201
|
Tang X, Zuo C, Fang P, Liu G, Qiu Y, Huang Y, Tang R. Targeting Glioblastoma Stem Cells: A Review on Biomarkers, Signal Pathways and Targeted Therapy. Front Oncol 2021; 11:701291. [PMID: 34307170 PMCID: PMC8297686 DOI: 10.3389/fonc.2021.701291] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) remains the most lethal and common primary brain tumor, even after treatment with multiple therapies, such as surgical resection, chemotherapy, and radiation. Although great advances in medical development and improvements in therapeutic methods of GBM have led to a certain extension of the median survival time of patients, prognosis remains poor. The primary cause of its dismal outcomes is the high rate of tumor recurrence, which is closely related to its resistance to standard therapies. During the last decade, glioblastoma stem cells (GSCs) have been successfully isolated from GBM, and it has been demonstrated that these cells are likely to play an indispensable role in the formation, maintenance, and recurrence of GBM tumors, indicating that GSCs are a crucial target for treatment. Herein, we summarize the current knowledge regarding GSCs, their related signaling pathways, resistance mechanisms, crosstalk linking mechanisms, and microenvironment or niche. Subsequently, we present a framework of targeted therapy for GSCs based on direct strategies, including blockade of the pathways necessary to overcome resistance or prevent their function, promotion of GSC differentiation, virotherapy, and indirect strategies, including targeting the perivascular, hypoxic, and immune niches of the GSCs. In summary, targeting GSCs provides a tremendous opportunity for revolutionary approaches to improve the prognosis and therapy of GBM, despite a variety of challenges.
Collapse
Affiliation(s)
- Xuejia Tang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China.,Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chenghai Zuo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pengchao Fang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guojing Liu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yongyi Qiu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Huang
- Department of Neurosurgery, The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Rongrui Tang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
202
|
Matsubara E, Komohara Y, Shinchi Y, Mito R, Fujiwara Y, Ikeda K, Shima T, Shimoda M, Kanai Y, Sakagami T, Suzuki M. CD163-positive cancer cells are a predictor of a worse clinical course in lung adenocarcinoma. Pathol Int 2021; 71:666-673. [PMID: 34231937 DOI: 10.1111/pin.13144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/27/2022]
Abstract
CD163 is one of the scavenger receptors expressed on macrophages. However, several immunohistochemical studies have demonstrated that CD163 is also detected on cancer cells, and is associated with a poor prognosis. In the present study, we detected CD163 staining on cancer cells in lung adenocarcinoma and squamous cell carcinoma (SCC), and investigated the relationship between CD163 on cancer cells and the clinical prognosis. CD163 staining was seen in 128 of 342 adenocarcinoma cases and 35 of 103 SCC cases. Among the lung adenocarcinoma cases, the progression-free survival and overall survival were significantly shorter in the CD163 high group than the CD163 low group. A similar trend was observed among the SCC cases, but the difference was not statistically significant. Additionally, a higher number of macrophages was detected in areas with CD163-positive cancer cells when compared to areas with CD163-negative cancer cells. In summary, we found that CD163-positive cancer cells are a predictor of a worse clinical course in lung adenocarcinoma and SCC.
Collapse
Affiliation(s)
- Eri Matsubara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Yusuke Shinchi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Remi Mito
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koei Ikeda
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiyuki Shima
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
203
|
Moeini P, Niedźwiedzka-Rystwej P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. Int J Mol Sci 2021; 22:ijms22137239. [PMID: 34281293 PMCID: PMC8269174 DOI: 10.3390/ijms22137239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages are one of the most important cells of the innate immune system and are known for their ability to engulf and digest foreign substances, including cellular debris and tumor cells. They can convert into tumor-associated macrophages (TAMs) when mature macrophages are recruited into the tumor microenvironment. Their role in cancer progression, metastasis, and therapy failure is of special note. The aim of this review is to understand how the presence of TAMs are both advantageous and disadvantageous in the immune system.
Collapse
Affiliation(s)
- Pedram Moeini
- Plant Virology Research Center, Shiraz University, Shiraz 71441-65186, Iran;
| | | |
Collapse
|
204
|
Zhang H, Zhu G. Beyond Promoter: The Role of Macrophage in Invasion and Progression of Renal Cell Carcinoma. Curr Stem Cell Res Ther 2021; 15:588-596. [PMID: 32096752 DOI: 10.2174/1574888x15666200225093210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 12/11/2019] [Indexed: 11/22/2022]
Abstract
Renal cell carcinoma (RCC) is one of the common urologic neoplasms, and its incidence has been increasing over the past several decades; however, its pathogenesis is still unknown up to now. Recent studies have found that in addition to tumor cells, other cells in the tumor microenvironment also affect the biological behavior of the tumor. Among them, macrophages exist in a large amount in tumor microenvironment, and they are generally considered to play a key role in promoting tumorigenesis. Therefore, we summarized the recent researches on macrophage in the invasiveness and progression of RCC in latest years, and we also introduced and discussed many studies about macrophage in RCC to promote angiogenesis by changing tumor microenvironment and inhibit immune response in order to activate tumor progression. Moreover, macrophage interactes with various cytokines to promote tumor proliferation, invasion and metastasis, and it also promotes tumor stem cell formation and induces drug resistance in the progression of RCC. The highlight of this review is to make a summary of the roles of macrophage in the invasion and progression of RCC; at the same time to raise some potential and possible targets for future RCC therapy.
Collapse
Affiliation(s)
- Haibao Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guodong Zhu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
205
|
Akkari L, Bowman RL, Tessier J, Klemm F, Handgraaf SM, de Groot M, Quail DF, Tillard L, Gadiot J, Huse JT, Brandsma D, Westerga J, Watts C, Joyce JA. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci Transl Med 2021; 12:12/552/eaaw7843. [PMID: 32669424 DOI: 10.1126/scitranslmed.aaw7843] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/31/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) and microglia (MG) are potent regulators of glioma development and progression. However, the dynamic alterations of distinct TAM populations during the course of therapeutic intervention, response, and recurrence have not yet been fully explored. Here, we investigated how radiotherapy changes the relative abundance and phenotypes of brain-resident MG and peripherally recruited monocyte-derived macrophages (MDMs) in glioblastoma. We identified radiation-specific, stage-dependent MG and MDM gene expression signatures in murine gliomas and confirmed altered expression of several genes and proteins in recurrent human glioblastoma. We found that targeting these TAM populations using a colony-stimulating factor-1 receptor (CSF-1R) inhibitor combined with radiotherapy substantially enhanced survival in preclinical models. Our findings reveal the dynamics and plasticity of distinct macrophage populations in the irradiated tumor microenvironment, which has translational relevance for enhancing the efficacy of standard-of-care treatment in gliomas.
Collapse
Affiliation(s)
- Leila Akkari
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland.,Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Robert L Bowman
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeremy Tessier
- Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Florian Klemm
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland.,Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| | - Shanna M Handgraaf
- Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Marnix de Groot
- Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Daniela F Quail
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lucie Tillard
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland.,Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| | - Jules Gadiot
- Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dieta Brandsma
- Departments of Neuro-Oncology and Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam 1066CX, Netherlands
| | - Johan Westerga
- Departments of Neuro-Oncology and Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam 1066CX, Netherlands
| | - Colin Watts
- Birmingham Brain Cancer Program, Institute of Cancer Genome Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| |
Collapse
|
206
|
Hiltbrunner S, Mannarino L, Kirschner MB, Opitz I, Rigutto A, Laure A, Lia M, Nozza P, Maconi A, Marchini S, D’Incalci M, Curioni-Fontecedro A, Grosso F. Tumor Immune Microenvironment and Genetic Alterations in Mesothelioma. Front Oncol 2021; 11:660039. [PMID: 34249695 PMCID: PMC8261295 DOI: 10.3389/fonc.2021.660039] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and fatal disease of the pleural lining. Up to 80% of the MPM cases are linked to asbestos exposure. Even though its use has been banned in the industrialized countries, the cases continue to increase. MPM is a lethal cancer, with very little survival improvements in the last years, mirroring very limited therapeutic advances. Platinum-based chemotherapy in combination with pemetrexed and surgery are the standard of care, but prognosis is still unacceptably poor with median overall survival of approximately 12 months. The genomic landscape of MPM has been widely characterized showing a low mutational burden and the impairment of tumor suppressor genes. Among them, BAP1 and BLM are present as a germline inactivation in a small subset of patients and increases predisposition to tumorigenesis. Other studies have demonstrated a high frequency of mutations in DNA repair genes. Many therapy approaches targeting these alterations have emerged and are under evaluation in the clinic. High-throughput technologies have allowed the detection of more complex molecular events, like chromotripsis and revealed different transcriptional programs for each histological subtype. Transcriptional analysis has also paved the way to the study of tumor-infiltrating cells, thus shedding lights on the crosstalk between tumor cells and the microenvironment. The tumor microenvironment of MPM is indeed crucial for the pathogenesis and outcome of this disease; it is characterized by an inflammatory response to asbestos exposure, involving a variety of chemokines and suppressive immune cells such as M2-like macrophages and regulatory T cells. Another important feature of MPM is the dysregulation of microRNA expression, being frequently linked to cancer development and drug resistance. This review will give a detailed overview of all the above mentioned features of MPM in order to improve the understanding of this disease and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Stefanie Hiltbrunner
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Mannarino
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | | | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Angelica Rigutto
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Laure
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Michela Lia
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Paolo Nozza
- Department of Pathology, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Antonio Maconi
- Infrastruttura Ricerca Formazione Innovazione (IRFI), Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Sergio Marchini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Alessandra Curioni-Fontecedro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Grosso
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| |
Collapse
|
207
|
Wang TC, An TZ, Li JX, Pang PF. Systemic Inflammation Response Index is a Prognostic Risk Factor in Patients with Hepatocellular Carcinoma Undergoing TACE. Risk Manag Healthc Policy 2021; 14:2589-2600. [PMID: 34188570 PMCID: PMC8232961 DOI: 10.2147/rmhp.s316740] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Mounting evidence has shown that systemic inflammation response index (SIRI), a novel prognostic biomarker based on peripheral lymphocyte, neutrophil and monocyte counts, is associated with poor prognosis for several tumors. However, the prognostic value of SIRI in patients with hepatocellular carcinoma (HCC) undergoing transarterial chemoembolization (TACE) is elusive. Herein, we aimed to evaluate the correlation between SIRI and clinical outcomes in these patients. Methods A total of 194 consecutive patients who underwent TACE were included in this study. Patients were stratified into high and low SIRI groups based on the cut-off value using receiver operating characteristic (ROC) analysis. Independent risk factors for tumor response were analyzed using forward stepwise logistic regression. A one-to-one propensity score matching (PSM) was conducted to compare progression-free survival (PFS) and overall survival (OS) between low and high SIRI patients. The discriminatory power of the combination of number of tumors and SIRI in predicting initial TACE response was evaluated by ROC analysis. Results Patients were divided into high SIRI (> 0.88) and low SIRI (≤ 0.88) groups. High SIRI (p = 0.003) and more than three tumors (p = 0.002) were significantly related to poorer tumor response. Moreover, the low SIRI group had longer PFS and OS than the high SIRI group (both P < 0.05) before and after PSM. Combination of SIRI and number of tumors can improve the predictive ability to predict initial TACE response with an area under the curve (AUC) of 0.678. Conclusion Pretreatment peripheral blood SIRI was found to be an independent predictor of tumor response and clinical outcomes in patients with HCC undergoing TACE. Patients with high SIRI may have a poor prognosis.
Collapse
Affiliation(s)
- Tian-Cheng Wang
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.,Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Tian-Zhi An
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Jun-Xiang Li
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Peng-Fei Pang
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| |
Collapse
|
208
|
Morciano G, Vezzani B, Missiroli S, Boncompagni C, Pinton P, Giorgi C. An Updated Understanding of the Role of YAP in Driving Oncogenic Responses. Cancers (Basel) 2021; 13:cancers13123100. [PMID: 34205830 PMCID: PMC8234554 DOI: 10.3390/cancers13123100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In 2020, the global cancer database GLOBOCAN estimated 19.3 million new cancer cases worldwide. The discovery of targeted therapies may help prognosis and outcome of the patients affected, but the understanding of the plethora of highly interconnected pathways that modulate cell transformation, proliferation, invasion, migration and survival remains an ambitious goal. Here we propose an updated state of the art of YAP as the key protein driving oncogenic response via promoting all those steps at multiple levels. Of interest, the role of YAP in immunosuppression is a field of evolving research and growing interest and this summary about the current pharmacological therapies impacting YAP serves as starting point for future studies. Abstract Yes-associated protein (YAP) has emerged as a key component in cancer signaling and is considered a potent oncogene. As such, nuclear YAP participates in complex and only partially understood molecular cascades that are responsible for the oncogenic response by regulating multiple processes, including cell transformation, tumor growth, migration, and metastasis, and by acting as an important mediator of immune and cancer cell interactions. YAP is finely regulated at multiple levels, and its localization in cells in terms of cytoplasm–nucleus shuttling (and vice versa) sheds light on interesting novel anticancer treatment opportunities and putative unconventional functions of the protein when retained in the cytosol. This review aims to summarize and present the state of the art knowledge about the role of YAP in cancer signaling, first focusing on how YAP differs from WW domain-containing transcription regulator 1 (WWTR1, also named as TAZ) and which upstream factors regulate it; then, this review focuses on the role of YAP in different cancer stages and in the crosstalk between immune and cancer cells as well as growing translational strategies derived from its inhibitory and synergistic effects with existing chemo-, immuno- and radiotherapies.
Collapse
|
209
|
Zhang Z, Liu L, Ma C, Cui X, Lam RHW, Chen W. An in silico glioblastoma microenvironment model dissects the immunological mechanisms of resistance to PD-1 checkpoint blockade immunotherapy. SMALL METHODS 2021; 5:2100197. [PMID: 34423116 PMCID: PMC8372235 DOI: 10.1002/smtd.202100197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 05/02/2023]
Abstract
The PD-1 immune checkpoint-based therapy has emerged as a promising therapy strategy for treating the malignant brain tumor glioblastoma (GBM). However, patient response varies in clinical trials due in large to the tumor heterogeneity and immunological resistance in the tumor microenvironment. To further understand how mechanistically the niche interplay and competition drive anti-PD-1 resistance, we established an in-silico model to quantitatively describe the biological rationale of critical GBM-immune interactions, such as tumor growth and apoptosis, T cell activation and cytotoxicity, and tumor-associated macrophage (TAM) mediated immunosuppression. Such an in-silico experimentation and predictive model, based on the in vitro microfluidic chip-measured end-point data and patient-specific immunological characteristics, allowed for a comprehensive and dynamic analysis of multiple TAM-associated immunosuppression mechanisms against the anti-PD-1 immunotherapy. Our computational model demonstrated that the TAM-associated immunosuppression varied in severity across different GBM subtypes, which resulted in distinct tumor responses. Our prediction results indicated that a combination therapy co-targeting of PD-1 checkpoint and TAM-associated CSF-1R signaling could enhance the immune responses of GBM patients, especially those patients with mesenchymal GBM who are irresponsive to the single anti-PD-1 therapy. The development of a patient-specific in silico-in vitro GBM model would help navigate and personalize immunotherapies for GBM patients.
Collapse
Affiliation(s)
- Zhuoyu Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Xin Cui
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY
| |
Collapse
|
210
|
Abstract
The development of tumors requires an initiator event, usually exposure to DNA damaging agents that cause genetic alterations such as gene mutations or chromosomal abnormalities, leading to deregulated cell proliferation. Although the mere stochastic accumulation of further mutations may cause tumor progression, it is now clear that an inflammatory microenvironment has a major tumor-promoting influence on initiated cells, in particular when a chronic inflammatory reaction already existed before the initiated tumor cell was formed. Moreover, inflammatory cells become mobilized in response to signals emanating from tumor cells. In both cases, the microenvironment provides signals that initiated tumor cells perceive by membrane receptors and transduce via downstream kinase cascades to modulate multiple cellular processes and respond with changes in cell gene expression, metabolism, and morphology. Cytokines, chemokines, and growth factors are examples of major signals secreted by immune cells, fibroblast, and endothelial cells and mediate an intricate cell-cell crosstalk in an inflammatory microenvironment, which contributes to increased cancer cell survival, phenotypic plasticity and adaptation to surrounding tissue conditions. Eventually, consequent changes in extracellular matrix stiffness and architecture, coupled with additional genetic alterations, further fortify the malignant progression of tumor cells, priming them for invasion and metastasis. Here, we provide an overview of the current knowledge on the composition of the inflammatory tumor microenvironment, with an emphasis on the major signals and signal-transducing events mediating different aspects of stromal cell-tumor cell communication that ultimately lead to malignant progression.
Collapse
|
211
|
Starosolski Z, Courtney AN, Srivastava M, Guo L, Stupin I, Metelitsa LS, Annapragada A, Ghaghada KB. A Nanoradiomics Approach for Differentiation of Tumors Based on Tumor-Associated Macrophage Burden. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:6641384. [PMID: 34220380 PMCID: PMC8216795 DOI: 10.1155/2021/6641384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/26/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022]
Abstract
Objective Tumor-associated macrophages (TAMs) within the tumor immune microenvironment (TiME) of solid tumors play an important role in treatment resistance and disease recurrence. The purpose of this study was to investigate if nanoradiomics (radiomic analysis of nanoparticle contrast-enhanced images) can differentiate tumors based on TAM burden. Materials and Methods In vivo studies were performed in transgenic mouse models of neuroblastoma with low (N = 11) and high (N = 10) tumor-associated macrophage (TAM) burden. Animals underwent delayed nanoparticle contrast-enhanced CT (n-CECT) imaging at 4 days after intravenous administration of liposomal-iodine agent (1.1 g/kg). CT imaging-derived conventional tumor metrics (tumor volume and CT attenuation) were computed for segmented tumor CT datasets. Nanoradiomic analysis was performed using a PyRadiomics workflow implemented in the quantitative image feature pipeline (QIFP) server containing 900 radiomic features (RFs). RF selection was performed under supervised machine learning using a nonparametric neighborhood component method. A 5-fold validation was performed using a set of linear and nonlinear classifiers for group separation. Statistical analysis was performed using the Kruskal-Wallis test. Results N-CECT imaging demonstrated heterogeneous patterns of signal enhancement in low and high TAM tumors. CT imaging-derived conventional tumor metrics showed no significant differences (p > 0.05) in tumor volume between low and high TAM tumors. Tumor CT attenuation was not significantly different (p > 0.05) between low and high TAM tumors. Machine learning-augmented nanoradiomic analysis revealed two RFs that differentiated (p < 0.002) low TAM and high TAM tumors. The RFs were used to build a linear classifier that demonstrated very high accuracy and further confirmed by 5-fold cross-validation. Conclusions Imaging-derived conventional tumor metrics were unable to differentiate tumors with varying TAM burden; however, nanoradiomic analysis revealed texture differences and enabled differentiation of low and high TAM tumors.
Collapse
Affiliation(s)
- Zbigniew Starosolski
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Amy N. Courtney
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mayank Srivastava
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston, TX, USA
| | - Linjie Guo
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Igor Stupin
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston, TX, USA
| | - Leonid S. Metelitsa
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Ananth Annapragada
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Ketan B. Ghaghada
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
212
|
Martin JD, Miyazaki T, Cabral H. Remodeling tumor microenvironment with nanomedicines. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1730. [PMID: 34124849 DOI: 10.1002/wnan.1730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) has been recognized as a major contributor to cancer malignancy and therapeutic resistance. Thus, strategies directed to re-engineer the TME are emerging as promising approaches for improving the efficacy of antitumor therapies by enhancing tumor perfusion and drug delivery, as well as alleviating the immunosuppressive TME. In this regard, nanomedicine has shown great potential for developing effective treatments capable of re-modeling the TME by controlling drug action in a spatiotemporal manner and allowing long-lasting modulatory effects on the TME. Herein, we review recent progress on TME re-engineering by using nanomedicine, particularly focusing on formulations controlling TME characteristics through targeted interaction with cellular components of the TME. Importantly, the TME should be re-engineering to a quiescent phenotype rather than be destroyed. Finally, immediate challenges and future perspectives of TME-re-engineering nanomedicines are discussed, anticipating further innovation in this growing field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Takuya Miyazaki
- Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
213
|
Hoshino H, Aokage K, Miyoshi T, Tane K, Kojima M, Sugano M, Kuwata T, Ochiai A, Suzuki K, Tsuboi M, Ishii G. Correlation between the number of viable tumor cells and immune cells in the tumor microenvironment in non-small cell lung cancer after induction therapy. Pathol Int 2021; 71:512-520. [PMID: 34115921 DOI: 10.1111/pin.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
This study aims to determine the correlation between the percent viable tumor cells (%VTC) and the tumor microenvironment in resected non-small cell lung cancer after induction therapy. We enrolled 72 patients with non-small cell lung cancer (NSCLC) who received chemoradiotherapy (CRT) or chemotherapy (CT) prior to surgery. The ratio of the area of viable tumor cells to the total tumor area was calculated to obtain the %VTC. We also examined the number of CD4 (+), CD8 (+), CD20 (+) and FOXP3 (+) tumor-infiltrating lymphocytes (TILs), podoplanin (PDPN) (+) cancer-associated fibroblasts (CAFs), and CD204 (+) tumor-associated macrophages (TAMs) by immunohistochemistry (IHC). In the CRT group (n = 37), the tumors had significantly lower %VTC than the CT group (n = 35) (P < 0.001). In both of the CT group and CRT group, the %VTC showed a significant positive correlation with the number of CD204 (+)-TAMs (P = 0.014 and 0.005, respectively). Only in the CRT group, a higher number of CD204 (+) TAMs was associated with a shorter overall survival (OS) (P = 0.007) and recurrence-free survival (RFS) (P = 0.015). In the CRT group, the number of CD204 (+) TAMs is associated with %VTC and prognosis, suggesting that these cells may have tumor-promoting effects on the residual lung cancer in specific microenvironments after CRT.
Collapse
Affiliation(s)
- Hironobu Hoshino
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.,Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.,Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan.,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Tomohiro Miyoshi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kenta Tane
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Masato Sugano
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Atsushi Ochiai
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| |
Collapse
|
214
|
Frank AC, Raue R, Fuhrmann DC, Sirait-Fischer E, Reuse C, Weigert A, Lütjohann D, Hiller K, Syed SN, Brüne B. Lactate dehydrogenase B regulates macrophage metabolism in the tumor microenvironment. Am J Cancer Res 2021; 11:7570-7588. [PMID: 34158867 PMCID: PMC8210612 DOI: 10.7150/thno.58380] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Glucose metabolism in the tumor-microenvironment is a fundamental hallmark for tumor growth and intervention therein remains an attractive option for anti-tumor therapy. Whether tumor-derived factors such as microRNAs (miRs) regulate glucose metabolism in stromal cells, especially in tumor-associated macrophages (TAMs), to hijack them for trophic support, remains elusive. Methods: Ago-RIP-Seq identified macrophage lactate dehydrogenase B (LDHB) as a target of tumor-derived miR-375 in both 2D/3D cocultures and in murine TAMs from a xenograft mouse model. The prognostic value was analyzed by ISH and multiplex IHC of breast cancer patient tissues. Functional consequences of the miR-375-LDHB axis in TAMs were investigated upon mimic/antagomir treatment by live metabolic flux assays, GC/MS, qPCR, Western blot, lentiviral knockdown and FACS. The therapeutic potential of a combinatorial miR-375-decoy/simvastatin treatment was validated by live cell imaging. Results: Macrophage LDHB decreased in murine and human breast carcinoma. LDHB downregulation increase aerobic glycolysis and lactagenesis in TAMs in response to tumor-derived miR-375. Lactagenesis reduced fatty acid synthesis but activated SREBP2, which enhanced cholesterol biosynthesis in macrophages. LDHB downregulation skewed TAMs to function as a lactate and sterol/oxysterol source for the proliferation of tumor cells. Restoring of LDHB expression potentiated inhibitory effects of simvastatin on tumor cell proliferation. Conclusion: Our findings identified a crucial role of LDHB in macrophages and established tumor-derived miR-375 as a novel regulator of macrophage metabolism in breast cancer, which might pave the way for strategies of combinatorial cancer cell/stroma cell interventions.
Collapse
|
215
|
Cui X, Qin T, Zhao Z, Yang G, Sanches JGP, Zhang Q, Fan S, Cao L, Hu X. Pentraxin-3 inhibits milky spots metastasis of gastric cancer by inhibiting M2 macrophage polarization. J Cancer 2021; 12:4686-4697. [PMID: 34149932 PMCID: PMC8210545 DOI: 10.7150/jca.58698] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/24/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose: Recent studies have indicated that Pentraxin-3 (PTX3) is related to invasion, migration and metastasis of gastric cancer cells (GCCs). However, the function of PTX3 in stemness and tumor-associated macrophages (TAMs) polarization in GC has not yet been revealed. Here, we investigated the role of PTX3 in TAMs polarization and stemness in gastric cancer (GC), and further explored the effect of PTX3 on milky spot metastasis of gastric cancer. Methods: PTX3 expression in human gastric cancer tissues was examined with immunohistochemistry (IHC). The influence on stemness of gastric cancer cells was examined by sphere formation assay and western blot. qRT-PCR, IHC and flow cytometry were used to evaluate M1/M2 macrophage signatures. The effects of PTX3 on TAM polarization and milky spots were investigated in vitro and in vivo. The possible mechanism of PTX3 on targeted cytokines and pathway were analyzed by qRT-PCR and western blot. Results: We found that PTX3 was low expressed in gastric carcinoma tissues and associated with stemness and polarization of macrophages. The upregulation of PTX3 inhibited the stemness of GCCs. Furthermore, PTX3 suppressed the polarization of M2 macrophages in the milky spots in vivo and in vitro and inhibited the metastasis of GC into milky spots. PTX3 restrained the expression of interleukin-4 (IL-4) and IL-10 via the inhibition of phosphorylation of the c-Jun N-terminal protein kinase 1/2 (JNK1/2) in GCCs. Conclusion: These results revealed a novel mechanism of PTX3 in GC, which may participate in the development and metastasis of GC by affecting stemness and macrophage polarization. PTX3 should be considered as a crucial biomarker and may be potentially used in targeted therapy in GC progression.
Collapse
Affiliation(s)
- Xinye Cui
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, P.R. China
| | - Tao Qin
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Zhengdong Zhao
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116027, P.R. China
| | - Guang Yang
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116027, P.R. China
| | | | - Qingqing Zhang
- Department of Pathology, Dalian Medical University, Dalian 116044, P. R. China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Dalian 116044, P. R. China
| | - Liang Cao
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, P.R. China
| | - Xiang Hu
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, P.R. China
| |
Collapse
|
216
|
Immune System-Related Changes in Preclinical GL261 Glioblastoma under TMZ Treatment: Explaining MRSI-Based Nosological Imaging Findings with RT-PCR Analyses. Cancers (Basel) 2021; 13:cancers13112663. [PMID: 34071393 PMCID: PMC8199490 DOI: 10.3390/cancers13112663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Glioblastomas (GB) are brain tumours with poor prognosis even after aggressive therapy. Previous work suggests that magnetic resonance spectroscopic imaging (MRSI) could act as a biomarker of efficient immune system attack onto GB, presenting oscillatory changes. Glioma-associated microglia/macrophages (GAMs) constitute the most abundant non-tumour cell type within the GB and can be polarised into anti-tumour (M1) or pro-tumour (M2) phenotypes. One of the mechanisms to mediate immunosuppression in brain tumours is the interaction between programmed cell death-1 ligand 1 (PD-L1) and programmed cell death-1 receptor (PD-1). We evaluated the subpopulations of GAMs in responding and control GB tumours to correlate PD-L1 expression to GAM polarisation in order to explain/validate MRSI-detected findings. Mice were evaluated by MRI/MRSI to assess the extent of response to treatment and with qPCR for GAMs M1 and M2 polarisation analyses. M1/M2 ratios and PD-L1 expression were higher in treated compared to control tumours. Furthermore, PD-L1 expression was positively correlated with the M1/M2 ratio. The oscillatory change in the GAMs prevailing population could be one of the key causes for the differential MRSI-detected pattern, allowing this to act as immune system activity biomarker in future work.
Collapse
|
217
|
Miao KZ, Kim GY, Meara GK, Qin X, Feng H. Tipping the Scales With Zebrafish to Understand Adaptive Tumor Immunity. Front Cell Dev Biol 2021; 9:660969. [PMID: 34095125 PMCID: PMC8173129 DOI: 10.3389/fcell.2021.660969] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
The future of improved immunotherapy against cancer depends on an in-depth understanding of the dynamic interactions between the immune system and tumors. Over the past two decades, the zebrafish has served as a valuable model system to provide fresh insights into both the development of the immune system and the etiologies of many different cancers. This well-established foundation of knowledge combined with the imaging and genetic capacities of the zebrafish provides a new frontier in cancer immunology research. In this review, we provide an overview of the development of the zebrafish immune system along with a side-by-side comparison of its human counterpart. We then introduce components of the adaptive immune system with a focus on their roles in the tumor microenvironment (TME) of teleosts. In addition, we summarize zebrafish models developed for the study of cancer and adaptive immunity along with other available tools and technology afforded by this experimental system. Finally, we discuss some recent research conducted using the zebrafish to investigate adaptive immune cell-tumor interactions. Without a doubt, the zebrafish will arise as one of the driving forces to help expand the knowledge of tumor immunity and facilitate the development of improved anti-cancer immunotherapy in the foreseeable future.
Collapse
Affiliation(s)
- Kelly Z Miao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace Y Kim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace K Meara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Xiaodan Qin
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Hui Feng
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
218
|
King R, Hayes C, Donohoe CL, Dunne MR, Davern M, Donlon NE. Hypoxia and its impact on the tumour microenvironment of gastroesophageal cancers. World J Gastrointest Oncol 2021; 13:312-331. [PMID: 34040696 PMCID: PMC8131902 DOI: 10.4251/wjgo.v13.i5.312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The malfeasant role of the hypoxic tumour microenvironment (TME) in cancer progression was recognized decades ago but the exact mechanisms that augment the hallmarks of cancer and promote treatment resistance continue to be elucidated. Gastroesophageal cancers (GOCs) represent a major burden of worldwide disease, responsible for the deaths of over 1 million people annually. Disentangling the impact of hypoxia in GOCs enables a better overall understanding of the disease pathogenesis while shining a light on novel therapeutic strategies and facilitating precision treatment approaches with the ultimate goal of improving outcomes for patients with these diseases. This review discusses the underlying principles and processes of the hypoxic response and the effect of hypoxia in promoting the hallmarks of cancer in the context of GOCs. We focus on its bidirectional influence on inflammation and how it drives angiogenesis, innate and adaptive immune evasion, metastasis, and the reprogramming of cellular bioenergetics. The contribution of the hypoxic GOC TME to treatment resistance is examined and a brief overview of the pharmacodynamics of hypoxia-targeted therapeutics is given. The principal methods that are used in measuring hypoxia and how they may enhance prognostication or provide rationale for individually tailored management in the case of tumours with significant hypoxic regions are also discussed.
Collapse
Affiliation(s)
- Ross King
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Conall Hayes
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Claire L Donohoe
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Margaret R Dunne
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Maria Davern
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Noel E Donlon
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| |
Collapse
|
219
|
Xia Y, Li Y, Wu X, Zhang Q, Chen S, Ma X, Yu M. Ironing Out the Details: How Iron Orchestrates Macrophage Polarization. Front Immunol 2021; 12:669566. [PMID: 34054839 PMCID: PMC8149954 DOI: 10.3389/fimmu.2021.669566] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Iron fine-tunes innate immune responses, including macrophage inflammation. In this review, we summarize the current understanding about the iron in dictating macrophage polarization. Mechanistically, iron orchestrates macrophage polarization through several aspects, including cellular signaling, cellular metabolism, and epigenetic regulation. Therefore, iron modulates the development and progression of multiple macrophage-associated diseases, such as cancer, atherosclerosis, and liver diseases. Collectively, this review highlights the crucial role of iron for macrophage polarization, and indicates the potential application of iron supplementation as an adjuvant therapy in different inflammatory disorders relative to the balance of macrophage polarization.
Collapse
Affiliation(s)
- Yaoyao Xia
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yikun Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyan Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingzhuo Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siyuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xianyong Ma
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Miao Yu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
220
|
Midavaine É, Côté J, Sarret P. The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic cancers. Cancer Metastasis Rev 2021; 40:427-445. [PMID: 33973098 DOI: 10.1007/s10555-021-09974-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
Breast and prostate cancers have a great propensity to metastasize to long bones. The development of bone metastases is life-threatening, incurable, and drastically reduces patients' quality of life. The chemokines CCL2 and CXCL12 and their respective receptors, CCR2 and CXCR4, are central instigators involved in all stages leading to cancer cell dissemination and secondary tumor formation in distant target organs. They orchestrate tumor cell survival, growth and migration, tumor invasion and angiogenesis, and the formation of micrometastases in the bone marrow. The bone niche is of particular importance in metastasis formation, as it expresses high levels of CCL2 and CXCL12, which attract tumor cells and contribute to malignancy. The limited number of available effective treatment strategies highlights the need to better understand the pathophysiology of bone metastases and reduce the skeletal tumor burden in patients diagnosed with metastatic bone disease. This review focuses on the involvement of the CCL2/CCR2 and CXCL12/CXCR4 chemokine axes in the formation and development of bone metastases, as well as on therapeutic perspectives aimed at targeting these chemokine-receptor pairs.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada. .,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.
| | - Jérôme Côté
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| |
Collapse
|
221
|
Role of Microenvironment in Non-Hodgkin Lymphoma: Understanding the Composition and Biology. ACTA ACUST UNITED AC 2021; 26:206-216. [PMID: 32496454 DOI: 10.1097/ppo.0000000000000446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lymphoma microenvironment is a dynamic and well-orchestrated network of various immune and stromal cells that is indispensable for tumor cell survival, growth, migration, immune escape, and drug resistance. Recent progress has enhanced our knowledge of the pivotal role of microenvironment in lymphomagenesis. Understanding the characteristics, functions, and contributions of various components of the tumor niche, along with its bidirectional interactions with tumor cells, is paramount. It offers the potential to identify new therapeutic targets with the ability to restore antitumor immune surveillance and eliminate the protumoral factors contributed by the tumor niche.
Collapse
|
222
|
Shigeoka M, Koma YI, Nishio M, Akashi M, Yokozaki H. Alteration of Macrophage Infiltrating Compartment: A Novel View on Oral Carcinogenesis. Pathobiology 2021; 88:327-337. [PMID: 33965948 DOI: 10.1159/000515922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The mortality of oral squamous cell carcinoma (OSCC) has remained high for decades; therefore, methods for early detection of OSCC are warranted. However, in the oral cavity, various mucosal diseases may be encountered, including reactive lesions and oral potentially malignant disorders, and it is difficult to differentiate OSCC from these lesions based on both clinical and histopathological findings. It is well known that chronic inflammation contributes to oral cancer development. Macrophages are among the most common inflammatory cells in cancer stromal tissue and have various roles in cancer aggressiveness. Although the roles of macrophages in cancer development have attracted attention, only a few studies have linked macrophages to carcinogenesis, particularly, oral precancerous lesions. SUMMARY This review article consists of 3 parts: first, we summarize current knowledge on macrophages in human various epithelial precancerous lesions, excluding the oral cavity, to show the importance and gaps in knowledge regarding macrophages in carcinogenesis; second, we review published data related to the role of macrophages in oral carcinogenesis; finally, we present a novel view on oral carcinogenesis, focusing on crosstalk between epithelial cells and macrophages. Key Messages: The biological features of macrophages in oral carcinogenesis differ drastically depending on the anatomical compartment that they infiltrate. Focusing on the alteration of macrophage infiltrating compartment may serve as a useful novel approach for studying the role of the macrophages in oral carcinogenesis and for gaining further insight into cancer prevention and early detection.
Collapse
Affiliation(s)
- Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Division of Oral and Maxillofacial Surgery, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
223
|
Tien TZ, Lee JNLW, Lim JCT, Chen XY, Thike AA, Tan PH, Yeong JPS. Delineating the breast cancer immune microenvironment in the era of multiplex immunohistochemistry/immunofluorescence. Histopathology 2021; 79:139-159. [PMID: 33400265 DOI: 10.1111/his.14328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common malignancy and the leading cause of cancer death in females worldwide. Treatment is challenging, especially for those who are triple-negative. Increasing evidence suggests that diverse immune populations are present in the breast tumour microenvironment, which opens up avenues for personalised drug targets. Historically, our investigations into the immune constitution of breast tumours have been restricted to analyses of one or two markers at a given time. Recent technological advances have allowed simultaneous labelling of more than 35 markers and detailed profiling of tumour-immune infiltrates at the single-cell level, as well as determining the cellular composition and spatial analysis of the entire tumour architecture. In this review, we describe emerging technologies that have contributed to the field of breast cancer diagnosis, and discuss how to interpret the vast data sets obtained in order to effectively translate them for clinically relevant use.
Collapse
Affiliation(s)
- Tracy Z Tien
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Justina N L W Lee
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jeffrey C T Lim
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiao-Yang Chen
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aye Aye Thike
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Puay Hoon Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Joe P S Yeong
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
224
|
Woolf Z, Swanson MEV, Smyth LC, Mee EW, Schweder P, Heppner P, Kim BJH, Turner C, Oldfield RL, Curtis MA, Faull RLM, Scotter EL, Park TIH, Dragunow M. Single-cell image analysis reveals a protective role for microglia in glioblastoma. Neurooncol Adv 2021; 3:vdab031. [PMID: 34286275 PMCID: PMC8284623 DOI: 10.1093/noajnl/vdab031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Microglia and tumor-associated macrophages (TAMs) constitute up to half of the total tumor mass of glioblastomas. Despite these myeloid populations being ontogenetically distinct, they have been largely conflated. Recent single-cell transcriptomic studies have identified genes that distinguish microglia from TAMs. Here we investigated whether the translated proteins of genes enriched in microglial or TAM populations can be used to differentiate these myeloid cells in immunohistochemically stained human glioblastoma tissue. Methods Tissue sections from resected low-grade, meningioma, and glioblastoma (grade IV) tumors and epilepsy tissues were immunofluorescently triple-labeled for Iba1 (pan-myeloid marker), CD14 or CD163 (preferential TAM markers), and either P2RY12 or TMEM119 (microglial-specific markers). Using a single-cell-based image analysis pipeline, we quantified the abundance of each marker within single myeloid cells, allowing the identification and analysis of myeloid populations. Results P2RY12 and TMEM119 successfully discriminated microglia from TAMs in glioblastoma. In contrast, CD14 and CD163 expression were not restricted to invading TAMs and were upregulated by tumor microglia. Notably, a higher ratio of microglia to TAMs significantly correlated with increased patient survival. Conclusions We demonstrate the validity of previously defined microglial-specific genes P2RY12 and TMEM119 as robust discriminators of microglia and TAMs at the protein level in human tissue. Moreover, our data suggest that a higher proportion of microglia may be beneficial for patient survival in glioblastoma. Accordingly, this tissue-based method for myeloid population differentiation could serve as a useful prognostic tool.
Collapse
Affiliation(s)
- Zoe Woolf
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Molly E V Swanson
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Leon C Smyth
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Edward W Mee
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Peter Heppner
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Bernard J H Kim
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Clinton Turner
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Robyn L Oldfield
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Emma L Scotter
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michael Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
225
|
Zhang R, Zong J, Peng Y, Shi J, Du X, Liu H, Shen Y, Cao J, Jia B, Liu F, Zhang J. GPR30 knockdown weakens the capacity of CAF in promoting prostate cancer cell invasion via reducing macrophage infiltration and M2 polarization. J Cell Biochem 2021; 122:1173-1191. [PMID: 33938030 DOI: 10.1002/jcb.29938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/27/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Cancer-associated fibroblasts (CAFs) can promote the development and metastasis of prostate cancer partly by mediating tumor-associated inflammation. An increasing amount of studies have focused on the functional interactions between CAFs and immune cells in the tumor microenvironment (TME). We previously reported that G protein-coupled receptor 30 (GPR30) was highly expressed in prostate CAFs and plays a crucial role in prostate stromal cell activation. However, the effect and underlying mechanism of GPR30 expression in prostate CAFs affecting the interaction between CAFs and tumor-associated macrophages (TAMs) need further elucidation. Here, we found that, compared with CAF-shControl, CAF-shGPR30 inhibited macrophage migration through transwell migration assays, which should be attributed to the decreased expression of C-X-C motif chemokine ligand 12 (CXCL12). In addition, macrophages treated with a culture medium of CAF-shGPR30 exhibited attenuated M2 polarization with downregulated M2-like markers expression. Moreover, macrophages stimulated with a culture medium of CAF-shGPR30 were less efficient in promoting activation of fibroblast cells and invasion of PCa cells. Finally, cocultured CAF-shGPR30 and macrophages suppressed PCa cell invasion compared to cocultured CAF-shControl and macrophages by decreasing interleukin-6 (IL-6) secretion, and this effect could be abrogated with rescue expression of IL-6. Our results pinpoint the function of GPR30 in prostate CAFs on regulating the CAF-TAM interaction in the TME and provide new insights into PCa therapies via regulating TME.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiaojiao Zong
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Yanfei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiandang Shi
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoling Du
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Haitao Liu
- Shanghai First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Yongmei Shen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Jiasong Cao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Bona Jia
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, China
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
226
|
The correlation between tumor-associated macrophage infiltration and progression in cervical carcinoma. Biosci Rep 2021; 41:228475. [PMID: 33928349 PMCID: PMC8493445 DOI: 10.1042/bsr20203145] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 12/09/2022] Open
Abstract
Tumor microenvironment (TME) plays a particularly important role in the progression, invasion and metastasis of cervical carcinoma (CC). Tumor-associated macrophages (TAMs) are significant components of the tumor microenvironment in CC. However, the results of studies on the correlation between TAMs and progression in CC are still controversial. This research aimed to investigate the relationship between TAMs infiltration and progression in CC. A total of 100 patients with CC were included in the study. The correlation between TAMs and clinicopathologic features was studied. Besides, a systematic literature search was conducted from legitimate electronic databases to specifically evaluate the role of TAMs in TME of cervical carcinoma. In the meta-analysis, high stromal CD68+ TAMs density was relevant to lymph node metastasis (WMD = 11.89, 95% CI: 5.30–18.47). At the same time, CD163+ M2 TAM density was associated with lymph node metastasis (OR = 2.42, 95% CI: 1.09–5.37; WMD = 39.37, 95% CI: 28.25–50.49) and FIGO stage (WMD = -33.60, 95% CI: -45.04 to -22.16). This was further confirmed in the experimental study of 100 tissues of cervical cancer. It supported a critical role of TAMs as a prospective predictor of cervical cancer. In conclusion, CD68+ TAM and CD163+ M2 TAM infiltration in CC were associated with tumor progression. And CD163+ M2 TAM infiltration was associated with more advanced FIGO stage and lymph node metastasis in CC.
Collapse
|
227
|
Guo J, Fang Q, Liu Y, Xie W, Li C, Zhang Y. Screening and Identification of Key Microenvironment-Related Genes in Non-functioning Pituitary Adenoma. Front Genet 2021; 12:627117. [PMID: 33986766 PMCID: PMC8110910 DOI: 10.3389/fgene.2021.627117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/08/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose Non-functioning pituitary adenoma (NFPA) is a very common type of intracranial tumor, which can be locally invasive and can have a high recurrence rate. The tumor microenvironment (TME) shows a high correlation with tumor pathogenesis and prognosis. The current study aimed to identify microenvironment-related genes in NFPAs and assess their prognostic value. Methods 73 NFPA tumor samples were collected from Beijing Tiantan Hospital and transcriptional expression profiles were obtained through microarray analysis. The immune and stromal scores of each sample were calculated through the ESTIMATE algorithm, and the patients were divided into high and low immune/stromal score groups. Intersection differentially expressed genes (DEGs) were then obtained to construct a protein–protein interaction (PPI) network. Potential functions and pathways of intersection DEGs were then analyzed through Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. The prognostic value of these genes was evaluated. The quantitative real-time polymerase chain reaction in another set of NFPA samples was used to confirm the credibility of the bioinformatics analysis. Results The immune/stromal scores were significantly correlated with cavernous sinus (CS) invasion. The Kaplan–Meier curve indicated that the high immune score group was significantly related to poor recurrence-free survival. We identified 497 intersection DEGs based on the high vs. low immune/stromal score groups. Function enrichment analyses of 497 DEGs and hub genes from the PPI network showed that these genes are mainly involved in the immune/inflammatory response, T cell activation, and the phosphatidylinositol 3 kinase-protein kinase B signaling pathway. Among the intersection DEGs, 88 genes were further verified as significantly expressed between the CS invasive group and the non-invasive group, and five genes were highly associated with NFPA prognosis. Conclusion We screened out a series of critical genes associated with the TME in NFPAs. These genes may play a fundamental role in the development and prognosis of NFPA and may yield new therapeutic targets.
Collapse
Affiliation(s)
- Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qiuyue Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yulou Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
228
|
Colombo MV, Bersini S, Arrigoni C, Gilardi M, Sansoni V, Ragni E, Candiani G, Lombardi G, Moretti M. Engineering the early bone metastatic niche through human vascularized immuno bone minitissues. Biofabrication 2021; 13. [PMID: 33735854 DOI: 10.1088/1758-5090/abefea] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023]
Abstract
Bone metastases occur in 65%-80% advanced breast cancer patients. Although significant progresses have been made in understanding the biological mechanisms driving the bone metastatic cascade, traditional 2Din vitromodels and animal studies are not effectively reproducing breast cancer cells (CCs) interactions with the bone microenvironment and suffer from species-specific differences, respectively. Moreover, simplifiedin vitromodels cannot realistically estimate drug anti-tumoral properties and side effects, hence leading to pre-clinical testing frequent failures. To solve this issue, a 3D metastatic bone minitissue (MBm) is designed with embedded human osteoblasts, osteoclasts, bone-resident macrophages, endothelial cells and breast CCs. This minitissue recapitulates key features of the bone metastatic niche, including the alteration of macrophage polarization and microvascular architecture, along with the induction of CC micrometastases and osteomimicry. The minitissue reflects breast CC organ-specific metastatization to bone compared to a muscle minitissue. Finally, two FDA approved drugs, doxorubicin and rapamycin, have been tested showing that the dose required to impair CC growth is significantly higher in the MBm compared to a simpler CC monoculture minitissue. The MBm allows the investigation of metastasis key biological features and represents a reliable tool to better predict drug effects on the metastatic bone microenvironment.
Collapse
Affiliation(s)
- Maria Vittoria Colombo
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland.,Biocompatibility and Cell Culture Laboratory 'BioCell', Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, 20133 Milano, Italy
| | - Simone Bersini
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Mara Gilardi
- Institute of Pathology, University Hospital of Basel, Basel 4056, Switzerland
| | - Veronica Sansoni
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, 20161 Milano, Italy
| | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Orthopedic Biotechnology Lab, 20161 Milano, Italy
| | - Gabriele Candiani
- Biocompatibility and Cell Culture Laboratory 'BioCell', Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, 20133 Milano, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, 20161 Milano, Italy.,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań 61-871, Poland
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland.,IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, 20161 Milano, Italy.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
229
|
Mehta AK, Kadel S, Townsend MG, Oliwa M, Guerriero JL. Macrophage Biology and Mechanisms of Immune Suppression in Breast Cancer. Front Immunol 2021; 12:643771. [PMID: 33968034 PMCID: PMC8102870 DOI: 10.3389/fimmu.2021.643771] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages are crucial innate immune cells that maintain tissue homeostasis and defend against pathogens; however, their infiltration into tumors has been associated with adverse outcomes. Tumor-associated macrophages (TAMs) represent a significant component of the inflammatory infiltrate in breast tumors, and extensive infiltration of TAMs has been linked to poor prognosis in breast cancer. Here, we detail how TAMs impede a productive tumor immunity cycle by limiting antigen presentation and reducing activation of cytotoxic T lymphocytes (CTLs) while simultaneously supporting tumor cell survival, angiogenesis, and metastasis. There is an urgent need to overcome TAM-mediated immune suppression for durable anti-tumor immunity in breast cancer. To date, failure to fully characterize TAM biology and classify multiple subsets has hindered advancement in therapeutic targeting. In this regard, the complexity of TAMs has recently taken center stage owing to their subset diversity and tightly regulated molecular and metabolic phenotypes. In this review, we reveal major gaps in our knowledge of the functional and phenotypic characterization of TAM subsets associated with breast cancer, before and after treatment. Future work to characterize TAM subsets, location, and crosstalk with neighboring cells will be critical to counteract TAM pro-tumor functions and to identify novel TAM-modulating strategies and combinations that are likely to enhance current therapies and overcome chemo- and immuno-therapy resistance.
Collapse
Affiliation(s)
- Anita K Mehta
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Sapana Kadel
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Madeline G Townsend
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Madisson Oliwa
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
230
|
Lee SWL, Seager RJ, Litvak F, Spill F, Sieow JL, Leong PH, Kumar D, Tan ASM, Wong SC, Adriani G, Zaman MH, Kamm ARD. Integrated in silico and 3D in vitro model of macrophage migration in response to physical and chemical factors in the tumor microenvironment. Integr Biol (Camb) 2021; 12:90-108. [PMID: 32248236 DOI: 10.1093/intbio/zyaa007] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Macrophages are abundant in the tumor microenvironment (TME), serving as accomplices to cancer cells for their invasion. Studies have explored the biochemical mechanisms that drive pro-tumor macrophage functions; however the role of TME interstitial flow (IF) is often disregarded. Therefore, we developed a three-dimensional microfluidic-based model with tumor cells and macrophages to study how IF affects macrophage migration and its potential contribution to cancer invasion. The presence of either tumor cells or IF individually increased macrophage migration directedness and speed. Interestingly, there was no additive effect on macrophage migration directedness and speed under the simultaneous presence of tumor cells and IF. Further, we present an in silico model that couples chemokine-mediated signaling with mechanosensing networks to explain our in vitro observations. In our model design, we propose IL-8, CCL2, and β-integrin as key pathways that commonly regulate various Rho GTPases. In agreement, in vitro macrophage migration remained elevated when exposed to a saturating concentration of recombinant IL-8 or CCL2 or to the co-addition of a sub-saturating concentration of both cytokines. Moreover, antibody blockade against IL-8 and/or CCL2 inhibited migration that could be restored by IF, indicating cytokine-independent mechanisms of migration induction. Importantly, we demonstrate the utility of an integrated in silico and 3D in vitro approach to aid the design of tumor-associated macrophage-based immunotherapeutic strategies.
Collapse
Affiliation(s)
- Sharon Wei Ling Lee
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.,Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - R J Seager
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Felix Litvak
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Fabian Spill
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK
| | - Je Lin Sieow
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Penny Hweixian Leong
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Dillip Kumar
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Alrina Shin Min Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Siew Cheng Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.,Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Muhammad Hamid Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.,Howard Hughes Medical Institute, Boston University, Boston, MA, 02215, USA
| | - And Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
231
|
Tsuji S, Nakamura S, Yamada T, de Vega S, Okada Y, Inoue S, Shimazawa M, Hara H. HYBID derived from tumor cells and tumor-associated macrophages contribute to the glioblastoma growth. Brain Res 2021; 1764:147490. [PMID: 33887254 DOI: 10.1016/j.brainres.2021.147490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022]
Abstract
Glioblastoma is the most malignant tumor of the brain associated with poor prognosis and outcome, and hence there is an urgent need to develop novel treatments for glioblastoma. In this study, we focused on hyaluronan binding protein (HYBID, as known as CEMIP/KIAA1199), a protein involved in hyaluronan depolymerization in chondrocytes and synoviocytes. We previously reported that Hybid-deficient (KO) mice show accumulation of hyaluronan in the brain, and memory impairment. To elucidate the role of HYBID in glioblastoma pathogenesis, we knocked down HYBID in human glioblastoma cells using siRNAs and developed a murine orthotopic xenograft model in the Hybid KO mice. Downregulation of HYBID in glioblastoma cells resulted in inhibition of cell proliferation and migration, and increased cell death. The growth of glioblastoma cells implanted in the mouse brain was suppressed in Hybid KO mice compared to that in the wild-type mice. Interestingly, infiltration of macrophages in the glioblastoma tissue was decreased in Hybid KO mice. Using intraperitoneal macrophages derived from Hybid KO mice and glioma cell supernatants, we examined the role of HYBID in macrophages in the tumor environment. We showed that HYBID contributes to macrophage migration and the release of pro-tumor factors. Moreover, we revealed that HYBID can be a poor prognostic factor in glioma patients by bioinformatics approaches. Our study provides data to support that HYBID expressed by both glioblastoma cells and tumor-associated macrophages may contribute to glioblastoma progression and suggests that HYBID may be a potential target for therapy that focuses on the tumor microenvironment of glioblastoma.
Collapse
Affiliation(s)
- Shohei Tsuji
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuya Yamada
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan; Department of Neurosurgery, Gifu University School of Medicine, Gifu, Japan
| | - Susana de Vega
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shintaro Inoue
- Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
232
|
Effect of smoking status and programmed death-ligand 1 expression on the microenvironment and malignant transformation of oral leukoplakia: A retrospective cohort study. PLoS One 2021; 16:e0250359. [PMID: 33861793 PMCID: PMC8051817 DOI: 10.1371/journal.pone.0250359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Tobacco smoking is associated with an increased risk of oral leukoplakia and head and neck cancer. Although it has recently been reported that the establishment of an immunosuppressive microenvironment in oral potentially malignant disorders may lead to malignant transformation, it is unclear whether the microenvironments of oral potentially malignant disorders differ according to smoking status. We examined differences in programmed death-ligand 1 (PD-L1) expression and subepithelial CD163+ TAM and CD8+ cell/lymphocyte counts in the microenvironment of oral leukoplakia of smoking and non-smoking patients and investigated their associations with malignant transformation. Pathology reports and original biopsy request forms from 1995–2015 were retrospectively reviewed. Lesions clinically characterized as white plaques/lesions of the oral mucosa and pathologically diagnosed as oral epithelial dysplasia were included. Immunohistochemistry was performed to evaluate PD-L1 expression and subepithelial CD163+/CD8+ cell counts. The significance of prognostic factors in predicting malignant transformation was determined using Cox regression analysis. Statistical significance was defined as P<0.05. In total, 200 patients with oral leukoplakia were selected. The mean age at diagnosis was higher in non-smoking patients (n = 141; 66.9 years) than in smoking patients (n = 59; 60.5 years). The 5-year cumulative malignant transformation rate was higher in non-smoking patients than in smoking patients (9.3% vs. 3.0%, respectively). Oral leukoplakia was associated with significantly higher PD-L1 expression and increased numbers of subepithelial CD163+ cells in the non-smoking group compared with the smoking group. Non-smoking-related oral leukoplakia with positive PD-L1 expression was associated with a 6.97-fold (95% confidence interval: 2.14–22.7) increased risk of malignant transformation. The microenvironment of oral leukoplakia differed according to smoking status. A combination of smoking status and PD-L1 expression may predict malignant transformation in oral leukoplakia patients. This study highlights the importance of understanding the interaction between smoking and the microenvironment in oral leukoplakia.
Collapse
|
233
|
Liu X, Zheng S, Peng Y, Zhuang J, Yang Y, Xu Y, Guan G. Construction of the Prediction Model for Locally Advanced Rectal Cancer Following Neoadjuvant Chemoradiotherapy Based on Pretreatment Tumor-Infiltrating Macrophage-Associated Biomarkers. Onco Targets Ther 2021; 14:2599-2610. [PMID: 33880038 PMCID: PMC8053511 DOI: 10.2147/ott.s297263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose To assess the value of macrophage-related biomarkers (CD163, CD68, MCSF, and CCL2) for predicting the response to neo-chemoradiotherapy (NCRT) and the prognosis of locally advanced rectal cancer (LARC). Methods We enrolled 191 patients who underwent neoadjuvant chemoradiotherapy and radical resection between 2011 and 2015. Tumor tissues were collected before NCRT with a colonoscope and post-surgery and were subjected to immunohistochemical analysis. Results The expression levels of macrophage-related biomarkers (CD163, CD68, MCSF, and CCL2) were lower in the pathological complete response (pCR) group when compared with the non-pCR group (all P<0.05). Based on X-tile plots, we divided the tumors in two groups and found that lower pre-NCRT/post-surgical CD163, CD68, MCSF, CCL2 scores correlated with improved DFS. Cox regression analysis demonstrated that pre-NCRT CD163 (HR=1.008, 95% CI 1.003-1.013, P=0.003) and MCSF (HR=2.187, 95% CI 1.343-3.564, P=0.002) scores were independent predictors of DFS. Based on Cox multivariate analysis, we constructed a risk score model with a powerful ability to predict pCR in LARC patients. Moreover, COX regression analysis was performed to explore the role of the risk score in LARC patients. The results demonstrated that tumor size (HR=1.291, P=0.041), worse pathological TNM stage (HR=1.789, P=0.005, and higher risk score (HR=1.084, P<0.001) were significantly associated with impaired disease-free survival. Based on the above results, a nomogram and decision curve analysis were generated. Conclusion The expression levels of macrophage-related biomarkers CD163, CD68, MCSF, and CCL2 were associated with chemoradiotherapy resistance and prognosis in LARC patients following NCRT. A risk score model was constructed which could be used to predict LARC outcome.
Collapse
Affiliation(s)
- Xing Liu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Shuping Zheng
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yong Peng
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinfu Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yuanfeng Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yunlu Xu
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Guoxian Guan
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| |
Collapse
|
234
|
Silva AJD, de Macêdo LS, Leal LRS, de Jesus ALS, Freitas AC. Yeasts as a promising delivery platform for DNA and RNA vaccines. FEMS Yeast Res 2021; 21:foab018. [PMID: 33837785 DOI: 10.1093/femsyr/foab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Yeasts are considered a useful system for the development of vaccines for human and veterinary health. Species such as Saccharomyces cerevisiae and Pichia pastoris have been used successfully as host organisms for the production of subunit vaccines. These organisms have been also explored as vaccine vehicles enabling the delivery of antigens such as proteins and nucleic acids. The employed species possess a GRAS status (Generally Recognized as Safe) for the production of therapeutic proteins, besides promoting immunostimulation due to the properties of their wall cell composition. This strategy allows the administration of nucleic acids orally and a specific delivery to professional antigen-presenting cells (APCs). In this review, we seek to outline the development of whole yeast vaccines (WYV) carrying nucleic acids in different approaches in the medical field, as well as the immunological aspects of this vaccine strategy. The data presented here reveal the application of this platform in promoting effective immune responses in the context of prophylactic and therapeutic approaches.
Collapse
Affiliation(s)
- Anna Jéssica Duarte Silva
- Laboratório de Estudos Moleculares e Terapia Experimental, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rêgo, 1235, Cidade Universitaria, Recife, Pernambuco, Brazil
| | - Larissa Silva de Macêdo
- Laboratório de Estudos Moleculares e Terapia Experimental, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rêgo, 1235, Cidade Universitaria, Recife, Pernambuco, Brazil
| | - Lígia Rosa Sales Leal
- Laboratório de Estudos Moleculares e Terapia Experimental, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rêgo, 1235, Cidade Universitaria, Recife, Pernambuco, Brazil
| | - André Luiz Santos de Jesus
- Laboratório de Estudos Moleculares e Terapia Experimental, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rêgo, 1235, Cidade Universitaria, Recife, Pernambuco, Brazil
| | - Antonio Carlos Freitas
- Laboratório de Estudos Moleculares e Terapia Experimental, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rêgo, 1235, Cidade Universitaria, Recife, Pernambuco, Brazil
| |
Collapse
|
235
|
Huang Q, Liang X, Ren T, Huang Y, Zhang H, Yu Y, Chen C, Wang W, Niu J, Lou J, Guo W. The role of tumor-associated macrophages in osteosarcoma progression - therapeutic implications. Cell Oncol (Dordr) 2021; 44:525-539. [PMID: 33788151 DOI: 10.1007/s13402-021-00598-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant bone tumor. Compared with previous treatment modalities, such as amputation, more recent comprehensive treatment modalities based on neoadjuvant chemotherapy combined with limb salvage surgery have improved the survival rates of patients. Osteosarcoma treatment has, however, not further improved in recent years. Therefore, attention has shifted to the tumor microenvironment (TME) in which osteosarcoma cells are embedded. Therapeutic targets in the TME may be key to improving osteosarcoma treatment. Tumor-associated macrophages (TAMs) are the most common immune cells within the TME. TAMs in osteosarcoma may account for over 50% of the immune cells, and may play important roles in tumorigenesis, angiogenesis, immunosuppression, drug resistance and metastasis. Knowledge on the role of TAMs in the development, progression and treatment of osteosarcoma is gradually improving, although different or even opposing opinions still remain. CONCLUSIONS TAMs may participate in the malignant progression of osteosarcoma through self-polarization, the promotion of blood vessel and lymphatic vessel formation, immunosuppression, and drug resistance. Besides, various immune checkpoint proteins expressed on the surface of TAMs, such as PD-1 and CD47, provide the possibility of the application of immune checkpoint inhibitors. Several clinical trials have been carried out and/or are in progress. Mifamotide and the immune checkpoint inhibitor Camrelizumab were both found to be effective in prolonging progression-free survival. Thus, TAMs may serve as attractive therapeutic targets. Targeting TAMs as a complementary therapy is expected to improve the prognosis of osteosarcoma. Further efforts may be made to identify potential beneficiaries of TAM-targeted therapies.
Collapse
Affiliation(s)
- Qingshan Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Xin Liang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yiyang Yu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jingbing Lou
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| |
Collapse
|
236
|
Sletta KY, Castells O, Gjertsen BT. Colony Stimulating Factor 1 Receptor in Acute Myeloid Leukemia. Front Oncol 2021; 11:654817. [PMID: 33842370 PMCID: PMC8027480 DOI: 10.3389/fonc.2021.654817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive heterogeneous blood cancer derived from hematopoietic stem cells. Tumor-stromal interactions in AML are of importance for disease development and therapy resistance, and bone marrow stroma seem like an attractive therapeutic target. Of particular interest is colony stimulating factor 1 receptor (CSF1R, M-CSFR, c-FMS, CD115) and its role in regulating plasticity of tumor-associated macrophages. We discuss first the potential of CSF1R-targeted therapy as an attractive concept with regards to the tumor microenvironment in the bone marrow niche. A second therapy approach, supported by preclinical research, also suggests that CSF1R-targeted therapy may increase the beneficial effect of conventional and novel therapeutics. Experimental evidence positioning inhibitors of CSF1R as treatment should, together with data from preclinical and early phase clinical trials, facilitate translation and clinical development of CSF1R-targeted therapy for AML.
Collapse
Affiliation(s)
- Kristine Yttersian Sletta
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Oriol Castells
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Tore Gjertsen
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
237
|
Lin Y, Villacanas MG, Zou H, Liu H, Carcedo IG, Wu Y, Sun B, Wu X, Prasadam I, Monteiro MJ, Li L, Xu ZP, Gu W. Calcium-bisphosphonate Nanoparticle Platform as a Prolonged Nanodrug and Bone-Targeted Delivery System for Bone Diseases and Cancers. ACS APPLIED BIO MATERIALS 2021; 4:2490-2501. [DOI: 10.1021/acsabm.0c01455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanling Lin
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maria G. Villacanas
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hong Zou
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Pathology/Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Hangrui Liu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ines G. Carcedo
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yilun Wu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bing Sun
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaoxin Wu
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Michael J. Monteiro
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Li Li
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
238
|
Zhang C, Wang L, Liu H, Deng G, Xu P, Tan Y, Xu Y, Liu B, Chen Q, Tian D. ADPRH is a prognosis-related biomarker and correlates with immune infiltrates in low grade glioma. J Cancer 2021; 12:2912-2920. [PMID: 33854592 PMCID: PMC8040889 DOI: 10.7150/jca.51643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background: ADPRH is a modulator of CD8+ T cell functions, and dysregulation of ADPRH has been identified to involve in carcinogenesis of cancers. However, the association of ADPRH with low grade glioma (LGG) remains unclear. Methods: The expression of ADPRH in LGG was first analyzed in GLIOVIS and GEPIA databases and then validated by real-time PCR (rt-PCR), immunochemistry and human protein atlas (HPA). Univariate and multivariate Cox analysis and Kaplan-Meier plots were designed to assess the prognostic value of ADPRH in LGG. The correlation of ADPRH and immune infiltration was evaluated by data in TIMER and ESTIMATE databases. Gene set enrichment analysis was conducted to detect biological processes associated with ADPRH. Results: ADPRH was significantly upregulated in LGG in comparison to non-tumor brain samples in transcriptomic and proteomic levels. The high ADPRH expression indicated unfavorable overall survival (OS) and progression-free survival (PFS) in patients with LGG using Kaplan-Meier plots. And multivariate Cox analysis demonstrated the expression level of ADPRH was an independent prognosis-predicting index for OS and PFS of LGG patients in all cohorts separately. Gene Set Enrichment Analysis (GSEA) indicated that high expression of ADPRH was involved in the upregulation of P53 signaling pathway, KRAS signaling pathway, IL6/JAK-STAT3 signaling and TNF-beta signaling pathways. By TIMER and ESTIMATE databases, we identified ADPRH expression had strong correlation with tumor immune infiltrating cells (TIICs). Conclusions: In summary, our findings demonstrated that ADPRH might be a potential prognostic biomarker and correlated with TIICs in LGG.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C
| | - Haitao Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang Province, P.R.C
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C
| | - Pengfei Xu
- Sun Yat-sen University, The Seventh Affiliated Hospital, Shenzhen, 518000, Guangdong Province, P.R.C
| | - Yinqiu Tan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R.C
| |
Collapse
|
239
|
Li X, Guo X, Ling J, Tang Z, Huang G, He L, Chen T. Nanomedicine-based cancer immunotherapies developed by reprogramming tumor-associated macrophages. NANOSCALE 2021; 13:4705-4727. [PMID: 33625411 DOI: 10.1039/d0nr08050k] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tumor microenvironment is a complex ecosystem composed of tumor extracellular matrix, fibroblasts, blood vessels, and immune cells, promoting tumor development by secreting various growth factors, hydrolase, and inflammatory factors. Tumor-associated macrophages (TAMs) constitute the largest number of immune cells in the TME, and they have a "double-edged sword" effect on tumor growth, invasion, metastasis, angiogenesis, and immunosuppression. Under the regulation of different cytokines in the TME, the bidirectional TAMs can switch their phenotypes between tumoricidal M1-like and pro-tumorigenic M2-like macrophages. TAM polarization suggests that scientists can use this property to design drugs targeting this regulation as a promising immunotherapy strategy to enhance tumor therapy efficiency. In this review, we summarize a brief introduction of TAMs and their implications for tumorigenesis. Next, we review recent advances in designing various functionalized nanomedicines and their applications in nanomedicine-based cancer therapies that target TAMs by killing them, inhibiting macrophage recruitment, and repolarizing them from pro-tumorigenic M2-like to tumoricidal M1-like macrophages. Simultaneously, the regulation of nanomedicines on the signaling pathways accounting for these effects is also summarized. This review will not only provide background scientific information for the understanding of TAMs and their roles in cancer treatment but also help scientists design nanomedicines based on tumor TAMs, which can help achieve better clinical treatment outcomes for tumors.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Xiaoming Guo
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Jiabao Ling
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Zheng Tang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Guanning Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Lizhen He
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Tianfeng Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
240
|
Nakamura K, Yoshikawa N, Mizuno Y, Ito M, Tanaka H, Mizuno M, Toyokuni S, Hori M, Kikkawa F, Kajiyama H. Preclinical Verification of the Efficacy and Safety of Aqueous Plasma for Ovarian Cancer Therapy. Cancers (Basel) 2021; 13:cancers13051141. [PMID: 33799991 PMCID: PMC7962102 DOI: 10.3390/cancers13051141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Ovarian cancer is among the most malignant gynecologic cancers, in part because intraperitoneal recurrence occurs with high frequency due to occult metastasis. We have demonstrated a metastasis-inhibitory effect of plasma-activated medium (PAM) in ovarian cancer cells. Here, we investigated whether PAM inhibits intraperitoneal metastasis. We observed that PAM induced macrophages’ infiltration into the disseminated lesion, which was co-localized with inducible nitric oxide synthase (iNOS)-positive signal, indicating that PAM might induce M1-type macrophages. We also observed that intraperitoneal washing with plasma-activated lactate Ringer’s solution (PAL) significantly improved the overall survival rate in an ovarian cancer mouse model. Intraperitoneal washing therapy might be effective to improve clinical outcomes of ovarian cancer. Abstract Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. The major cause of EOC’s lethality is that intraperitoneal recurrence occurs with high frequency due to occult metastasis. We had demonstrated that plasma-activated medium (PAM) exerts a metastasis-inhibitory effect on ovarian cancer in vitro and in vivo. Here we investigated how PAM inhibits intraperitoneal metastasis. We studied PAM’s inhibition of micro-dissemination onto the omentum by performing in vivo imaging in combination with a sequential histological analysis. The results revealed that PAM induced macrophage infiltration into the disseminated lesion. The iNOS-positive signal was co-localized at the macrophages in the existing lesion, indicating that PAM might induce M1-type macrophages. This may be another mechanism of the antitumor effect through a PAM-evoked immune response. Intraperitoneal lavage with plasma-activated lactate Ringer’s solution (PAL) significantly improved the overall survival rate in an ovarian cancer mouse model. Our results demonstrated the efficiency and practicality of aqueous plasma for clinical applications.
Collapse
Affiliation(s)
- Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan; (F.K.); (H.K.)
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (H.T.); (S.T.); (M.H.)
- Correspondence: (K.N.); (N.Y.); Tel.: +81-52-744-2261 (K.N. & N.Y.)
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan; (F.K.); (H.K.)
- Correspondence: (K.N.); (N.Y.); Tel.: +81-52-744-2261 (K.N. & N.Y.)
| | - Yuko Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan; (Y.M.); (M.I.); (M.M.)
| | - Miwa Ito
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan; (Y.M.); (M.I.); (M.M.)
| | - Hiromasa Tanaka
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (H.T.); (S.T.); (M.H.)
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan; (Y.M.); (M.I.); (M.M.)
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan; (Y.M.); (M.I.); (M.M.)
| | - Shinya Toyokuni
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (H.T.); (S.T.); (M.H.)
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
| | - Masaru Hori
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (H.T.); (S.T.); (M.H.)
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan; (F.K.); (H.K.)
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan; (F.K.); (H.K.)
| |
Collapse
|
241
|
Nakajima S, Mimura K, Saito K, Thar Min AK, Endo E, Yamada L, Kase K, Yamauchi N, Matsumoto T, Nakano H, Kanke Y, Okayama H, Saito M, Neupane P, Saze Z, Watanabe Y, Hanayama H, Hayase S, Kaneta A, Momma T, Ohki S, Ohira H, Kono K. Neoadjuvant Chemotherapy Induces IL34 Signaling and Promotes Chemoresistance via Tumor-Associated Macrophage Polarization in Esophageal Squamous Cell Carcinoma. Mol Cancer Res 2021; 19:1085-1095. [PMID: 33674443 DOI: 10.1158/1541-7786.mcr-20-0917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) plays a key role in the efficacy of neoadjuvant chemotherapy (NAC) in solid tumors including esophageal squamous cell carcinoma (ESCC). However, the TME profile of ESCC treated with NAC is not fully understood. In this study, we investigated the effect of NAC on the TME especially tumor-associated macrophages (TAM), the important immunosuppressive components of the TME, in ESCC. We quantified the expression of CD163, a crucial marker of TAM, in pretherapeutic biopsy and surgically resected ESCC specimens from patients who received NAC (n = 33) or did not receive NAC (n = 12). We found that NAC dramatically increased the expression of CD163 on TAMs in ESCC. Colony-stimulating factor 1 (CSF-1) and IL34 are crucial cytokines that recruit monocytes into tumor sites and differentiate them into TAMs. Interestingly, NAC significantly upregulated the expression of IL34 but not CSF-1 on tumor cells, and the frequencies of CD163+ TAMs were significantly correlated with IL34 expression in ESCC after NAC. The expression of IL34 in NAC-nonresponsive patients was significantly higher than that in NAC-responsive patients, and patients with IL34-high ESCC exhibited worse prognosis as compared with patients with IL34-low ESCC. We also demonstrated that 5-fluorouracil (5-FU)/cisplatin preferentially increased mRNA expression of IL34 on human ESCC cell lines. Human peripheral blood monocytes co-cultured with ESCC cells treated with 5-FU/cisplatin increased the expression of CD163, which was attenuated by the treatment with CSF-1R inhibitors. These data suggest that IL34 expression by NAC shifts the TME toward CD163+ TAM-rich immunosuppressive and chemo-insensitive microenvironment in ESCC. IMPLICATIONS: The blockade of IL34 signaling may offer a novel therapeutic strategy against chemoresistance in ESCC by inhibiting M2-TAM polarization.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Medical Electrophysiology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Aung Kyi Thar Min
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Eisei Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Leo Yamada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoto Yamauchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takuro Matsumoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroshi Nakano
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yasuyuki Kanke
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Prajwal Neupane
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yohei Watanabe
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Suguru Hayase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Akinao Kaneta
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shinji Ohki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
242
|
Liu K, Wang Y, Li H. The Role of Ninjurin1 and Its Impact beyond the Nervous System. Dev Neurosci 2021; 42:159-169. [PMID: 33657559 DOI: 10.1159/000512222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 11/19/2022] Open
Abstract
Ninjurin1 (Ninj1) is a double-transmembrane cell surface protein that could promote nerve regeneration in the process of the peripheral nervous system injury and repairment. Nonetheless, the accurate function of Ninj1 in the central nervous system and outside the nervous system is not completely clear. According to the recent studies, we found that Ninj1 is also aberrantly expressed in various pathophysiological processes in vivo, including inflammation, tumorigenesis, and vascular, bone, and muscle homeostasis. These findings suggest that Ninj1 may play an influential role during these pathophysiological processes. Our review summarizes the diverse roles of Ninj1 in multiple pathophysiological processes inside and outside the nervous system. Ninj1 should be considered as an important and novel therapeutic target in certain diseases, such as inflammatory diseases and ischemic diseases. Our study provided a better understanding of Ninj1 in different pathophysiological processes and thereby provided the theoretical support for further research.
Collapse
Affiliation(s)
- Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongge Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| |
Collapse
|
243
|
Peng Y, Chen F, Li S, Liu X, Wang C, Yu C, Li W. Tumor‐associated macrophages as treatment targets in glioma. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2020.9050015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gliomas, the most common primary tumors in the central nervous system (CNS), can be categorized into 4 grades according to the World Health Organization. The most malignant glioma type is grade Ⅳ, also named glioblastoma multiforme (GBM). However, the standard treatment of concurrent temozolomide (TMZ) chemotherapy and radiotherapy after maximum resection does not improve overall survival in patients with GBM. Targeting components of the CNS microenvironment represents a new strategy for improving the efficacy of glioma treatment. Most recent studies focused on T cells. However, there is a growing body of evidence that tumor‐associated macrophages (TAMs) play an important role in tumor progression and can be regulated by a wide array of cytokines or chemokines. New TAM‐associated immunotherapies may improve clinical outcomes by blocking tumor progression and prolonging survival. However, understanding the exact roles and possible mechanisms of TAMs in the tumor environment is necessary for developing this promising therapeutic target and identifying potential diagnostic markers for improved prognosis. This review summarizes the possible interactions between TAMs and glioma progression and discusses the potential therapeutic directions for TAM‐associated immunotherapies.
Collapse
Affiliation(s)
- Yichen Peng
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Feng Chen
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Shenglan Li
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiu Liu
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Can Wang
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunna Yu
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wenbin Li
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
244
|
Liu Z, Ge H, Miao Z, Shao S, Shi H, Dong C. Dynamic Changes in the Systemic Inflammation Response Index Predict the Outcome of Resectable Gastric Cancer Patients. Front Oncol 2021; 11:577043. [PMID: 33718137 PMCID: PMC7947713 DOI: 10.3389/fonc.2021.577043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
The systemic inflammation response index (SIRI) has been revealed to be closely related to the prognosis of a variety of tumors. Whether the dynamic change in SIRI before and after surgery can be used to judge the prognosis of patients after radical gastrectomy has not yet been studied. In this study, the predictive ability of preoperative SIRI and changes in SIRI before and after surgery for the survival rate of gastric cancer patients was evaluated in two independent cohorts. It was found that SIRI was closely related to TNM staging. The higher the TNM stage, the higher the proportion of patients with a high SIRI. However, SIRI was not related to any other clinicopathological parameters. Kaplan-Meier survival analysis showed that a high SIRI was associated with poor prognosis in gastric cancer patients in the original cohort and in the validation cohort. SIRI, NLR, PLR, and MLR could be used to judge the prognosis of patients with operable gastric cancer. However, multivariate analysis suggested that only SIRI was an independent prognostic factor for patients with operable gastric cancer. In addition, the change in SIRI at 4 to 6 weeks after surgery compared with SIRI before surgery was closely related to the survival of gastric cancer patients. Compared with the unchanged group (absolute variation <50%), gastric cancer patients with a SIRI increase >50% had a worse OS, while patients with a SIRI decrease >50% had a better prognosis. In conclusion, SIRI can be used as a reliable index to evaluate the prognosis of patients with operable gastric cancer, and the dynamic change in SIRI before and after surgery is significantly related to the prognosis of patients with gastric cancer.
Collapse
Affiliation(s)
- Zhenhua Liu
- Department of Radiotherapy, The First People's Hospital of Yancheng, Yancheng, China
| | - Haijue Ge
- Department of Gastroenterology, The Third People's Hospital of Yancheng, Yancheng, China
| | - Zhilong Miao
- Department of General Surgery, The Third People's Hospital of Yancheng, Yancheng, China
| | - Shoupeng Shao
- Department of Oncology, The Third People's Hospital of Yancheng, Yancheng, China
| | - Hongtai Shi
- Department of Radiotherapy, The Third People's Hospital of Yancheng, Yancheng, China
| | - Congsong Dong
- Department of Radiology, The Third People's Hospital of Yancheng, Yancheng, China
| |
Collapse
|
245
|
Herrmann D, Seitz G, Fuchs J, Armeanu-Ebinger S. Susceptibility of rhabdomyosarcoma cells to macrophage-mediated cytotoxicity. Oncoimmunology 2021; 1:279-286. [PMID: 22737603 PMCID: PMC3382875 DOI: 10.4161/onci.18612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The prognosis of advanced stage rhabdomyosarcoma (RMS) is still sobering. In recent years, outcome has not been further improved by conventional therapy. Therefore, novel treatment options such as macrophage-directed immunotherapy have to be investigated. The aim of this study was to analyze the phagocytosis of RMS cells by macrophages and to modulate the susceptibility using monoclonal antibodies and cytotoxic drugs. Expression of the macrophage activating ligand calreticulin and CD47, the counterpart of the inhibitory receptor SIRPα, was analyzed with Affymetrix mRNA expression arrays and immunohistochemistry on 11 primary RMS samples. Results were verified in two RMS cell lines using flow cytometry and immunocytochemistry. Macrophage cytotoxic activity was quantified by a MTT colorimetric assay in co-culture experiments of RMS cells with monocyte-derived, GM-CSF stimulated macrophages. Gene expression analysis and immunohistochemistry revealed a high expression of CD47 and calreticulin in alveolar and embryonal RMS tissue specimens. Extracellular expression of CD47 on RMS cell lines was confirmed by flow cytometry, whereas calreticulin was exclusively detected in the endoplasmatic reticulum. After co-culturing of RMS cells with macrophages, viability dropped to 50-60%. Macrophage-mediated cytotoxicity was not influenced by a blocking antibody against CD47. However, susceptibility was significantly enhanced after pre-treatment of RMS cells with the anthracycline drug doxorubicin. Furthermore, translocation of calreticulin onto the cell surface was detected by flow cytometry. The immunologic effect of doxorubicin may improve the efficacy of adoptive cellular immunotherapy and chemotherapy of childhood RMS.
Collapse
Affiliation(s)
- Delia Herrmann
- Department of Pediatric Surgery and Urology; University Children's Hospital Tübingen; Tübingen, Germany
| | | | | | | |
Collapse
|
246
|
Parisi F, Tesi M, Millanta F, Gnocchi M, Poli A. M1 and M2 tumour-associated macrophages subsets in canine malignant mammary tumours: An immunohistochemical study. Res Vet Sci 2021; 136:32-38. [PMID: 33582312 DOI: 10.1016/j.rvsc.2021.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 12/28/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
Among the innate and adaptative immune cells recruited to the tumour site, tumour associated macrophages (TAMs) are particularly abundant and by simplified classification can be classified into (M1) and (M2) TAMs. In the present study, we quantified by immunohistochemistry ionized calcium binding adaptor molecule 1 (Iba1)-positive total and CD204-positive M2-polarized TAMs in 60 canine malignant mammary tumours (CMMTs) to analyze the relationship between M1 or M2 response and the histopathologic features of examined CMMTs, the dogs' body condition score (BCS) and the progression of the neoplastic disease. The mean number of total and CD204+ TAMS were significantly higher in solid and in grade III than in grades I and II carcinomas. Moreover, the mean number of CD204-positive TAMs was significantly higher in CMMTs with lymphatic invasion and necrosis rather than CMMTs without. The presence of higher number of CD204-positive M2-polarized TAMs was associated with a worst outcome of the neoplastic disease: bitches bearing CMMTs with a prevalent M2-polarized TAM response had a median cancer-specific survival time of 449 days, while in animals with a M1-polarized TAM response the median cancer-specific survival time was 1209 days. The results of our study confirm that in CMMTs the presence of a M2-polarized TAMs response might affect the tumour development and behaviour. Finally, it strongly suggests the potential of CD204 expression as a prognostic factor.
Collapse
Affiliation(s)
- Francesca Parisi
- Department of Animal Pathology, School of Veterinary Medicine, University of Pisa, Pisa I-56124, Italy
| | - Matteo Tesi
- Department of Animal Pathology, School of Veterinary Medicine, University of Pisa, Pisa I-56124, Italy
| | - Francesca Millanta
- Department of Animal Pathology, School of Veterinary Medicine, University of Pisa, Pisa I-56124, Italy
| | - Marzia Gnocchi
- Department of Animal Pathology, School of Veterinary Medicine, University of Pisa, Pisa I-56124, Italy
| | - Alessandro Poli
- Department of Animal Pathology, School of Veterinary Medicine, University of Pisa, Pisa I-56124, Italy.
| |
Collapse
|
247
|
Yang H, Li L, Liu X, Zhao Y. High Expression of the Component 3a Receptor 1 (C3AR1) Gene in Stomach Adenocarcinomas Infers a Poor Prognosis and High Immune-Infiltration Levels. Med Sci Monit 2021; 27:e927977. [PMID: 33539329 PMCID: PMC7871482 DOI: 10.12659/msm.927977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background This study was designed to explore the incompletely investigated role of the complement component 3a receptor 1 (C3AR1) in the prognosis of stomach adenocarcinomas (STAD). Material/Methods Using bioinformatic methods, we systematically determined the expression and prognosis value of C3AR1 in various cancers by using the TIMER (Tumor Immune Estimation Resource) database, UALCAN platform, GEPIA (Gene Expression Profiling Interactive Analysis) server, and the OncoLnc tool. The biological processes influenced by C3AR1 were determined using the GSEA (Gene Set Enrichment Analysis) software (Copyright 2004–2020 Broad Institute, Inc., Massachusetts Institute of Technology, and Regents of the University of California). The correlation between C3AR1 expression and the immune-infiltrating cells as well as the correlation analysis between C3AR1 expression and the corresponding immune-marker sets were conducted using the TIMER and GEPIA databases. Results The expression of C3AR1 was significantly (P<0.001) differentially expressed on several tumor types, while its prognosis value could only be determined on STAD, with a high expression of C3AR1 closely correlated with a poor prognosis. The GSEA analysis revealed that the differential expression of C3AR1 profoundly affected the immune-related biological processes. The expression of C3AR1 was strongly and positively correlated with the infiltration of monocytes, tumor-associated macrophages, M2 macrophages, dendritic cells, and exhausted T cells. Conclusions Our results have revealed that a high expression of C3AR1 is positively correlated with a poor prognosis and increased tumor-immune infiltration. C3AR1 can promote the polarization of M2 macrophages and T cell exhaustion, leading to the immune escape of STAD. These findings suggest that C3AR1 could be used as a prognostic and immune-infiltration marker in the pathogenesis of STAD.
Collapse
Affiliation(s)
- Haibo Yang
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Lin Li
- Department of Pharmacy, Affiliated Nanchong Central Hospital of North Sichuan Medical College (University), Nanchong, Sichuan, China (mainland)
| | - Xiaoyu Liu
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Yu Zhao
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
248
|
Ding J, Lu G, Nie W, Huang LL, Zhang Y, Fan W, Wu G, Liu H, Xie HY. Self-Activatable Photo-Extracellular Vesicle for Synergistic Trimodal Anticancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005562. [PMID: 33432702 DOI: 10.1002/adma.202005562] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self-activatable photo-EV for synergistic trimodal anticancer therapy is reported. M1 macrophage-derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5-trichloro-6-(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox-EMCH). After administration, the as-prepared system actively targets tumor cells because of the tumor-homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H2 O2 . The reaction between H2 O2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen (1 O2 ) for photodynamic therapy (PDT). Meanwhile, 1 O2 -induced membrane rupture leads to the release of Dox-EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers.
Collapse
Affiliation(s)
- Jingjing Ding
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guihong Lu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li-Li Huang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yahui Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenlin Fan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guanghao Wu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Houli Liu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
249
|
Mai S, Liu L, Jiang J, Ren P, Diao D, Wang H, Cai K. Oesophageal squamous cell carcinoma-associated IL-33 rewires macrophage polarization towards M2 via activating ornithine decarboxylase. Cell Prolif 2021; 54:e12960. [PMID: 33305406 PMCID: PMC7848962 DOI: 10.1111/cpr.12960] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The tumour microenvironment primarily constitutes macrophages in the form of an immunosuppressive M2 phenotype, which promotes tumour growth. Thus, the development of methodologies to rewire M2-like tumour-associated macrophages (TAMs) into the M1 phenotype, which inhibits tumour growth, might be a critical advancement in cancer immunotherapy research. METHODS The expressions of IL-33 and indicators related to macrophage polarization in oesophageal squamous cell carcinoma (ESCC) tissues and peripheral blood mononuclear cell (PBMC)-derived macrophages were determined. Inhibition of ornithine decarboxylase (ODC) with small interfering RNA was used to analyse the phenotype of macrophage polarization and polyamine secretory signals. CCK-8, wound-healing and Transwell assays were used to detect the proliferation and migration of ECA109 cells in vitro. The tumour xenograft assay in nude mice was used to examine the role of IL-33 in ESCC development in vivo. RESULTS This study showed the substantially elevated IL-33 expression in ESCC tissues compared with the normal tissues. Additionally, enhanced infiltration of M2-like macrophages into the ESCC tumour tissue was also observed. We observed a strong correlation between the IL-33 levels and the infiltration of M2-like macrophages in ESCC tumours locally. Mechanistically, IL-33 induces M2-like macrophage polarization by activating ODC, a key enzyme that catalyses the synthesis of polyamines. Inhibition of ODC suppressed M2-like macrophage polarization. Finally, in vivo, we confirmed that IL-33 promotes tumour progression. CONCLUSIONS This study revealed an oncogenic role of IL-33 by actively inducing M2-like macrophage differentiation; thus, contributing to the formation of an immunosuppressive ESCC tumour microenvironment. Thus, IL-33 could act as a novel target for cancer immunotherapies.
Collapse
Affiliation(s)
- Shijie Mai
- Department of Thoracic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Le Liu
- Department of GastroenterologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jianjun Jiang
- Department of Thoracic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Pengfei Ren
- Department of Thoracic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Dingwei Diao
- Department of Thoracic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Haofei Wang
- Department of Thoracic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Kaican Cai
- Department of Thoracic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
250
|
The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment. J Xenobiot 2021; 11:16-32. [PMID: 33535458 PMCID: PMC7931005 DOI: 10.3390/jox11010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is one of the most common cancers diagnosed in men in the United States and the second leading cause of cancer-related deaths worldwide. Since over 60% of prostate cancer cases occur in men over 65 years of age, and this population will increase steadily in the coming years, prostate cancer will be a major cancer-related burden in the foreseeable future. Accumulating data from more recent research suggest that the tumor microenvironment (TME) plays a previously unrecognized role in every stage of cancer development, including initiation, proliferation, and metastasis. Prostate cancer is not only diagnosed in the late stages of life, but also progresses relatively slowly. This makes prostate cancer an ideal model system for exploring the potential of natural products as cancer prevention and/or treatment reagents because they usually act relatively slowly compared to most synthetic drugs. Resveratrol (RSV) is a naturally occurring stilbenoid and possesses strong anti-cancer properties with few adverse effects. Accumulating data from both in vitro and in vivo experiments indicate that RSV can interfere with prostate cancer initiation and progression by targeting the TME. Therefore, this review is aimed to summarize the recent advancement in RSV-inhibited prostate cancer initiation, proliferation, and metastasis as well as the underlying molecular mechanisms, with particular emphasis on the effect of RSV on TME. This will not only better our understanding of prostate cancer TMEs, but also pave the way for the development of RSV as a potential reagent for prostate cancer prevention and/or therapy.
Collapse
|