201
|
Steenstrup SE, Mok KM, McIntosh AS, Bahr R, Krosshaug T. Head impact velocities in FIS World Cup snowboarders and freestyle skiers: Do real-life impacts exceed helmet testing standards? Br J Sports Med 2017; 52:32-40. [DOI: 10.1136/bjsports-2016-097086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2017] [Indexed: 11/03/2022]
Abstract
IntroductionPrior to the 2013–2014 season, the International Ski Federation (FIS) increased the helmet testing speed from a minimum requirement of 5.4 to 6.8 m/s for alpine downhill, super-G and giant slalom and for freestyle ski cross, but not for the other freestyle disciplines or snowboarding. Whether this increased testing speed reflects impact velocities in real head injury situations on snow is unclear. We therefore investigated the injury mechanisms and gross head impact biomechanics in four real head injury situations among World Cup (WC) snowboard and freestyle athletes and compared these with helmet homologation laboratory test requirements. The helmets in the four cases complied with at least European Standards (EN) 1077 (Class B) or American Society for Testing and Materials (ASTM) F2040.MethodsWe analysed four head injury videos from the FIS Injury Surveillance System throughout eight WC seasons (2006–2014) in detail. We used motion analysis software to digitize the helmet’s trajectory and estimated the head’s kinematics in two dimensions, including directly preimpact and postimpact.ResultsAll four impacts were to the occiput. In the four cases, the normal-to-slope preimpact velocity ranged from 7.0(±SD 0.2) m/s to 10.5±0.5 m/s and the normal-to-slope velocity change ranged from 8.4±0.6 m/s to 11.7±0.7 m/s. The sagittal plane helmet angular velocity estimates indicated a large change in angular velocity (25.0±2.9 rad/s to 49.1±0.3 rad/s).ConclusionThe estimated normal-to-slope preimpact velocity was higher than the current strictest helmet testing rule of 6.8 m/s in all four cases.
Collapse
|
202
|
Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transplant 2017; 26:1118-1130. [PMID: 28933211 PMCID: PMC5657730 DOI: 10.1177/0963689717714102] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) presents in various forms ranging from mild alterations of consciousness to an unrelenting comatose state and death. In the most severe form of TBI, the entirety of the brain is affected by a diffuse type of injury and swelling. Treatment modalities vary extensively based on the severity of the injury and range from daily cognitive therapy sessions to radical surgery such as bilateral decompressive craniectomies. Guidelines have been set forth regarding the optimal management of TBI, but they must be taken in context of the situation and cannot be used in every individual circumstance. In this review article, we have summarized the current status of treatment for TBI in both clinical practice and basic research. We have put forth a brief overview of the various subtypes of traumatic injuries, optimal medical management, and both the noninvasive and invasive monitoring modalities, in addition to the surgical interventions necessary in particular instances. We have overviewed the main achievements in searching for therapeutic strategies of TBI in basic science. We have also discussed the future direction for developing TBI treatment from an experimental perspective.
Collapse
Affiliation(s)
- Michael Galgano
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gentian Toshkezi
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
- VA Health Care Upstate New York, Syracuse VA Medical Center, Syracuse, NY, USA
| | - Thomas Russell
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Lawrence Chin
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
- VA Health Care Upstate New York, Syracuse VA Medical Center, Syracuse, NY, USA
| |
Collapse
|
203
|
Ho J, Zhou Z, Li X, Kleiven S. The peculiar properties of the falx and tentorium in brain injury biomechanics. J Biomech 2017; 60:243-247. [DOI: 10.1016/j.jbiomech.2017.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
|
204
|
Sun Q, Shi Y, Zhang F. Pediatric skull fractures and intracranial injuries. Exp Ther Med 2017; 14:1871-1874. [PMID: 28962096 PMCID: PMC5609139 DOI: 10.3892/etm.2017.4715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/27/2017] [Indexed: 11/24/2022] Open
Abstract
The determination of plausibility of an injury arising from a fall leading to head trauma is a great challenge especially in young children. The present review is aimed to discuss important developments in the filed of head trauma cases especially in children. We explored various studies pertaining to head trauma injuries in children by exploring mainly PubMed, Google scholar and some library periodicals available in our library. Studies in the recent past explored the head injuries as a result of a low height fall. However, there are great amount of difficulties in assessment of height with certainty that caused head injuries like skull fracture or intracranial injury. Biomechanical thresholds have been estimated for young children for injuries such as skull fracture, but they have not been assessed against the injuries observed in a clinical setting. So, this review discusses current aspects of pediatric head injuries ranging from a minor head injury to a skull fracture. The present review concludes that recording full details of cause of head trauma such as fall height is essential for proper treatment planning and efficient management.
Collapse
Affiliation(s)
- Qingzeng Sun
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Yingchun Shi
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Fengfei Zhang
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
205
|
Sanchez EJ, Gabler LF, McGhee JS, Olszko AV, Chancey VC, Crandall JR, Panzer MB. Evaluation of Head and Brain Injury Risk Functions Using Sub-Injurious Human Volunteer Data. J Neurotrauma 2017; 34:2410-2424. [PMID: 28358277 DOI: 10.1089/neu.2016.4681] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Risk assessment models are developed to estimate the probability of brain injury during head impact using mechanical response variables such as head kinematics and brain tissue deformation. Existing injury risk functions have been developed using different datasets based on human volunteer and scaled animal injury responses to impact. However, many of these functions have not been independently evaluated with respect to laboratory-controlled human response data. In this study, the specificity of 14 existing brain injury risk functions was assessed by evaluating their ability to correctly predict non-injurious response using previously conducted sled tests with well-instrumented human research volunteers. Six degrees-of-freedom head kinematics data were obtained for 335 sled tests involving subjects in frontal, lateral, and oblique sled conditions up to 16 Gs peak sled acceleration. A review of the medical reports associated with each individual test indicated no clinical diagnosis of mild or moderate brain injury in any of the cases evaluated. Kinematic-based head and brain injury risk probabilities were calculated directly from the kinematic data, while strain-based risks were determined through finite element model simulation of the 335 tests. Several injury risk functions substantially over predict the likelihood of concussion and diffuse axonal injury; proposed maximum principal strain-based injury risk functions predicted nearly 80 concussions and 14 cases of severe diffuse axonal injury out of the 335 non-injurious cases. This work is an important first step in assessing the efficacy of existing brain risk functions and highlights the need for more predictive injury assessment models.
Collapse
Affiliation(s)
- Erin J Sanchez
- 1 Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia , Charlottesville, Virginia
| | - Lee F Gabler
- 1 Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia , Charlottesville, Virginia
| | - James S McGhee
- 2 United States Army Aeromedical Research Labs , Fort Rucker, Alabama
| | - Ardyn V Olszko
- 2 United States Army Aeromedical Research Labs , Fort Rucker, Alabama
| | - V Carol Chancey
- 2 United States Army Aeromedical Research Labs , Fort Rucker, Alabama
| | - Jeff R Crandall
- 1 Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia , Charlottesville, Virginia
| | - Matthew B Panzer
- 1 Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
206
|
McAteer KM, Turner RJ, Corrigan F. Animal models of chronic traumatic encephalopathy. Concussion 2017; 2:CNC32. [PMID: 30202573 PMCID: PMC6093772 DOI: 10.2217/cnc-2016-0031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
Repeated head impacts have been suggested to be associated with the development of the neurodegenerative disorder, chronic traumatic encephalopathy (CTE). CTE is characterized by the accumulation of hyperphosphorylated tau within the brain, with accompanying cognitive and behavioral deficits. How a history of repeated head impacts can lead to the later development of CTE is not yet known, and as such appropriate animal models are required. Over the last decade a number of rodent models of repeated mild traumatic brain injury have been developed that are broadly based on traditional traumatic brain injury models, in controlled cortical impact, fluid percussion and weight drop models, with adaptations to allow for better modeling of the mechanical forces associated with concussion.
Collapse
Affiliation(s)
- Kelly M McAteer
- Discipline of Anatomy & Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Renee J Turner
- Discipline of Anatomy & Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Frances Corrigan
- Discipline of Anatomy & Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
207
|
Vanden Bosche K, Mosleh Y, Depreitere B, Vander Sloten J, Verpoest I, Ivens J. Anisotropic polyethersulfone foam for bicycle helmet liners to reduce rotational acceleration during oblique impact. Proc Inst Mech Eng H 2017; 231:851-861. [DOI: 10.1177/0954411917711201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kelly Vanden Bosche
- Scalint Section, Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Yasmine Mosleh
- Scalint Section, Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Bart Depreitere
- Department of Neurosurgery, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Jos Vander Sloten
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Ignaas Verpoest
- Scalint Section, Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Jan Ivens
- Scalint Section, Department of Materials Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
208
|
Singleton MD. Differential protective effects of motorcycle helmets against head injury. TRAFFIC INJURY PREVENTION 2017; 18:387-392. [PMID: 27585909 DOI: 10.1080/15389588.2016.1211271] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Although numerous observational studies have demonstrated a protective effect of motorcycle helmets against head injury, the degree of protection against specific head injury types remains unclear. Experimental biomechanics studies involving cadavers, animals, and computer models have established that head injuries have varying etiologies. This retrospective cross-sectional study compared helmet protection against skull fracture, cerebral contusion, intracranial hemorrhage, and cerebral concussion in a consecutive series of motorcycle operators involved in recent traffic crashes in Kentucky. METHODS Police collision reports linked to hospital inpatient and emergency department (ED) claims were analyzed for the period 2008 to 2012. Motorcycle operators with known helmet use who were not killed at the crash scene were included in the study. Helmet use was ascertained from the police report. Skull fracture, cerebral contusion, intracranial hemorrhage, and cerebral concussion were identified from International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes on the claims records. The relative risks of each type of head injury for helmeted versus unprotected operators were estimated using generalized estimating equations. RESULTS Helmets offer substantial protection against skull fracture (relative risk [RR] = 0.31, 95% confidence interval [CI], 0.23, 0.34), cerebral contusion (RR = 0.29, 95% CI, 0.16, 0.53), and intracranial hemorrhage (RR = 0.47, 95% CI, 0.35, 0.63). The findings pertaining to uncomplicated concussion (RR = 0.80, 95% CI, 0.64, 1.01) were inconclusive. A modest protective effect (20% risk reduction) was suggested by the relative risk estimate, but the 95% confidence interval included the null value. CONCLUSIONS Motorcycle helmets were associated with a 69% reduction in skull fractures, 71% reduction in cerebral contusion, and 53% reduction in intracranial hemorrhage. This study finds that current motorcycle helmets do not protect equally against all types of head injury. Efforts to improve rotational acceleration management in motorcycle helmets should be considered.
Collapse
Affiliation(s)
- Michael D Singleton
- a Department of Biostatistics and Kentucky Injury Prevention and Research Center , University of Kentucky College of Public Health , Lexington , Kentucky
| |
Collapse
|
209
|
Vink R. Large animal models of traumatic brain injury. J Neurosci Res 2017; 96:527-535. [PMID: 28500771 DOI: 10.1002/jnr.24079] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
Abstract
Animal models are essential to gain a deeper understanding of the pathophysiology associated with traumatic brain injury (TBI). Rodent models of TBI have proven highly valuable with respect to the information they have provided over the years, particularly when it comes to the molecular understanding of injury mechanisms. However, there has been a failure to translate the successes in therapeutic treatment of TBI in rodents, which many believe may be related to their different brain anatomy compared with humans. Specifically, the rodent lissencephalic brain within its bony skull responds differently to injury than a human gyrencephalic brain, particularly from a biomechanical and physiological perspective. There is now far greater interest in developing more clinically relevant, large animal models of TBI so as to enhance the possibility of successful clinical translation. The current mini-review highlights the differences between lissencephalic and gyrencephalic brains, emphasizing how these differences might impact studies of TBI. Thereafter follows a summary of the different large animal models, with a critical analysis of their strengths and weaknesses.
Collapse
Affiliation(s)
- Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
210
|
Garimella HT, Kraft RH. Modeling the mechanics of axonal fiber tracts using the embedded finite element method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 27502006 DOI: 10.1002/cnm.2823] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 07/11/2016] [Accepted: 07/16/2016] [Indexed: 05/10/2023]
Abstract
A subject-specific human head finite element model with embedded axonal fiber tractography obtained from diffusion tensor imaging was developed. The axonal fiber tractography finite element model was coupled with the volumetric elements in the head model using the embedded element method. This technique enables the calculation of axonal strains and real-time tracking of the mechanical response of the axonal fiber tracts. The coupled model was then verified using pressure and relative displacement-based (between skull and brain) experimental studies and was employed to analyze a head impact, demonstrating the applicability of this method in studying axonal injury. Following this, a comparison study of different injury criteria was performed. This model was used to determine the influence of impact direction on the extent of the axonal injury. The results suggested that the lateral impact loading is more dangerous compared to loading in the sagittal plane, a finding in agreement with previous studies. Through this analysis, we demonstrated the viability of the embedded element method as an alternative numerical approach for studying axonal injury in patient-specific human head models.
Collapse
Affiliation(s)
- Harsha T Garimella
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Reuben H Kraft
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
211
|
De Guzman E, Ament A. Neurobehavioral Management of Traumatic Brain Injury in the Critical Care Setting: An Update. Crit Care Clin 2017; 33:423-440. [PMID: 28601130 DOI: 10.1016/j.ccc.2017.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is an alteration in brain function, or other evidence of brain pathology, caused by an external force. TBI is a major cause of disability and mortality worldwide. Post-traumatic amnesia, or the interval from injury until the patient is oriented and able to form and later recall new memories, is an important index of TBI severity and functional outcome. This article will discuss the updates in the epidemiology, definition and classification, pathophysiology, diagnosis, and management of common acute neuropsychiatric sequelae of traumatic brain injury that the critical care specialist may encounter.
Collapse
Affiliation(s)
- Earl De Guzman
- Psychosomatic Medicine, Department of Psychiatry, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA
| | - Andrea Ament
- Psychosomatic Medicine, Department of Psychiatry, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA.
| |
Collapse
|
212
|
Davceva N, Sivevski A, Basheska N. Traumatic axonal injury, a clinical-pathological correlation. J Forensic Leg Med 2017; 48:35-40. [PMID: 28437717 DOI: 10.1016/j.jflm.2017.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/09/2016] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Traumatic axonal injury (TAI) is a distinct clinicopathological entity that can cause serious impairment of the brain function and can sometimes be found as a concrete cause of death. It has been discussed from the perspective of its biomechanical importance, and also from the standpoint of certain criteria for the pathological diagnosis of TAI. However, since the time when DAI (diffuse axonal injury) was initially described, there have been few, if any, discussions about the clinical-pathological correlation in TAI. This paper is an attempt to address this issue. For the purpose of certain pathological diagnoses of TAI, 63 cases with closed head injuries have been subjected to the complete forensic-neuropathological examination, involving immunohistochemistry with antibody against β-APP. In the diagnosis of TAI strict criteria have been followed. Then, retrograde analysis of the clinical parameters has been performed in order to determine some clinical-pathological correlation. The following two most reliable parameters of the impairment of the brain function have been analyzed: the impairment of the consciousness and the time of survival. Comparing the two groups, the one with TAI and the other without TAI, and using appropriate statistical evaluation, our results show that TAI is not a significant contributing factor to the lethal outcome in the early post injury period (24 h), but it is undoubtedly a contributing factor for the severe impairment of the brain function indicated through the status of the consciousness.
Collapse
Affiliation(s)
- N Davceva
- Institute of Forensic Medicine, Criminology and Medical Deontology, "Mother Theresa" No 19, 1000 Skopje, Republic of Macedonia.
| | - A Sivevski
- Professor of Anesthesiology, University Clinic for Gynecology and Obstetric, Medical Faculty, Ss. Cyril and Methodius University in Skopje, "Mother Theresa" No 17, 1000 Skopje, Republic of Macedonia
| | - Neli Basheska
- Department of Histopathology and Clinical Cytology, University Clinic of Radiotherapy and Oncology, Ss Cyril and Methodius University Faculty of Medicine, Skopje, Republic of Macedonia
| |
Collapse
|
213
|
Asken BM, DeKosky ST, Clugston JR, Jaffee MS, Bauer RM. Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review. Brain Imaging Behav 2017; 12:585-612. [DOI: 10.1007/s11682-017-9708-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
214
|
Iacono D, Shively SB, Edlow BL, Perl DP. Chronic Traumatic Encephalopathy: Known Causes, Unknown Effects. Phys Med Rehabil Clin N Am 2017; 28:301-321. [PMID: 28390515 DOI: 10.1016/j.pmr.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic traumatic encephalopathy (CTE) is a neuropathologic diagnosis typically made in human brains with a history of repetitive traumatic brain injury (rTBI). It remains unknown whether CTE occurs exclusively after rTBI, or whether a single TBI (sTBI) can cause CTE. Similarly, it is unclear whether impact (eg, motor vehicle accidents) and non-impact (eg, blasts) types of energy transfer trigger divergent or common pathologies. While it is established that a history of rTBI increases the risk of multiple neurodegenerative diseases (eg, dementia, parkinsonism, and CTE), the possible pathophysiologic and molecular mechanisms underlying these risks have yet to be elucidated.
Collapse
Affiliation(s)
- Diego Iacono
- Brain Tissue Repository & Neuropathology Core, Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 6720A Rockledge Dr #100, Bethesda, MD 20817, USA
| | - Sharon B Shively
- Brain Tissue Repository & Neuropathology Core, Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 6720A Rockledge Dr #100, Bethesda, MD 20817, USA; Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, 175 Cambridge Street - Suite 300, Boston, MA 02114, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Daniel P Perl
- Brain Tissue Repository & Neuropathology Core, Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
215
|
Neuropathology and neurobehavioral alterations in a rat model of traumatic brain injury to occupants of vehicles targeted by underbody blasts. Exp Neurol 2017; 289:9-20. [DOI: 10.1016/j.expneurol.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023]
|
216
|
Clausen F, Hansson HA, Raud J, Marklund N. Intranasal Administration of the Antisecretory Peptide AF-16 Reduces Edema and Improves Cognitive Function Following Diffuse Traumatic Brain Injury in the Rat. Front Neurol 2017; 8:39. [PMID: 28261150 PMCID: PMC5306199 DOI: 10.3389/fneur.2017.00039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/27/2017] [Indexed: 12/19/2022] Open
Abstract
A synthetic peptide with antisecretory activity, antisecretory factor (AF)-16, improves injury-related deficits in water and ion transport and decreases intracranial pressure after experimental cold lesion injury and encephalitis although its role in traumatic brain injury (TBI) is unknown. AF-16 or an inactive reference peptide was administrated intranasally 30 min following midline fluid percussion injury (mFPI; n = 52), a model of diffuse mild-moderate TBI in rats. Sham-injured (n = 14) or naïve (n = 24) animals were used as controls. The rats survived for either 48 h or 15 days post-injury. At 48 h, the animals were tested in the Morris water maze (MWM) for memory function and their brains analyzed for cerebral edema. Here, mFPI-induced brain edema compared to sham or naïve controls that was significantly reduced by AF-16 treatment (p < 0.05) although MWM performance was not altered. In the 15-day survival groups, the MWM learning and memory abilities as well as histological changes were analyzed. AF-16-treated brain-injured animals shortened both MWM latency and swim path in the learning trials (p < 0.05) and improved probe trial performance compared to brain-injured controls treated with the inactive reference peptide. A modest decrease by AF-16 on TBI-induced changes in hippocampal glial acidic fibrillary protein (GFAP) staining (p = 0.11) was observed. AF-16 treatment did not alter any other immunohistochemical analyses (degenerating neurons, beta-amyloid precursor protein (β-APP), and Olig2). In conclusion, intranasal AF-16-attenuated brain edema and enhanced visuospatial learning and memory following diffuse TBI in the rat. Intranasal administration early post-injury of a promising neuroprotective substance offers a novel treatment approach for TBI.
Collapse
Affiliation(s)
- Fredrik Clausen
- Unit for Neurosurgery, Department of Neuroscience, Uppsala University , Uppsala , Sweden
| | - Hans-Arne Hansson
- Institute of Biomedicine, University of Gothenburg , Göteborg , Sweden
| | - Johan Raud
- Lantmännen AS Faktor AB , Stockholm , Sweden
| | - Niklas Marklund
- Unit for Neurosurgery, Department of Neuroscience, Uppsala University , Uppsala , Sweden
| |
Collapse
|
217
|
Jenny CA, Bertocci G, Fukuda T, Rangarajan N, Shams T. Biomechanical Response of the Infant Head to Shaking: An Experimental Investigation. J Neurotrauma 2017; 34:1579-1588. [PMID: 27931172 DOI: 10.1089/neu.2016.4687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Controversy exists regarding whether violent shaking is harmful to infants in the absence of impact. In this study, our objective was to characterize the biomechanical response of the infant head during shaking through use of an instrumented anthropomorphic test device (commonly referred to as a "crash test dummy" or surrogate) representing a human infant and having improved biofidelity. A series of tests were conducted to simulate violent shaking of an infant surrogate. The Aprica 2.5 infant surrogate represented a 5th percentile Japanese newborn. A 50th percentile Japanese adult male was recruited to shake the infant surrogate in the sagittal plane. Triaxial linear accelerometers positioned at the center of mass and apex of the head recorded accelerations during shaking. Five shaking test series, each 3-4 sec in duration, were conducted. Outcome measures derived from accelerometer recordings were examined for trends. Head/neck kinematics were characterized during shaking events; mean peak neck flexion was 1.98 radians (113 degrees) and mean peak neck extension was 2.16 radians (123 degrees). The maximum angular acceleration across all test series was 13,260 radians/sec2 (during chin-to-chest contact). Peak angular velocity was 105.7 radians/sec (during chin-to-chest contact). Acceleration pulse durations ranged from 72.1 to 168.2 ms. Using an infant surrogate with improved biofidelity, we found higher angular acceleration and higher angular velocity than previously reported during infant surrogate shaking experiments. Findings highlight the importance of surrogate biofidelity when investigating shaking.
Collapse
Affiliation(s)
- Carole A Jenny
- 1 Department of Pediatrics, University of Washington School of Medicine , Seattle, Washington
| | - Gina Bertocci
- 2 Department of Bioengineering, University of Louisville , Louisville, Kentucky
| | | | | | | |
Collapse
|
218
|
Nyanzu M, Siaw-Debrah F, Ni H, Xu Z, Wang H, Lin X, Zhuge Q, Huang L. Improving on Laboratory Traumatic Brain Injury Models to Achieve Better Results. Int J Med Sci 2017; 14:494-505. [PMID: 28539826 PMCID: PMC5441042 DOI: 10.7150/ijms.18075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 11/30/2022] Open
Abstract
Experimental modeling of traumatic brain injury (TBI) in animals has identified several potential means and interventions that might have beneficial applications for treating traumatic brain injury clinically. Several of these interventions have been applied and tried with humans that are at different phases of testing (completed, prematurely terminated and others in progress). The promising results achieved in the laboratory with animal models have not been replicated with human trails as expected. This review will highlight some insights and significance attained via laboratory animal modeling of TBI as well as factors that require incorporation into the experimental studies that could help in translating results from laboratory to the bedside. Major progress has been made due to laboratory studies; in explaining the mechanisms as well as pathophysiological features of brain damage after TBI. Attempts to intervene in the cascade of events occurring after TBI all rely heavily on the knowledge from basic laboratory investigations. In looking to discover treatment, this review will endeavor to sight and state some central discrepancies between laboratory models and clinical scenarios.
Collapse
Affiliation(s)
- Mark Nyanzu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Felix Siaw-Debrah
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haoqi Ni
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhu Xu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hua Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lijie Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
219
|
Snyder VS, Hansen LA. A Conceptual Overview of Axonopathy in Infants and Children with Allegedly Inflicted Head Trauma. Acad Forensic Pathol 2016; 6:608-621. [PMID: 31239934 PMCID: PMC6474503 DOI: 10.23907/2016.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/14/2016] [Accepted: 11/12/2016] [Indexed: 11/12/2022]
Abstract
Fatal, allegedly inflicted pediatric head trauma remains a controversial topic in forensic pathology. Recommendations for systematic neuropathologic evaluation of the brains of supposedly injured infants and children usually include the assessment of long white matter tracts in search of axonopathy - specifically, diffuse axonal injury. The ability to recognize, document, and interpret injuries to axons has significant academic and medicolegal implications. For example, more than two decades of inconsistent nosology have resulted in confusion about the definition of diffuse axonal injury between various medical disciplines including radiology, neurosurgery, pediatrics, neuropathology, and forensic pathology. Furthermore, in the pediatric setting, acceptance that "pure" shaking can cause axonal shearing in infants and young children is not widespread. Additionally, controversy abounds whether or not axonal trauma can be identified within regions of white matter ischemia - a debate with very significant implications. Immunohistochemistry is often used not only to document axonal injury, but also to estimate the time since injury. As a result, the estimated post-injury interval may then be used by law enforcement officers and prosecutors to narrow "exclusive opportunity" and thus, identify potential suspects. Fundamental to these highly complicated and controversial topics is a philosophical understanding of the diffuse axonal injury spectrum disorders.
Collapse
|
220
|
Abstract
Traumatic brain injuries (TBIs) are clinically grouped by severity: mild, moderate and severe. Mild TBI (the least severe form) is synonymous with concussion and is typically caused by blunt non-penetrating head trauma. The trauma causes stretching and tearing of axons, which leads to diffuse axonal injury - the best-studied pathogenetic mechanism of this disorder. However, mild TBI is defined on clinical grounds and no well-validated imaging or fluid biomarkers to determine the presence of neuronal damage in patients with mild TBI is available. Most patients with mild TBI will recover quickly, but others report persistent symptoms, called post-concussive syndrome, the underlying pathophysiology of which is largely unknown. Repeated concussive and subconcussive head injuries have been linked to the neurodegenerative condition chronic traumatic encephalopathy (CTE), which has been reported post-mortem in contact sports athletes and soldiers exposed to blasts. Insights from severe injuries and CTE plausibly shed light on the underlying cellular and molecular processes involved in mild TBI. MRI techniques and blood tests for axonal proteins to identify and grade axonal injury, in addition to PET for tau pathology, show promise as tools to explore CTE pathophysiology in longitudinal clinical studies, and might be developed into diagnostic tools for CTE. Given that CTE is attributed to repeated head trauma, prevention might be possible through rule changes by sports organizations and legislators.
Collapse
|
221
|
Head injury assessment of non-lethal projectile impacts: A combined experimental/computational method. Injury 2016; 47:2424-2441. [PMID: 27614673 DOI: 10.1016/j.injury.2016.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/17/2016] [Accepted: 09/01/2016] [Indexed: 02/02/2023]
Abstract
The main objective of this study is to develop a methodology to assess this risk based on experimental tests versus numerical predictive head injury simulations. A total of 16 non-lethal projectiles (NLP) impacts were conducted with rigid force plate at three different ranges of impact velocity (120, 72 and 55m/s) and the force/deformation-time data were used for the validation of finite element (FE) NLP. A good accordance between experimental and simulation data were obtained during validation of FE NLP with high correlation value (>0.98) and peak force discrepancy of less than 3%. A state-of-the art finite element head model with enhanced brain and skull material laws and specific head injury criteria was used for numerical computation of NLP impacts. Frontal and lateral FE NLP impacts to the head model at different velocities were performed under LS-DYNA. It is the very first time that the lethality of NLP is assessed by axonal strain computation to predict diffuse axonal injury (DAI) in NLP impacts to head. In case of temporo-parietal impact the min-max risk of DAI is 0-86%. With a velocity above 99.2m/s there is greater than 50% risk of DAI for temporo-parietal impacts. All the medium- and high-velocity impacts are susceptible to skull fracture, with a percentage risk higher than 90%. This study provides tool for a realistic injury (DAI and skull fracture) assessment during NLP impacts to the human head.
Collapse
|
222
|
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Imaging plays an important role in the evaluation, diagnosis, and triage of patients with TBI. Recent studies suggest that it also helps predict patient outcomes. TBI consists of multiple pathoanatomic entities. This article reviews the current state of TBI imaging including its indications, benefits and limitations of the modalities, imaging protocols, and imaging findings for each of these pathoanatomic entities. Also briefly surveyed are advanced imaging techniques, which include several promising areas of TBI research.
Collapse
Affiliation(s)
- Christopher A Mutch
- Department of Radiology, University of California, San Francisco, 505 Parnassus Avenue, M391, San Francisco, CA 94143, USA
| | - Jason F Talbott
- Department of Radiology, San Francisco General Hospital, University of California, San Francisco, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | - Alisa Gean
- Department of Radiology, San Francisco General Hospital, University of California, San Francisco, 1001 Potrero Avenue, San Francisco, CA 94110, USA
| |
Collapse
|
223
|
Whiplash Injury or Concussion? A Possible Biomechanical Explanation for Concussion Symptoms in Some Individuals Following a Rear-End Collision. J Orthop Sports Phys Ther 2016; 46:874-885. [PMID: 27690834 DOI: 10.2519/jospt.2016.7049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Study Design Finite element modeling of experimental data. Background The clinical presentations of whiplash injury and concussion have considerable overlap. Both diagnoses are generally based on presenting signs and symptoms, and a history of neck or head trauma. With incomplete knowledge of the trauma, differentiating between whiplash injury and concussion can be clinically challenging. Objectives To estimate the brain strains that develop during rear-end car crashes, evaluate how these strains vary with different head kinematic parameters, and compare these strains to those generated during potentially concussive football helmet impacts. Methods Head kinematic data were analyzed from 2 prior studies, one that focused on head restraint impacts in rear-end crash tests and another that focused on football helmet impacts. These data were used as inputs to a finite element model of the human brain. Brain strains were calculated and compared to different peak kinematic parameters and between the 2 impact conditions. Results Brain strains correlated best with the head's angular velocity change for both impact conditions. The 4 crashes with head angular velocity changes greater than 30 rad/s (greater than 1719°/s) generated the highest brain stains. One crash, in which the head wrapped onto the top of the head restraint, generated brain strains similar to a 9.3-m/s rear football helmet impact, a level previously associated with concussion. Conclusion This work provides new insight into a potential biomechanical link between whiplash injury and concussion, and advances our understanding of how head restraint interaction during a rear-end crash may cause an injury more typically associated with sports-related head impacts. J Orthop Sports Phys Ther 2016;46(10):874-885. doi:10.2519/jospt.2016.7049.
Collapse
|
224
|
Affiliation(s)
- Graham Martin
- Accident Compensation Corporation of New Zealand, Wellington, New Zealand
| |
Collapse
|
225
|
Abstract
There is a paucity of accurate and reliable biomarkers to detect traumatic brain injury, grade its severity, and model post-traumatic brain injury (TBI) recovery. This gap could be addressed via advances in brain mapping which define injury signatures and enable tracking of post-injury trajectories at the individual level. Mapping of molecular and anatomical changes and of modifications in functional activation supports the conceptual paradigm of TBI as a disorder of large-scale neural connectivity. Imaging approaches with particular relevance are magnetic resonance techniques (diffusion weighted imaging, diffusion tensor imaging, susceptibility weighted imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, and positron emission tomographic methods including molecular neuroimaging). Inferences from mapping represent unique endophenotypes which have the potential to transform classification and treatment of patients with TBI. Limitations of these methods, as well as future research directions, are highlighted.
Collapse
|
226
|
Shultz SR, McDonald SJ, Vonder Haar C, Meconi A, Vink R, van Donkelaar P, Taneja C, Iverson GL, Christie BR. The potential for animal models to provide insight into mild traumatic brain injury: Translational challenges and strategies. Neurosci Biobehav Rev 2016; 76:396-414. [PMID: 27659125 DOI: 10.1016/j.neubiorev.2016.09.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI) is a common health problem. There is tremendous variability and heterogeneity in human mTBI, including mechanisms of injury, biomechanical forces, injury severity, spatial and temporal pathophysiology, genetic factors, pre-injury vulnerability and resilience factors, and clinical outcomes. Animal models greatly reduce this variability and heterogeneity, and provide a means to study mTBI in a rigorous, controlled, and efficient manner. Rodent models, in particular, are time- and cost-efficient, and they allow researchers to measure morphological, cellular, molecular, and behavioral variables in a single study. However, inter-species differences in anatomy, morphology, metabolism, neurobiology, and lifespan create translational challenges. Although the term "mild" TBI is used often in the pre-clinical literature, clearly defined criteria for mild, moderate, and severe TBI in animal models have not been agreed upon. In this review, we introduce current issues facing the mTBI field, summarize the available research methodologies and previous studies in mTBI animal models, and discuss how a translational research approach may be useful in advancing our understanding and management of mTBI.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Cole Vonder Haar
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Alicia Meconi
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| | - Robert Vink
- Division of Health Sciences, The University of South Australia, Adelaide, SA, Australia
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Chand Taneja
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, and MassGeneral Hospital for Children™ Sports Concussion Program, Boston, MA, USA
| | - Brian R Christie
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| |
Collapse
|
227
|
Abstract
Diffuse axonal injury is a frequent component of traumatic brain injury that contributes significantly to morbidity and mortality. It encompasses a spectrum of injury from mild concussion to deep coma and death. There have been advances in our understanding of the pathophysiological processes that occur after diffuse axonal injury and ionic, immunological and genetic factors all play a role. Improvements in imaging techniques will allow more accurate diagnosis of diffuse injury in the acute phase and greater understanding of the complex pathophysiology might assist in the development of rational and specific therapies. Identification of genetic factors might also allow identification of high-risk patients who would benefit from targeted neuroprotective strategies.
Collapse
Affiliation(s)
- Martin Smith
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals, Centre for Anaesthesia, University College London, UK,
| |
Collapse
|
228
|
Rowson S, Bland ML, Campolettano ET, Press JN, Rowson B, Smith JA, Sproule DW, Tyson AM, Duma SM. Biomechanical Perspectives on Concussion in Sport. Sports Med Arthrosc Rev 2016; 24:100-7. [PMID: 27482775 PMCID: PMC4975525 DOI: 10.1097/jsa.0000000000000121] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Concussions can occur in any sport. Often, clinical and biomechanical research efforts are disconnected. This review paper analyzes current concussion issues in sports from a biomechanical perspective and is geared toward Sports Med professionals. Overarching themes of this review include the biomechanics of the brain during head impact, role of protective equipment, potential population-based differences in concussion tolerance, potential intervention strategies to reduce the incidence of injury, and common biomechanical misconceptions.
Collapse
Affiliation(s)
- Steven Rowson
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA
| | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Miyashita T, Diakogeorgiou E, Marrie K, Danaher R. Frequency and Location of Head Impacts in Division I Men's Lacrosse Players. ACTA ACUST UNITED AC 2016. [DOI: 10.3928/19425864-20160503-01] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
230
|
Prayer L, Wimberger D, Oder W, Kramer J, Schindler E, Podreka I, Imhof H. Cranial MR Imaging and Cerebral 99MTC HM-PAO-Spect in Patients with Subacute or Chronic Severe Closed Head Injury and Normal CT Examinations. Acta Radiol 2016. [DOI: 10.1177/028418519303400613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eighteen patients in the subacute or chronic state following severe closed head injury with normal cranial CT scans were examined by MR and 99mTc HM-PAO SPECT. Correlations were sought between these 2 imaging modalities and the clinical outcome, as defined by the Glasgow Outcome Scale (GOS) score. Both MR and SPECT revealed cerebral damage in all patients examined but structural and functional alterations did not coincide topographically in 64.9% of lesions. Nevertheless, complementary injury patterns suggesting poor recovery were found; cortical contusions and diffuse axonal injury (MR) in conjunction with cortical and thalamic hypoperfusion (SPECT) were noticed in 8 out of 12 patients with unfavorable outcome (GOS = III and IV). The synthesis of MR and SPECT information clearly enhanced the ability both to accurately assess posttraumatic brain damage and to improve patients' outcome prediction.
Collapse
|
231
|
Brody DL, Mac Donald CL, Shimony JS. Current and future diagnostic tools for traumatic brain injury: CT, conventional MRI, and diffusion tensor imaging. HANDBOOK OF CLINICAL NEUROLOGY 2016; 127:267-75. [PMID: 25702222 DOI: 10.1016/b978-0-444-52892-6.00017-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Brain imaging plays a key role in the assessment of traumatic brain injury. In this review, we present our perspectives on the use of computed tomography (CT), conventional magnetic resonance imaging (MRI), and newer advanced modalities such as diffusion tensor imaging. Specifically, we address assessment for immediately life-threatening intracranial lesions (noncontrast head CT), assessment of progression of intracranial lesions (noncontrast head CT), documenting intracranial abnormalities for medicolegal reasons (conventional MRI with blood-sensitive sequences), presurgical planning for post-traumatic epilepsy (high spatial resolution conventional MRI), early prognostic decision making (conventional MRI with diffusion-weighted imaging), prognostic assessment for rehabilitative planning (conventional MRI and possibly diffusion tensor imaging in the future), stratification of subjects and pharmacodynamic tracking of targeted therapies in clinical trials (specific MRI sequences or positron emission tomography (PET) ligands, e.g., diffusion tensor imaging for traumatic axonal injury). We would like to emphasize that all of these methods, especially the newer research approaches, require careful radiologic-pathologic validation for optimal interpretation. We have taken this approach in a mouse model of pericontusional traumatic axonal injury. We found that the extent of reduction in the diffusion tensor imaging parameter relative anisotropy directly correlated with the number of amyloid precursor protein (APP)-stained axonal varicosities (r(2)=0.81, p<0.0001, n=20 injured mice). Interestingly, however, the least severe contusional injuries did not result in APP-stained axonal varicosities, but did cause reduction in relative anisotropy. Clearly, both the imaging assessments and the pathologic assessments will require iterative refinement.
Collapse
Affiliation(s)
- David L Brody
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | | | - Joshua S Shimony
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
232
|
Differences in Brain Metabolic Impairment between Chronic Mild/Moderate TBI Patients with and without Visible Brain Lesions Based on MRI. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3794029. [PMID: 27529067 PMCID: PMC4977387 DOI: 10.1155/2016/3794029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/18/2016] [Accepted: 06/28/2016] [Indexed: 11/24/2022]
Abstract
Introduction. Many patients with mild/moderate traumatic brain injury (m/mTBI) in the chronic stage suffer from executive brain function impairment. Analyzing brain metabolism is important for elucidating the pathological mechanisms associated with their symptoms. This study aimed to determine the differences in brain glucose metabolism between m/mTBI patients with and without visible traumatic brain lesions based on MRI. Methods. Ninety patients with chronic m/mTBI due to traffic accidents were enrolled and divided into two groups based on their MRI findings. Group A comprised 50 patients with visible lesions. Group B comprised 40 patients without visible lesions. Patients underwent FDG-PET scans following cognitive tests. FDG-PET images were analyzed using voxel-by-voxel univariate statistical tests. Results. There were no significant differences in the cognitive tests between Group A and Group B. Based on FDG-PET findings, brain metabolism significantly decreased in the orbital gyrus, cingulate gyrus, and medial thalamus but increased in the parietal and occipital convexity in Group A compared with that in the control. Compared with the control, patients in Group B exhibited no significant changes. Conclusions. These results suggest that different pathological mechanisms may underlie cognitive impairment in m/mTBI patients with and without organic brain damage.
Collapse
|
233
|
Abu Hamdeh S, Marklund N, Lannsjö M, Howells T, Raininko R, Wikström J, Enblad P. Extended Anatomical Grading in Diffuse Axonal Injury Using MRI: Hemorrhagic Lesions in the Substantia Nigra and Mesencephalic Tegmentum Indicate Poor Long-Term Outcome. J Neurotrauma 2016; 34:341-352. [PMID: 27356857 PMCID: PMC5220564 DOI: 10.1089/neu.2016.4426] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Clinical outcome after traumatic diffuse axonal injury (DAI) is difficult to predict. In this study, three magnetic resonance imaging (MRI) sequences were used to quantify the anatomical distribution of lesions, to grade DAI according to the Adams grading system, and to evaluate the value of lesion localization in combination with clinical prognostic factors to improve outcome prediction. Thirty patients (mean 31.2 years ±14.3 standard deviation) with severe DAI (Glasgow Motor Score [GMS] <6) examined with MRI within 1 week post-injury were included. Diffusion-weighted (DW), T2*-weighted gradient echo and susceptibility-weighted (SWI) sequences were used. Extended Glasgow outcome score was assessed after 6 months. Number of DW lesions in the thalamus, basal ganglia, and internal capsule and number of SWI lesions in the mesencephalon correlated significantly with outcome in univariate analysis. Age, GMS at admission, GMS at discharge, and low proportion of good monitoring time with cerebral perfusion pressure <60 mm Hg correlated significantly with outcome in univariate analysis. Multivariate analysis revealed an independent relation with poor outcome for age (p = 0.005) and lesions in the mesencephalic region corresponding to substantia nigra and tegmentum on SWI (p = 0.008). We conclude that higher age and lesions in substantia nigra and mesencephalic tegmentum indicate poor long-term outcome in DAI. We propose an extended MRI classification system based on four stages (stage I—hemispheric lesions, stage II—corpus callosum lesions, stage III—brainstem lesions, and stage IV—substantia nigra or mesencephalic tegmentum lesions); all are subdivided by age (≥/<30 years).
Collapse
Affiliation(s)
- Sami Abu Hamdeh
- 1 Department of Neuroscience, Neurosurgery, Uppsala University , Uppsala, Sweden
| | - Niklas Marklund
- 1 Department of Neuroscience, Neurosurgery, Uppsala University , Uppsala, Sweden
| | - Marianne Lannsjö
- 2 Department of Neuroscience, Rehabilitation Medicine, Uppsala University , Uppsala, Sweden .,3 Center of Research and Development, Uppsala University/County Council of Gävleborg , Gävle Hospital, Gävle, Sweden
| | - Tim Howells
- 1 Department of Neuroscience, Neurosurgery, Uppsala University , Uppsala, Sweden
| | - Raili Raininko
- 4 Department of Radiology, Uppsala University , Uppsala, Sweden
| | - Johan Wikström
- 4 Department of Radiology, Uppsala University , Uppsala, Sweden
| | - Per Enblad
- 1 Department of Neuroscience, Neurosurgery, Uppsala University , Uppsala, Sweden
| |
Collapse
|
234
|
Assessment of Kinematic Brain Injury Metrics for Predicting Strain Responses in Diverse Automotive Impact Conditions. Ann Biomed Eng 2016; 44:3705-3718. [DOI: 10.1007/s10439-016-1697-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
|
235
|
Protective Capacity of Ice Hockey Helmets against Different Impact Events. Ann Biomed Eng 2016; 44:3693-3704. [DOI: 10.1007/s10439-016-1686-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
|
236
|
Zhou Z, Jiang B, Cao L, Zhu F, Mao H, Yang KH. Numerical simulations of the 10-year-old head response in drop impacts and compression tests. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 131:13-25. [PMID: 27265045 DOI: 10.1016/j.cmpb.2016.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Studies on traumatic injuries of children indicate that impact to the head is a major cause of severe injury and high mortality. However, regulatory and ethical concerns very much limit development and validation of computer models representing the pediatric head. The purpose of this study was to develop a child head finite element model with high-biofidelity to be used for studying pediatric head injury mechanisms. METHODS A newly developed 10-year-old (YO) pediatric finite element head model was limitedly validated for kinematic and kinetic responses against data from quasi-static compressions and drop tests obtained from an experimental study involving a child-cadaver specimen. The validated model was subsequently used for a fall accident reconstruction and associated injury analysis. RESULTS The model predicted the same shape of acceleration-time histories as was found in drop tests with the largest discrepancy of -8.2% in the peak acceleration at a drop height of 15 cm. Force-deflection responses predicted by the model for compression loading had a maximum discrepancy of 7.5% at a strain rate of 0.3 s(-1). The model-predicted maximum von Mises stress (σv) and principal strain (εp) in the skull, intracranial pressure (ICP), maximum σv and maximum εp in the brain, head injury criterion (HIC), brain injury criterion (BrIC), and head impact power (HIP) were used for analyzing risks of injury in the accident reconstruction. CONCLUSIONS Based on the results of the injury analyses, the following conclusions can be drawn: (1) ICP cannot be used to accurately predict the locations of brain injury, but it may reflect the overall energy level of the impact event. (2) The brain regions predicted by the model to have high σv coincide with the locations of subdural hematoma with transtentorial herniation and the impact position of an actual injury. (3) The brain regions with high εp predicted by the model coincide with locations commonly found where diffuse axonal injuries (DAI) due to blunt-impact and rapid acceleration have taken place.
Collapse
Affiliation(s)
- Zhou Zhou
- The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China
| | - Binhui Jiang
- The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China; Bioengineering Center, Wayne State University, Detroit, MI 48201, USA.
| | - Libo Cao
- The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China
| | - Feng Zhu
- The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China; Department of Mechanical Engineering, Embry-Riddle Aeronautical University, FL 32114, USA
| | - Haojie Mao
- Bioengineering Center, Wayne State University, Detroit, MI 48201, USA
| | - King H Yang
- Bioengineering Center, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
237
|
The effect of direction of force to the craniofacial skeleton on the severity of brain injury in patients with a fronto-basal fracture. Int J Oral Maxillofac Surg 2016; 45:872-7. [DOI: 10.1016/j.ijom.2016.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 11/24/2022]
|
238
|
Abstract
Axonal damage is one of the most common and important pathologic features of traumatic brain injury. Severe diffuse axonal injury, resulting from inertial forces applied to the head, is associated with prolonged unconsciousness and poor outcome. The susceptibility of axons to mechanical injury appears to be due to both their viscoelastic properties and their highly organized structure in white matter tracts. Although axons are supple under normal conditions, they become brittle when exposed to rapid deformations associated with brain trauma. Accordingly, rapid stretch of axons can damage the axonal cytoskeleton, resulting in a loss of elasticity and impairment of axoplasmic transport. Subsequent swelling of the axon occurs in discrete bulb formations or in elongated varicosities that accumulate organelles. Calcium entry into damaged axons is thought to initiate further damage by the activation of proteases and the induction of mitochondrial swelling and dysfunction. Ultimately, swollen axons may become disconnected and contribute to additional neuropathologic changes in brain tissue. However, promising new therapies that reduce proteolytic activity or maintain mitochondrial integrity may attenuate progressive damage of injured axons following experimental brain trauma. Future advancements in the prevention and treatment of traumatic axonal injury will depend on our collective understanding of the relationship between the biomechanics and pathophysiology of various phases of axonal trauma.
Collapse
Affiliation(s)
- Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania,
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
239
|
Gennarelli TA, Thibault LE, Graham DI. Diffuse Axonal Injury: An Important Form of Traumatic Brain Damage. Neuroscientist 2016. [DOI: 10.1177/107385849800400316] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diffuse axonal injury (DAI) is a frequent form of traumatic brain injury in which a clinical spectrum of in creasing injury severity is paralleled by progressively increasing amounts of axonal damage in the brain. When less severe, DAI is associated with concussive syndromes; when most severe, it causes prolonged traumatic coma that is not related to mass lesions, increased intracranial pressure, or ischemia. Pathological investigations of DAI demonstrate widespread but heterogeneous microscopic damage to axons throughout the white matter of the cerebral and cerebellar hemispheres and brainstem. There is a propensity for injury to occur in the central third of the brain, and the corpus callosum and brain stem are especially prone to injury. In these locations, traumatic axonal damage can occur in several degrees of severity, ranging from transient disturbances of ionic homeostasis to swelling, impairment of axoplasmic transport with secondary (delayed) axotomy and primary axotomy (tearing). A more detailed understanding of the processes involved in axonal damage is crucial to the development of effective treatment for the clinical syndromes of DAI. NEUROSCIENTIST 4:202-215, 1998
Collapse
Affiliation(s)
- Thomas A. Gennarelli
- Department of Neurosurgery and Center for Neurosciences
Allegheny University of the Health Sciences Philadelphia, Pennsylvania
| | - Lawrence E. Thibault
- Department of Neurosurgery and Center for Neurosciences
Allegheny University of the Health Sciences Philadelphia, Pennsylvania
| | - David I. Graham
- Department of Neuropathology University of Glasgow Glasgow,
Scotland, United Kingdom
| |
Collapse
|
240
|
Stocchetti N, Zanier ER. Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:148. [PMID: 27323708 PMCID: PMC4915181 DOI: 10.1186/s13054-016-1318-1] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Traditionally seen as a sudden, brutal event with short-term impairment, traumatic brain injury (TBI) may cause persistent, sometimes life-long, consequences. While mortality after TBI has been reduced, a high proportion of severe TBI survivors require prolonged rehabilitation and may suffer long-term physical, cognitive, and psychological disorders. Additionally, chronic consequences have been identified not only after severe TBI but also in a proportion of cases previously classified as moderate or mild. This burden affects the daily life of survivors and their families; it also has relevant social and economic costs. Outcome evaluation is difficult for several reasons: co-existing extra-cranial injuries (spinal cord damage, for instance) may affect independence and quality of life outside the pure TBI effects; scales may not capture subtle, but important, changes; co-operation from patients may be impossible in the most severe cases. Several instruments have been developed for capturing specific aspects, from generic health status to specific cognitive functions. Even simple instruments, however, have demonstrated variable inter-rater agreement. The possible links between structural traumatic brain damage and functional impairment have been explored both experimentally and in the clinical setting with advanced neuro-imaging techniques. We briefly report on some fundamental findings, which may also offer potential targets for future therapies. Better understanding of damage mechanisms and new approaches to neuroprotection-restoration may offer better outcomes for the millions of survivors of TBI.
Collapse
Affiliation(s)
- Nino Stocchetti
- Department of Physiopathology and Transplantation, Milan University, Milan, Italy.,Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via F Sforza, 35, 20122, Milan, Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via Giuseppe La Masa 19, 20156, Milan, Italy.
| |
Collapse
|
241
|
Valko PO, Gavrilov YV, Yamamoto M, Noaín D, Reddy H, Haybaeck J, Weis S, Baumann CR, Scammell TE. Damage to Arousal-Promoting Brainstem Neurons with Traumatic Brain Injury. Sleep 2016; 39:1249-52. [PMID: 27091531 DOI: 10.5665/sleep.5844] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/06/2016] [Indexed: 12/16/2022] Open
Abstract
STUDY OBJECTIVES Coma and chronic sleepiness are common after traumatic brain injury (TBI). Here, we explored whether injury to arousal-promoting brainstem neurons occurs in patients with fatal TBI. METHODS Postmortem examination of 8 TBI patients and 10 controls. RESULTS Compared to controls, TBI patients had 17% fewer serotonergic neurons in the dorsal raphe nucleus (effect size: 1.25), but the number of serotonergic neurons did not differ in the median raphe nucleus. TBI patients also had 29% fewer noradrenergic neurons in the locus coeruleus (effect size: 0.96). The number of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT) was similar in TBI patients and controls. CONCLUSIONS TBI injures arousal-promoting neurons of the mesopontine tegmentum, but this injury is less severe than previously observed in hypothalamic arousal-promoting neurons. Most likely, posttraumatic arousal disturbances are not primarily caused by damage to these brainstem neurons, but arise from an aggregate of injuries, including damage to hypothalamic arousal nuclei and disruption of other arousal-related circuitries.
Collapse
Affiliation(s)
- Philipp O Valko
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland
| | - Yuri V Gavrilov
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland.,Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, St.Petersburg, Russia
| | - Mihoko Yamamoto
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Daniela Noaín
- Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland
| | - Hasini Reddy
- Department of Neuropathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Johannes Haybaeck
- Department of Neuropathology, Institute of Pathology, Medical University of Graz, Austria
| | - Serge Weis
- Department of Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Kepler University Hospital, Johannes Kepler University of Linz, Austria
| | - Christian R Baumann
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Neurology, University Hospital Zurich, University of Zurich, Switzerland
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
242
|
Edlow BL, Copen WA, Izzy S, van der Kouwe A, Glenn MB, Greenberg SM, Greer DM, Wu O. Longitudinal Diffusion Tensor Imaging Detects Recovery of Fractional Anisotropy Within Traumatic Axonal Injury Lesions. Neurocrit Care 2016; 24:342-52. [PMID: 26690938 PMCID: PMC4884487 DOI: 10.1007/s12028-015-0216-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Traumatic axonal injury (TAI) may be reversible, yet there are currently no clinical imaging tools to detect axonal recovery in patients with traumatic brain injury (TBI). We used diffusion tensor imaging (DTI) to characterize serial changes in fractional anisotropy (FA) within TAI lesions of the corpus callosum (CC). We hypothesized that recovery of FA within a TAI lesion correlates with better functional outcome. METHODS Patients who underwent both an acute DTI scan (≤day 7) and a subacute DTI scan (day 14 to inpatient rehabilitation discharge) at a single institution were retrospectively analyzed. TAI lesions were manually traced on the acute diffusion-weighted images. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), and radial diffusivity (RD) were measured within the TAI lesions at each time point. FA recovery was defined by a longitudinal increase in CC FA that exceeded the coefficient of variation for FA based on values from healthy controls. Acute FA, ADC, AD, and RD were compared in lesions with and without FA recovery, and correlations were tested between lesional FA recovery and functional recovery, as determined by disability rating scale score at discharge from inpatient rehabilitation. RESULTS Eleven TAI lesions were identified in 7 patients. DTI detected FA recovery within 2 of 11 TAI lesions. Acute FA, ADC, AD, and RD did not differ between lesions with and without FA recovery. Lesional FA recovery did not correlate with disability rating scale scores. CONCLUSIONS In this retrospective longitudinal study, we provide initial evidence that FA can recover within TAI lesions. However, FA recovery did not correlate with improved functional outcomes. Prospective histopathological and clinical studies are needed to further elucidate whether lesional FA recovery indicates axonal healing and has prognostic significance.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street - Suite 300, Boston, MA, 02114, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - William A Copen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Saef Izzy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street - Suite 300, Boston, MA, 02114, USA
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mel B Glenn
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street - Suite 300, Boston, MA, 02114, USA
| | - David M Greer
- Department of Neurology, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
243
|
Diffuse Axonal Injury-A Distinct Clinicopathological Entity in Closed Head Injuries. Am J Forensic Med Pathol 2016; 36:127-33. [PMID: 26010053 DOI: 10.1097/paf.0000000000000168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The knowledge about the diffuse axonal injury (DAI) as a clinicopathological entity has matured in the last 30 years. It has been defined clinically (immediate and prolonged unconsciousness leading to death or severe disability) and pathologically (the triad of DAI specific changes). In terms of its biomechanics, DAI is occurring as a result of acceleration forces of longer duration and has been fully reproduced experimentally.In the process of diagnosing DAI, the performance of a complete forensic neuropathological examination is essential and the immunohistochemistry method using antibodies against β-amyloid precursor protein (β-APP) has been proved to be highly sensitive and specific, selectively targeting the damaged axons.In this review, we are pointing to the significant characteristics of DAI as a distinct clinicopathological entity that can cause severe impairment of the brain function, and in the forensic medicine setting, it can be found as the concrete cause of death. We are discussing not only its pathological feature, its mechanism of occurrence, and the events on a cellular level but also the dilemmas about DAI that still exist in science: (1) regarding the strict criteria for its diagnosis and (2) regarding its biomechanical significance, which can be of a big medicolegal importance.
Collapse
|
244
|
Wolf JA, Koch PF. Disruption of Network Synchrony and Cognitive Dysfunction After Traumatic Brain Injury. Front Syst Neurosci 2016; 10:43. [PMID: 27242454 PMCID: PMC4868948 DOI: 10.3389/fnsys.2016.00043] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/26/2016] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous disorder with many factors contributing to a spectrum of severity, leading to cognitive dysfunction that may last for many years after injury. Injury to axons in the white matter, which are preferentially vulnerable to biomechanical forces, is prevalent in many TBIs. Unlike focal injury to a discrete brain region, axonal injury is fundamentally an injury to the substrate by which networks of the brain communicate with one another. The brain is envisioned as a series of dynamic, interconnected networks that communicate via long axonal conduits termed the "connectome". Ensembles of neurons communicate via these pathways and encode information within and between brain regions in ways that are timing dependent. Our central hypothesis is that traumatic injury to axons may disrupt the exquisite timing of neuronal communication within and between brain networks, and that this may underlie aspects of post-TBI cognitive dysfunction. With a better understanding of how highly interconnected networks of neurons communicate with one another in important cognitive regions such as the limbic system, and how disruption of this communication occurs during injury, we can identify new therapeutic targets to restore lost function. This requires the tools of systems neuroscience, including electrophysiological analysis of ensemble neuronal activity and circuitry changes in awake animals after TBI, as well as computational modeling of the effects of TBI on these networks. As more is revealed about how inter-regional neuronal interactions are disrupted, treatments directly targeting these dysfunctional pathways using neuromodulation can be developed.
Collapse
Affiliation(s)
- John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of PennsylvaniaPhiladelphia, PA, USA; Corporal Michael J. Crescenz VA Medical CenterPhiladelphia, PA, USA
| | - Paul F Koch
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
245
|
Tackling concussion, beyond Hollywood. Lancet Neurol 2016; 15:662-663. [PMID: 27302233 DOI: 10.1016/s1474-4422(16)30037-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/04/2016] [Indexed: 11/22/2022]
|
246
|
Abstract
Axonal microtubule (MT) bundles crosslinked by microtubule-associated protein (MAP) tau are responsible for vital biological functions such as maintaining mechanical integrity and shape of the axon as well as facilitating axonal transport. Breaking and twisting of MTs have been previously observed in damaged undulated axons. Such breaking and twisting of MTs is suggested to cause axonal swellings that lead to axonal degeneration, which is known as "diffuse axonal injury". In particular, overstretching and torsion of axons can potentially damage the axonal cytoskeleton. Following our previous studies on mechanical response of axonal MT bundles under uniaxial tension and compression, this work seeks to characterize the mechanical behavior of MT bundles under pure torsion as well as a combination of torsional and tensile loads using a coarse-grained computational model. In the case of pure torsion, a competition between MAP tau tensile and MT bending energies is observed. After three turns, a transition occurs in the mechanical behavior of the bundle that is characterized by its diameter shrinkage. Furthermore, crosslink spacing is shown to considerably influence the mechanical response, with larger MAP tau spacing resulting in a higher rate of turns. Therefore, MAP tau crosslinking of MT filaments protects the bundle from excessive deformation. Simultaneous application of torsion and tension on MT bundles is shown to accelerate bundle failure, compared to pure tension experiments. MAP tau proteins fail in clusters of 10-100 elements located at the discontinuities or the ends of MT filaments. This failure occurs in a stepwise fashion, implying gradual accumulation of elastic tensile energy in crosslinks followed by rupture. Failure of large groups of interconnecting MAP tau proteins leads to detachment of MT filaments from the bundle near discontinuities. This study highlights the importance of torsional loading in axonal damage after traumatic brain injury.
Collapse
Affiliation(s)
- Carole Lazarus
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Mohammad Soheilypour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California.
| |
Collapse
|
247
|
Afifi I, Parchani A, Al-Thani H, El-Menyar A, Alajaj R, Elazzazy S, Latifi R. Base deficit and serum lactate concentration in patients with post traumatic convulsion. Asian J Neurosurg 2016; 11:146-50. [PMID: 27057221 PMCID: PMC4802936 DOI: 10.4103/1793-5482.145117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Introduction: Traumatic brain injury is a major cause of morbidity and mortality worldwide, and has been reported to be one of the risk factors for epileptic seizures. Abnormal blood lactate (LAC) and base deficit (BD) reflects hypoperfusion and could be used as metabolic markers to predict the outcome. The aim of this study is to assess the prognostic value of BD and LAC levels for post traumatic convulsion (PTC) in head injury patients. Materials and Methods: All head injury patients with PTC were studied for the demographics profile, mechanism of injury, initial vital signs, and injury severity score (ISS), respiratory rates, CT scan findings, and other laboratory investigations. The data were obtained from the trauma registry and medical records. Statistical analysis was done using SPSS software. Results: Amongst 3082 trauma patients, 1584 were admitted to the hospital. Of them, 401 patients had head injury. PTC was observed in 5.4% (22/401) patients. Out of the 22 head injury patients, 10 were presented with the head injury alone, whereas 12 patients had other associated injuries. The average age of the patients was 25 years, comprising predominantly of male patients (77%). Neither glasgow coma scale nor ISS had correlation with BD or LAC in the study groups. The mean level of BD and LAC was not statistically different in PTC group compared to controls. However, BD was significantly higher in patients with associated injuries than the isolated head injury group. Furthermore, there was no significant correlation amongst the two groups as far as LAC levels are concerned. Conclusion: Base deficit but not lactic acid concentration was significantly higher in head injury patients with associated injuries. Early resuscitation by pre-hospital personnel and in the trauma room might have impact in minimizing the effect of post traumatic convulsion on BD and LAC.
Collapse
Affiliation(s)
- Ibrahim Afifi
- Section of Trauma Surgery, Hamad General Hospital, Doha, Qatar
| | - Ashok Parchani
- Section of Trauma Surgery, Hamad General Hospital, Doha, Qatar
| | - Hassan Al-Thani
- Section of Trauma Surgery, Hamad General Hospital, Doha, Qatar
| | - Ayman El-Menyar
- Clinical Medicine, Weill Cornell Medical College, Doha, Qatar; Clinical Research, Trauma Surgery, Hamad General Hospital, Doha, Qatar
| | - Raghad Alajaj
- Section of Trauma Surgery, Hamad General Hospital, Doha, Qatar
| | | | - Rifat Latifi
- Section of Trauma Surgery, Hamad General Hospital, Doha, Qatar; Department of Surgery, Arizona University, Tucson, AZ, USA
| |
Collapse
|
248
|
Plummer S, Van den Heuvel C, Thornton E, Corrigan F, Cappai R. The Neuroprotective Properties of the Amyloid Precursor Protein Following Traumatic Brain Injury. Aging Dis 2016; 7:163-79. [PMID: 27114849 PMCID: PMC4809608 DOI: 10.14336/ad.2015.0907] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/07/2015] [Indexed: 01/16/2023] Open
Abstract
Despite the significant health and economic burden that traumatic brain injury (TBI) places on society, the development of successful therapeutic agents have to date not translated into efficacious therapies in human clinical trials. Injury to the brain is ongoing after TBI, through a complex cascade of primary and secondary injury events, providing a valuable window of opportunity to help limit and prevent some of the severe consequences with a timely treatment. Of note, it has been suggested that novel treatments for TBI should be multifactorial in nature, mimicking the body's own endogenous repair response. Whilst research has historically focused on the role of the amyloid precursor protein (APP) in the pathogenesis of Alzheimer's disease, recent advances in trauma research have demonstrated that APP offers considerable neuroprotective properties following TBI, suggesting that APP is an ideal therapeutic candidate. Its acute upregulation following TBI has been shown to serve a beneficial role following trauma and has lead to significant advances in understanding the neuroprotective and neurotrophic functions of APP and its metabolites. Research has focused predominantly on the APP derivative sAPPα, which has consistently demonstrated neuroprotective and neurotrophic functions both in vitro and in vivo following various traumatic insults. Its neuroprotective activity has been narrowed down to a 15 amino acid sequence, and this region is linked to both heparan binding and growth-factor-like properties. It has been proposed that APP binds to heparan sulfate proteoglycans to exert its neuroprotective action. APP presents us with a novel therapeutic compound that could overcome many of the challenges that have stalled development of efficacious TBI treatments previously.
Collapse
Affiliation(s)
- Stephanie Plummer
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Corinna Van den Heuvel
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Emma Thornton
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Frances Corrigan
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Roberto Cappai
- Department of Pathology, the University of Melbourne, Victoria, Australia
| |
Collapse
|
249
|
Abstract
OBJECT
Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets.
METHODS
The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area.
RESULTS
Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall.
CONCLUSIONS
The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of all ages, the authors propose thresholds for all sports helmets based on a peak linear acceleration no greater than 90 g and a peak angular acceleration not exceeding 1700 rad/sec2.
Collapse
Affiliation(s)
- John Lloyd
- 1BRAINS, Inc., San Antonio
- 2James A. Haley VA Medical Center, Tampa
| | - Frank Conidi
- 3Florida Center for Headache and Sports Neurology, Palm Beach Gardens; and
- 4Florida State University, College of Medicine, Tallahassee, Florida
| |
Collapse
|
250
|
Harris NG, Verley DR, Gutman BA, Thompson PM, Yeh HJ, Brown JA. Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis. Exp Neurol 2016; 277:124-138. [PMID: 26730520 PMCID: PMC4761291 DOI: 10.1016/j.expneurol.2015.12.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
While past neuroimaging methods have contributed greatly to our understanding of brain function after traumatic brain injury (TBI), resting state functional MRI (rsfMRI) connectivity methods have more recently provided a far more unbiased approach with which to monitor brain circuitry compared to task-based approaches. However, current knowledge on the physiologic underpinnings of the correlated blood oxygen level dependent signal, and how changes in functional connectivity relate to reorganizational processes that occur following injury is limited. The degree and extent of this relationship remain to be determined in order that rsfMRI methods can be fully adapted for determining the optimal timing and type of rehabilitative interventions that can be used post-TBI to achieve the best outcome. Very few rsfMRI studies exist after experimental TBI and therefore we chose to acquire rsfMRI data before and at 7, 14 and 28 days after experimental TBI using a well-known, clinically-relevant, unilateral controlled cortical impact injury (CCI) adult rat model of TBI. This model was chosen since it has widespread axonal injury, a well-defined time-course of reorganization including spine, dendrite, axonal and cortical map changes, as well as spontaneous recovery of sensorimotor function by 28 d post-injury from which to interpret alterations in functional connectivity. Data were co-registered to a parcellated rat template to generate adjacency matrices for network analysis by graph theory. Making no assumptions about direction of change, we used two-tailed statistical analysis over multiple brain regions in a data-driven approach to access global and regional changes in network topology in order to assess brain connectivity in an unbiased way. Our main hypothesis was that deficits in functional connectivity would become apparent in regions known to be structurally altered or deficient in axonal connectivity in this model. The data show the loss of functional connectivity predicted by the structural deficits, not only within the primary sensorimotor injury site and pericontused regions, but the normally connected homotopic cortex, as well as subcortical regions, all of which persisted chronically. Especially novel in this study is the unanticipated finding of widespread increases in connection strength that dwarf both the degree and extent of the functional disconnections, and which persist chronically in some sensorimotor and subcortically connected regions. Exploratory global network analysis showed changes in network parameters indicative of possible acutely increased random connectivity and temporary reductions in modularity that were matched by local increases in connectedness and increased efficiency among more weakly connected regions. The global network parameters: shortest path-length, clustering coefficient and modularity that were most affected by trauma also scaled with the severity of injury, so that the corresponding regional measures were correlated to the injury severity most notably at 7 and 14 days and especially within, but not limited to, the contralateral cortex. These changes in functional network parameters are discussed in relation to the known time-course of physiologic and anatomic data that underlie structural and functional reorganization in this experiment model of TBI.
Collapse
Affiliation(s)
- N G Harris
- UCLA Brain Research Center, Department of Neurosurgery, University of California, Los Angeles, USA.
| | - D R Verley
- UCLA Brain Research Center, Department of Neurosurgery, University of California, Los Angeles, USA
| | - B A Gutman
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P M Thompson
- Departments of Psychiatry, Engineering, Radiology, & Ophthalmology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - H J Yeh
- Department of Neurology, University of California, Los Angeles, USA
| | - J A Brown
- Department of Neurology, University of California at San Francisco School of Medicine, San Francisco, CA, USA
| |
Collapse
|