201
|
Martin W, Russell MJ. On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci 2007; 362:1887-925. [PMID: 17255002 PMCID: PMC2442388 DOI: 10.1098/rstb.2006.1881] [Citation(s) in RCA: 400] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A model for the origin of biochemistry at an alkaline hydrothermal vent has been developed that focuses on the acetyl-CoA (Wood-Ljungdahl) pathway of CO2 fixation and central intermediary metabolism leading to the synthesis of the constituents of purines and pyrimidines. The idea that acetogenesis and methanogenesis were the ancestral forms of energy metabolism among the first free-living eubacteria and archaebacteria, respectively, stands in the foreground. The synthesis of formyl pterins, which are essential intermediates of the Wood-Ljungdahl pathway and purine biosynthesis, is found to confront early metabolic systems with steep bioenergetic demands that would appear to link some, but not all, steps of CO2 reduction to geochemical processes in or on the Earth's crust. Inorganically catalysed prebiotic analogues of the core biochemical reactions involved in pterin-dependent methyl synthesis of the modern acetyl-CoA pathway are considered. The following compounds appear as probable candidates for central involvement in prebiotic chemistry: metal sulphides, formate, carbon monoxide, methyl sulphide, acetate, formyl phosphate, carboxy phosphate, carbamate, carbamoyl phosphate, acetyl thioesters, acetyl phosphate, possibly carbonyl sulphide and eventually pterins. Carbon might have entered early metabolism via reactions hardly different from those in the modern Wood-Ljungdahl pathway, the pyruvate synthase reaction and the incomplete reverse citric acid cycle. The key energy-rich intermediates were perhaps acetyl thioesters, with acetyl phosphate possibly serving as the universal metabolic energy currency prior to the origin of genes. Nitrogen might have entered metabolism as geochemical NH3 via two routes: the synthesis of carbamoyl phosphate and reductive transaminations of alpha-keto acids. Together with intermediates of methyl synthesis, these two routes of nitrogen assimilation would directly supply all intermediates of modern purine and pyrimidine biosynthesis. Thermodynamic considerations related to formyl pterin synthesis suggest that the ability to harness a naturally pre-existing proton gradient at the vent-ocean interface via an ATPase is older than the ability to generate a proton gradient with chemistry that is specified by genes.
Collapse
Affiliation(s)
- William Martin
- Institute of Botany, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
202
|
Russell MJ. The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 2007; 55:133-79. [PMID: 17704896 DOI: 10.1007/s10441-007-9018-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 05/07/2007] [Indexed: 11/27/2022]
Abstract
The Earth agglomerates and heats. Convection cells within the planetary interior expedite the cooling process. Volcanoes evolve steam, carbon dioxide, sulfur dioxide and pyrophosphate. An acidulous Hadean ocean condenses from the carbon dioxide atmosphere. Dusts and stratospheric sulfurous smogs absorb a proportion of the Sun's rays. The cooled ocean leaks into the stressed crust and also convects. High temperature acid springs, coupled to magmatic plumes and spreading centers, emit iron, manganese, zinc, cobalt and nickel ions to the ocean. Away from the spreading centers cooler alkaline spring waters emanate from the ocean floor. These bear hydrogen, formate, ammonia, hydrosulfide and minor methane thiol. The thermal potential begins to be dissipated but the chemical potential is dammed. The exhaling alkaline solutions are frustrated in their further attempt to mix thoroughly with their oceanic source by the spontaneous precipitation of biomorphic barriers of colloidal iron compounds and other minerals. It is here we surmise that organic molecules are synthesized, filtered, concentrated and adsorbed, while acetate and methane--separate products of the precursor to the reductive acetyl-coenzyme-A pathway-are exhaled as waste. Reactions in mineral compartments produce acetate, amino acids, and the components of nucleosides. Short peptides, condensed from the simple amino acids, sequester 'ready-made' iron sulfide clusters to form protoferredoxins, and also bind phosphates. Nucleotides are assembled from amino acids, simple phosphates carbon dioxide and ribose phosphate upon nanocrystalline mineral surfaces. The side chains of particular amino acids register to fitting nucleotide triplet clefts. Keyed in, the amino acids are polymerized, through acid-base catalysis, to alpha chains. Peptides, the tenuous outer-most filaments of the nanocrysts, continually peel away from bound RNA. The polymers are concentrated at cooler regions of the mineral compartments through thermophoresis. RNA is reproduced through a convective polymerase chain reaction operating between 40 and 100 degrees C. The coded peptides produce true ferredoxins, the ubiquitous proteins with the longest evolutionary pedigree. They take over the role of catalyst and electron transfer agent from the iron sulfides. Other iron-nickel sulfide clusters, sequestered now by cysteine residues as CO-dehydrogenase and acetyl-coenzyme-A synthase, promote further chemosynthesis and support the hatchery--the electrochemical reactor--from which they sprang. Reactions and interactions fall into step as further pathways are negotiated. This hydrothermal circuitry offers a continuous supply of material and chemical energy, as well as electricity and proticity at a potential appropriate for the onset of life in the dark, a rapidly emerging kinetic structure born to persist, evolve and generate entropy while the sun shines.
Collapse
Affiliation(s)
- Michael J Russell
- Planetary Science and Life Detection Section 3220, MS:183-601, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109-8099, USA.
| |
Collapse
|
203
|
de Souza-Barros F, Vieyra A. Mineral interface in extreme habitats: a niche for primitive molecular evolution for the appearance of different forms of life on earth. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:10-21. [PMID: 17317327 DOI: 10.1016/j.cbpc.2006.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 01/18/2023]
Abstract
Innumerable primitive membrane and protocell models in latter stages of chemical evolution are based on the properties of minerals' interfaces with primitive seawater. The ordering mechanism induced by mineral interfaces has been the basis of several prebiotic models of molecular complexification and compartmentalization towards the appearance and evolution of different forms of life. Since mineral-aqueous media interfaces have been considered as initial stages of prebiotic models dealing with the formation of energy-transducing systems, the interface formed by pyrite in the presence of artificial primitive seawater was chosen to show the functional richness of this special niche. Interfaces--especially sulphide interfaces--were proposed as suitable niches for a two-carbon extant metabolism, synthesis and polymerization of nucleotides--to form ancient RNA strands--and assembly of amino acids synthesized in its vicinity. Accumulation of precursors at sulphide interfaces could have avoided their dilution into the Hadean seas and provided a suitable geochemical environment for a variety of molecular interactions. In this essay, we present a short review of the proposed roles of mineral interfaces in chemical evolution towards the appearance of primitive membranes, which might have been relevant for the advent of cellular life before its divergent evolution and differentiation. This survey covers several previous studies on the early cycles of energy conservation and of the formation of molecules carrying genetic information.
Collapse
Affiliation(s)
| | - Adalberto Vieyra
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.
| |
Collapse
|
204
|
Rimola A, Sodupe M, Ugliengo P. Aluminosilicate surfaces as promoters for peptide bond formation: an assessment of Bernal's hypothesis by ab initio methods. J Am Chem Soc 2007; 129:8333-44. [PMID: 17552521 DOI: 10.1021/ja070451k] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role in prebiotic chemistry that Brønsted and Lewis sites, both present at the surface of common aluminosilicates, may have played in favoring the peptide bond formation has been addressed by ab initio methods within a cluster approach. B3LYP/6-31+G(d,p) free energy potential energy surfaces have been fully characterized for the model reaction glycine + NH3 --> 2-NH2 acetamide (mimicking the true 2 Gly --> GlyGly one) occurring on (i) a Lewis site, (ii) a Brønsted site, and (iii) a combined action of Lewis/Brønsted sites. Compared to the gas-phase (gp) activation free energy of 50 kcal/mol, the Lewis site alone reduces the gp barrier to 41 kcal/mol, whereas the activation by the Brønsted site dramatically reduces the barrier to about 18 kcal/mol. Nevertheless, formation of the prereactant complex in this latter case will rarely occur, since water will easily displace the glycine molecule interacting with the Brønsted site. However, if a realistic feldspar surface with neighboring Brønsted and Lewis sites is considered, the proper prereactant complex is highly stabilized by a simultaneous interaction with the Lewis and the Brønsted sites, in such a way that the Lewis site strongly attaches the glycine molecule to the surface whereas the Brønsted site efficiently catalyzes the condensation reaction, showing that the interplay between Lewis/Brønsted sites is an important issue. The free energy barrier computed for the realistic feldspar surface model is 26 kcal/mol. The role of dispersive interactions on the free energy barrier and the stabilization of the final product, not accounted for by the B3LYP functional, have been estimated and shown to be substantial. Speculations about further elongation of the formed dipeptide have been put forward on the basis of the relatively strong interaction energy of the formed GlyGly dipeptide with the aluminosilicate surface.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
205
|
Kawamura K, Maeda J. Kinetic analysis of oligo(C) formation from the 5'-monophosphorimidazolide of cytidine with Pb(II) ion catalyst at 10-75 degrees C. ORIGINS LIFE EVOL B 2007; 37:153-65. [PMID: 17265100 DOI: 10.1007/s11084-006-9063-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
The temperature dependence of the rate constants for the formation of oligocytidylate (oligo(C)) from the 5'-monophosphorimidazolide of cytidine (ImpC) in the presence of Pb(II) ion catalyst has been investigated at 10-75 degrees C. The rate constants for the formation of oligo(C) increased in the order of the formation of 2-mer < 3-mer < or = 4-mer; this trend resembles the trend in the cases of the template-directed and the clay-catalyzed formations of oligonucleotides. While the rate constants of the formation of oligo(C) increased with increasing temperature, the yield of oligo(C) decreased with increasing temperature. This is due to the fact that the relative magnitude of the rate constants of the formation of 2-mer, 3-mer, and 4-mer to that of the hydrolysis of ImpC decreased with increasing temperature. This is probably due to the fact that association between ImpC with the elongating oligo(C) decreases with increasing temperature. The apparent activation energy was 61.9 +/- 8.5 kJ mol(-1) for the formation of 2-mer, 49.3 +/- 2.9 kJ mol(-1) for 3-mer, 51.8 kJ mol(-1) for 4-mer, and 66.8 +/- 4.5 kJ mol(-1) for the hydrolysis of ImpC. The significance of the temperature dependence of the formation rate constants of the model prebiotic formation of RNA is discussed.
Collapse
Affiliation(s)
- Kunio Kawamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | | |
Collapse
|
206
|
Cockell CS. The origin and emergence of life under impact bombardment. Philos Trans R Soc Lond B Biol Sci 2006; 361:1845-55; discussion 1856. [PMID: 17008223 PMCID: PMC1664688 DOI: 10.1098/rstb.2006.1908] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Craters formed by asteroids and comets offer a number of possibilities as sites for prebiotic chemistry, and they invite a literal application of Darwin's 'warm little pond'. Some of these attributes, such as prolonged circulation of heated water, are found in deep-ocean hydrothermal vent systems, previously proposed as sites for prebiotic chemistry. However, impact craters host important characteristics in a single location, which include the formation of diverse metal sulphides, clays and zeolites as secondary hydrothermal minerals (which can act as templates or catalysts for prebiotic syntheses), fracturing of rock during impact (creating a large surface area for reactions), the delivery of iron in the case of the impact of iron-containing meteorites (which might itself act as a substrate for prebiotic reactions), diverse impact energies resulting in different rates of hydrothermal cooling and thus organic syntheses, and the indiscriminate nature of impacts into every available lithology-generating large numbers of 'experiments' in the origin of life. Following the evolution of life, craters provide cryptoendolithic and chasmoendolithic habitats, particularly in non-sedimentary lithologies, where limited pore space would otherwise restrict colonization. In impact melt sheets, shattered, mixed rocks ultimately provided diverse geochemical gradients, which in present-day craters support the growth of microbial communities.
Collapse
Affiliation(s)
- Charles S Cockell
- Centre for Earth, Planetary, Space and Astronomical Research, Open University, Milton Keynes MK7 6AA, UK.
| |
Collapse
|
207
|
Deamer D, Singaram S, Rajamani S, Kompanichenko V, Guggenheim S. Self-assembly processes in the prebiotic environment. Philos Trans R Soc Lond B Biol Sci 2006; 361:1809-18. [PMID: 17008220 PMCID: PMC1664680 DOI: 10.1098/rstb.2006.1905] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An important question guiding research on the origin of life concerns the environmental conditions where molecular systems with the properties of life first appeared on the early Earth. An appropriate site would require liquid water, a source of organic compounds, a source of energy to drive polymerization reactions and a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. One such site is a geothermal setting, in which organic compounds interact with mineral surfaces to promote self-assembly and polymerization reactions. Here, we report an initial study of two geothermal sites where mixtures of representative organic solutes (amino acids, nucleobases, a fatty acid and glycerol) and phosphate were mixed with high-temperature water in clay-lined pools. Most of the added organics and phosphate were removed from solution with half-times measured in minutes to a few hours. Analysis of the clay, primarily smectite and kaolin, showed that the organics were adsorbed to the mineral surfaces at the acidic pH of the pools, but could subsequently be released in basic solutions. These results help to constrain the range of possible environments for the origin of life. A site conducive to self-assembly of organic solutes would be an aqueous environment relatively low in ionic solutes, at an intermediate temperature range and neutral pH ranges, in which cyclic concentration of the solutes can occur by transient dry intervals.
Collapse
Affiliation(s)
- David Deamer
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | | | | | | | | |
Collapse
|
208
|
Pasteris JD, Freeman JJ, Wopenka B, Qi K, Ma Q, Wooley KL. With a grain of salt: what halite has to offer to discussions on the origin of life. ASTROBIOLOGY 2006; 6:625-43. [PMID: 16916287 DOI: 10.1089/ast.2006.6.625] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This experimental study investigated how the dynamics of the crystallization of the evaporite mineral halite could affect the accumulation and preservation of organic macromolecules present in the crystallizing solution. Halite was grown under controlled conditions in the presence of polymer nanoparticles that acted as an analog to protocellular material. Optical microscopy, atomic force microscopy, and laser scanning confocal fluorescence microscopy were used to trace the localization of the nanoparticles during and after growth of halite crystals. The present study revealed that the organic nanoparticles were not regularly incorporated within the halite, but were very concentrated on its surfaces. Their distribution was controlled dominantly by the morphologic surface features of the mineral rather than by specific molecular interactions with an atomic plane of the mineral. This means that the distribution of organic molecules was controlled by surfaces like those of halite's evaporitic growth forms. The experiments with halite also demonstrated that a mineral need not continuously incorporate organic molecules during its crystallization to preserve those molecules: After rejection by (non-incorporation into) the crystallizing halite, the organic nanoparticles increased in concentration in the evaporating brine. They ultimately either adsorbed in rectilinear patterns onto the hopper-enhanced surfaces and along discontinuities within the crystals, or they were encapsulated within fluid inclusions. Of additional importance in origin-of-life considerations is the fact that halite in the natural environment rapidly can change its role from that of a protective repository (in the absence of water) to that of a source of organic particles (as soon as water is present) when the mineral dissolves.
Collapse
Affiliation(s)
- Jill D Pasteris
- Department of Earth and Planetary Sciences, Center for Materials Innovation, Washington University in St. Louis, St. Louis, Missouri 63130, USA.
| | | | | | | | | | | |
Collapse
|
209
|
Westall F. The Geological Context for the Origin of Life and the Mineral Signatures of Fossil Life. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/10913406_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
210
|
|
211
|
Holm NG, Andersson E. Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review. ASTROBIOLOGY 2005; 5:444-60. [PMID: 16078865 DOI: 10.1089/ast.2005.5.444] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of life on Earth and probably also to the other terrestrial planets.
Collapse
Affiliation(s)
- Nils G Holm
- Department of Geology and Geochemistry, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
212
|
Kawamura K. A new probe for the indirect measurement of the conformation and interaction of biopolymers at extremely high temperatures using a capillary flow hydrothermal reactor system for UV–vis spectrophotometry. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2005.03.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
213
|
Urata H, Sasaki R, Morita H, Kusumoto M, Ogawa Y, Mitsuda K, Akagi M. Kinetic analysis of hydrolytic reaction of homo- and heterochiral adenylyl(3'-5')adenosine isomers: breaking homochirality reduces hydrolytic stability of RNA. Chem Commun (Camb) 2005:2578-80. [PMID: 15900332 DOI: 10.1039/b500673b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrolytic stability of the diastereomeric isomers of ApA was compared and the results show that heterochiral ApAs are more rapidly hydrolyzed than homochiral ApAs at low temperatures, suggesting that hydrolytic selection in cold environments in conjunction with selective polymerization may have been effective in enriching the homochirality of RNA.
Collapse
Affiliation(s)
- Hidehito Urata
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | | | | | | | | | | | | |
Collapse
|
214
|
Hara K, Kakegawa T, Yamashiro K, Maruyama A, Ishibashi JI, Marumo K, Urabe T, Yamagishi A. Analysis of the archaeal sub-seafloor community at Suiyo Seamount on the Izu-Bonin Arc. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2005; 35:1634-42. [PMID: 16175703 DOI: 10.1016/j.asr.2005.04.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A sub-surface archaeal community at the Suiyo Seamount in the Western Pacific Ocean was investigated by 16S rRNA gene sequence and whole-cell in situ hybridization analyses. In this study, we drilled and cased holes at the hydrothermal area of the seamount to minimize contamination of the hydrothermal fluid in the sub-seafloor by penetrating seawater. PCR clone analysis of the hydrothermal fluid samples collected from a cased hole indicated the presence of chemolithoautotrophic primary biomass producers of Archaeoglobales and the Methanococcales-related archaeal HTE1 group, both of which can utilize hydrogen as an electron donor. We discuss the implication of the microbial community on the early history of life and on the search for extraterrestrial life.
Collapse
Affiliation(s)
- Kurt Hara
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
Dissimilatory Fe(III) and Mn(IV) reduction has an important influence on the geochemistry of modern environments, and Fe(III)-reducing microorganisms, most notably those in the Geobacteraceae family, can play an important role in the bioremediation of subsurface environments contaminated with organic or metal contaminants. Microorganisms with the capacity to conserve energy from Fe(III) and Mn(IV) reduction are phylogenetically dispersed throughout the Bacteria and Archaea. The ability to oxidize hydrogen with the reduction of Fe(III) is a highly conserved characteristic of hyperthermophilic microorganisms and one Fe(III)-reducing Archaea grows at the highest temperature yet recorded for any organism. Fe(III)- and Mn(IV)-reducing microorganisms have the ability to oxidize a wide variety of organic compounds, often completely to carbon dioxide. Typical alternative electron acceptors for Fe(III) reducers include oxygen, nitrate, U(VI) and electrodes. Unlike other commonly considered electron acceptors, Fe(III) and Mn(IV) oxides, the most prevalent form of Fe(III) and Mn(IV) in most environments, are insoluble. Thus, Fe(III)- and Mn(IV)-reducing microorganisms face the dilemma of how to transfer electrons derived from central metabolism onto an insoluble, extracellular electron acceptor. Although microbiological and geochemical evidence suggests that Fe(III) reduction may have been the first form of microbial respiration, the capacity for Fe(III) reduction appears to have evolved several times as phylogenetically distinct Fe(III) reducers have different mechanisms for Fe(III) reduction. Geobacter species, which are representative of the family of Fe(III) reducers that predominate in a wide diversity of sedimentary environments, require direct contact with Fe(III) oxides in order to reduce them. In contrast, Shewanella and Geothrix species produce chelators that solubilize Fe(III) and release electron-shuttling compounds that transfer electrons from the cell surface to the surface of Fe(III) oxides not in direct contact with the cells. Electron transfer from the inner membrane to the outer membrane in Geobacter and Shewanella species appears to involve an electron transport chain of inner-membrane, periplasmic, and outer-membrane c-type cytochromes, but the cytochromes involved in these processes in the two organisms are different. In addition, Geobacter species specifically express flagella and pili during growth on Fe(III) and Mn(IV) oxides and are chemotactic to Fe(II) and Mn(II), which may lead Geobacter species to the oxides under anoxic conditions. The physiological characteristics of Geobacter species appear to explain why they have consistently been found to be the predominant Fe(III)- and Mn(IV)-reducing microorganisms in a variety of sedimentary environments. In comparison with other respiratory processes, the study of Fe(III) and Mn(IV) reduction is in its infancy, but genome-enabled approaches are rapidly advancing our understanding of this environmentally significant physiology.
Collapse
Affiliation(s)
- Derek R Lovley
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
216
|
Honda S, Yamasaki K, Sawada Y, Morii H. 10 Residue Folded Peptide Designed by Segment Statistics. Structure 2004; 12:1507-18. [PMID: 15296744 DOI: 10.1016/j.str.2004.05.022] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 05/18/2004] [Accepted: 05/25/2004] [Indexed: 11/25/2022]
Abstract
We have designed a peptide termed chignolin, consisting of only 10 amino acid residues (GYDPETGTWG), on the basis of statistics derived from more than 10,000 protein segments. The peptide folds into a unique structure in water and shows a cooperative thermal transition, both of which may be hallmarks of a protein. Also, the experimentally determined beta-hairpin structure was very close to what we had targeted. The performance of the short peptide not only implies that the methodology employed here can contribute toward development of novel techniques for protein design, but it also yields insights into the raison d'etre of an autonomous element involved in a natural protein. This is of interest for the pursuit of folding mechanisms and evolutionary processes of proteins.
Collapse
Affiliation(s)
- Shinya Honda
- National Institute of Advanced Industrial Science and Technology, AIST Central 6, Tsukuba 305-8566, Japan.
| | | | | | | |
Collapse
|
217
|
Studying the deep subsurface biosphere: Emerging technologies and applications. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/144gm24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
218
|
Rushdi AI, Simoneit BRT. Condensation reactions and formation of amides, esters, and nitriles under hydrothermal conditions. ASTROBIOLOGY 2004; 4:211-224. [PMID: 15253839 DOI: 10.1089/153110704323175151] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300 degrees C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.
Collapse
Affiliation(s)
- Ahmed I Rushdi
- Environmental and Petroleum Geochemistry Group, College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
219
|
Kawamura K. Kinetics and activation parameter analyses of hydrolysis and interconversion of 2',5'- and 3',5'-linked dinucleoside monophosphate at extremely high temperatures. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1620:199-210. [PMID: 12595090 DOI: 10.1016/s0304-4165(02)00533-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Kinetic analysis of hydrolytic stability of 2',5'- and 3',5'-linked dinucleoside monophosphate (N(2)'pN and N(3)'pN) was successfully performed in aqueous solution at 175-240 degrees C using a new real-time monitoring method for rapid hydrothermal reactions. The half-lives of NpN were in the range 2-8 s at 240 degrees C and apparent activation energy decreases in the order U(2)'pU>A(2)'pA>G(2)'pG>U(3)pU approximately C(3)'pC>A(3)pA. The stability of phosphodiester bond was dependent on the types of base moiety and phosphodiester linkages, but no systematic correlation was found between the structure and stability. The interconversion of 2',5'-adenylyladenosine monophosphate (A(2)'pA) and 3',5'-adenylyladenosine monophosphate (A(3)'pA) was enhanced in the presence of D- or L-histidine. The rate constants of degradation of NpN were dissected into the rate constants of hydrolysis and interconversion between N(2)'pN and N(3)'pN using a computer program SIMFIT. Kinetic analysis supports the mechanism that imidazolium ion and imidazole catalyze interconversion and hydrolysis even under hydrothermal environments. The activation parameters for the hydrolysis and interconversion of NpN were systematically determined for the first time from the temperature dependence of the rate constants, where both DeltaH(app)( not equal ) and DeltaS(app)( not equal ) for 2',5'-linked NpN are larger than those for 3',5'-linked NpN. These parameters support the pseudorotation mechanism through pentacoordinate intermediate from 2',5'- and 3',5'-linked NpN, where the average value of DeltaH( not equal ) (pseudorotation) was estimated to be 30+/-18 kJ mol(-1) at 175-240 degrees C.
Collapse
Affiliation(s)
- Kunio Kawamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Japan.
| |
Collapse
|
220
|
|
221
|
Karson JA, Tivey MA, Delaney JR. Internal structure of uppermost oceanic crust along the Western Blanco Transform Scarp: Implications for subaxial accretion and deformation at the Juan de Fuca Ridge. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2000jb000051] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Karson
- Division of Earth and Ocean Sciences; Duke University; Durham North Carolina USA
| | - Maurice A. Tivey
- Department of Geology and Geophysics; Woods Hole Oceanographic Institution; Woods Hole Massachusetts USA
| | - John R. Delaney
- School of Oceanography; University of Washington; Seattle Washington USA
| |
Collapse
|
222
|
Li J, Wang X, Klein MT, Brill TB. Spectroscopy of hydrothermal reactions, 19: pH and salt dependence of decarboxylation of ?-alanine at 280-330�C in an FT-IR spectroscopy flow reactor. INT J CHEM KINET 2002. [DOI: 10.1002/kin.10045] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
223
|
Deamer D, Dworkin JP, Sandford SA, Bernstein MP, Allamandola LJ. The first cell membranes. ASTROBIOLOGY 2002; 2:371-381. [PMID: 12593777 DOI: 10.1089/153110702762470482] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organic compounds are synthesized in the interstellar medium and can be delivered to planetary surfaces such as the early Earth, where they mix with endogenous species. Some of these compounds are amphiphilic, having polar and nonpolar groups on the same molecule. Amphiphilic compounds spontaneously self-assemble into more complex structures such as bimolecular layers, which in turn form closed membranous vesicles. The first forms of cellular life required self-assembled membranes that were likely to have been produced from amphiphilic compounds on the prebiotic Earth. Laboratory simulations show that such vesicles readily encapsulate functional macromolecules, including nucleic acids and polymerases. The goal of future investigations will be to fabricate artificial cells as models of the origin of life.
Collapse
Affiliation(s)
- David Deamer
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA.
| | | | | | | | | |
Collapse
|
224
|
Kawamura K, Umehara M. Kinetic Analysis of the Temperature Dependence of the Template-Directed Formation of Oligoguanylate from the 5′-Phosphorimidazolide of Guanosine on a Poly(C) Template with Zn2+. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2001. [DOI: 10.1246/bcsj.74.927] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
225
|
Summit M, Baross JA. A novel microbial habitat in the mid-ocean ridge subseafloor. Proc Natl Acad Sci U S A 2001; 98:2158-63. [PMID: 11226209 PMCID: PMC30109 DOI: 10.1073/pnas.051516098] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Indexed: 11/18/2022] Open
Abstract
The subseafloor at the mid-ocean ridge is predicted to be an excellent microbial habitat, because there is abundant space, fluid flow, and geochemical energy in the porous, hydrothermally influenced oceanic crust. These characteristics also make it a good analog for potential subsurface extraterrestrial habitats. Subseafloor environments created by the mixing of hot hydrothermal fluids and seawater are predicted to be particularly energy-rich, and hyperthermophilic microorganisms that broadly reflect such predictions are ejected from these systems in low-temperature ( approximately 15 degrees C), basalt-hosted diffuse effluents. Seven hyperthermophilic heterotrophs isolated from low-temperature diffuse fluids exiting the basaltic crust in and near two hydrothermal vent fields on the Endeavour Segment, Juan de Fuca Ridge, were compared phylogenetically and physiologically to six similarly enriched hyperthermophiles from samples associated with seafloor metal sulfide structures. The 13 organisms fell into four distinct groups: one group of two organisms corresponding to the genus Pyrococcus and three groups corresponding to the genus Thermococcus. Of these three groups, one was composed solely of sulfide-derived organisms, and the other two related groups were composed of subseafloor organisms. There was no evidence of restricted exchange of organisms between sulfide and subseafloor habitats, and therefore this phylogenetic distinction indicates a selective force operating between the two habitats. Hypotheses regarding the habitat differences were generated through comparison of the physiology of the two groups of hyperthermophiles; some potential differences between these habitats include fluid flow stability, metal ion concentrations, and sources of complex organic matter.
Collapse
Affiliation(s)
- M Summit
- Department of Earth and Planetary Sciences, Campus Box 1169, Washington University, St. Louis, MO 63130, USA.
| | | |
Collapse
|
226
|
Abstract
The correlation between the optimal growth temperature of organisms and a thermophily index based on the propensity of amino acids to enter more frequently into (hyper)thermophile proteins is used to conduct an analysis aiming to establish whether genetic code structuring took place at a low or a high temperature. If the number of codons attributed to the various amino acids in the genetic code constitutes an estimate of the mean amino acid composition of proteins produced when the genetic code was definitively structured, then the thermophily index can also be associated to the genetic code. This value and the sampling of the variable thermophily index of different alignments of protein sequences from mesophile, thermophile and hyperthermophile species make it possible to establish, with an extremely high statistical confidence, that the late stage of genetic code structuring took place in a hyperthermophile (or thermophile) 'organism'. Moreover the 95% confidence interval of the temperature at which the genetic code was fixed turned out to be 91+/-24 degrees C. These observations seem to support the hypothesis that the origin of life might have taken place at a high temperature.
Collapse
Affiliation(s)
- M Di Giulio
- International Institute of Genetics and Biophysics, CNR, Via G. Marconi 10, 80125 Naples, Napoli, Italy.
| |
Collapse
|
227
|
Turley C. Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic. FEMS Microbiol Ecol 2000; 33:89-99. [PMID: 10967208 DOI: 10.1111/j.1574-6941.2000.tb00731.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
This is a short review of the current understanding of the role of microorganisms in the biogeochemistry in the deep-sea benthic boundary layer (BBL) and sediment-water interface (SWI) of the NE Atlantic, the gaps in our knowledge and some suggestions of future directions. The BBL is the layer of water, often tens of meters thick, adjacent to the sea bed and with homogenous properties of temperature and salinity, which sometimes contains resuspended detrital particles. The SWI is the bioreactive interface between the water column and the upper 1 cm of sediment and can include a large layer of detrital material composed of aggregates that have sedimented from the upper mixed layer of the ocean. This material is biologically transformed, over a wide range of time scales, eventually forming the sedimentary record. To understand the microbial ecology of deep-sea bacteria, we need to appreciate the food supply in the upper ocean, its packaging, passage and transformation during the delivery to the sea bed, the seasonality of variability of the supply and the environmental conditions under which the deep-sea bacteria grow. We also need to put into a microbial context recent geochemical findings of vast reservoirs of intrinsically labile organic material sorped onto sediments. These may well become desorped, and once again available to microorganisms, during resuspension events caused by deep ocean currents. As biotechnologists apply their tools in the deep oceans in search of unique bacteria, an increasing knowledge and understanding of the natural processes undertaken and environmental conditions experienced by deep-sea bacteria will facilitate this exploitation.
Collapse
Affiliation(s)
- C Turley
- Plymouth Marine Laboratory, Citadel Hill, The Hoe, PL1 2PB, Plymouth, UK
| |
Collapse
|
228
|
Kawamura K. Monitoring Hydrothermal Reactions on the Millisecond Time Scale Using a Micro-Tube Flow Reactor and Kinetics of ATP Hydrolysis for the RNA World Hypothesis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2000. [DOI: 10.1246/bcsj.73.1805] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
229
|
Pappalardo RT, Belton MJS, Breneman HH, Carr MH, Chapman CR, Collins GC, Denk T, Fagents S, Geissler PE, Giese B, Greeley R, Greenberg R, Head JW, Helfenstein P, Hoppa G, Kadel SD, Klaasen KP, Klemaszewski JE, Magee K, McEwen AS, Moore JM, Moore WB, Neukum G, Phillips CB, Prockter LM, Schubert G, Senske DA, Sullivan RJ, Tufts BR, Turtle EP, Wagner R, Williams KK. Does Europa have a subsurface ocean? Evaluation of the geological evidence. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998je000628] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
230
|
Sievert SM, Brinkhoff T, Muyzer G, Ziebis W, Kuever J. Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol 1999; 65:3834-42. [PMID: 10473383 PMCID: PMC99708 DOI: 10.1128/aem.65.9.3834-3842.1999] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spatial heterogeneity of bacterial populations at a shallow-water hydrothermal vent in the Aegean Sea close to the island of Milos (Greece) was examined at two different times by using acridine orange staining for total cell counts, cultivation-based techniques, and denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA gene fragments. Concurrent with measurements of geochemical parameters, samples were taken along a transect from the center of the vent to the surrounding area. Most-probable-number (MPN) counts of metabolically defined subpopulations generally constituted a minor fraction of the total cell counts; both counting procedures revealed the highest cell numbers in a transition zone from the strongly hydrothermally influenced sediments to normal sedimentary conditions. Total cell counts ranged from 3.2 x 10(5) cells ml(-1) in the water overlying the sediments to 6.4 x 10(8) cells g (wet weight) of sediment(-1). MPN counts of chemolithoautotrophic sulfur-oxidizing bacteria varied between undetectable and 1.4 x 10(6) cells g(-1). MPN counts for sulfate-reducing bacteria and dissimilatory iron-reducing bacteria ranged from 8 to 1.4 x 10(5) cells g(-1) and from undetectable to 1.4 x 10(6) cells g(-1), respectively. DGGE revealed a trend from a diverse range of bacterial populations which were present in approximately equal abundance in the transition zone to a community dominated by few populations close to the center of the vent. Temperature was found to be an important parameter in determining this trend. However, at one sampling time this trend was not discernible, possibly due to storm-induced disturbance of the upper sediment layers.
Collapse
Affiliation(s)
- S M Sievert
- Department of Microbiology, Max-Planck-Institute for Marine Microbiology, D-28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
231
|
Wade ML, Agresti DG, Wdowiak TJ, Armendarez LP, Farmer JD. A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration. JOURNAL OF GEOPHYSICAL RESEARCH 1999; 104:8489-507. [PMID: 11542933 DOI: 10.1029/1998je900049] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydrothermal spring systems may well have been present on early Mars and could have served as a habitat for primitive life. The integrated instrument suite of the Athena Rover has, as a component on the robotic arm, a Mossbauer spectrometer. In the context of future Mars exploration we present results of Mossbauer analysis of a suite of samples from an iron-rich thermal spring in the Chocolate Pots area of Yellowstone National Park (YNP) and from Obsidian Pool (YNP) and Manitou Springs, Colorado. We have found that Mossbauer spectroscopy can discriminate among the iron-bearing minerals in our samples. Those near the vent and on the surface are identified as ferrihydrite, an amorphous ferric mineraloid. Subsurface samples, collected from cores, which are likely to have undergone inorganic and/or biologically mediated alteration (diagenesis), exhibit spectral signatures that include nontronite (a smectite clay), hematite (alpha-Fe2O3), small-particle/nanophase goethite (alpha-FeOOH), and siderite (FeCO3). We find for iron minerals that Mossbauer spectroscopy is at least as efficient in identification as X-ray diffraction. This observation is important from an exploration standpoint. As a planetary surface instrument, Mossbauer spectroscopy can yield high-quality spectral data without sample preparation (backscatter mode). We have also used field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X ray (EDX) fluorescence spectroscopy, to characterize the microbiological component of surface sinters and the relation between the microbiological and the mineralogical framework. Evidence is presented that the minerals found in these deposits can have multi-billion-year residence times and thus may have survived their possible production in a putative early Martian hot spring up to the present day. Examples include the nanophase property and the Mossbauer signature for siderite, which has been identified in a 2.09-billion-year old hematite-rich chert stromatolite. Our research demonstrates that in situ Mossbauer spectroscopy can help determine whether hydrothermal mineral deposits exist on Mars, which is significant for exobiology because of the issue of whether that world ever had conditions conductive to the origin of life. As a useful tool for selection of samples suitable for transport to Earth, Mossbauer spectroscopy will not only serve geological interests but will also have potential for exopaleontology.
Collapse
Affiliation(s)
- M L Wade
- Astro and Solar System Physics Program, Department of Physics, University of Alabama at Birmingham, USA
| | | | | | | | | |
Collapse
|
232
|
Shock EL, Schulte MD. Organic synthesis during fluid mixing in hydrothermal systems. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98je02142] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
233
|
|
234
|
|
235
|
Cleaves HJ, Miller SL. Oceanic protection of prebiotic organic compounds from UV radiation. Proc Natl Acad Sci U S A 1998; 95:7260-3. [PMID: 9636136 PMCID: PMC22584 DOI: 10.1073/pnas.95.13.7260] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.
Collapse
Affiliation(s)
- H J Cleaves
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093-0506, USA
| | | |
Collapse
|
236
|
Holden JF, Summit M, Baross JA. Thermophilic and hyperthermophilic microorganisms in 3â30°C hydrothermal fluids following a deep-sea volcanic eruption. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb00458.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
237
|
Shock EL. High-temperature life without photosynthesis as a model for Mars. JOURNAL OF GEOPHYSICAL RESEARCH 1997; 102:23687-94. [PMID: 11541237 DOI: 10.1029/97je01087] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Discoveries in biology and developments in geochemistry over the past two decades have lead to a radical revision of concepts relating to the upper temperature at which life thrives, the genetic relationships among all life on Earth, links between organic and inorganic compounds in geologic processes, and the geochemical supply of metabolic energy. It is now apparent that given a source of geochemical energy, in the form of a mixture of compounds that is far from thermodynamic equilibrium, microorganisms can take advantage of the energy and thrive without the need for photosynthesis as a means of primary productivity. This means that life can exist in the subsurface of a planet such as Mars without necessarily exhibiting a surface expression. Theoretical calculations quantify the geochemically provided metabolic energy available to hyperthermophilic organisms in submarine hydrothermal systems on the Earth, and help to explain the enormous biological productivity of these systems. Efforts to place these models in the context of the early Earth reveal that substantial geochemical energy would have been available and that organic synthesis would have been thermodynamically favored as hydrothermal fluids mix with seawater.
Collapse
Affiliation(s)
- E L Shock
- Department of Earth and Planetary Sciences, McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
238
|
Kohara M, Gamo T, Yanagawa H, Kobayashi K. Stability of Amino Acids in Simulated Hydrothermal Vent Environments. CHEM LETT 1997. [DOI: 10.1246/cl.1997.1053] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
239
|
Russell MJ, Hall AJ. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. JOURNAL OF THE GEOLOGICAL SOCIETY 1997; 154:377-402. [PMID: 11541234 DOI: 10.1144/gsjgs.154.3.0377] [Citation(s) in RCA: 382] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Here we argue that life emerged on Earth from a redox and pH front at c. 4.2 Ga. This front occurred where hot (c. 150 degrees C), extremely reduced, alkaline, bisulphide-bearing, submarine seepage waters interfaced with the acid, warm (c. 90 degrees C), iron-hearing Hadean ocean. The low pH of the ocean was imparted by the ten bars of CO2 considered to dominate the Hadean atmosphere/hydrosphere. Disequilibrium between the two solutions was maintained by the spontaneous precipitation of a colloidal FeS membrane. Iron monosulphide bubbles comprising this membrane were inflated by the hydrothermal solution upon sulphide mounds at the seepage sites. Our hypothesis is that the FeS membrane, laced with nickel, acted as a semipermeable catalytic boundary between the two fluids, encouraging synthesis of organic anions by hydrogenation and carboxylation of hydrothermal organic primers. The ocean provided carbonate, phosphate, iron, nickel and protons; the hydrothermal solution was the source of ammonia, acetate, HS-, H2 and tungsten, as well as minor concentrations of organic sulphides and perhaps cyanide and acetaldehyde. The mean redox potential (delta Eh) across the membrane, with the energy to drive synthesis, would have approximated to 300 millivolts. The generation of organic anions would have led to an increase in osmotic pressure within the FeS bubbles. Thus osmotic pressure could take over from hydraulic pressure as the driving force for distension, budding and reproduction of the bubbles. Condensation of the organic molecules to polymers, particularly organic sulphides, was driven by pyrophosphate hydrolysis. Regeneration of pyrophosphate from the monophosphate in the membrane was facilitated by protons contributed from the Hadean ocean. This was the first use by a metabolizing system of protonmotive force (driven by natural delta pH) which also would have amounted to c. 300 millivolts. Protonmotive force is the universal energy transduction mechanism of life. Taken together with the redox potential across the membrane, the total electrochemical and chemical energy available for protometabolism amounted to a continuous supply at more than half a volt. The role of the iron sulphide membrane in keeping the two solutions separated was appropriated by the newly synthesized organic sulphide polymers. This organic take-over of the membrane material led to the miniaturization of the metabolizing system. Information systems to govern replication could have developed penecontemporaneously in this same milieu. But iron, sulphur and phosphate, inorganic components of earliest life, continued to be involved in metabolism.
Collapse
Affiliation(s)
- M J Russell
- Department of Geology and Applied Geology, University of Glasgow, UK
| | | |
Collapse
|
240
|
Griffith LL, Shock EL. Hydrothermal hydration of Martian crust: illustration via geochemical model calculations. JOURNAL OF GEOPHYSICAL RESEARCH 1997; 102:9135-43. [PMID: 11541456 DOI: 10.1029/96je02939] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
If hydrothermal Systems existed on Mars, hydration of crustal rocks may have had the potential to affect the water budget of the planet. We have conducted geochemical model calculations to investigate the relative roles of host rock composition, temperature, water-to-rock ratio, and initial fluid oxygen fugacity on the mineralogy of hydrothermal alteration assemblages, as well as the effectiveness of alteration to store water in the crust as hydrous minerals. In order to place calculations for Mars in perspective, models of hydrothermal alteration of three genetically related Icelandic volcanics (a basalt, andesite, and rhyolite) are presented, together with results for compositions based on SNC meteorite samples (Shergotty and Chassigny). Temperatures from 150 degrees C to 250 degrees C, water-to-rock ratios from 0.1 to 1000, and two initial fluid oxygen fugacities are considered in the models. Model results for water-to-rock ratios less than 10 are emphasized because they are likely to be more applicable to Mars. In accord with studies of low-grade alteration of terrestrial rocks, we find that the major controls on hydrous mineral production are host rock composition and temperature. Over the range of conditions considered, the alteration of Shergotty shows the greatest potential for storing water as hydrous minerals, and the alteration of Icelandic rhyolite has the lowest potential.
Collapse
Affiliation(s)
- L L Griffith
- Department of Earth and Planetary Sciences, Washington University, St Louis, Missouri, USA
| | | |
Collapse
|
241
|
Mével G, Faidy C, Prieur D. Distribution, activity, and diversity of heterotrophic nitrifiers originating from East Pacific deep-sea hydrothermal vents. Can J Microbiol 1996. [DOI: 10.1139/m96-024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrifiers (bacteria, n = 160) were enriched and isolated from samples of hydrothermal waters, sediments, invertebrate tissues, and chimney rocks collected from two East Pacific deep-sea hydrothermal vents (2000 m): the 13°N site and the Guaymas Basin. They were nitrite producers and seemed be widely and uniformly distributed in various parts of hydrothermal ecosystem. These bacteria grew and nitrified better heterotrophically than autotrophically and they possessed characteristics of heterotrophic nitrifiers. All were aerobic, mesophilic gram-negative rods with a unfermentative metabolism and 88% were nitrate reducers or denitrifiers. They were characterized by a high physiological and nutritional diversity, and because of their ability to ammonify, nitrify, and reduce nitrate, they could largely contribute to the nitrogen cycle in hydrothermal sites.Key words: hydrothermal vents, heterotrophic bacteria, nitrifying activity.
Collapse
|
242
|
Baross JA, Holden JF. Overview of hyperthermophiles and their heat-shock proteins. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:1-34. [PMID: 8791623 DOI: 10.1016/s0065-3233(08)60360-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J A Baross
- School of Oceanography, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
243
|
Walter MR. Ancient hydrothermal ecosystems on earth: a new palaeobiological frontier. CIBA FOUNDATION SYMPOSIUM 1996; 202:112-27; discussion 127-30. [PMID: 9243013 DOI: 10.1002/9780470514986.ch7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thermal springs are common in the oceans and on land. Early in the history of the Earth they would have been even more abundant, because of a higher heat flow. A thermophilic lifestyle has been proposed for the common ancestor of extant life, and hydrothermal ecosystems can be expected to have existed on Earth since life arose. Though there has been a great deal of recent research on this topic by biologists, palaeobiologists have done little to explore ancient high temperature environments. Exploration geologists and miners have long known the importance of hydrothermal systems, as they are sources for much of our gold, silver, copper, lead and zinc. Such systems are particularly abundant in Archaean and Proterozoic successions. Despite the rarity of systematic searches of these by palaeobiologists, already 12 fossiliferous Phanerozoic deposits are known. Five are 'black smoker' type submarine deposits that formed in the deep ocean and preserve a vent fauna like that in the modern oceans; the oldest is Devonian. Three are from shallow marine deposits of Carboniferous age. As well as 'worm tubes', several of these contain morphological or isotopic evidence of microbial life. The oldest well established fossiliferous submarine thermal spring deposit is Cambro-Ordovician; microorganisms of at least three or four types are preserved in this. One example each of Carboniferous and Jurassic sub-lacustrine fossiliferous thermal springs are known. There are two convincing examples of fossiliferous subaerial hydrothermal deposits. Both are Devonian. Several known Proterozoic and Archaean deposits are likely to preserve a substantial palaeobiological record, and all the indications are that there must be numerous deposits suitable for study. Already it is demonstrable that in ancient thermal spring deposits there is a record of microbial communities preserved as stromatolites, microfossils, isotope distribution patterns and hydrocarbon biomarkers.
Collapse
Affiliation(s)
- M R Walter
- School of Earth Sciences, Macquarie University, NSW, Australia
| |
Collapse
|
244
|
Abstract
The recent review by Marshall (1994) of the production of amino acids from the interstellar components, formaldehyde and ammonia, is placed in the larger context of the origin of life. Thermal energy, being ubiquitous in the Earth, emerges as the sole necessary form of energy. To appreciate the overview of the natural evolutionary sequence it is necessary to recognize stepwiseness in evolution, a principle that has however been often ignored. Since self organization of thermal protein to cells is instantaneous, but only one step in a geochemical ladder, individual steps may be regarded as instantaneous, while the sequence requires measurable time. Two steps indicated are extrusion of a hot, dry organic magma of amino acids --> peptides into an aqueous environment in which occurs a second step of self organization. In this paper, spinoffs of the defensible theory for the origin of life have been briefly reviewed as a fundamental consequence of nonrandom thermal copolymerization of amino acids.
Collapse
Affiliation(s)
- S W Fox
- Coastal Research and Development Institute, University of South Alabama, Mobile 36688, USA
| |
Collapse
|
245
|
Forterre P. Looking for the most "primitive" organism(s) on Earth today: the state of the art. PLANETARY AND SPACE SCIENCE 1995; 43:167-177. [PMID: 11538431 DOI: 10.1016/0032-0633(94)00167-p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular phylogenetic studies have revealed a tripartite division of the living world into two procaryotic groups, Bacteria and Archaea, and one eucaryotic group, Eucarya. Which group is the most "primitive"? Which groups are sister? The answer to these questions would help to delineate the characters of the last common ancestor to all living beings, as a first step to reconstruct the earliest periods of biological evolution on Earth. The current "Procaryotic dogma" claims that procaryotes are primitive. Since the ancestor of Archaea was most probably a hyperthermophile, and since bacteria too might have originated from hyperthermophiles, the procaryotic dogma has been recently connected to the hot origin of life hypothesis. However, the notion that present-day hyperthermophiles are primitive has been challenged by recent findings, in these unique microorganisms, of very elaborate adaptative devices for life at high temperature. Accordingly, I discuss here alternative hypotheses that challenge the procaryotic dogma, such as the idea of a universal ancestor with molecular features in between those of eucaryotes and procaryotes, or the origin of procaryotes via thermophilic adaptation. Clearly, major evolutionary questions about early cellular evolution on Earth remain to be settled before we can speculate with confidence about which kinds of life might have appeared on other planets.
Collapse
Affiliation(s)
- P Forterre
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| |
Collapse
|
246
|
Holm NG, Andersson EM. Abiotic synthesis of organic compounds under the conditions of submarine hydrothermal systems: a perspective. PLANETARY AND SPACE SCIENCE 1995; 43:153-159. [PMID: 11538429 DOI: 10.1016/0032-0633(93)e0043-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Deep-sea hydrothermal systems have been proposed to be likely environments for chemical evolution and the origin of life on Earth. Recently, experiments have, therefore, been carried out in order to test the hypothesis that amino acids can be synthesized under conditions representing hydrothermally altered oceanic crust. The variety of amino acids that have been detected in such experiments corresponds roughly to that reported previously for electric sparking in reducing gas mixtures. The relative yields of the protein amino acids detected are significantly higher than in electric spark discharge experiments, and the overall yields are about an order of magnitude higher. The amino acids are all racemic.
Collapse
Affiliation(s)
- N G Holm
- Department of Geology and Geochemistry, Stockholm University, Sweden
| | | |
Collapse
|
247
|
Abstract
Early in its history, Mars underwent fluvial erosion that has been interpreted as evidence for a warmer, wetter climate. However, no atmosphere composed of only CO2 and H2O appears capable of producing mean planetary temperatures even close to 0 degrees C. Rather than by precipitation, aquifer recharge and ground water seepage may have been enabled by hydrothermal convection driven by geothermal heat and heat associated with impacts. Some climatic warming was probably necessary to allow water to flow for long distances across the surface. Modest warming could be provided by even a low-pressure CO2 atmosphere if it was supplemented with small amounts of CH4, NH3, or SO2. Episodic excursions to high obliquities may also have raised temperatures over some portions of the planet's surface.
Collapse
Affiliation(s)
- S W Squyres
- Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
248
|
Qian Y, Engel MH, Macko SA, Carpenter S, Deming JW. Kinetics of peptide hydrolysis and amino acid decomposition at high temperature. GEOCHIMICA ET COSMOCHIMICA ACTA 1993; 57:3281-3293. [PMID: 11538300 DOI: 10.1016/0016-7037(93)90540-d] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Dipeptide hydrolysis and amino acid decomposition appear to follow a first-order rate law. The hydrolysis rate increases exponentially with increasing temperature in aqueous solution at both 265 atm and water steam pressures over the temperature range of 100 to 220 degrees C. Dipeptide hydrolysis has a lower apparent activation energy at 265 atm (44.1 KJ/mol) than at water steam pressure (98.9 KJ/mol). At lower temperatures (<200-220 degrees C), the rate of peptide bond hydrolysis is faster at 265 atm than at water steam pressure. At higher temperatures (>200-220 degrees C), however, peptide bond hydrolysis is slower at 265 atm than at water steam pressure. In aqueous solution, amino acid decomposition rates also increase exponentially with increasing temperature. Amino acid decomposition rates are much higher at 265 atm than at water steam pressure over the entire temperature range investigated.
Collapse
Affiliation(s)
- Y Qian
- School of Geology and Geophysics, The University of Oklahoma, Norman 73019, USA
| | | | | | | | | |
Collapse
|
249
|
Deming JW, Baross JA. Deep-sea smokers: windows to a subsurface biosphere? GEOCHIMICA ET COSMOCHIMICA ACTA 1993; 57:3219-3230. [PMID: 11538298 DOI: 10.1016/0016-7037(93)90535-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Since the discovery of hyperthermophilic microbial activity in hydrothermal fluids recovered from "smoker" vents on the East Pacific Rise, the widely accepted upper temperature limit for life (based on pure culture data) has risen from below the boiling point of water at atmospheric pressure to approximately 115 degrees C. Many microbiologists seem willing to speculate that the maximum may be closer to 150 degrees C. We have postulated not only higher temperatures than these (under deep-sea hydrostatic pressures), but also the existence of a biosphere subsurface to accessible seafloor vents. New geochemical information from the Endeavour Segment of the Juan de Fuca Ridge indicative of subsurface organic material caused us to re-examine both the literature on hyperthermophilic microorganisms cultured from deep-sea smoker environments and recent results of microbial sampling efforts at actively discharging smokers on the Endeavour Segment. Here we offer the case for a subsurface biosphere based on an interdisciplinary view of microbial and geochemical analyses of Endeavour smoker fluids, a case in keeping with rapidly evolving geophysical understanding of organic stability under deep-sea hydrothermal conditions.
Collapse
Affiliation(s)
- J W Deming
- School of Oceanography, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
250
|
Schwendinger MG, Rode BM. Investigations on the mechanism of the salt-induced peptide formation. ORIGINS LIFE EVOL B 1992; 22:349-59. [PMID: 1465297 DOI: 10.1007/bf01809371] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The applicability of the salt-induced peptide formation in aqueous solution--the simplest model so far for peptide synthesis under primitive earth conditions--is demonstrated for valine as another amino acid, and the formation of mixed peptides in systems containing glycine, alanine and valine is investigated. The dominant dipeptides formed are Gly-Gly, Gly-Ala and Gly-Val, at longer reaction times sequence inversion produces Ala-Gly and, considerably slower, Val-Gly. Ala-Ala is also produced and the relative amounts of the diastereomers prove the high conservation of optical purity of the original amino acids over a considerable time. The results lead to some further conclusions about the reaction mechanism and the possible dominance of peptide sequences in primordial dipeptides.
Collapse
Affiliation(s)
- M G Schwendinger
- Institute of Inorganic and Analytical Chemistry, University of Innsbruck, Austria
| | | |
Collapse
|