201
|
Spironolactone Regulates HCN Protein Expression Through Micro-RNA-1 in Rats With Myocardial Infarction. J Cardiovasc Pharmacol 2016; 65:587-92. [PMID: 26065643 PMCID: PMC4461389 DOI: 10.1097/fjc.0000000000000227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Emerging evidence has shown that aldosterone blockers reduced the incidence of ventricular arrhythmias in patients with myocardial infarction (MI). However, the mechanism remains unknown. In this study, we investigated the mechanism by which spironolactone, a classic aldosterone blocker, regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN) protein expression in ischemic rat myocardium after MI. Eighteen rats surviving 24 hours after MI were randomly assigned into 3 groups: MI, spironolactone, and spironolactone + antagomir-1. Six sham-operated rats had a suture loosely tied around the left coronary artery, without ligation. The border zone of the myocardial infarct was collected from each rat at 1 week after MI. HCN2 and HCN4 protein and messenger RNA (mRNA) level were measured in addition to miRNA-1 levels. Spironolactone significantly increased miRNA-1 levels and downregulated HCN2 and HCN4 protein and mRNA levels. miRNA-1 suppression with antagomir-1 increased HCN2 and HCN4 protein levels; however, HCN2 and HCN4 mRNA levels were not affected. These results suggested that spironolactone could increase miRNA-1 expression in ischemic rat myocardium after MI and that the upregulation of miRNA-1 expression partially contributed to the posttranscriptional repression of HCN protein expression, which may contribute to the effect of spironolactone to reduce the incidence of MI-associated ventricular arrhythmias.
Collapse
|
202
|
Brennan GP, Baram TZ, Poolos NP. Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels in Epilepsy. Cold Spring Harb Perspect Med 2016; 6:a022384. [PMID: 26931806 DOI: 10.1101/cshperspect.a022384] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epilepsy is a common brain disorder characterized by the occurrence of spontaneous seizures. These bursts of synchronous firing arise from abnormalities of neuronal networks. Excitability of individual neurons and neuronal networks is largely governed by ion channels and, indeed, abnormalities of a number of ion channels resulting from mutations or aberrant expression and trafficking underlie several types of epilepsy. Here, we focus on the hyperpolarization-activated cyclic nucleotide-gated ion (HCN) channels that conduct Ih current. This conductance plays complex and diverse roles in the regulation of neuronal and network excitability. We describe the normal function of HCN channels and discuss how aberrant expression, assembly, trafficking, and posttranslational modifications contribute to experimental and human epilepsy.
Collapse
Affiliation(s)
- Gary P Brennan
- Department of Pediatrics, University of California-Irvine, Irvine, California 92697-4475
| | - Tallie Z Baram
- Department of Pediatrics, University of California-Irvine, Irvine, California 92697-4475 Departments of Anatomy/Neurobiology and Neurology, University of California-Irvine, Irvine, California 92697-4475
| | - Nicholas P Poolos
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, Washington 98104
| |
Collapse
|
203
|
Shim HG, Jang SS, Jang DC, Jin Y, Chang W, Park JM, Kim SJ. mGlu1 receptor mediates homeostatic control of intrinsic excitability through Ih in cerebellar Purkinje cells. J Neurophysiol 2016; 115:2446-55. [PMID: 26912592 DOI: 10.1152/jn.00566.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/21/2016] [Indexed: 01/14/2023] Open
Abstract
Homeostatic intrinsic plasticity is a cellular mechanism for maintaining a stable neuronal activity level in response to developmental or activity-dependent changes. Type 1 metabotropic glutamate receptor (mGlu1 receptor) has been widely known to monitor neuronal activity, which plays a role as a modulator of intrinsic and synaptic plasticity of neurons. Whether mGlu1 receptor contributes to the compensatory adjustment of Purkinje cells (PCs), the sole output of the cerebellar cortex, in response to chronic changes in excitability remains unclear. Here, we demonstrate that the mGlu1 receptor is involved in homeostatic intrinsic plasticity through the upregulation of the hyperpolarization-activated current (Ih) in cerebellar PCs. This plasticity was prevented by inhibiting the mGlu1 receptor with Bay 36-7620, an mGlu1 receptor inverse agonist, but not with CPCCOEt, a neutral antagonist. Chronic inactivation with tetrodotoxin (TTX) increased the components of Ih in the PCs, and ZD 7288, a hyperpolarization-activated cyclic nucleotide-gated channel selective inhibitor, fully restored reduction of firing rates in the deprived neurons. The homeostatic elevation of Ih was also prevented by BAY 36-7620, but not CPCCOEt. Furthermore, KT 5720, a blocker of protein kinase A (PKA), prevented the effect of TTX reducing the evoked firing rates, indicating the reduction in excitability of PCs due to PKA activation. Our study shows that both the mGlu1 receptor and the PKA pathway are involved in the homeostatic intrinsic plasticity of PCs after chronic blockade of the network activity, which provides a novel understanding on how cerebellar PCs can preserve the homeostatic state under activity-deprived conditions.
Collapse
Affiliation(s)
- Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Soo Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Cheol Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Science, Seoul National University, Kwanak-gu, Seoul, Republic of Korea
| | - Yunju Jin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea; and
| | - Wonseok Chang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea; and
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea;
| |
Collapse
|
204
|
Zhang S, You Z, Wang S, Yang J, Yang L, Sun Y, Mi W, Yang L, McCabe MF, Shen S, Chen L, Mao J. Neuropeptide S modulates the amygdaloidal HCN activities (Ih) in rats: Implication in chronic pain. Neuropharmacology 2016; 105:420-433. [PMID: 26855147 DOI: 10.1016/j.neuropharm.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Neuropeptide S (NPS), an endogenous anxiolytic, has been shown to protect against chronic pain through interacting with its cognate NPS receptor (NPSR) in the brain. However, the cellular mechanism of this NPS action remains unclear. We report that NPS inhibits hyperpolarization-activated cyclic nucleotide-gated (HCN) channel current (Ih) in the rat's amygdala through activation of NPSR. This NPS effect is mediated through ERK1/2 phosphorylation in a subset of pyramidal-like neurons located in the medial amygdala. The characters of the recorded Ih suggest a major role for HCN1 activity in this process. Inhibition of Ih by NPS stimulates the glutamatergic drive onto fast spiking intra-amygdalolidal GABAergic interneurons, which in turn facilitates GABA release onto pyramidal-like neurons. Moreover, the HCN1 expression is increased in the amygdala of rats with peripheral nerve injury and intra-amygdaloidal administration of the HCN channel inhibitor ZD7288 attenuates nociceptive behavior in these rats. These results suggest that NPS-mediated modulation of intra-amygdaloidal HCN channel activities may be an important central inhibitory mechanism for regulation of chronic pain.
Collapse
Affiliation(s)
- Shuzhuo Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shuxing Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jinsheng Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lujia Yang
- Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Yan Sun
- Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Wenli Mi
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Liling Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael F McCabe
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
205
|
Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits. Pharmacol Res 2016; 109:108-18. [PMID: 26826399 DOI: 10.1016/j.phrs.2016.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/19/2022]
Abstract
In this review we describe how highly addictive psychostimulants such as cocaine and methamphetamine actions might underlie hypoexcitabilty in frontal cortical areas observed in clinical and preclinical models of psychostimulant abuse. We discuss new mechanisms that describe how increments on synaptic dopamine release are linked to reduce calcium influx in both pre and postsynaptic compartments on medial PFC networks, therefore modulating synaptic integration and information. Sustained DA neuromodulation by addictive psychostimulants can "lock" frontal cortical networks in deficient states. On the other hand, other psychostimulants such as modafinil and methylphenidate are considered pharmacological neuroenhancement agents that are popular among healthy people seeking neuroenhancement. More clinical and preclinical research is needed to further clarify mechanisms of actions and physiological effects of cognitive enhancers which show an opposite pattern compared to chronic effect of addictive psychostimulants: they appear to increase cortical excitability. In conclusion, studies summarized here suggest that there is frontal cortex hypoactivity and deficient inhibitory control in drug-addicted individuals. Thus, additional research on physiological effects of cognitive enhancers like modafinil and methylphenidate seems necessary in order to expand current knowledge on mechanisms behind their therapeutic role in the treatment of addiction and other neuropsychiatric disorders.
Collapse
|
206
|
Characterization of Rebound Depolarization in Neurons of the Rat Medial Geniculate Body In Vitro. Neurosci Bull 2016; 32:16-26. [PMID: 26781877 DOI: 10.1007/s12264-015-0006-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/11/2015] [Indexed: 10/22/2022] Open
Abstract
Rebound depolarization (RD) is a response to the offset from hyperpolarization of the neuronal membrane potential and is an important mechanism for the synaptic processing of inhibitory signals. In the present study, we characterized RD in neurons of the rat medial geniculate body (MGB), a nucleus of the auditory thalamus, using whole-cell patch-clamp and brain slices. RD was proportional in strength to the duration and magnitude of the hyperpolarization; was effectively blocked by Ni(2+) or Mibefradil; and was depressed when the resting membrane potential was hyperpolarized by blocking hyperpolarization-activated cyclic nucleotide-gated (HCN) channels with ZD7288 or by activating G-protein-gated inwardly-rectifying K(+) (GIRK) channels with baclofen. Our results demonstrated that RD in MGB neurons, which is carried by T-type Ca(2+) channels, is critically regulated by HCN channels and likely by GIRK channels.
Collapse
|
207
|
Heuermann RJ, Jaramillo TC, Ying SW, Suter BA, Lyman KA, Han Y, Lewis AS, Hampton TG, Shepherd GMG, Goldstein PA, Chetkovich DM. Reduction of thalamic and cortical Ih by deletion of TRIP8b produces a mouse model of human absence epilepsy. Neurobiol Dis 2016; 85:81-92. [PMID: 26459112 PMCID: PMC4688217 DOI: 10.1016/j.nbd.2015.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/22/2015] [Accepted: 10/08/2015] [Indexed: 12/19/2022] Open
Abstract
Absence seizures occur in several types of human epilepsy and result from widespread, synchronous feedback between the cortex and thalamus that produces brief episodes of loss of consciousness. Genetic rodent models have been invaluable for investigating the pathophysiological basis of these seizures. Here, we identify tetratricopeptide-containing Rab8b-interacting protein (TRIP8b) knockout mice as a new model of absence epilepsy, featuring spontaneous spike-wave discharges on electroencephalography (EEG) that are the electrographic hallmark of absence seizures. TRIP8b is an auxiliary subunit of the hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels, which have previously been implicated in the pathogenesis of absence seizures. In contrast to mice lacking the pore-forming HCN channel subunit HCN2, TRIP8b knockout mice exhibited normal cardiac and motor function and a less severe seizure phenotype. Evaluating the circuit that underlies absence seizures, we found that TRIP8b knockout mice had significantly reduced HCN channel expression and function in thalamic-projecting cortical layer 5b neurons and thalamic relay neurons, but preserved function in inhibitory neurons of the reticular thalamic nucleus. Our results expand the known roles of TRIP8b and provide new insight into the region-specific functions of TRIP8b and HCN channels in constraining cortico-thalamo-cortical excitability.
Collapse
Affiliation(s)
- Robert J Heuermann
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Thomas C Jaramillo
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Shui-Wang Ying
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College of Cornell University, 1300 York Ave., Room A-1050, New York, New York 10021, USA.
| | - Benjamin A Suter
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Kyle A Lyman
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Ye Han
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Alan S Lewis
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Thomas G Hampton
- Mouse Specifics, Inc., 2 Central Street, Level 1 Suite 1, Framingham, MA 01701, USA.
| | - Gordon M G Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Peter A Goldstein
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College of Cornell University, 1300 York Ave., Room A-1050, New York, New York 10021, USA.
| | - Dane M Chetkovich
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| |
Collapse
|
208
|
Novella Romanelli M, Sartiani L, Masi A, Mannaioni G, Manetti D, Mugelli A, Cerbai E. HCN Channels Modulators: The Need for Selectivity. Curr Top Med Chem 2016; 16:1764-91. [PMID: 26975509 PMCID: PMC5374843 DOI: 10.2174/1568026616999160315130832] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | |
Collapse
|
209
|
Chaudhary R, Garg J, Krishnamoorthy P, Shah N, Lanier G, Martinez MW, Freudenberger R. Ivabradine: Heart Failure and Beyond. J Cardiovasc Pharmacol Ther 2015; 21:335-43. [PMID: 26721645 DOI: 10.1177/1074248415624157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022]
Abstract
Heart failure affects over 5 million people in the United States and carries a high rate of mortality. Ivabradine, a new agent has been added to the current medical options for managing heart failure. It is a selective funny current (If) inhibitor in sinoatrial node and slows its firing rate, prolonging diastolic depolarization without a negative inotropic effect. Ivabradine was only recently approved by Food and Drug administration after the results of Systolic Heart Failure Treatment with the If Inhibitor Ivabradine (SHIFT) trial, for a reduction in rehospitalizations from chronic heart failure. This trial assessed patients with stable heart failure with reduced ejection fraction and a heart rate of at least 70 beats per minute at rest on maximally tolerated beta-blocker therapy and demonstrated statistically significant reduction in heart failure hospitalization and deaths. Additionally, ivabradine has been associated with reduced cardiac remodeling, reduced heart rate variability, improvement in exercise tolerance, improved heart failure class of New York Heart Association, and better quality of life. It has also been tried in other conditions, such as inappropriate sinus tachycardia and cardiogenic shock, and is currently in phase II trial for patients with newly diagnosed multiple organ dysfunction syndrome.
Collapse
Affiliation(s)
- Rahul Chaudhary
- Department of Medicine, Sinai Hospital of Baltimore, Johns Hopkins University, Baltimore, MD, USA
| | - Jalaj Garg
- Division of Cardiology, Lehigh Valley Health Network, Allentown, PA, USA
| | - Parasuram Krishnamoorthy
- Department of Medicine, Englewood Hospital and Medical Center, Mount Sinai School of Medicine, Englewood, NJ, USA
| | - Neeraj Shah
- Division of Cardiology, Lehigh Valley Health Network, Allentown, PA, USA
| | - Gregg Lanier
- Division of Cardiology, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Mathew W Martinez
- Division of Cardiology, Lehigh Valley Health Network, Allentown, PA, USA
| | | |
Collapse
|
210
|
Gamo NJ, Lur G, Higley MJ, Wang M, Paspalas CD, Vijayraghavan S, Yang Y, Ramos BP, Peng K, Kata A, Boven L, Lin F, Roman L, Lee D, Arnsten AF. Stress Impairs Prefrontal Cortical Function via D1 Dopamine Receptor Interactions With Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels. Biol Psychiatry 2015; 78:860-70. [PMID: 25731884 PMCID: PMC4524795 DOI: 10.1016/j.biopsych.2015.01.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Psychiatric disorders such as schizophrenia are worsened by stress, and working memory deficits are often a central feature of illness. Working memory is mediated by the persistent firing of prefrontal cortical (PFC) pyramidal neurons. Stress impairs working memory via high levels of dopamine D1 receptor (D1R) activation of cyclic adenosine monophosphate signaling, which reduces PFC neuronal firing. The current study examined whether D1R-cyclic adenosine monophosphate signaling reduces neuronal firing and impairs working memory by increasing the open state of hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels, which are concentrated on dendritic spines where PFC pyramidal neurons interconnect. METHODS A variety of methods were employed to test this hypothesis: dual immunoelectron microscopy localized D1R and HCN channels, in vitro recordings tested for D1R actions on HCN channel current, while recordings in monkeys performing a working memory task tested for D1R-HCN channel interactions in vivo. Finally, cognitive assessments following intra-PFC infusions of drugs examined D1R-HCN channel interactions on working memory performance. RESULTS Immunoelectron microscopy confirmed D1R colocalization with HCN channels near excitatory-like synapses on dendritic spines in primate PFC. Mouse PFC slice recordings demonstrated that D1R stimulation increased HCN channel current, while local HCN channel blockade in primate PFC protected task-related firing from D1R-mediated suppression. D1R stimulation in rat or monkey PFC impaired working memory performance, while HCN channel blockade in PFC prevented this impairment in rats exposed to either stress or D1R stimulation. CONCLUSIONS These findings suggest that D1R stimulation or stress weakens PFC function via opening of HCN channels at network synapses.
Collapse
Affiliation(s)
- Nao J. Gamo
- Department of Neurobiology, Yale University, New Haven, CT
| | - Gyorgy Lur
- Department of Neurobiology, Yale University, New Haven, CT,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT
| | - Michael J. Higley
- Department of Neurobiology, Yale University, New Haven, CT,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT
| | - Min Wang
- Department of Neurobiology, Yale University, New Haven, CT
| | | | | | - Yang Yang
- Department of Neurobiology, Yale University, New Haven, CT
| | - Brian P. Ramos
- Department of Neurobiology, Yale University, New Haven, CT
| | - Kathy Peng
- Department of Neurobiology, Yale University, New Haven, CT
| | - Anna Kata
- Department of Neurobiology, Yale University, New Haven, CT
| | - Lindsay Boven
- Department of Neurobiology, Yale University, New Haven, CT
| | - Faith Lin
- Department of Neurobiology, Yale University, New Haven, CT
| | - Lisette Roman
- Department of Neurobiology, Yale University, New Haven, CT
| | - Daeyeol Lee
- Department of Neurobiology, Yale University, New Haven, CT
| | | |
Collapse
|
211
|
Notomi T, Kuno M, Hiyama A, Ezura Y, Honma M, Ishizuka T, Ohura K, Yawo H, Noda M. Membrane depolarization regulates intracellular RANKL transport in non-excitable osteoblasts. Bone 2015. [PMID: 26211991 DOI: 10.1016/j.bone.2015.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (VD3) are important factors in Ca(2+) homeostasis, and promote osteoclastogenesis by modulating receptor activator of nuclear factor kappa-B ligand (RANKL) mRNA expression. However, their contribution to RANKL intracellular transport (RANKLiT), including the trigger for RANKL lysosomal vesicle (RANKL-lv) fusion to the cell membrane, is unclear. In neurons, depolarization of membrane potential increases the intracellular Ca(2+) level ([Ca(2+)]i) and promotes neurotransmitter release via fusion of the synaptic vesicles to the cell membrane. To determine whether membrane depolarization also regulates cellular processes such as RANKLiT in MC3T3-E1 osteoblasts (OBs), we generated a light-sensitive OB cell line and developed a system for altering their membrane potential via delivery of a blue light stimulus. In the membrane fraction of RANKL-overexpressing OBs, PTH and VD3 increased the membrane-bound RANKL (mbRANKL) level at 10 min after application without affecting the mRNA expression level, and depolarized the cell membrane while transiently increasing [Ca(2+)]i. In our novel OB line stably expressing the channelrhodopsin-wide receiver, blue light-induced depolarization increased the mbRANKL level, which was reversed by treatment of blockers for L-type voltage-gated Ca(2+) channels and Ca(2+) release from the endoplasmic reticulum. In co-cultures of osteoclast precursor-like RAW264.7 cells and light-sensitive OBs overexpressing RANKL, light stimulation induced an increase in tartrate-resistant acid phosphatase activity and promoted osteoclast differentiation. These results indicate that depolarization of the cell membrane is a trigger for RANKL-lv fusion to the membrane and that membrane potential contributes to the function of OBs. In addition, the non-genomic action of VD3-induced RANKL-lv fusion included the membrane-bound VD3 receptor (1,25D3-MARRS receptor). Elucidating the mechanism of RANKLiT regulation by PTH and VD3 will be useful for the development of drugs to prevent bone loss in osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Takuya Notomi
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan; Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan; Global Center of Excellence Program for Molecular Science for Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan; Department of Physiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan.
| | - Miyuki Kuno
- Department of Physiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan
| | - Akiko Hiyama
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Kiyoshi Ohura
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan; Global Center of Excellence Program for Molecular Science for Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
212
|
Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR, Li KW, Gutmann DH, Levelt CN, Smit AB, Silva AJ, Kushner SA, Elgersma Y. HCN channels are a novel therapeutic target for cognitive dysfunction in Neurofibromatosis type 1. Mol Psychiatry 2015; 20:1311-21. [PMID: 25917366 PMCID: PMC5603719 DOI: 10.1038/mp.2015.48] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/19/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
Abstract
Cognitive impairments are a major clinical feature of the common neurogenetic disease neurofibromatosis type 1 (NF1). Previous studies have demonstrated that increased neuronal inhibition underlies the learning deficits in NF1, however, the molecular mechanism underlying this cell-type specificity has remained unknown. Here, we identify an interneuron-specific attenuation of hyperpolarization-activated cyclic nucleotide-gated (HCN) current as the cause for increased inhibition in Nf1 mutants. Mechanistically, we demonstrate that HCN1 is a novel NF1-interacting protein for which loss of NF1 results in a concomitant increase of interneuron excitability. Furthermore, the HCN channel agonist lamotrigine rescued the electrophysiological and cognitive deficits in two independent Nf1 mouse models, thereby establishing the importance of HCN channel dysfunction in NF1. Together, our results provide detailed mechanistic insights into the pathophysiology of NF1-associated cognitive defects, and identify a novel target for clinical drug development.
Collapse
Affiliation(s)
- A Omrani
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - T van der Vaart
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - E Mientjes
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - GM van Woerden
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - MR Hojjati
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Physiology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - KW Li
- Department of Molecular and Cellular Neurobiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - DH Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - CN Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - AB Smit
- Department of Molecular and Cellular Neurobiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - AJ Silva
- Department of Neurobiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - SA Kushner
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Y Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
213
|
|
214
|
Engel D, Seutin V. High dendritic expression of Ih in the proximity of the axon origin controls the integrative properties of nigral dopamine neurons. J Physiol 2015; 593:4905-22. [PMID: 26350173 DOI: 10.1113/jp271052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/26/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The hyperpolarization-activated cation current Ih is expressed in dopamine neurons of the substantia nigra, but the subcellular distribution of the current and its role in synaptic integration remain unknown. We used cell-attached patch recordings to determine the localization profile of Ih along the somatodendritic axis of nigral dopamine neurons in slices from young rats. Ih density is higher in axon-bearing dendrites, in a membrane area close to the axon origin, than in the soma and axon-lacking dendrites. Dual current-clamp recordings revealed a similar contribution of Ih to the waveform of single excitatory postsynaptic potentials throughout the somatodendritic domain. The Ih blocker ZD 7288 increased the temporal summation in all dendrites with a comparable effect in axon- and non-axon dendrites. The strategic position of Ih in the proximity of the axon may influence importantly transitions between pacemaker and bursting activities and consequently the downstream release of dopamine. ABSTRACT Dendrites of most neurons express voltage-gated ion channels in their membrane. In combination with passive properties, active currents confer to dendrites a high computational potential. The hyperpolarization-activated cation current Ih present in the dendrites of some pyramidal neurons affects their membrane and integration properties, synaptic plasticity and higher functions such as memory. A gradient of increasing h-channel density towards distal dendrites has been found to be responsible for the location independence of excitatory postsynaptic potential (EPSP) waveform and temporal summation in cortical and hippocampal pyramidal cells. However, reports on other cell types revealed that smoother gradients or even linear distributions of Ih can achieve homogeneous temporal summation. Although the existence of a robust, slowly activating Ih current has been repeatedly demonstrated in nigral dopamine neurons, its subcellular distribution and precise role in synaptic integration are unknown. Using cell-attached patch-clamp recordings, we find a higher Ih current density in the axon-bearing dendrite than in the soma or in dendrites without axon in nigral dopamine neurons. Ih is mainly concentrated in the dendritic membrane area surrounding the axon origin and decreases with increasing distances from this site. Single EPSPs and temporal summation are similarly affected by blockade of Ih in axon- and non-axon-bearing dendrites. The presence of Ih close to the axon is pivotal to control the integrative functions and the output signal of dopamine neurons and may consequently influence the downstream coding of movement.
Collapse
Affiliation(s)
- Dominique Engel
- GIGA-Neurosciences, Neurophysiology Unit, University of Liège, SartTilman, B-4000, Liège, Belgium
| | - Vincent Seutin
- GIGA-Neurosciences, Neurophysiology Unit, University of Liège, SartTilman, B-4000, Liège, Belgium
| |
Collapse
|
215
|
Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015; 25:1073-188. [PMID: 26135716 PMCID: PMC4648295 DOI: 10.1002/hipo.22488] [Citation(s) in RCA: 1012] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Sharp wave ripples (SPW-Rs) represent the most synchronous population pattern in the mammalian brain. Their excitatory output affects a wide area of the cortex and several subcortical nuclei. SPW-Rs occur during "off-line" states of the brain, associated with consummatory behaviors and non-REM sleep, and are influenced by numerous neurotransmitters and neuromodulators. They arise from the excitatory recurrent system of the CA3 region and the SPW-induced excitation brings about a fast network oscillation (ripple) in CA1. The spike content of SPW-Rs is temporally and spatially coordinated by a consortium of interneurons to replay fragments of waking neuronal sequences in a compressed format. SPW-Rs assist in transferring this compressed hippocampal representation to distributed circuits to support memory consolidation; selective disruption of SPW-Rs interferes with memory. Recently acquired and pre-existing information are combined during SPW-R replay to influence decisions, plan actions and, potentially, allow for creative thoughts. In addition to the widely studied contribution to memory, SPW-Rs may also affect endocrine function via activation of hypothalamic circuits. Alteration of the physiological mechanisms supporting SPW-Rs leads to their pathological conversion, "p-ripples," which are a marker of epileptogenic tissue and can be observed in rodent models of schizophrenia and Alzheimer's Disease. Mechanisms for SPW-R genesis and function are discussed in this review.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York
| |
Collapse
|
216
|
Cordeiro Matos S, Zhang Z, Séguéla P. Peripheral Neuropathy Induces HCN Channel Dysfunction in Pyramidal Neurons of the Medial Prefrontal Cortex. J Neurosci 2015; 35:13244-56. [PMID: 26400952 PMCID: PMC6605438 DOI: 10.1523/jneurosci.0799-15.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 01/28/2023] Open
Abstract
Neuropathic pain is a debilitating condition for which the development of effective treatments has been limited by an incomplete understanding of its molecular basis. The cationic current Ih mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels plays an important role in pain by facilitating ectopic firing and hyperexcitability in DRG neurons, however little is known regarding the role of Ih in supraspinal pain pathways. The medial prefrontal cortex (mPFC), which is reported to be involved in the affective aspects of pain, exhibits high HCN channel expression. Using the spared nerve injury (SNI) model of neuropathic pain in Long-Evans rats and patch-clamp recordings in layer II/III pyramidal neurons of the contralateral mPFC, we observed a hyperpolarizing shift in the voltage-dependent activation of Ih in SNI neurons, whereas maximal Ih remained unchanged. Accordingly, SNI mPFC pyramidal neurons exhibited increased input resistance and excitability, as well as facilitated glutamatergic mGluR5-mediated persistent firing, compared with sham neurons. Moreover, intracellular application of bromo-cAMP abolished the hyperpolarizing shift in the voltage-dependent activation of Ih observed in SNI neurons, whereas protein kinase A (PKA) inhibition further promoted this shift in both SNI and sham neurons. Behaviorally, acute HCN channel blockade by local injection of ZD7288 in the mPFC of SNI rats induced a decrease in cold allodynia. These findings suggest that changes in the cAMP/PKA axis in mPFC neurons underlie alterations to HCN channel function, which can influence descending inhibition of pain pathways in neuropathic conditions. Significance statement: Recent studies investigating the role of the medial prefrontal cortex (mPFC) in neuropathic pain have led to an increased awareness of how affective and cognitive factors can influence pain perception. It is therefore imperative that we advance our understanding of the involvement of supraspinal pain pathways. Our electrophysiological and behavioral results support an important role for hyperpolarization-activated cyclic nucleotide-gated channels and the cAMP/protein kinase A signaling axis in promoting hyperexcitability and persistent firing in pyramidal neurons of the mPFC in neuropathic animals. These findings offer novel insights, with potential therapeutic implications, into pathophysiological mechanisms underlying the abnormal contribution of layer II/III prefrontal pyramidal neurons to chronic pain states.
Collapse
Affiliation(s)
- Steven Cordeiro Matos
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Zizhen Zhang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
217
|
Larson VA, Zhang Y, Bergles DE. Electrophysiological properties of NG2(+) cells: Matching physiological studies with gene expression profiles. Brain Res 2015; 1638:138-160. [PMID: 26385417 DOI: 10.1016/j.brainres.2015.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 01/11/2023]
Abstract
NG2(+) glial cells are a dynamic population of non-neuronal cells that give rise to myelinating oligodendrocytes in the central nervous system. These cells express numerous ion channels and neurotransmitter receptors, which endow them with a complex electrophysiological profile that is unique among glial cells. Despite extensive analysis of the electrophysiological properties of these cells, relatively little was known about the molecular identity of the channels and receptors that they express. The generation of new RNA-Seq datasets for NG2(+) cells has provided the means to explore how distinct genes contribute to the physiological properties of these progenitors. In this review, we systematically compare the results obtained through RNA-Seq transcriptional analysis of purified NG2(+) cells to previous physiological and molecular studies of these cells to define the complement of ion channels and neurotransmitter receptors expressed by NG2(+) cells in the mammalian brain and discuss the potential significance of the unique physiological properties of these cells. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Valerie A Larson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ye Zhang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
218
|
Notomi T, Kuno M, Hiyama A, Ohura K, Noda M, Skerry TM. Zinc-Induced Effects on Osteoclastogenesis Involves Activation of Hyperpolarization-Activated Cyclic Nucleotide Modulated Channels via Changes in Membrane Potential. J Bone Miner Res 2015; 30:1618-26. [PMID: 25762086 DOI: 10.1002/jbmr.2507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/21/2015] [Accepted: 03/07/2015] [Indexed: 01/30/2023]
Abstract
Zinc is a trace element in the mammalian body, and increasing evidence shows its critical role in bone development and osteoclastogenesis. The relationships between zinc and voltage-gated ion channels have been reported; however, the effects of zinc on membrane potential and the related ion channels remain unknown. In this study, we found that zinc-induced hyperpolarization in RAW264.7 cells (RAW) was promoted by inhibition of hyperpolarization-activated cyclic nucleotide modulated channels (HCNs). In electrophysiological experiments with RAW-derived osteoclasts, HCNs were functional and generated hyperpolarization-activated inward currents (Ih) with properties similar to the Ih recorded in excitable cells such as neurons and cardiomyocytes. Quantitative PCR of HCN subunits HCN1 and HCN4 in RAW cells showed detectable levels of HCN1 mRNA and HCN4 expression was the highest of all four subunits. HCN4 knockdown decreased osteoclastic Ih and promoted osteoclastogenesis in the presence of zinc, but not in the absence of zinc. To determine the effect of membrane hyperpolarization on osteoclastogenesis, we developed a light-controllable membrane potential system in RAW cells by stably expressing the light-driven outward proton pump, Archaerhodopsin3 (Arch). Arch activation by yellow-green light hyperpolarizes the cell membrane. Light-induced hyperpolarization accelerated osteoclast differentiation in the presence of receptor activator of nuclear factor kappa-B ligand (RANKL). Thus, HCN activation reduced the hyperpolarization-related promotion of osteoclast differentiation in the presence of zinc. This study revealed the novel role of HCN and membrane potential in non-excitable osteoclasts.
Collapse
Affiliation(s)
- Takuya Notomi
- The Mellanby Centre for Bone Research, Department of Human Metabolism, University of Sheffield, Sheffield, UK.,Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan.,Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Global Center of Excellence Program for Molecular Science for Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Pharmacology, Osaka Dental University, Osaka, Japan
| | - Miyuki Kuno
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Akiko Hiyama
- Department of Pharmacology, Osaka Dental University, Osaka, Japan
| | - Kiyoshi Ohura
- Department of Pharmacology, Osaka Dental University, Osaka, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Global Center of Excellence Program for Molecular Science for Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Timothy M Skerry
- The Mellanby Centre for Bone Research, Department of Human Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
219
|
Decreased HCN2 expression in STN contributes to abnormal high-voltage spindles in the cortex and globus pallidus of freely moving rats. Brain Res 2015; 1618:17-28. [DOI: 10.1016/j.brainres.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/23/2022]
|
220
|
Impact of Hyperpolarization-activated, Cyclic Nucleotide-gated Cation Channel Type 2 for the Xenon-mediated Anesthetic Effect: Evidence from In Vitro and In Vivo Experiments. Anesthesiology 2015; 122:1047-59. [PMID: 25782754 DOI: 10.1097/aln.0000000000000635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The thalamus is thought to be crucially involved in the anesthetic state. Here, we investigated the effect of the inhaled anesthetic xenon on stimulus-evoked thalamocortical network activity and on excitability of thalamocortical neurons. Because hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are key regulators of neuronal excitability in the thalamus, the effect of xenon on HCN channels was examined. METHODS The effects of xenon on thalamocortical network activity were investigated in acutely prepared brain slices from adult wild-type and HCN2 knockout mice by means of voltage-sensitive dye imaging. The influence of xenon on single-cell excitability in brain slices was investigated using the whole-cell patch-clamp technique. Effects of xenon on HCN channels were verified in human embryonic kidney cells expressing HCN2 channels. RESULTS Xenon concentration-dependently diminished thalamocortical signal propagation. In neurons, xenon reduced HCN channel-mediated Ih current amplitude by 33.4 ± 12.2% (at -133 mV; n = 7; P = 0.041) and caused a left-shift in the voltage of half-maximum activation (V1/2) from -98.8 ± 1.6 to -108.0 ± 4.2 mV (n = 8; P = 0.035). Similar effects were seen in human embryonic kidney cells. The impairment of HCN channel function was negligible when intracellular cyclic adenosine monophosphate level was increased. Using HCN2 mice, we could demonstrate that xenon did neither attenuate in vitro thalamocortical signal propagation nor did it show sedating effects in vivo. CONCLUSIONS Here, we clearly showed that xenon impairs HCN2 channel function, and this impairment is dependent on intracellular cyclic adenosine monophosphate levels. We provide evidence that this effect reduces thalamocortical signal propagation and probably contributes to the hypnotic properties of xenon.
Collapse
|
221
|
Han Y, Lyman K, Clutter M, Schiltz GE, Ismail QA, Prados DB, Luan CH, Chetkovich DM. Identification of Small-Molecule Inhibitors of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels. ACTA ACUST UNITED AC 2015; 20:1124-31. [PMID: 26045196 DOI: 10.1177/1087057115589590] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/11/2015] [Indexed: 12/28/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels function in the brain to limit neuronal excitability. Limiting the activity of these channels has been proposed as a therapy for major depressive disorder, but the critical role of HCN channels in cardiac pacemaking has limited efforts to develop therapies directed at the channel. Previous studies indicated that the function of HCN is tightly regulated by its auxiliary subunit, tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), which is not expressed in the heart. To target the function of the HCN channel in the brain without affecting the channel's function in the heart, we propose disrupting the interaction between HCN and TRIP8b. We developed a high-throughput fluorescence polarization (FP) assay to identify small molecules capable of disrupting this interaction. We used this FP assay to screen a 20,000-compound library and identified a number of active compounds. The active compounds were validated using an orthogonal AlphaScreen assay to identify one compound (0.005%) as the first confirmed hit for inhibiting the HCN-TRIP8b interaction. Identifying small molecules capable of disrupting the interaction between HCN and TRIP8b should enable the development of new research tools and small-molecule therapies that could benefit patients with depression.
Collapse
Affiliation(s)
- Ye Han
- Davee Department of Neurology and Clinical Neurosciences and Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Kyle Lyman
- Davee Department of Neurology and Clinical Neurosciences and Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Matt Clutter
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, USA
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, USA
| | - Quratul-Ain Ismail
- Davee Department of Neurology and Clinical Neurosciences and Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Diego Bleifuss Prados
- Davee Department of Neurology and Clinical Neurosciences and Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Dane M Chetkovich
- Davee Department of Neurology and Clinical Neurosciences and Department of Physiology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
222
|
Smith T, Al Otaibi M, Sathish J, Djouhri L. Increased expression of HCN2 channel protein in L4 dorsal root ganglion neurons following axotomy of L5- and inflammation of L4-spinal nerves in rats. Neuroscience 2015; 295:90-102. [DOI: 10.1016/j.neuroscience.2015.03.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/28/2015] [Accepted: 03/19/2015] [Indexed: 12/31/2022]
|
223
|
Ohno Y, Shimizu S, Tatara A, Imaoku T, Ishii T, Sasa M, Serikawa T, Kuramoto T. Hcn1 is a tremorgenic genetic component in a rat model of essential tremor. PLoS One 2015; 10:e0123529. [PMID: 25970616 PMCID: PMC4430019 DOI: 10.1371/journal.pone.0123529] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/18/2015] [Indexed: 01/12/2023] Open
Abstract
Genetic factors are thought to play a major role in the etiology of essential tremor (ET); however, few genetic changes that induce ET have been identified to date. In the present study, to find genes responsible for the development of ET, we employed a rat model system consisting of a tremulous mutant strain, TRM/Kyo (TRM), and its substrain TRMR/Kyo (TRMR). The TRM rat is homozygous for the tremor (tm) mutation and shows spontaneous tremors resembling human ET. The TRMR rat also carries a homozygous tm mutation but shows no tremor, leading us to hypothesize that TRM rats carry one or more genes implicated in the development of ET in addition to the tm mutation. We used a positional cloning approach and found a missense mutation (c. 1061 C>T, p. A354V) in the hyperpolarization-activated cyclic nucleotide-gated 1 channel (Hcn1) gene. The A354V HCN1 failed to conduct hyperpolarization-activated currents in vitro, implicating it as a loss-of-function mutation. Blocking HCN1 channels with ZD7288 in vivo evoked kinetic tremors in nontremulous TRMR rats. We also found neuronal activation of the inferior olive (IO) in both ZD7288-treated TRMR and non-treated TRM rats and a reduced incidence of tremor in the IO-lesioned TRM rats, suggesting a critical role of the IO in tremorgenesis. A rat strain carrying the A354V mutation alone on a genetic background identical to that of the TRM rats showed no tremor. Together, these data indicate that body tremors emerge when the two mutant loci, tm and Hcn1A354V, are combined in a rat model of ET. In this model, HCN1 channels play an important role in the tremorgenesis of ET. We propose that oligogenic, most probably digenic, inheritance is responsible for the genetic heterogeneity of ET.
Collapse
Affiliation(s)
- Yukihiro Ohno
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, 569–1094, Japan
| | - Saki Shimizu
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, 569–1094, Japan
| | - Ayaka Tatara
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, 569–1094, Japan
| | - Takuji Imaoku
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, 569–1094, Japan
| | - Takahiro Ishii
- Department of Physiology and Neurobiology, Graduate School of Medicine, Kyoto University, Kyoto, 606–8501, Japan
| | | | - Tadao Serikawa
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, 569–1094, Japan
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606–8501, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606–8501, Japan
| |
Collapse
|
224
|
Chen L, Xu R, Sun FJ, Xue Y, Hao XM, Liu HX, Wang H, Chen XY, Liu ZR, Deng WS, Han XH, Xie JX, Yung WH. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate firing of globus pallidus neurons in vivo. Mol Cell Neurosci 2015; 68:46-55. [PMID: 25858108 DOI: 10.1016/j.mcn.2015.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 03/26/2015] [Accepted: 04/03/2015] [Indexed: 01/27/2023] Open
Abstract
The globus pallidus plays a significant role in motor control under both health and pathological states. Recent studies have revealed that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels occupy a critical position in globus pallidus pacemaking activity. Morphological studies have shown the expression of HCN channels in the globus pallidus. To investigate the in vivo effects of HCN channels in the globus pallidus, extracellular recordings and behavioral tests were performed in the present study. In normal rats, micro-pressure ejection of 0.05mM ZD7288, the selective HCN channel blocker, decreased the frequency of spontaneous firing in 21 out of the 40 pallidal neurons. The average decrease was 50.4±5.4%. Interestingly, in another 18 out of the 40 pallidal neurons, ZD7288 increased the firing rate by 137.1±27.6%. Similar bidirectional modulation on the firing rate was observed by a higher concentration of ZD7288 (0.5mM) as well as another HCN channel blocker, CsCl. Furthermore, activation of HCN channels by 8-Br-cAMP increased the firing rate by 63.0±9.3% in 15 out of the 25 pallidal neurons and decreased the firing rate by 46.9±9.4% in another 8 out of the 25 pallidal neurons. Further experiments revealed that modulation of glutamatergic but not GABAergic transmission may be involved in ZD7288-induced increase in firing rate. Consistent with electrophysiological results, further studies revealed that modulation of HCN channels also had bidirectional effects on behavior. Taken together, the present studies suggest that HCN channels may modulate the activity of pallidal neurons by different pathways in vivo.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China.
| | - Rong Xu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Feng-Jiao Sun
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Yan Xue
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xiao-Meng Hao
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Hong-Xia Liu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Hua Wang
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xin-Yi Chen
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zi-Ran Liu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Wen-Shuai Deng
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xiao-Hua Han
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Jun-Xia Xie
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
225
|
Kopp-Scheinpflug C, Pigott BM, Forsythe ID. Nitric oxide selectively suppresses IH currents mediated by HCN1-containing channels. J Physiol 2015; 593:1685-700. [PMID: 25605440 PMCID: PMC4386966 DOI: 10.1113/jphysiol.2014.282194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/16/2015] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarization-activated non-specific cation-permeable channels (HCN) mediate I(H) currents, which are modulated by cGMP and cAMP and by nitric oxide (NO) signalling. Channel properties depend upon subunit composition (HCN1-4 and accessory subunits) as demonstrated in expression systems, but physiological relevance requires investigation in native neurons with intact intracellular signalling. Here we use the superior olivary complex (SOC), which exhibits a distinctive pattern of HCN1 and HCN2 expression, to investigate NO modulation of the respective I(H) currents, and compare properties in wild-type and HCN1 knockout mice. The medial nucleus of the trapezoid body (MNTB) expresses HCN2 subunits exclusively, and sends inhibitory projections to the medial and lateral superior olives (MSO, LSO) and the superior paraolivary nucleus (SPN). In contrast to the MNTB, these target nuclei possess an I(H) with fast kinetics, and they express HCN1 subunits. NO is generated in the SOC following synaptic activity and here we show that NO selectively suppresses HCN1, while enhancing IH mediated by HCN2 subunits. NO hyperpolarizes the half-activation of HCN1-mediated currents and slows the kinetics of native IH currents in the MSO, LSO and SPN. This modulation was independent of cGMP and absent in transgenic mice lacking HCN1. Independently, NO signalling depolarizes the half-activation of HCN2-mediated I(H) currents in a cGMP-dependent manner. Thus, NO selectively suppresses fast HCN1-mediated I(H) and facilitates a slow HCN2-mediated I(H) , so generating a spectrum of modulation, dependent on the local expression of HCN1 and/or HCN2.
Collapse
Affiliation(s)
- Cornelia Kopp-Scheinpflug
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Großhadernerstr. 282152, Planegg-Martinsried, Germany
| | - Beatrice M Pigott
- Department of Cell Physiology and Pharmacology, University of LeicesterLeicester, LE1 9HN, UK
| | - Ian D Forsythe
- Department of Cell Physiology and Pharmacology, University of LeicesterLeicester, LE1 9HN, UK
| |
Collapse
|
226
|
Williams SB, Hablitz JJ. Differential modulation of repetitive firing and synchronous network activity in neocortical interneurons by inhibition of A-type K(+) channels and Ih. Front Cell Neurosci 2015; 9:89. [PMID: 25852481 PMCID: PMC4364302 DOI: 10.3389/fncel.2015.00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/26/2015] [Indexed: 12/04/2022] Open
Abstract
GABAergic interneurons provide the main source of inhibition in the neocortex and are important in regulating neocortical network activity. In the presence 4-aminopyridine (4-AP), CNQX, and D-APV, large amplitude GABAA-receptor mediated depolarizing responses were observed in the neocortex. GABAergic networks are comprised of several types of interneurons, each with its own protein expression pattern, firing properties, and inhibitory role in network activity. Voltage-gated ion channels, especially A-type K(+) channels, differentially regulate passive membrane properties, action potential (AP) waveform, and repetitive firing properties in interneurons depending on their composition and localization. HCN channels are known modulators of pyramidal cell intrinsic excitability and excitatory network activity. Little information is available regarding how HCN channels functionally modulate excitability of individual interneurons and inhibitory networks. In this study, we examined the effect of 4-AP on intrinsic excitability of fast-spiking basket cells (FS-BCs) and Martinotti cells (MCs). 4-AP increased the duration of APs in both FS-BCs and MCs. The repetitive firing properties of MCs were differentially affected compared to FS-BCs. We also examined the effect of Ih inhibition on synchronous GABAergic depolarizations and synaptic integration of depolarizing IPSPs. ZD 7288 enhanced the amplitude and area of evoked GABAergic responses in both cell types. Similarly, the frequency and area of spontaneous GABAergic depolarizations in both FS-BCs and MCs were increased in presence of ZD 7288. Synaptic integration of IPSPs in MCs was significantly enhanced, but remained unaltered in FS-BCs. These results indicate that 4-AP differentially alters the firing properties of interneurons, suggesting MCs and FS-BCs may have unique roles in GABAergic network synchronization. Enhancement of GABAergic network synchronization by ZD 7288 suggests that HCN channels attenuate inhibitory network activity.
Collapse
Affiliation(s)
| | - John J. Hablitz
- Department of Neurobiology, Civitan International Research Center and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, ALUSA
| |
Collapse
|
227
|
DiFrancesco JC, DiFrancesco D. Dysfunctional HCN ion channels in neurological diseases. Front Cell Neurosci 2015; 6:174. [PMID: 25805968 PMCID: PMC4354400 DOI: 10.3389/fncel.2015.00071] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/18/2015] [Indexed: 11/25/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed as four different isoforms (HCN1-4) in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current) in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation, and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials, and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson’s disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic, and physiopathological aspects.
Collapse
Affiliation(s)
- Jacopo C DiFrancesco
- Department of Neurophysiology, Foundation Neurological Institute C. Besta Milano, Italy ; Department of Neurology, San Gerardo Hospital and Laboratory of Neurobiology, Milan Center for Neuroscience, University of Milano-Bicocca Monza, Italy
| | - Dario DiFrancesco
- The PaceLab, Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
228
|
Sekulić V, Chen TC, Lawrence JJ, Skinner FK. Dendritic distributions of I h channels in experimentally-derived multi-compartment models of oriens-lacunosum/moleculare (O-LM) hippocampal interneurons. Front Synaptic Neurosci 2015; 7:2. [PMID: 25774132 PMCID: PMC4343010 DOI: 10.3389/fnsyn.2015.00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/02/2015] [Indexed: 01/14/2023] Open
Abstract
The O-LM cell type mediates feedback inhibition onto hippocampal pyramidal cells and gates information flow in the CA1. Its functions depend on the presence of voltage-gated channels (VGCs), which affect its integrative properties and response to synaptic input. Given the challenges associated with determining densities and distributions of VGCs on interneuron dendrites, we take advantage of computational modeling to consider different possibilities. In this work, we focus on hyperpolarization-activated channels (h-channels) in O-LM cells. While h-channels are known to be present in O-LM cells, it is unknown whether they are present on their dendrites. In previous work, we used ensemble modeling techniques with experimental data to obtain insights into potentially important conductance balances. We found that the best O-LM models that included uniformly distributed h-channels in the dendrites could not fully capture the “sag” response. This led us to examine activation kinetics and non-uniform distributions of h-channels in the present work. In tuning our models, we found that different kinetics and non-uniform distributions could better reproduce experimental O-LM cell responses. In contrast to CA1 pyramidal cells where higher conductance densities of h-channels occur in more distal dendrites, decreasing conductance densities of h-channels away from the soma were observed in O-LM models. Via an illustrative scenario, we showed that having dendritic h-channels clearly speeds up back-propagating action potentials in O-LM cells, unlike when h-channels are present only in the soma. Although the present results were morphology-dependent, our work shows that it should be possible to determine the distributions and characteristics of O-LM cells with recordings and morphologies from the same cell. We hypothesize that h-channels are distributed in O-LM cell dendrites and endow them with particular synaptic integration properties that shape information flow in hippocampus.
Collapse
Affiliation(s)
- Vladislav Sekulić
- Department of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Tse-Chiang Chen
- Department of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network Toronto, ON, Canada
| | - J Josh Lawrence
- Center for Structural and Functional Neuroscience, University of Montana Missoula, MT, USA ; Department of Biomedical and Pharmaceutical Sciences, University of Montana Missoula, MT, USA
| | - Frances K Skinner
- Department of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada ; Department of Medicine (Neurology), University of Toronto Toronto, ON, Canada
| |
Collapse
|
229
|
Kummer KK, El Rawas R, Kress M, Saria A, Zernig G. Social interaction and cocaine conditioning in mice increase spontaneous spike frequency in the nucleus accumbens or septal nuclei as revealed by multielectrode array recordings. Pharmacology 2015; 95:42-9. [PMID: 25592253 DOI: 10.1159/000370314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022]
Abstract
Both cocaine and social interaction place preference conditioning lead to increased neuronal expression of the immediate early gene EGR1 in the nucleus accumbens, a central region of the reward pathway, suggesting that both drug and natural rewards may be processed in similar brain regions. In order to gain novel insights into the intrinsic in vitro electrical activity of the nucleus accumbens and adjacent brain regions and to explore the effects of reward conditioning on network activity, we performed multielectrode array recordings of spontaneous firing in acute brain slices of mice conditioned to either cocaine or social interaction place preference. Cocaine conditioning increased the spike frequency of neurons in the septal nuclei, whereas social interaction conditioning increased the spike frequency in the nucleus accumbens compared to saline control animals. In addition, social interaction conditioning decreased the amount of active neuron clusters in the nucleus accumbens. Our findings suggest that place preference conditioning for both drug and natural rewards may induce persistent changes in neuronal network activity in the nucleus accumbens and the septum that are still preserved in acute slice preparations.
Collapse
Affiliation(s)
- Kai K Kummer
- Experimental Psychiatry Unit, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
230
|
Herrmann S, Schnorr S, Ludwig A. HCN channels--modulators of cardiac and neuronal excitability. Int J Mol Sci 2015; 16:1429-47. [PMID: 25580535 PMCID: PMC4307311 DOI: 10.3390/ijms16011429] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/31/2014] [Indexed: 01/06/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels comprise a family of cation channels activated by hyperpolarized membrane potentials and stimulated by intracellular cyclic nucleotides. The four members of this family, HCN1-4, show distinct biophysical properties which are most evident in the kinetics of activation and deactivation, the sensitivity towards cyclic nucleotides and the modulation by tyrosine phosphorylation. The four isoforms are differentially expressed in various excitable tissues. This review will mainly focus on recent insights into the functional role of the channels apart from their classic role as pacemakers. The importance of HCN channels in the cardiac ventricle and ventricular hypertrophy will be discussed. In addition, their functional significance in the peripheral nervous system and nociception will be examined. The data, which are mainly derived from studies using transgenic mice, suggest that HCN channels contribute significantly to cellular excitability in these tissues. Remarkably, the impact of the channels is clearly more pronounced in pathophysiological states including ventricular hypertrophy as well as neural inflammation and neuropathy suggesting that HCN channels may constitute promising drug targets in the treatment of these conditions. This perspective as well as the current therapeutic use of HCN blockers will also be addressed.
Collapse
Affiliation(s)
- Stefan Herrmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Sabine Schnorr
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
231
|
Zhou M, Luo P, Lu Y, Li CJ, Wang DS, Lu Q, Xu XL, He Z, Guo LJ. Imbalance of HCN1 and HCN2 expression in hippocampal CA1 area impairs spatial learning and memory in rats with chronic morphine exposure. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:207-14. [PMID: 25301101 DOI: 10.1016/j.pnpbp.2014.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/13/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022]
Abstract
The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation (HCN) channels play a vital role in the neurological basis underlying nervous system diseases. However, the role of HCN channels in drug addiction is not fully understood. In the present study, we investigated the expression of HCN1 and HCN2 subunits in hippocampal CA1 and the potential molecular mechanisms underlying the modulation of HCN channels in rats with chronic morphine exposure with approaches of electrophysiology, water maze, and Western blotting. We found that chronic morphine exposure (5 mg/kg, sc, for 7 days) caused an inhibition of long-term potentiation (LTP) and impairment of spatial learning and memory, which is associated with a decrease in HCN1, and an increase in HCN2 on cell membrane of hippocampal CA1 area. Additional experiments showed that the imbalance of cell membrane HCN1 and HCN2 expression under chronic morphine exposure was related to an increase in expression of TPR containing Rab8b interacting protein (TRIP8b) (1a-4) and TRIP8b (1b-2), and phosphorylation of protein kinase A (PKA) and adaptor protein 2 μ2 (AP2 μ2). Our results demonstrate the novel information that drug addiction-induced impairment of learning and memory is involved in the imbalance of HCN1 and HCN2 subunits, which is mediated by activation of TRIP8b (1a-4), TRIP8b (1b-2), PKA and AP2 μ2.
Collapse
Affiliation(s)
- Mei Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pan Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang-jun Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dian-shi Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu-lin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi He
- Department of Neuropsychopharmacology, Medical School of China Three Gorges University, Yichang, 443002, China.
| | - Lian-jun Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
232
|
Hill M, Dušková M, Stárka L. Dehydroepiandrosterone, its metabolites and ion channels. J Steroid Biochem Mol Biol 2015; 145:293-314. [PMID: 24846830 DOI: 10.1016/j.jsbmb.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/06/2014] [Accepted: 05/11/2014] [Indexed: 11/20/2022]
Abstract
This review is focused on the physiological and pathophysiological relevance of steroids influencing the activities of the central and peripheral nervous systems with regard to their concentrations in body fluids and tissues in various stages of human life like the fetal development or pregnancy. The data summarized in this review shows that DHEA and its unconjugated and sulfated metabolites are physiologically and pathophysiologically relevant in modulating numerous ion channels and participate in vital functions of the human organism. DHEA and its unconjugated and sulfated metabolites including 5α/β-reduced androstane steroids participate in various physiological and pathophysiological processes like the management of GnRH cyclic release, regulation of glandular and neurotransmitter secretions, maintenance of glucose homeostasis on one hand and insulin insensitivity on the other hand, control of skeletal muscle and smooth muscle activities including vasoregulation, promotion of tolerance to ischemia and other neuroprotective effects. In respect of prevalence of steroid sulfates over unconjugated steroids in the periphery and the opposite situation in the CNS, the sulfated androgens and androgen metabolites reach relevance in peripheral organs. The unconjugated androgens and estrogens are relevant in periphery and so much the more in the CNS due to higher concentrations of most unconjugated steroids in the CNS tissues than in circulation and peripheral organs. This article is part of a Special Issue entitled "Essential role of DHEA".
Collapse
Affiliation(s)
- M Hill
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - M Dušková
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - L Stárka
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| |
Collapse
|
233
|
Abbasi S, Kumar SS. Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy. J Neurophysiol 2014; 112:2888-900. [PMID: 25210155 PMCID: PMC11774487 DOI: 10.1152/jn.00406.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/05/2014] [Indexed: 01/11/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy, characterized by recurrent seizures originating in the temporal lobes. Here, we examine TLE-related changes in the presubiculum (PrS), a less-studied parahippocampal structure that both receives inputs from and projects to regions affected by TLE. We assessed the state of PrS neurons in TLE electrophysiologically to determine which of the previously identified cell types were rendered hyperexcitable in epileptic rats and whether their intrinsic and/or synaptic properties were altered. Cell types were characterized based on action potential discharge profiles followed by unsupervised hierarchical clustering. PrS neurons in epileptic animals could be divided into three major groups comprising of regular-spiking (RS), irregular-spiking (IR), and fast-adapting (FA) cells. RS cells, the predominant cell type encountered in PrS, were the only cells that were hyperexcitable in TLE. These neurons were previously identified as sending long-range axonal projections to neighboring structures including medial entorhinal area (MEA), and alterations in intrinsic properties increased their propensity for sustained firing of action potentials. Frequency and amplitude of both spontaneous excitatory and inhibitory synaptic events were reduced. Further analysis of nonaction potential-dependent miniature currents (in tetrodotoxin) indicated that reduction in excitatory drive to these neurons was mediated by decreased activity of excitatory neurons that synapse with RS cells concomitant with reduced activity of inhibitory neurons. Alterations in physiological properties of PrS neurons and their ensuing hyperexcitability could entrain parahippocampal structures downstream of PrS, including the MEA, contributing to temporal lobe epileptogenesis.
Collapse
Affiliation(s)
- Saad Abbasi
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
234
|
Abstract
Reelin choreographs neuronal migration to establish laminar structures during brain formation. A recent paper uncovers a new function for Reelin signaling in specifying dendritic compartmentalization. Reelin-induced tyrosine phosphorylation is responsible for enrichment of ion channels in dendritic tufts.
Collapse
Affiliation(s)
- Tae-Ju Park
- The Children's Hospital of Philadephia Research Institute, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Tom Curran
- The Children's Hospital of Philadephia Research Institute, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
235
|
Zhang Y, Bonnan A, Bony G, Ferezou I, Pietropaolo S, Ginger M, Sans N, Rossier J, Oostra B, LeMasson G, Frick A. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice. Nat Neurosci 2014; 17:1701-9. [PMID: 25383903 DOI: 10.1038/nn.3864] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/14/2014] [Indexed: 12/14/2022]
Abstract
Hypersensitivity in response to sensory stimuli and neocortical hyperexcitability are prominent features of Fragile X Syndrome (FXS) and autism spectrum disorders, but little is known about the dendritic mechanisms underlying these phenomena. We found that the primary somatosensory neocortex (S1) was hyperexcited in response to tactile sensory stimulation in Fmr1(-/y) mice. This correlated with neuronal and dendritic hyperexcitability of S1 pyramidal neurons, which affect all major aspects of neuronal computation, from the integration of synaptic input to the generation of action potential output. Using dendritic electrophysiological recordings, calcium imaging, pharmacology, biochemistry and a computer model, we found that this defect was, at least in part, attributable to the reduction and dysfunction of dendritic h- and BKCa channels. We pharmacologically rescued several core hyperexcitability phenomena by targeting BKCa channels. Our results provide strong evidence pointing to the utility of BKCa channel openers for the treatment of the sensory hypersensitivity aspects of FXS.
Collapse
Affiliation(s)
- Yu Zhang
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Audrey Bonnan
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Guillaume Bony
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Isabelle Ferezou
- Laboratoire de Neurobiologie, ESPCI ParisTech CNRS UMR 7637, Paris, France
| | - Susanna Pietropaolo
- 1] University of Bordeaux, INCIA, Talence, France. [2] CNRS, INCIA, UMR 5287, Talence, France
| | - Melanie Ginger
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Nathalie Sans
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Jean Rossier
- Laboratoire de Neurobiologie, ESPCI ParisTech CNRS UMR 7637, Paris, France
| | - Ben Oostra
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Gwen LeMasson
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| | - Andreas Frick
- 1] INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France. [2] University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France
| |
Collapse
|
236
|
Liu W, Edin F, Atturo F, Rieger G, Löwenheim H, Senn P, Blumer M, Schrott-Fischer A, Rask-Andersen H, Glueckert R. The pre- and post-somatic segments of the human type I spiral ganglion neurons--structural and functional considerations related to cochlear implantation. Neuroscience 2014; 284:470-482. [PMID: 25316409 PMCID: PMC4300406 DOI: 10.1016/j.neuroscience.2014.09.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/21/2022]
Abstract
Human auditory nerve afferents consist of two separate systems; one is represented by the large type I cells innervating the inner hair cells and the other one by the small type II cells innervating the outer hair cells. Type I spiral ganglion neurons (SGNs) constitute 96% of the afferent nerve population and, in contrast to other mammals, their soma and pre- and post-somatic segments are unmyelinated. Type II nerve soma and fibers are unmyelinated. Histopathology and clinical experience imply that human SGNs can persist electrically excitable without dendrites, thus lacking connection to the organ of Corti. The biological background to this phenomenon remains elusive. We analyzed the pre- and post-somatic segments of the type I human SGNs using immunohistochemistry and transmission electron microscopy (TEM) in normal and pathological conditions. These segments were found surrounded by non-myelinated Schwann cells (NMSCs) showing strong intracellular expression of laminin-β2/collagen IV. These cells also bordered the perikaryal entry zone and disclosed surface rugosities outlined by a folded basement membrane (BM) expressing laminin-β2 and collagen IV. It is presumed that human large SGNs are demarcated by three cell categories: (a) myelinated Schwann cells, (b) NMSCs and (c) satellite glial cells (SGCs). Their BMs express laminin-β2/collagen IV and reaches the BM of the sensory epithelium at the habenula perforata. We speculate that the NMSCs protect SGNs from further degeneration following dendrite loss. It may give further explanation why SGNs can persist as electrically excitable monopolar cells even after long-time deafness, a blessing for the deaf treated with cochlear implantation.
Collapse
Affiliation(s)
- W Liu
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden.
| | - F Edin
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden.
| | - F Atturo
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Neurology, Mental Health and Sensory Organs, Otorhinolaryngologic Unit, Medicine and Psychology, Sapienza, Rome, Italy.
| | - G Rieger
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | - H Löwenheim
- Department of Otorhinolaryngology-Head & Neck Surgery, European Medical School, University of Oldenburg, Steinweg 13-17, 26122 Oldenburg, Germany.
| | - P Senn
- University Department of ORL, Head & Neck Surgery, Inselspital and Department of Clinical Research, University of Bern, Switzerland; University Department of ORL, Head & Neck Surgery, HUG, Geneva, Switzerland.
| | - M Blumer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Müllerstrasse 59, 6020 Innsbruck, Austria.
| | - A Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | - H Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden.
| | - R Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
237
|
Transcriptomic-anatomic analysis of the mouse habenula uncovers a high molecular heterogeneity among neurons in the lateral complex, while gene expression in the medial complex largely obeys subnuclear boundaries. Brain Struct Funct 2014; 221:39-58. [PMID: 25244943 DOI: 10.1007/s00429-014-0891-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/11/2014] [Indexed: 12/11/2022]
Abstract
The mammalian habenula with its medial and lateral complexes has gained much interest in recent years, while knowledge on the detailed biological functions of these nuclei is still scarce. Novel strategies to differentiate and identify habenular cell types are required. Such attempts have largely failed, most likely due to the lack of appropriate molecular markers. One important tool to approach this dilemma is available in form of the Allen Brain Atlas (ABA), which provides detailed expression patterns of many genes in the mouse brain. In the present report, ABA tools in combination with visual inspection of ISH images were used to detect transcripts, which are strongly expressed in medial (MHb) and lateral (LHb) habenular complexes. Against our expectations, most transcripts were differentially distributed throughout the LHb, disregarding boundaries of subnuclear areas. Nine distinct distribution patterns were recognized. Yet, several transcripts could not be attributed to one of these, suggesting a high diversity of neuron types in the LHb. In the MHb, in contrast, many transcripts tended to obey subnuclear boundaries. The differential distribution of others like Adcyap1, Chrna3, or Trp53i11 suggests the presence of a novel subfield adjacent to the region of the MHbVm, which now is termed intermediate field of the ventral MHb. In addition, the localizations of Amigo2, Adcyap1, and a couple of other transcripts suggest a lateral extension of the MHb, which is here, termed HbX area. Apparently, this area is composed of intermingled MHb and LHb neurons and may allow functional interaction between the both habenular complexes.
Collapse
|
238
|
Zhang XY, Yu L, Zhuang QX, Peng SY, Zhu JN, Wang JJ. Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats. Br J Pharmacol 2014; 170:156-69. [PMID: 23713466 DOI: 10.1111/bph.12256] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/06/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Anti-histaminergic drugs have been widely used in the clinical treatment of vestibular disorders and most studies concentrate on their presynaptic actions. The present study investigated the postsynaptic effect of histamine on medial vestibular nucleus (MVN) neurons and the underlying mechanisms. EXPERIMENTAL APPROACH Histamine-induced postsynaptic actions on MVN neurons and the corresponding receptor and ionic mechanisms were detected by whole-cell patch-clamp recordings on rat brain slices. The distribution of postsynaptic histamine H₁, H₂ and H₄ receptors was mapped by double and single immunostaining. Furthermore, the expression of mRNAs for H₁, H₂ and H₄ receptors and for subtypes of Na⁺ -Ca²⁺ exchangers (NCXs) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels was assessed by quantitative real-time RT-PCR. KEY RESULTS A marked postsynaptic excitatory effect, co-mediated by histamine H₁ and H₂ receptors, was involved in the histamine-induced depolarization of MVN neurons. Postsynaptic H₁ and H₂ rather than H₄ receptors were co-localized in the same MVN neurons. NCXs contributed to the inward current mediated by H₁ receptors, whereas HCN channels were responsible for excitation induced by activation of H₂ receptors. Moreover, NCX1 and NCX3 rather than NCX2, and HCN1 rather than HCN2-4 mRNAs, were abundantly expressed in MVN. CONCLUSION AND IMPLICATIONS NCXs coupled to H₁ receptors and HCN channels linked to H₂ receptors co-mediate the strong postsynaptic excitatory action of histamine on MVN neurons. These results highlight an active role of postsynaptic mechanisms in the modulation by central histaminergic systems of vestibular functions and suggest potential targets for clinical treatment of vestibular disorders.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | | | | | | | | | | |
Collapse
|
239
|
Masi A, Narducci R, Landucci E, Moroni F, Mannaioni G. MPP(+) -dependent inhibition of Ih reduces spontaneous activity and enhances EPSP summation in nigral dopamine neurons. Br J Pharmacol 2014; 169:130-42. [PMID: 23323755 DOI: 10.1111/bph.12104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE 1-Methyl-4-phenylpyridinium (MPP(+) ), a potent parkinsonizing agent in primates and rodents, is a blocker of mitochondrial complex I, therefore MPP(+) -induced parkinsonism is believed to depend largely on mitochondrial impairment. However, it has recently been proposed that other mechanisms may participate in MPP(+) -induced toxicity. We tackled this issue by probing the effects of an acute application of MPP(+) on substantia nigra pars compacta (SNc) dopamine (DA) neurons. EXPERIMENTAL APPROACH The effects of MPP(+) on SNc DA neurons in acute midbrain slices were investigated with electrophysiology techniques. KEY RESULTS MPP(+) (50 μM) was able to (i) hyperpolarize SNc DA neurons by ∼6 mV; (ii) cause an abrupt and marked (over 50%) reduction of the spontaneous activity; and (iii) inhibit the hyperpolarization-activated inward current (Ih ). MPP(+) shifted Ih activation curve towards negative potentials by ∼11 mV both in Wistar rats and in C57/BL6 mice. Inhibition was voltage- and concentration-dependent (Imax = 47%, IC50 = 7.74 μM). MPP(+) slowed Ih activation kinetics at all potentials. These effects were not dependent on (i) block of mitochondrial complex I/fall of ATP levels; (ii) activation of type 2 DA receptor; and (iii) alteration of cAMP metabolism. Finally, MPP(+) -dependent inhibition of Ih facilitated temporal summation of evoked EPSPs in SNc DA, but not in CA1 hippocampal neurons. CONCLUSION AND IMPLICATIONS Reduced functionality of Ih in SNc DA neurons, via increased responsiveness towards synaptic excitation, might play a role in MPP(+) -induced parkinsonism and, possibly, in the pathogenesis of human Parkinson's.
Collapse
Affiliation(s)
- A Masi
- Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | | | | | | | | |
Collapse
|
240
|
Kupferman JV, Basu J, Russo MJ, Guevarra J, Cheung SK, Siegelbaum SA. Reelin signaling specifies the molecular identity of the pyramidal neuron distal dendritic compartment. Cell 2014; 158:1335-1347. [PMID: 25201528 DOI: 10.1016/j.cell.2014.07.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/27/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
The apical dendrites of many neurons contain proximal and distal compartments that receive synaptic inputs from different brain regions. These compartments also contain distinct complements of ion channels that enable the differential processing of their respective synaptic inputs, making them functionally distinct. At present, the molecular mechanisms that specify dendritic compartments are not well understood. Here, we report that the extracellular matrix protein Reelin, acting through its downstream, intracellular Dab1 and Src family tyrosine kinase signaling cascade, is essential for establishing and maintaining the molecular identity of the distal dendritic compartment of cortical pyramidal neurons. We find that Reelin signaling is required for the striking enrichment of HCN1 and GIRK1 channels in the distal tuft dendrites of both hippocampal CA1 and neocortical layer 5 pyramidal neurons, where the channels actively filter inputs targeted to these dendritic domains.
Collapse
Affiliation(s)
- Justine V Kupferman
- Department of Biology, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Jayeeta Basu
- Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Marco J Russo
- Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Jenieve Guevarra
- Department of Biology, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Stephanie K Cheung
- Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Department of Pharmacology, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
241
|
Ivabradine (a hyperpolarization activated cyclic nucleotide-gated channel blocker) elevates the threshold for maximal electroshock-induced tonic seizures in mice. Pharmacol Rep 2014; 65:1407-14. [PMID: 24399738 DOI: 10.1016/s1734-1140(13)71500-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 05/13/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND The aim of this study was to determine the effect of ivabradine (a hyperpolarization activated cyclic nucleotide-gated channel (HCN) blocker) on the threshold for maximal electroshock (MEST)-induced tonic seizures in mice. METHODS Electroconvulsionswere produced inmice by means of a current (sine-wave, 50Hz, maximum 500 V, strength from 3-10 mA, ear-clip electrodes, 0.2-s stimulus duration, tonic hindlimb extension taken as the endpoint). RESULTS Ivabradine administered intraperitoneally (ip), 60 min before the MEST test, at doses of 5 and 10 mg/kg, did not alter the threshold for maximal electroconvulsions in mice. In contrast, ivabradine at doses of 15 and 20 mg/kg significantly elevated the threshold for maximal electroconvulsions in mice (p < 0.05 and p < 0.001, respectively). Linear regression analysis of ivabradine doses and their corresponding threshold increases allowed determination of the threshold increasing doses by 20 and 50% (TID20 and TID50 values) that elevate the threshold in drug-treated animals over the threshold in control animals. The experimentally derived TID20 and TID50 values for ivabradine were 8.70 and 18.29 mg/kg, respectively. CONCLUSIONS Based on this preclinical study, one can ascertain that ivabradine dose-dependently increased the threshold for MEST-induced seizures, suggesting the antiseizure activity of the compound in this seizure model in mice.
Collapse
|
242
|
Shah MM. Cortical HCN channels: function, trafficking and plasticity. J Physiol 2014; 592:2711-9. [PMID: 24756635 PMCID: PMC4104471 DOI: 10.1113/jphysiol.2013.270058] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/15/2014] [Indexed: 12/26/2022] Open
Abstract
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels belong to the superfamily of voltage-gated potassium ion channels. They are, however, activated by hyperpolarizing potentials and are permeable to cations. Four HCN subunits have been cloned, of which HCN1 and HCN2 subunits are predominantly expressed in the cortex. These subunits are principally located in pyramidal cell dendrites, although they are also found at lower concentrations in the somata of pyramidal neurons as well as other neuron subtypes. HCN channels are actively trafficked to dendrites by binding to the chaperone protein TRIP8b. Somato-dendritic HCN channels in pyramidal neurons modulate spike firing and synaptic potential integration by influencing the membrane resistance and resting membrane potential. Intriguingly, HCN channels are present in certain cortical axons and synaptic terminals too. Here, they regulate synaptic transmission but the underlying mechanisms appear to vary considerably amongst different synaptic terminals. In conclusion, HCN channels are expressed in multiple neuronal subcellular compartments in the cortex, where they have a diverse and complex effect on neuronal excitability.
Collapse
Affiliation(s)
- Mala M Shah
- Department of Pharmacology, UCL School of Pharmacy, London, UK
| |
Collapse
|
243
|
Deng WS, Jiang YX, Han XH, Xue Y, Wang H, Sun P, Chen L. HCN Channels Modulate the Activity of the Subthalamic Nucleus In Vivo. J Mol Neurosci 2014; 55:260-268. [DOI: 10.1007/s12031-014-0316-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/24/2014] [Indexed: 01/17/2023]
|
244
|
Li CJ, Lu Y, Zhou M, Zong XG, Li C, Xu XL, Guo LJ, Lu Q. Activation of GABAB receptors ameliorates cognitive impairment via restoring the balance of HCN1/HCN2 surface expression in the hippocampal CA1 area in rats with chronic cerebral hypoperfusion. Mol Neurobiol 2014; 50:704-20. [PMID: 24838625 DOI: 10.1007/s12035-014-8736-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/29/2014] [Indexed: 11/30/2022]
Abstract
Hyperpolarization-activated cyclic-nucleotide-gated cation nonselective (HCN) channels are involved in the pathology of nervous system diseases. HCN channels and γ-aminobutyric acid (GABA) receptors can mutually co-regulate the function of neurons in many brain areas. However, little is known about the co-regulation of HCN channels and GABA receptors in the chronic ischemic rats with possible features of vascular dementia. Protein kinase A (PKA) and TPR containing Rab8b interacting protein (TRIP8b) can modulate GABAB receptors cell surface stability and HCN channel trafficking, respectively, and adaptor-associated kinase 1 (AAK1) inhibits the function of the major TRIP8b-interacting protein adaptor protein 2 (AP2) via phosphorylating the AP2 μ2 subunit. Until now, the role of these regulatory factors in chronic cerebral hypoperfusion is unclear. In the present study, we evaluated whether and how HCN channels and GABAB receptors were pathologically altered and investigated neuroprotective effects of GABAB receptors activation and cross-talk networks between GABAB receptors and HCN channels in the hippocampal CA1 area in chronic cerebral hypoperfusion rat model. We found that cerebral hypoperfusion for 5 weeks by permanent occlusion of bilateral common carotid arteries (two-vessel occlusion, 2VO) induced marked spatial and nonspatial learning and memory deficits, significant neuronal loss and decrease in dendritic spine density, impairment of long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses, and reduction of surface expression of GABAB R1, GABAB R2, and HCN1, but increase in HCN2 surface expression. Meanwhile, the protein expression of TRIP8b (1a-4), TRIP8b (1b-2), and AAK1 was significantly decreased. Baclofen, a GABAB receptor agonist, markedly improved the memory impairment and alleviated neuronal damage. Besides, baclofen attenuated the decrease of surface expression of GABAB R1, GABAB R2, and HCN1, but downregulated HCN2 surface expression. Furthermore, baclofen could restore expression of AAK1 protein and significantly increase p-PKA, TRIP8b (1a-4), TRIP8b (1b-2), and p-AP2 μ2 expression. Those findings suggested that, under chronic cerebral hypoperfusion, activation of PKA could attenuate baclofen-induced decrease in surface expression of GABAB R1 and GABAB R2, and activation of GABAB receptors not only increased the expression of TRIP8b (1a-4) and TRIP8b (1b-2) but also regulated the function of TRIP8b via AAK1 and p-AP2 μ2, which restored the balance of HCN1/HCN2 surface expression in rat hippocampal CA1 area, and thus ameliorated cognitive impairment.
Collapse
Affiliation(s)
- Chang-jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Kolaj M, Zhang L, Hermes MLHJ, Renaud LP. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons. Front Behav Neurosci 2014; 8:132. [PMID: 24860449 PMCID: PMC4029024 DOI: 10.3389/fnbeh.2014.00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/01/2014] [Indexed: 01/01/2023] Open
Abstract
Neurons in the midline and intralaminar thalamic nuclei are components of an interconnected brainstem, limbic and prefrontal cortex neural network that is engaged during arousal, vigilance, motivated and addictive behaviors, and stress. To better understand the cellular mechanisms underlying these functions, here we review some of the recently characterized electrophysiological and neuropharmacological properties of neurons in the paraventricular thalamic nucleus (PVT), derived from whole cell patch clamp recordings in acute rat brain slice preparations. PVT neurons display firing patterns and ionic conductances (IT and IH) that exhibit significant diurnal change. Their resting membrane potential (RMP) is maintained by various ionic conductances that include inward rectifier (Kir), hyperpolarization-activated nonselective cation (HCN) and TWIK-related acid sensitive (TASK) K+ channels. Firing patterns are regulated by high voltage-activated (HVA) and low voltage-activated (LVA) Ca2+ conductances. Moreover, transient receptor potential (TRP)-like nonselective cation channels together with Ca2+- and Na+-activated K+ conductances (KCa; KNa) contribute to unique slow afterhyperpolarizing potentials (sAHPs) that are generally not detectable in lateral thalamic or reticular thalamic nucleus neurons. The excitability of PVT neurons is also modulated by activation of neurotransmitter receptors associated with afferent pathways to PVT and other thalamic midline nuclei. We report on receptor-mediated actions of GABA, glutamate, monoamines and several neuropeptides: arginine vasopressin, gastrin-releasing peptide, thyrotropin releasing hormone and the orexins (hypocretins). This review represents an initial survey of intrinsic and transmitter-sensitive ionic conductances that are deemed to be unique to this population of midline thalamic neurons, information that is fundamental to an appreciation of the role these thalamic neurons may play in normal central nervous system (CNS) physiology and in CNS disorders that involve the dorsomedial thalamus.
Collapse
Affiliation(s)
- Miloslav Kolaj
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Li Zhang
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Michael L H J Hermes
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Leo P Renaud
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
246
|
Fenrich KK, Zhao EY, Wei Y, Garg A, Rose PK. Isolating specific cell and tissue compartments from 3D images for quantitative regional distribution analysis using novel computer algorithms. J Neurosci Methods 2014; 226:42-56. [PMID: 24487018 DOI: 10.1016/j.jneumeth.2014.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Isolating specific cellular and tissue compartments from 3D image stacks for quantitative distribution analysis is crucial for understanding cellular and tissue physiology under normal and pathological conditions. Current approaches are limited because they are designed to map the distributions of synapses onto the dendrites of stained neurons and/or require specific proprietary software packages for their implementation. NEW METHOD To overcome these obstacles, we developed algorithms to Grow and Shrink Volumes of Interest (GSVI) to isolate specific cellular and tissue compartments from 3D image stacks for quantitative analysis and incorporated these algorithms into a user-friendly computer program that is open source and downloadable at no cost. RESULTS The GSVI algorithm was used to isolate perivascular regions in the cortex of live animals and cell membrane regions of stained spinal motoneurons in histological sections. We tracked the real-time, intravital biodistribution of injected fluorophores with sub-cellular resolution from the vascular lumen to the perivascular and parenchymal space following a vascular microlesion, and mapped the precise distributions of membrane-associated KCC2 and gephyrin immunolabeling in dendritic and somatic regions of spinal motoneurons. COMPARISON WITH EXISTING METHODS Compared to existing approaches, the GSVI approach is specifically designed for isolating perivascular regions and membrane-associated regions for quantitative analysis, is user-friendly, and free. CONCLUSIONS The GSVI algorithm is useful to quantify regional differences of stained biomarkers (e.g., cell membrane-associated channels) in relation to cell functions, and the effects of therapeutic strategies on the redistributions of biomolecules, drugs, and cells in diseased or injured tissues.
Collapse
Affiliation(s)
- Keith K Fenrich
- CIHR Group in Sensory-Motor Integration, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6; Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6; Aix Marseille University, Developmental Biology Institute of Marseille-Luminy (IBDML), CNRS 7288, Case 907 - Parc Scientifique de Luminy, 13009 Marseille, France; Faculty of Rehabilitation Medicine, University of Alberta, 3-88 Corbett Hall, Edmonton, AB, Canada T6G 2G4.
| | - Ethan Y Zhao
- CIHR Group in Sensory-Motor Integration, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6; Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Yuan Wei
- CIHR Group in Sensory-Motor Integration, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6; Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Anirudh Garg
- CIHR Group in Sensory-Motor Integration, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6; Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - P Ken Rose
- CIHR Group in Sensory-Motor Integration, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6; Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6.
| |
Collapse
|
247
|
Dufour MA, Woodhouse A, Goaillard JM. Somatodendritic ion channel expression in substantia nigra pars compacta dopaminergic neurons across postnatal development. J Neurosci Res 2014; 92:981-99. [PMID: 24723263 DOI: 10.1002/jnr.23382] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 01/12/2023]
Abstract
Dopaminergic neurons of the substantia nigra pars compacta (SNc) are involved in the control of movement, sleep, reward, learning, and nervous system disorders and disease. To date, a thorough characterization of the ion channel phenotype of this important neuronal population is lacking. Using immunohistochemistry, we analyzed the somatodendritic expression of voltage-gated ion channel subunits that are involved in pacemaking activity in SNc dopaminergic neurons in 6-, 21-, and 40-day-old rats. Our results demonstrate that the same complement of somatodendritic ion channels is present in SNc dopaminergic neurons from P6 to P40. The major developmental changes were an increase in the dendritic range of the immunolabeling for the HCN, T-type calcium, Kv4.3, delayed rectifier, and SK channels. Our study sheds light on the ion channel subunits that contribute to the somatodendritic delayed rectifier (Kv1.3, Kv2.1, Kv3.2, Kv3.3), A-type (Kv4.3) and calcium-activated SK (SK1, SK2, SK3) potassium currents, IH (mainly HCN2, HCN4), and the L- (Cav1.2, Cav1.3) and T-type (mainly Cav3.1, Cav3.3) calcium currents in SNc dopaminergic neurons. Finally, no robust differences in voltage-gated ion channel immunolabeling were observed across the population of SNc dopaminergic neurons for each age examined, suggesting that differing levels of individual ion channels are unlikely to distinguish between specific subpopulations of SNc dopaminergic neurons. This is significant in light of previous studies suggesting that age- or region-associated variations in the expression profile of voltage-gated ion channels in SNc dopaminergic neurons may underlie their vulnerability to dysfunction and disease.
Collapse
Affiliation(s)
- Martial A Dufour
- INSERM, UMR_S 1072, 13015, Marseille, France; Aix-Marseille Université, UNIS, 13015, Marseille, France
| | | | | |
Collapse
|
248
|
Crunelli V, David F, Leresche N, Lambert RC. Role for T-type Ca2+ channels in sleep waves. Pflugers Arch 2014; 466:735-45. [PMID: 24578015 DOI: 10.1007/s00424-014-1477-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/08/2014] [Indexed: 01/29/2023]
Abstract
Since their discovery more than 30 years ago, low-threshold T-type Ca(2+) channels (T channels) have been suggested to play a key role in many EEG waves of non-REM sleep, which has remained exclusively linked to the ability of these channels to generate low-threshold Ca(2+) potentials and associated high-frequency bursts of action potentials. Our present understanding of the biophysics and physiology of T channels, however, highlights a much more diverse and complex picture of the pivotal contributions that they make to different sleep rhythms. In particular, recent experimental evidence has conclusively demonstrated the essential contribution of thalamic T channels to the expression of slow waves of natural sleep and the key role played by Ca(2+) entry through these channels in the activation or modulation of other voltage-dependent channels that are important for the generation of both slow waves and sleep spindles. However, the precise contribution to sleep rhythms of T channels in cortical neurons and other sleep-controlling neuronal networks remains unknown, and a full understanding of the cellular and network mechanisms of sleep delta waves is still lacking.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3US, UK,
| | | | | | | |
Collapse
|
249
|
Noam Y, Ehrengruber MU, Koh A, Feyen P, Manders EMM, Abbott GW, Wadman WJ, Baram TZ. Filamin A promotes dynamin-dependent internalization of hyperpolarization-activated cyclic nucleotide-gated type 1 (HCN1) channels and restricts Ih in hippocampal neurons. J Biol Chem 2014; 289:5889-903. [PMID: 24403084 PMCID: PMC3937658 DOI: 10.1074/jbc.m113.522060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/27/2013] [Indexed: 11/06/2022] Open
Abstract
The actin-binding protein filamin A (FLNa) regulates neuronal migration during development, yet its roles in the mature brain remain largely obscure. Here, we probed the effects of FLNa on the regulation of ion channels that influence neuronal properties. We focused on the HCN1 channels that conduct Ih, a hyperpolarization-activated current crucial for shaping intrinsic neuronal properties. Whereas regulation of HCN1 channels by FLNa has been observed in melanoma cell lines, its physiological relevance to neuronal function and the underlying cellular pathways that govern this regulation remain unknown. Using a combination of mutational, pharmacological, and imaging approaches, we find here that FLNa facilitates a selective and reversible dynamin-dependent internalization of HCN1 channels in HEK293 cells. This internalization is accompanied by a redistribution of HCN1 channels on the cell surface, by accumulation of the channels in endosomal compartments, and by reduced Ih density. In hippocampal neurons, expression of a truncated dominant-negative FLNa enhances the expression of native HCN1. Furthermore, acute abrogation of HCN1-FLNa interaction in neurons, with the use of decoy peptides that mimic the FLNa-binding domain of HCN1, abolishes the punctate distribution of HCN1 channels in neuronal cell bodies, augments endogenous Ih, and enhances the rebound-response ("voltage-sag") of the neuronal membrane to transient hyperpolarizing events. Together, these results support a major function of FLNa in modulating ion channel abundance and membrane trafficking in neurons, thereby shaping their biophysical properties and function.
Collapse
Affiliation(s)
- Yoav Noam
- From the Departments of Anatomy/Neurobiology and Pediatrics and
| | | | - Annie Koh
- From the Departments of Anatomy/Neurobiology and Pediatrics and
| | | | - Erik M. M. Manders
- van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Geoffrey W. Abbott
- Pharmacology, University of California at Irvine, Irvine, California 92697-4475 and
| | | | - Tallie Z. Baram
- From the Departments of Anatomy/Neurobiology and Pediatrics and
| |
Collapse
|
250
|
Li YL. Angiotensin II-Superoxide Signaling and Arterial Baroreceptor Function in Type-1 Diabetes Mellitus. JOURNAL OF DIABETES & METABOLISM 2014; Suppl 12:1-6. [PMID: 24567847 DOI: 10.4172/2155-6156.s12-001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetes is a major world health problem. Growing evidence from both clinical trials and animal experiments has clearly confirmed that arterial baroreflex dysfunction is a feature of type 1 diabetes, which links to prognosis and mortality of the type 1 diabetic patients. The arterial baroreflex normally regulates the blood pressure and heart rate through sensing changes of arterial vascular tension by the arterial baroreceptors in the aortic arch and carotid sinus. The aortic baroreceptor neuron located in the nodose ganglia is a primary afferent component of the arterial baroreflex. The functional changes of these neurons are involved in the arterial baroreflex dysfunction in the type 1 diabetes. Type 1 diabetes causes the overexpression and hyperactivation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and further reduces cell excitability of the aortic baroreceptor neurons. The alterations of the HCN channels are regulated by angiotensin II-NADPH oxidase-superoxide signaling in the aortic baroreceptor neurons. From the present review, we can understand the possible mechanisms responsible for the attenuated arterial baroreflex in the type 1 diabetes. These findings are beneficial for improving quality of life and prognosis in patients with the type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, USA
| |
Collapse
|