancer Research Centre and Cancer Research UK Manchester Institute, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - S G Zhao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - A Neeb
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - F Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - H Kudo
- Section of Pathology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Y Liu
- Veracyte, Inc., San Diego, CA, USA
| | - Y Philippou
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - R Bristow
- Translational Oncogenomics, Manchester Cancer Research Centre and Cancer Research UK Manchester Institute, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Christie NHS Foundation Trust, Manchester, UK
| | - K Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- American Cancer Society and American Cancer Society Cancer Action Network, Washington DC, USA
| | - R J Bryant
- Institute for Radiation Oncology, Department of Oncology, University of Oxford, London, UK
| | - F Y Feng
- Departments of Urology and Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - S H Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - I G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast, UK
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - J de Bono
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - C L Bevan
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| |
Collapse
|
232
|
Feng D, Zhang F, Li D, Shi X, Xiong Q, Wei Q, Yang L. Developing an immune-related gene prognostic index associated with progression and providing new insights into the tumor immune microenvironment of prostate cancer. Immunology 2022; 166:197-209. [PMID: 35271752 DOI: 10.1111/imm.13466] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
We developed an immune-related gene prognostic index (IGPI) associated with progression and provided new insights into the tumor immune microenvironment (TIME) for prostate cancer (PCA) patients undergoing radical prostatectomy. All analyses were conducted with R software (version 3.6.3) and its suitable packages. Meta analysis was performed through STATA 16.0. TUBB3, WDR62, and PPARGC1A were finally identified to establish the IGPI score. IGPI score increased with the augment of Gleason score and T stage, as well as biochemical recurrence (BCR) and prostate specific antigen (PSA). Patients with higher IGPI score were at higher risk of progress (HR: 2.88; 95%CI: 95%CI: 1.80-4.61). Gene set enrichment analysis indicated that patients in high-risk group was positively associated with mismatch repair, cell cycle, DNA replication, base excision repair, nucleotide excision repair, homologous recombination, and pyrimidine metabolism. We observed that patients in the high-risk group had significantly higher tumor mutation burden score and microsatellite instability score than those in the low-risk group. For analysis of immune checkpoint, ADORA2A, CD80, TNFRSF4, TNFRSF18, and TNFRSF25 were differentially expressed between no progress and progress groups, and were significantly associated with progress free survival. We observed positive correlations between IGPI score, and lymphoid immune cells, macrophages M2 and immune score, while negative association between IGPI score, and dendritic cells, fibroblasts, stromal score, and microenvironment score. In conclusion, the IGPI score constructed in this study might serve as an independent risk factor associated with PCA progression. ADORA2A, CD80, TNFRSF4, TNFRSF18, and TNFRSF25 might be the potential targets in the treatment of PCA.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
233
|
Feng D, Xiong Q, Zhang F, Shi X, Xu H, Wei W, Ai J, Yang L. Identification of a Novel Nomogram to Predict Progression Based on the Circadian Clock and Insights Into the Tumor Immune Microenvironment in Prostate Cancer. Front Immunol 2022; 13:777724. [PMID: 35154101 PMCID: PMC8829569 DOI: 10.3389/fimmu.2022.777724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Background Currently, the impact of the circadian rhythm on the tumorigenesis and progression of prostate cancer (PCA) has yet to be understood. In this study, we first established a novel nomogram to predict PCA progression based on circadian clock (CIC)-related genes and provided insights into the tumor immune microenvironment. Methods The TCGA and Genecards databases were used to identify potential candidate genes. Lasso and Cox regression analyses were applied to develop a CIC-related gene signature. The tumor immune microenvironment was evaluated through appropriate statistical methods and the GSCALite database. Results Ten genes were identified to construct a gene signature to predict progression probability for patients with PCA. Patients with high-risk scores were more prone to progress than those with low-risk scores (hazard ratio (HR): 4.11, 95% CI: 2.66-6.37; risk score cut-off: 1.194). CLOCK, PER (1, 2, 3), CRY2, NPAS2, RORA, and ARNTL showed a higher correlation with anti-oncogenes, while CSNK1D and CSNK1E presented a greater relationship with oncogenes. Overall, patients with higher risk scores showed lower mRNA expression of PER1, PER2, and CRY2 and higher expression of CSNK1E. In general, tumor samples presented higher infiltration levels of macrophages, T cells and myeloid dendritic cells than normal samples. In addition, tumor samples had higher immune scores, lower stroma scores and lower microenvironment scores than normal samples. Notably, patients with higher risk scores were associated with significantly lower levels of neutrophils, NK cells, T helper type 1, and mast cells. There was a positive correlation between the risk score and the tumor mutation burden (TMB) score, and patients with higher TMB scores were more prone to progress than those with lower TMB scores. Likewise, we observed similar results regarding the correlation between the microsatellite instability (MSI) score and the risk score and the impact of the MSI score on the progression-free interval. We observed that anti-oncogenes presented a significantly positive correlation with PD-L1, PD-L2, TIGIT and SIGLEC15, especially PD-L2. Conclusion We identified ten prognosis-related genes as a promising tool for risk stratification in PCA patients from the fresh perspective of CIC.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
234
|
Zhu S, Zhang Z, Zhang H, Liu Z, Liu M, Liu Q, Zang L, Wang L, Ji J, Wu B, Sun L, Zhang Z, Cao H, Wang Y, Wang H, Shang Z, Niu Y. DNA-repair status should be assessed in treatment-emergent neuroendocrine prostate cancer before platinum-based therapy. Prostate 2022; 82:464-474. [PMID: 35037281 DOI: 10.1002/pros.24292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVES This study sought to provide contemporary data from a multi-institution with respect to DNA-repair genes (DRGs) status and its impact on effects of platinum-based chemotherapy in treatment-emergent neuroendocrine prostate cancer (t-NEPC), for which little data exist. PATIENTS AND METHODS All patients were retrospectively collected with eligible biopsied tissues for targeted next generation sequencing (NGS). The main outcomes were radiologic progression-free survival and overall survival according to Response Evaluation Criteria in Solid Tumors, version 1.1. RESULTS Among the 43 NEPC patients, 13/43 (30%) harbored homozygous deletions, deleterious mutations, or both in DRGs. Eleven patients (11/13, 85%) with DRGs aberrations had effective response, including 7 patients with BRCA1/2 defects and 2 with mismatch repair-deficient caused by MSH2 alterations. While significantly fewer responders (30%) were detected in patients without DRGs aberrations (odds ratio = 12.83, p = 0.003). Compared with patients without genomic DRGs aberrations, the hazard ratio (HR) for radiologic progression in those with DRGs defects was 0.42 (95% confidence interval [CI]: 0.19-0.93), and the HR for death was 0.65 (95% CI: 0.24-1.72). The most common adverse event of Grade 3 or 4 was anemia, as noted in 7 patients (16%). CONCLUSION The DRGs status is therapeutically meaningful in t-NEPC. Given the potential responses to platinum-based chemotherapy, our findings support the clinical use of NGS in t-NEPC patients to identify DRGs aberrations.
Collapse
Affiliation(s)
- Shimiao Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zheng Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hui Zhang
- Department of Nephrology, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Zihao Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Min Liu
- Department of Urology, Zibo Central Hospital, Zibo, Shandong, China
| | - Qing Liu
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Li Zang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lili Wang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Junpeng Ji
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Third Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Bo Wu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Libin Sun
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhenting Zhang
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Heran Cao
- Department of Urology, Shijiazhuang People's Hospital, The No. 1 Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yong Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
235
|
Kwan EM, Spain L, Anton A, Gan CL, Garrett L, Chang D, Liow E, Bennett C, Zheng T, Yu J, Dai C, Du P, Jia S, Fettke H, Abou-Seif C, Kothari G, Shaw M, Parente P, Pezaro C, Tran B, Siva S, Azad AA. Avelumab Combined with Stereotactic Ablative Body Radiotherapy in Metastatic Castration-resistant Prostate Cancer: The Phase 2 ICE-PAC Clinical Trial. Eur Urol 2022; 81:253-262. [PMID: 34493414 DOI: 10.1016/j.eururo.2021.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Immune checkpoint inhibitor monotherapy in metastatic castration-resistant prostate cancer (mCRPC) has produced modest results. High-dose radiotherapy may be synergistic with checkpoint inhibitors. OBJECTIVE To evaluate the efficacy and safety of the PD-L1 inhibitor avelumab with stereotactic ablative body radiotherapy (SABR) in mCRPC. DESIGN, SETTING, AND PARTICIPANTS From November 2017 to July 2019, this prospective phase 2 study enrolled 31 men with progressive mCRPC after at least one prior androgen receptor-directed therapy. Median follow-up was 18.0 mo. INTERVENTION Avelumab 10 mg/kg intravenously every 2 wk for 24 wk (12 cycles). A single fraction of SABR (20 Gy) was administered to one or two disease sites within 5 d before the first and second avelumab treatments. OUTCOMES MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was the disease control rate (DCR), defined as a confirmed complete or partial response of any duration, or stable disease/non-complete response/non-progressive disease for ≥6 mo (Prostate Cancer Clinical Trials Working Group 3-modified Response Evaluation Criteria in Solid Tumours version 1.1). Secondary endpoints were the objective response rate (ORR), radiographic progression-free survival (rPFS), overall survival (OS), and safety. DCR and ORR were calculated using the Clopper-Pearson exact binomial method. RESULTS AND LIMITATIONS Thirty-one evaluable men were enrolled (median age 71 yr, 71% with ≥2 prior mCRPC therapy lines, 81% with >5 total metastases). The DCR was 48% (15/31; 95% confidence interval [CI] 30-67%) and ORR was 31% (five of 16; 95% CI 11-59%). The ORR in nonirradiated lesions was 33% (four of 12; 95% CI 10-65%). Median rPFS was 8.4 mo (95% CI 4.5-not reached [NR]) and median OS was 14.1 mo (95% CI 8.9-NR). Grade 3-4 treatment-related adverse events occurred in six patients (16%), with three (10%) requiring high-dose corticosteroid therapy. Plasma androgen receptor alterations were associated with lower DCR (22% vs 71%, p = 0.13; Fisher's exact test). Limitations include the small sample size and the absence of a control arm. CONCLUSIONS Avelumab with SABR demonstrated encouraging activity and acceptable toxicity in treatment-refractory mCRPC. This combination warrants further investigation. PATIENT SUMMARY In this study of men with advanced and heavily pretreated prostate cancer, combining stereotactic radiotherapy with avelumab immunotherapy was safe and resulted in nearly half of patients experiencing cancer control for 6 months or longer. Stereotactic radiotherapy may potentially improve the effectiveness of immunotherapy in prostate cancer.
Collapse
Affiliation(s)
- Edmond M Kwan
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia; Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Lavinia Spain
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Medical Oncology, Eastern Health, Melbourne, Australia; Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Angelyn Anton
- Department of Medical Oncology, Eastern Health, Melbourne, Australia; Eastern Health Clinical School, Monash University, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Chun L Gan
- Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Linda Garrett
- Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Deborah Chang
- Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Elizabeth Liow
- Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Caitlin Bennett
- Eastern Health Clinical School, Monash University, Melbourne, Australia
| | | | | | - Chao Dai
- Predicine Inc., Hayward, CA, USA
| | - Pan Du
- Predicine Inc., Hayward, CA, USA
| | | | - Heidi Fettke
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Claire Abou-Seif
- Department of Anatomical Pathology, Monash Health, Melbourne, Australia
| | - Gargi Kothari
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mark Shaw
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip Parente
- Department of Medical Oncology, Eastern Health, Melbourne, Australia; Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Carmel Pezaro
- Department of Medical Oncology, Eastern Health, Melbourne, Australia; Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Arun A Azad
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
236
|
Prostate cancer treatment costs increase more rapidly than for any other cancer—how to reverse the trend? EPMA J 2022; 13:1-7. [PMID: 35251382 PMCID: PMC8886338 DOI: 10.1007/s13167-022-00276-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 02/08/2023]
Abstract
According to GLOBOCAN, about 1.41 million new prostate cancer (PCa) cases were registered in the year 2020 globally. The corresponding socio-economic burden is enormous. Anti-cancer mRNA-based therapy is a promising approach, the principle of which is currently applied for anti-COVID-19 vaccination, undergoing a detailed investigation in populations considering its short- and long-term effectiveness and potential side effects. Pragmatically considered, it will take years or even decades to make mRNA therapy working for any type of cancers, and if possible, for individual malignancy sub-types which are many specifically for the PCa. Actually, the costs of treating PCa are increasing more rapidly than those of any other cancer. The trend has to be reversed now, not in a couple of years. In general, two main components are making currently applied reactive (management of clinically manifested disease) PCa treatment particularly expensive. On one hand, it is rapidly increasing incidence of the disease and metastatic PCa as its subtype. To this end, rapidly increasing PCa incidence rates in young and middle-aged male sub-populations should be taken into account as a long-term contributor to the metastatic disease potentially developed later on in life. On the other hand, patient stratification to differentiate between non-metastatic PCa (no need for an extensive and costly treatment) and particularly aggressive cancer subtypes requiring personalised treatment algorithms is challenging. Considering current statistics, it becomes obvious that reactive medicine got at its limit in PCa management. Multi-professional expertise is unavoidable to create and implement anti-PCa programmes in the population. In our strategic paper, we exemplify challenging PCa management by providing detailed expert recommendations for primary (health risk assessment), secondary (prediction and prevention of metastatic disease in PCa) and tertiary (making palliative care to the management of chronic disease) care in the framework of predictive, preventive and personalised medicine.
Collapse
|
237
|
Graf RP, Fisher V, Weberpals J, Gjoerup O, Tierno MB, Huang RSP, Sayegh N, Lin DI, Raskina K, Schrock AB, Severson E, Haberberger JF, Ross JS, Creeden J, Levy MA, Alexander BM, Oxnard GR, Agarwal N. Comparative Effectiveness of Immune Checkpoint Inhibitors vs Chemotherapy by Tumor Mutational Burden in Metastatic Castration-Resistant Prostate Cancer. JAMA Netw Open 2022; 5:e225394. [PMID: 35357449 PMCID: PMC8972027 DOI: 10.1001/jamanetworkopen.2022.5394] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPORTANCE The most useful biomarkers for clinical decision-making identify patients likely to have improved outcomes with one treatment vs another. OBJECTIVE To evaluate treatment class-specific outcomes of patients receiving immune checkpoint inhibitor (ICI) vs taxane chemotherapy by tumor mutational burden (TMB). DESIGN, SETTING, AND PARTICIPANTS This comparative effectiveness analysis of clinical variables and outcomes used prospectively defined biomarker-stratified genomic data from a deidentified clinicogenomic database. Data included men with previously treated metastatic castration-resistant prostate cancer (mCRPC) receiving ICI or single-agent taxane chemotherapy from January 2011 to April 2021 at approximately 280 US academic or community-based cancer clinics (approximately 800 sites of care). Data were analyzed from July to August 2021. EXPOSURES Single-agent ICI or single-agent taxanes. Treatments were assigned at discretion of physician and patient without randomization. Imbalances of known factors between treatment groups were adjusted with propensity weighting. MAIN OUTCOMES AND MEASURES Prostate-specific antigen (PSA) response, time to next therapy (TTNT), and overall survival (OS). RESULTS A total of 741 men (median [IQR], 70 [64-76] years) with mCRPC received comprehensive genomic profiling and were treated with ICI or single-agent taxane therapy. At baseline, the median (IQR) PSA level was 79.4 (19.0-254) ng/mL, 108 men (18.8%) had Eastern Cooperative Oncology Group Performance Status scores of 2 or greater, and 644 men (86.9%) had received prior systemic treatments for mCRPC. A total of 45 patients (6.1%) received ICI therapy and 696 patients (93.9%) received taxane therapy. Among patients with TMB of fewer than 10 mutations per megabase (mt/Mb) receiving ICI, compared with those receiving taxanes, had worse TTNT (median [IQR], 2.4 [1.1-3.2] months vs 4.1 [2.2-6.3] months; hazard ratio [HR], 2.65; 95% CI, 1.78-3.95; P < .001). In contrast, for patients with TMB of 10 mt/Mb or greater, use of ICIs, compared with use taxanes, was associated with more favorable TTNT (median [IQR], 8.0 [3.4 to unknown] months vs 2.4 [2.4-7.3] months; HR, 0.37, 95% CI, 0.15-0.87; P = .02) and OS (median 19.9 [8.06 to unknown] months vs 4.2 [2.69 - 6.12] months; HR, 0.23; 95% CI, 0.10-0.57; P = .001). Among all 741 patients, 44 (5.9%) had TMB of 10 mt/Mb or greater, 22 (3.0%) had high microsatellite instability, and 20 (2.7%) had both. Treatment interactions with TMB of 10 mt/Mb or greater (TTNT: HR, 0.10; 95% CI, 0.32-0.31; P < .001; OS: HR, 0.25; 95% CI, 0.076-0.81; P = .02) were stronger than high microsatellite instability alone (TTNT: HR, 0.12; 95% CI, 0.03-0.51; P = .004; OS: HR, 0.38; 95% CI, 0.13-1.12; P = .08). CONCLUSIONS AND RELEVANCE In this comparative effectiveness study, ICIs were more effective than taxanes in patients with mCRPC when TMB was 10 mt/Mb or greater but not when TMB was fewer than 10 mt/Mb. The results add validity to the existing TMB cutoff of 10 mt/Mb for ICI use in later lines of therapy, and suggest that ICIs may be a viable alternative to taxane chemotherapy for patients with mCRPC with high TMB.
Collapse
Affiliation(s)
| | | | - Janick Weberpals
- Real World Data Collaborations, Personalized Healthcare Data, Analytics and Imaging, F. Hoffmann-La Roche, Basel, Switzerland
| | - Ole Gjoerup
- Foundation Medicine, Cambridge, Massachusetts
| | | | | | - Nicolas Sayegh
- Huntsman Cancer Institute, University of Utah, Salt Lake City
| | | | | | | | | | | | - Jeffrey S. Ross
- Foundation Medicine, Cambridge, Massachusetts
- Upstate Medical University, Syracuse, New York
| | | | - Mia A. Levy
- Foundation Medicine, Cambridge, Massachusetts
- Rush University Medical Center, Chicago, Illinois
| | | | | | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City
| |
Collapse
|
238
|
Immune Checkpoint Inhibitors in Advanced Prostate Cancer: Current Data and Future Perspectives. Cancers (Basel) 2022; 14:cancers14051245. [PMID: 35267553 PMCID: PMC8909751 DOI: 10.3390/cancers14051245] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The treatment landscape of advanced prostate cancer (PCa) is constantly improving with the approval of many new therapeutic options. Immunotherapy in PCa has been investigated with disappointing results. This review aims to evaluate the potential role of immunotherapy in both castration-sensitive and castration-resistant PCa, discussing the immunobiology of PCa, the results of the current literature, and the ongoing clinical trials. Potential prognostic and/or predictive factors and future perspectives are also discussed. Abstract In the last 10 years, many new therapeutic options have been approved in advanced prostate cancer (PCa) patients, granting a more prolonged survival in patients with metastatic disease, which, nevertheless, remains incurable. The emphasis on immune checkpoint inhibitors (ICIs) has led to many trials in this setting, with disappointing results until now. Therefore, we discuss the immunobiology of PCa, presenting ongoing trials and the available clinical data, to understand if immunotherapy could represent a valid option in this disease, and which subset of patients may be more likely to benefit. Current evidence suggests that the tumor microenvironment needs a qualitative rather than quantitative evaluation, along with the genomic determinants of prostate tumor cells. The prognostic or predictive value of immunotherapy biomarkers, such as PD-L1, TMB, or dMMR/MSI-high, needs further evaluation in PCa. Monotherapy with immune checkpoint inhibitors (ICIs) has been modestly effective. In contrast, combined strategies with other standard treatments (hormonal agents, chemotherapy, PARP inhibitors, radium-223, and TKIs) have shown some results. Immunotherapy should be better investigated in biomarker-selected patients, particularly with specific pathway aberrations (e.g., AR-V7 variant, HRD, CDK12 inactivated tumors, MSI-high tumors). Lastly, we present new possible targets in PCa that could potentially modulate the tumor microenvironment and improve antitumor activity with ICIs.
Collapse
|
239
|
von Amsberg G, Alsdorf W, Karagiannis P, Coym A, Kaune M, Werner S, Graefen M, Bokemeyer C, Merkens L, Dyshlovoy SA. Immunotherapy in Advanced Prostate Cancer-Light at the End of the Tunnel? Int J Mol Sci 2022; 23:2569. [PMID: 35269712 PMCID: PMC8910587 DOI: 10.3390/ijms23052569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022] Open
Abstract
Immunotherapeutic treatment approaches are now an integral part of the treatment of many solid tumors. However, attempts to integrate immunotherapy into the treatment of prostate cancer have been disappointing so far. This is due to a highly immunosuppressive, "cold" tumor microenvironment, which is characterized, for example, by the absence of cytotoxic T cells, an increased number of myeloid-derived suppressor cells or regulatory T cells, a decreased number of tumor antigens, or a defect in antigen presentation. The consequence is a reduced efficacy of many established immunotherapeutic treatments such as checkpoint inhibitors. However, a growing understanding of the underlying mechanisms of tumor-immune system interactions raises hopes that immunotherapeutic strategies can be optimized in the future. The aim of this review is to provide an overview of the current status and future directions of immunotherapy development in prostate cancer. Background information on immune response and tumor microenvironment will help to better understand current therapeutic strategies under preclinical and clinical development.
Collapse
Affiliation(s)
- Gunhild von Amsberg
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Winfried Alsdorf
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Panagiotis Karagiannis
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Anja Coym
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Moritz Kaune
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.W.); (L.M.)
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Carsten Bokemeyer
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Lina Merkens
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.W.); (L.M.)
| | - Sergey A. Dyshlovoy
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Palchevskogo Str. 17, 690041 Vladivostok, Russia
| |
Collapse
|
240
|
López-Campos F, Gajate P, Romero-Laorden N, Zafra-Martín J, Juan M, Hernando Polo S, Conde Moreno A, Couñago F. Immunotherapy in Advanced Prostate Cancer: Current Knowledge and Future Directions. Biomedicines 2022; 10:537. [PMID: 35327339 PMCID: PMC8945350 DOI: 10.3390/biomedicines10030537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The advent of immunotherapy has revolutionized cancer treatment. Unfortunately, this has not been the case for metastatic castration-resistant prostate cancer (mCRPC), likely due to the heterogeneous and immune-suppressive microenvironment present in prostate cancer. The identification of molecular biomarkers that could predict response to immunotherapy represents one of the current challenges in this clinical scenario. The management of advanced castration-resistant prostate cancer is rapidly evolving and immunotherapy treatments, mostly consisting of immune checkpoint inhibitors combinations, BiTE® (bispecific T-cell engager) immune therapies, and chimeric antigen receptors (CAR) are in development with promising results. This review analyses the current evidence of immunotherapy treatments for mCRPC, evaluating past failures and promising approaches and discussing the directions for future research.
Collapse
Affiliation(s)
- Fernando López-Campos
- Radiation Oncology Department, Hospital Universitario Ramón y Cajal, 28024 Madrid, Spain
| | - Pablo Gajate
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28024 Madrid, Spain;
| | - Nuria Romero-Laorden
- Medical Oncology Department, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Juan Zafra-Martín
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain;
| | - Manel Juan
- Servei d’Immunologia, CDB-Hospital Clínic, Plataforma de Inmunoterapia HSJD-Clínic, 08036 Barcelona, Spain;
| | - Susana Hernando Polo
- Medical Oncology Department, Hospital Universitario Fundación Alcorcón, 28922 Alcorcón, Spain;
| | - Antonio Conde Moreno
- Radiation Oncology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, 28223 Madrid, Spain;
- Department of Radiation Oncology, Hospital La Luz, 28003 Madrid, Spain
- Universidad Europea de Madrid, 28670 Madrid, Spain
| |
Collapse
|
241
|
[Molecular diagnostics and molecular tumor board in uro-oncology : Precision medicine using the example of metastatic castration-resistant prostate cancer]. Urologe A 2022; 61:311-322. [PMID: 35157098 DOI: 10.1007/s00120-022-01784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Novel approaches to molecular tumor profiling evaluate DNA, RNA and protein alterations to create a detailed molecular map that enables precise and personalized treatment decisions. As the field of molecular profiling is constantly evolving, the training and networking of doctors is of decisive importance. Through the establishment of precision medicine with precision oncological consultations supported by interdisciplinary molecular tumor boards, many patients with difficult to treat tumor diseases can be advised and treated. Many pathophysiological relationships in progressive tumors can be elucidated resulting in new therapeutic options for the profiled patients; however, understanding the complex mutational profiles remains a very demanding task that requires a suitably trained and committed team that should be in close contact with the scientific advancements in precision oncology.
Collapse
|
242
|
Christenson M, Song CS, Liu YG, Chatterjee B. Precision Targets for Intercepting the Lethal Progression of Prostate Cancer: Potential Avenues for Personalized Therapy. Cancers (Basel) 2022; 14:892. [PMID: 35205640 PMCID: PMC8870390 DOI: 10.3390/cancers14040892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Organ-confined prostate cancer of low-grade histopathology is managed with radiation, surgery, active surveillance, or watchful waiting and exhibits a 5-year overall survival (OS) of 95%, while metastatic prostate cancer (PCa) is incurable, holding a 5-year OS of 30%. Treatment options for advanced PCa-metastatic and non-metastatic-include hormone therapy that inactivates androgen receptor (AR) signaling, chemotherapy and genome-targeted therapy entailing synthetic lethality of tumor cells exhibiting aberrant DNA damage response, and immune checkpoint inhibition (ICI), which suppresses tumors with genomic microsatellite instability and/or deficient mismatch repair. Cancer genome sequencing uncovered novel somatic and germline mutations, while mechanistic studies are revealing their pathological consequences. A microRNA has shown biomarker potential for stratifying patients who may benefit from angiogenesis inhibition prior to ICI. A 22-gene expression signature may select high-risk localized PCa, which would not additionally benefit from post-radiation hormone therapy. We present an up-to-date review of the molecular and therapeutic aspects of PCa, highlight genomic alterations leading to AR upregulation and discuss AR-degrading molecules as promising anti-AR therapeutics. New biomarkers and druggable targets are shaping innovative intervention strategies against high-risk localized and metastatic PCa, including AR-independent small cell-neuroendocrine carcinoma, while presenting individualized treatment opportunities through improved design and precision targeting.
Collapse
Affiliation(s)
| | | | | | - Bandana Chatterjee
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.C.); (C.-S.S.); (Y.-G.L.)
| |
Collapse
|
243
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Ascani S, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Gandhi J, Nicoli D, Farnetti E, Piana S, Tafuni A, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review (Part 6): Correlation of PD-L1 Expression with the Status of Mismatch Repair System, BRCA, PTEN, and Other Genes. Biomedicines 2022; 10:236. [PMID: 35203446 PMCID: PMC8868626 DOI: 10.3390/biomedicines10020236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Pembrolizumab (anti-PD-1) is allowed in selected metastatic castration-resistant prostate cancer (PC) patients showing microsatellite instability/mismatch repair system deficiency (MSI-H/dMMR). BRCA1/2 loss-of-function is linked to hereditary PCs and homologous recombination DNA-repair system deficiency: poly-ADP-ribose-polymerase inhibitors can be administered to BRCA-mutated PC patients. Recently, docetaxel-refractory metastatic castration-resistant PC patients with BRCA1/2 or ATM somatic mutations had higher response rates to pembrolizumab. PTEN regulates cell cycle/proliferation/apoptosis through pathways including the AKT/mTOR, which upregulates PD-L1 expression in PC. Our systematic literature review (PRISMA guidelines) investigated the potential correlations between PD-L1 and MMR/MSI/BRCA/PTEN statuses in PC, discussing few other relevant genes. Excluding selection biases, 74/677 (11%) PCs showed dMMR/MSI; 8/67 (12%) of dMMR/MSI cases were PD-L1+. dMMR-PCs included ductal (3%) and acinar (14%) PCs (all cases tested for MSI were acinar-PCs). In total, 15/39 (39%) PCs harbored BRCA1/2 aberrations: limited data are available for PD-L1 expression in these patients. 13/137 (10%) PTEN- PCs were PD-L1+; 10/29 (35%) PD-L1+ PCs showed PTEN negativity. SPOP mutations may increase PD-L1 levels, while the potential correlation between PD-L1 and ERG expression in PC should be clarified. Further research should verify how the efficacy of PD-1 inhibitors in metastatic castration-resistant PCs is related to dMMR/MSI, DNA-damage repair genes defects, or PD-L1 expression.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asuncion 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Davide Nicoli
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Enrico Farnetti
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Simonetta Piana
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Alessandro Tafuni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
244
|
Perera MP, Thomas PB, Risbridger GP, Taylor R, Azad A, Hofman MS, Williams ED, Vela I. Chimeric Antigen Receptor T-Cell Therapy in Metastatic Castrate-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14030503. [PMID: 35158771 PMCID: PMC8833489 DOI: 10.3390/cancers14030503] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Prostate cancer is one of the most frequently diagnosed cancers amongst men worldwide. Treatment for metastatic disease is often in the form of androgen deprivation therapy. However, over the course of treatment affected men may become castrate-resistant. Options for men with metastatic castrate-resistant cancer are limited. This review focuses on the role of chimeric antigen receptor T-cell therapy (CAR-T) in men with metastatic castrate-resistant prostate cancer. This review is a contemporary appraisal of preclinical and clinical studies conducted in this emerging form of immunotherapy. A thorough evaluation of the role of CAR-T therapy in prostate cancer is provided, as well as the obstacles we must overcome to clinically translate this therapy for men affected with this rapidly fatal disease. Abstract Prostate cancer is the most commonly diagnosed solid-organ cancer amongst males worldwide. Metastatic castrate-resistant prostate cancer (mCRPC) is a rapidly fatal end-sequelae of prostate cancer. Therapeutic options for men with mCRPC are limited and are not curative in nature. The recent development of chimeric antigen receptor T-cell (CAR-T) therapy has revolutionised the treatment of treatment-resistant haematological malignancies, and several studies are underway investigating the utility of this technology in the treatment of solid tumours. In this review, we evaluate the current treatment options for men with mCRPC as well as the current landscape of preclinical and clinical trials of CAR-T cell therapy against prostate cancer. We also appraise the various prostate cancer-specific tumour-associated antigens that may be targeted by CAR-T cell technology. Finally, we examine the potential translational barriers of CAR-T cell therapy in solid tumours. Despite preclinical success, preliminary clinical trials in men with prostate cancer have had limited efficacy. Therefore, further clinically translatable preclinical models are required to enhance the understanding of the role of this investigational therapeutic in men with mCRPC. In the era of precision medicine, tailored immunotherapy administered to men in a tumour-agnostic approach provides hope to a group of men who otherwise have few treatment options available.
Collapse
Affiliation(s)
- Mahasha P.J. Perera
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- Correspondence: (M.P.P.); (I.V.)
| | - Patrick B. Thomas
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
| | - Gail P. Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia; (G.P.R.); (R.T.)
| | - Renea Taylor
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia; (G.P.R.); (R.T.)
| | - Arun Azad
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (A.A.); (M.S.H.)
| | - Michael S. Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (A.A.); (M.S.H.)
| | - Elizabeth D. Williams
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
| | - Ian Vela
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- Correspondence: (M.P.P.); (I.V.)
| |
Collapse
|
245
|
Macrophages as a Therapeutic Target in Metastatic Prostate Cancer: A Way to Overcome Immunotherapy Resistance? Cancers (Basel) 2022; 14:cancers14020440. [PMID: 35053602 PMCID: PMC8773572 DOI: 10.3390/cancers14020440] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PC) is the most common malignancy and the fifth cause of cancer death in men. The treatment for localized or locally advanced stages offers a high probability of cure. Even though the therapeutic landscape has significantly improved over the last decade, metastatic PC (mPC) still has a poor prognosis mainly due to the development of therapy resistance. In this context, the use of immunotherapy alone or in combination with other drugs has been explored in recent years. However, T-cell directed immune checkpoint inhibitors (ICIs) have shown limited activity with inconclusive results in mPC patients, most likely due to the highly immunosuppressive PC tumor microenvironment (TME). In this scenario, targeting macrophages, a highly abundant immunosuppressive cell type in the TME, could offer a new therapeutic strategy to improve immunotherapy efficacy. In this review, we summarize the growing field of macrophage-directed immunotherapies and discuss how these could be applied in the treatment of mPC, focusing on their combination with ICIs.
Collapse
|
246
|
Mitsogiannis I, Tzelves L, Dellis A, Issa H, Papatsoris A, Moussa M. Prostate cancer immunotherapy. Expert Opin Biol Ther 2022; 22:577-590. [PMID: 35037527 DOI: 10.1080/14712598.2022.2027904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Medical treatment for prostate cancer (PC) targets hormonal pathways used by malignant cells. Research advances aided in gaining knowledge about implicated molecular pathways and opened the way for establishment of new types of therapies by modifying immunological mechanisms. The aim of this review is to present completed and ongoing research projects regarding PC immunotherapy. AREAS COVERED A literature search was conducted in PubMed/MEDLINE, Scopus, Cochrane Central Register of Controlled Trials, and https://www.clinicaltrials.gov/ from inception until 07/2021, to identify completed or ongoing Phase III trials regarding several immunotherapies against PC. Studies on vaccine therapies, CTLA-4 inhibitors, PD-1/PD-L1 inhibitors, PARP inhibitors, PSMA-targeted therapies, and tyrosine kinase inhibitors were considered eligible. EXPERT OPINION Although many molecules are being tested against PC cells, only sipuleucel-T has gain approval in the USA. The main reason for this delay in establishing immunotherapy as a standard option for managing PC is the heterogeneity and tumor immune microenvironment complexities. Ipilimumab and olaparib were proved to prolong overall survival significantly against placebo, but a lot of research is going on to identify which patients and at what stage of disease will benefit the most before incorporating them in clinical practice. More recent options such as PSMA-targeted treatments are currently evaluated. ARTICLE HIGHLIGHTS Intense research performed on immunotherapy for prostate cancer.Vaccine therapy with sipuleucel-T, the only approved immunotherapy for prostate cancer.Ipilimumab shows survival benefits.Olaparib shows survival benefits.Findings should be confirmed on further trials to identify target population characteristics and proper disease stage.Immunotherapy is not yet a standard due to tumor environment complex interaction between immune system and malignant cells.
Collapse
Affiliation(s)
- Iraklis Mitsogiannis
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Lazaros Tzelves
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Dellis
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Surgery, School of Medicine, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Hussein Issa
- Department of Urology, Al Zahraa Hospital, University Medical Center, Lebanese University, Beirut, Lebanon
| | - Athanasios Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Mohammad Moussa
- Department of Urology, Al Zahraa Hospital, University Medical Center, Lebanese University, Beirut, Lebanon
| |
Collapse
|
247
|
Mandigo AC, Tomlins SA, Kelly WK, Knudsen KE. Relevance of pRB Loss in Human Malignancies. Clin Cancer Res 2022; 28:255-264. [PMID: 34407969 PMCID: PMC9306333 DOI: 10.1158/1078-0432.ccr-21-1565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 01/07/2023]
Abstract
The retinoblastoma tumor suppressor protein (pRB) is a known regulator of cell-cycle control; however, recent studies identified critical functions for pRB in regulating cancer-associated gene networks that influence the DNA damage response, apoptosis, and cell metabolism. Understanding the impact of these pRB functions on cancer development and progression in the clinical setting will be essential, given the prevalence of pRB loss of function across disease types. Moreover, the current state of evidence supports the concept that pRB loss results in pleiotropic effects distinct from tumor proliferation. Here, the implications of pRB loss (and resultant pathway deregulation) on disease progression and therapeutic response will be reviewed, based on clinical observation. Developing a better understanding of the pRB-regulated pathways that underpin the aggressive features of pRB-deficient tumors will be essential for further developing pRB as a biomarker of disease progression and for stratifying pRB-deficient tumors into more effective treatment regimens.
Collapse
Affiliation(s)
- Amy C. Mandigo
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Scott A. Tomlins
- Departments of Pathology and Urology, Michigan Center for Translational Pathology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - William K. Kelly
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E. Knudsen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Corresponding Author: Karen E. Knudsen, Thomas Jefferson University, 233 South 10th Street, BLSB 1050, Philadelphia, PA 19107. Phone: 215-503-5692; E-mail:
| |
Collapse
|
248
|
Xia XF, Wang YQ, Shao SY, Zhao XY, Zhang SG, Li ZY, Yuan YC, Zhang N. The relationship between urologic cancer outcomes and national Human Development Index: trend in recent years. BMC Urol 2022; 22:2. [PMID: 35012527 PMCID: PMC8744298 DOI: 10.1186/s12894-022-00953-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To describe the influence of the socioeconomic development on worldwide age-standardized incidence and mortality rates, as well as mortality-to-incidence ratio (MIR) and 5-year net survival of urologic cancer patients in recent years. METHODS The Human Development Index (HDI) values were obtained from the United Nations Development Programme, data on age-standardized incidence/mortality rates of prostate, bladder and kidney cancer were retrieved from the GLOBOCAN database, 5-year net survival was provided by the CONCORD-3 program. We then evaluated the association between incidence/MIR/survival and HDI, with a focus on geographic variability as well as temporal patterns during the last 6 years. RESULTS Urologic cancer incidence rates were positively correlated with HDIs, and MIRs were negatively correlated with HDIs. Prostate cancer survival also correlated positively with HDIs, solidly confirming the interrelation among cancer indicators and socioeconomic factors. Most countries experienced incidence decline over the most recent 6 years, and a substantial reduction in MIR was observed. Survival rates of prostate cancer have simultaneously improved. CONCLUSION Development has a prominent influence on urologic cancer outcomes. HDI values are significantly correlated with cancer incidence, MIR and survival rates. HDI values have risen along with increased incidence and improved outcomes of urologic caner in recent years.
Collapse
Affiliation(s)
- Xiao-Fang Xia
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yi-Qiu Wang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shi-Yi Shao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin-Yu Zhao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shi-Geng Zhang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhong-Yi Li
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yi-Chu Yuan
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Nan Zhang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
249
|
Bimbatti D, Maruzzo M, Pierantoni F, Diminutto A, Dionese M, Deppieri FM, Lai E, Zagonel V, Basso U. Immune checkpoint inhibitors rechallenge in urological tumors: An extensive review of the literature. Crit Rev Oncol Hematol 2022; 170:103579. [PMID: 35007699 DOI: 10.1016/j.critrevonc.2022.103579] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/18/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have led to a significant change in the treatment of urological tumors where several agents are currently approved. Yet, most patients discontinue treatment due to disease progression or after the onset of severe immune-related adverse events (IRAEs). Following promising results in melanoma patients, retreatment with an ICI is receiving increasing attention as an attractive option for selected patients. We performed a literature review focusing on the feasibility, safety, timing and activity of ICI rechallenge in genitourinary cancers where very little information is available. We classified the different ICI retreatment strategies into three main clinical scenarios: retreatment after terminating a prior course of ICI while still on response; retreatment after interruption due to IRAEs; retreatment after progression while on ICI therapy. The pros and cons of these options in the field of urological tumors are then discussed, and critical suggestions proffered for the design of future clinical trials.
Collapse
Affiliation(s)
- Davide Bimbatti
- Oncology Unit 1, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy.
| | - Marco Maruzzo
- Oncology Unit 1, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Francesco Pierantoni
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Alberto Diminutto
- Urology Clinic, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Michele Dionese
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Filippo M Deppieri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Eleonora Lai
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Vittorina Zagonel
- Oncology Unit 1, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Umberto Basso
- Oncology Unit 1, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| |
Collapse
|
250
|
Jeong SH, Kwak C. Immunotherapy for prostate cancer: Requirements for a successful regime transfer. Investig Clin Urol 2022; 63:3-13. [PMID: 34983117 PMCID: PMC8756154 DOI: 10.4111/icu.20210369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
Despite the revolutionary progress in cancer treatment using immune checkpoint inhibitors (ICIs), remarkable responses in prostate cancer treatment have not yet been achieved. The disappointing previous results of ICIs have required further studies towards combined treatment targeting other pathways and restricted the eligibility criteria for patients with high mutation burdens, especially those with mismatch repair deficiency. Cancer immunotherapies activate adaptive immune systems, rather than directly attack tumor cells with their own cytotoxicity. Therefore, refractoriness to ICIs can not only be derived from the intractable nature of tumor cells per se , but also from their hostile milieu. Here, we reviewed the prostate cancer immunotherapies exploring clinical trials to date, along with the molecular characteristics of prostate cancer and its microenvironment.
Collapse
Affiliation(s)
- Seung-Hwan Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, Korea.,Department of Urology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|