201
|
Liu Y, Zhao Z, Yang F, Gao Y, Song J, Wan Y. microRNA-181a is involved in insulin-like growth factor-1-mediated regulation of the transcription factor CREB1. J Neurochem 2013; 126:771-80. [PMID: 23865718 DOI: 10.1111/jnc.12370] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/13/2013] [Accepted: 07/15/2013] [Indexed: 01/26/2023]
Abstract
microRNAs are a class of small non-coding RNA molecules negatively regulating gene expression at post-transcriptional level in many tissues including the central nervous system. cAMP response element binding protein (CREB) is a key nuclear factor highly expressed in hippocampal neurons on which many signal pathways converge. Recent studies have found that microRNA-181a is rich in mature nerve cells, and bioinformatics analysis shows that the CREB1 mRNA 3'-untranslated region (3'UTR) contains complementary sequence to the miR-181a seed region. In this study, we investigated whether miR-181a is a negative regulator for CREB1 expression in neurons. It was found that the expression of miR-181a was negatively correlated with Insulin-like growth factor-1 (IGF-1) and CREB1 in the Lewis rat hippocampus. miR-181a bound to CREB1 mRNA through a specific binding site in the 3'UTR sequence. The expression of CREB1 in PC12 cells was down-regulated by transfection with a miR-181a mimic and up-regulated by a miR-181a inhibitor. A down-regulated miR-181a and an up-regulated CREB1 were observed in IGF-1-stimulated PC12 cells. And miR-181a inhibited dendritic growth of cultured hippocampus neurons. These suggest that miR-181a is involved in IGF-1-regulated CREB1 expression by targeting its mRNA 3'UTR. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level and are involved in the central nervous system development. Here, we demonstrate that miR-181a can inhibit the expression of the transcription factor CREB1 by specifically targeting its mRNA 3'UTR and inhibit the development of hippocampus neurons. Repressed expression of miR-181a is involved in IGF-1-mediated up-regulation of CREB1 in vivo and in vitro. These findings indicate that miR-181a could be a potential target for preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
202
|
Xie Z, Huang C, Ci B, Wang L, Zhong Y. Requirement of the combination of mushroom body lobe and / lobes for the retrieval of both aversive and appetitive early memories in Drosophila. Learn Mem 2013; 20:474-81. [DOI: 10.1101/lm.031823.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
203
|
Roberts AC, Bill BR, Glanzman DL. Learning and memory in zebrafish larvae. Front Neural Circuits 2013; 7:126. [PMID: 23935566 PMCID: PMC3731533 DOI: 10.3389/fncir.2013.00126] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/11/2013] [Indexed: 01/22/2023] Open
Abstract
Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory.
Collapse
Affiliation(s)
- Adam C. Roberts
- Department of Integrative Biology and Physiology, University of California at Los AngelesLos Angeles, CA, USA
| | - Brent R. Bill
- Center for Autism Research and Program in Neurobehavioral Genetics, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California at Los AngelesLos Angeles, CA, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California at Los AngelesLos Angeles, CA, USA
| | - David L. Glanzman
- Department of Integrative Biology and Physiology, University of California at Los AngelesLos Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los AngelesLos Angeles, CA, USA
- Integrative Center for Learning and Memory, David Geffen School of Medicine, Brain Research Institute, University of California at Los AngelesLos Angeles, CA, USA
| |
Collapse
|
204
|
Guo J, Liu Z, Dai H, Zhu Z, Wang H, Yang C, Xiao L, Huang Y, Wang G. Preliminary investigation of the influence of CREB1 gene polymorphisms on cognitive dysfunction in Chinese patients with major depression. Int J Neurosci 2013; 124:22-9. [DOI: 10.3109/00207454.2013.816956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
205
|
Zhao J, Lu Y, Zhao X, Yao X, Shuai Y, Huang C, Wang L, Jeong SH, Zhong Y. Dissociation ofrugose-dependent short-term memory component from memory consolidation inDrosophila. GENES BRAIN AND BEHAVIOR 2013; 12:626-32. [DOI: 10.1111/gbb.12056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 05/22/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Affiliation(s)
- J. Zhao
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - Y. Lu
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - X. Zhao
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - X. Yao
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - Y. Shuai
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - C. Huang
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - L. Wang
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - S. H. Jeong
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | | |
Collapse
|
206
|
Abstract
CREB-responsive transcription has an important role in adaptive responses in all cells and tissue. In the nervous system, it has an essential and well established role in long-term memory formation throughout a diverse set of organisms. Activation of this transcription factor correlates with long-term memory formation and disruption of its activity interferes with this process. Most convincingly, augmenting CREB activity in a number of different systems enhances memory formation. In Drosophila, a sequence rearrangement in the original transgene used to enhance memory formation has been a source of confusion. This rearrangement prematurely terminates translation of the full-length protein, leaving the identity of the "enhancing molecule" unclear. In this report, we show that a naturally occurring, downstream, in-frame initiation codon is used to make a dCREB2 protein off of both transgenic and chromosomal substrates. This protein is a transcriptional activator and is responsible for memory enhancement. A number of parameters can affect enhancement, including the short-lived activity of the activator protein, and the time-of-day when induction and behavioral training occur. Our results reaffirm that overexpression of a dCREB2 activator can enhance memory formation and illustrate the complexity of this behavioral enhancement.
Collapse
|
207
|
Abstract
Exposure to various forms of stress is a common daily occurrence in the lives of most individuals, with both positive and negative effects on brain function. The impact of stress is strongly influenced by the type and duration of the stressor. In its acute form, stress may be a necessary adaptive mechanism for survival and with only transient changes within the brain. However, severe and/or prolonged stress causes overactivation and dysregulation of the hypothalamic pituitary adrenal (HPA) axis thus inflicting detrimental changes in the brain structure and function. Therefore, chronic stress is often considered a negative modulator of the cognitive functions including the learning and memory processes. Exposure to long-lasting stress diminishes health and increases vulnerability to mental disorders. In addition, stress exacerbates functional changes associated with various brain disorders including Alzheimer’s disease and Parkinson’s disease. The primary purpose of this paper is to provide an overview for neuroscientists who are seeking a concise account of the effects of stress on learning and memory and associated signal transduction mechanisms. This review discusses chronic mental stress and its detrimental effects on various aspects of brain functions including learning and memory, synaptic plasticity, and cognition-related signaling enabled via key signal transduction molecules.
Collapse
|
208
|
Hirano Y, Saitoe M. Hunger and memory; CRTC coordinates long-term memory with the physiological state, hunger. Commun Integr Biol 2013; 6:e25152. [PMID: 24265850 PMCID: PMC3829949 DOI: 10.4161/cib.25152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
Animals form and store memory, which advantageously adjusts their behavior later on. Although the growing body of evidences suggests the basic mechanisms of memory, it is not clear whether and in which physiological state memory functions can be altered. Here we discuss our recent study that mild fasting facilitates long-term memory (LTM) formation in Drosophila.1 Canonical LTM in flies is induced by multiple training with rest intervals, and is mediated by a transcription factor, CREB and its binding protein, CBP. However, fasting allows LTM formation (fLTM) only by single-cycle training, in a manner dependent on another CREB binding protein, CRTC. Although it has been controversial, we are convinced that gene expression in a specific neural structure, called mushroom body (MB), is required for LTMs. We also showed data suggesting that reduced insulin signaling during fasting activates CRTC, thereby inducing fLTM formation. These data provides the conceptual advance that flies adapt their mechanisms for LTM formation according to their internal condition, hunger state. Due to limited food resources in the wild, fLTM could be one of the major form of LTM in natural environment. Furthermore, our data also indicate a novel conception that improvement of memory deficit might be achieved by activation of CRTC.
Collapse
Affiliation(s)
- Yukinori Hirano
- Department of Sensory and Motor Systems; Tokyo Metropolitan Institute of Medical Science; Setagaya, Tokyo, Japan ; Japan Science and Technology Agency; PRESTO; Saitama, Japan
| | | |
Collapse
|
209
|
Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, Gamache K, Gallagher CM, Ang KKH, Wilson C, Okreglak V, Ashkenazi A, Hann B, Nader K, Arkin MR, Renslo AR, Sonenberg N, Walter P. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2013; 2:e00498. [PMID: 23741617 PMCID: PMC3667625 DOI: 10.7554/elife.00498] [Citation(s) in RCA: 504] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/23/2013] [Indexed: 12/13/2022] Open
Abstract
Phosphorylation of the α-subunit of initiation factor 2 (eIF2) controls protein synthesis by a conserved mechanism. In metazoa, distinct stress conditions activate different eIF2α kinases (PERK, PKR, GCN2, and HRI) that converge on phosphorylating a unique serine in eIF2α. This collection of signaling pathways is termed the 'integrated stress response' (ISR). eIF2α phosphorylation diminishes protein synthesis, while allowing preferential translation of some mRNAs. Starting with a cell-based screen for inhibitors of PERK signaling, we identified a small molecule, named ISRIB, that potently (IC50 = 5 nM) reverses the effects of eIF2α phosphorylation. ISRIB reduces the viability of cells subjected to PERK-activation by chronic endoplasmic reticulum stress. eIF2α phosphorylation is implicated in memory consolidation. Remarkably, ISRIB-treated mice display significant enhancement in spatial and fear-associated learning. Thus, memory consolidation is inherently limited by the ISR, and ISRIB releases this brake. As such, ISRIB promises to contribute to our understanding and treatment of cognitive disorders. DOI:http://dx.doi.org/10.7554/eLife.00498.001.
Collapse
Affiliation(s)
- Carmela Sidrauski
- Department of Biochemistry and Biophysics , University of California, San Francisco , San Francisco , United States ; Howard Hughes Medical Institute, University of California, San Francisco , San Francisco , United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Weislogel JM, Bengtson CP, Müller MK, Hörtzsch JN, Bujard M, Schuster CM, Bading H. Requirement for nuclear calcium signaling in Drosophila long-term memory. Sci Signal 2013; 6:ra33. [PMID: 23652205 DOI: 10.1126/scisignal.2003598] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Calcium is used throughout evolution as an intracellular signal transducer. In the mammalian central nervous system, calcium mediates the dialogue between the synapse and the nucleus that is required for transcription-dependent persistent neuronal adaptations. A role for nuclear calcium signaling in similar processes in the invertebrate brain has yet to be investigated. Here, we show by in vivo calcium imaging of adult brain neurons of the fruit fly Drosophila melanogaster, that electrical foot shocks used in olfactory avoidance conditioning evoked transient increases in cytosolic and nuclear calcium concentrations in neurons. These calcium signals were detected in Kenyon cells of the flies' mushroom bodies, which are sites of learning and memory related to smell. Acute blockade of nuclear calcium signaling during conditioning selectively and reversibly abolished the formation of long-term olfactory avoidance memory, whereas short-term, middle-term, or anesthesia-resistant olfactory memory remained unaffected. Thus, nuclear calcium signaling is required in flies for the progression of memories from labile to transcription-dependent long-lasting forms. These results identify nuclear calcium as an evolutionarily conserved signal needed in both invertebrate and vertebrate brains for transcription-dependent memory consolidation.
Collapse
Affiliation(s)
- Jan-Marek Weislogel
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
211
|
Alkadhi K, Zagaar M, Alhaider I, Salim S, Aleisa A. Neurobiological consequences of sleep deprivation. Curr Neuropharmacol 2013; 11:231-249. [PMID: 24179461 PMCID: PMC3648777 DOI: 10.2174/1570159x11311030001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/15/2013] [Accepted: 02/02/2013] [Indexed: 01/30/2023] Open
Abstract
Although the physiological function of sleep is not completely understood, it is well documented that it contributes significantly to the process of learning and memory. Ample evidence suggests that adequate sleep is essential for fostering connections among neuronal networks for memory consolidation in the hippocampus. Sleep deprivation studies are extremely valuable in understanding why we sleep and what are the consequences of sleep loss. Experimental sleep deprivation in animals allows us to gain insight into the mechanism of sleep at levels not possible to study in human subjects. Many useful approaches have been utilized to evaluate the effect of sleep loss on cognitive function, each with relative advantages and disadvantages. In this review we discuss sleep and the detrimental effects of sleep deprivation mostly in experimental animals. The negative effects of sleep deprivation on various aspects of brain function including learning and memory, synaptic plasticity and the state of cognition-related signaling molecules are discussed.
Collapse
Affiliation(s)
- Karim Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas, USA
| | - Munder Zagaar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas, USA
| | - Ibrahim Alhaider
- College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Kingdom of Saudi Arabia
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas, USA
| | - Abdulaziz Aleisa
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
212
|
Senescent-induced dysregulation of cAMP/CREB signaling and correlations with cognitive decline. Brain Res 2013; 1516:93-109. [PMID: 23623816 DOI: 10.1016/j.brainres.2013.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 11/20/2022]
Abstract
It is well known that alongside senescence there is a gradual decline in cognitive ability, most noticeably certain kinds of memory such as working, episodic, spatial, and long term memory. However, until recently, not much has been known regarding the specific mechanisms responsible for the decline in cognitive ability with age. Over the past decades, researchers have become more interested in cAMP signaling, and its downstream transcription factor cAMP response element binding protein (CREB) in the context of senescence. However, there is still a lack of understanding on what ultimately causes the cognitive deficits observed with senescence. This review will focus on the changes in intracellular signaling in the brain, more specifically, alterations in cAMP/CREB signaling in aging. In addition, the downstream effects of altered cAMP signaling on cognitive ability with age will be further discussed. Overall, understanding the senescent-related changes that occur in cAMP/CREB signaling could be important for the development of novel drug targets for both healthy aging, and pathological aging such as Alzheimer's disease.
Collapse
|
213
|
Philips GT, Ye X, Kopec AM, Carew TJ. MAPK establishes a molecular context that defines effective training patterns for long-term memory formation. J Neurosci 2013; 33:7565-73. [PMID: 23616561 PMCID: PMC3865502 DOI: 10.1523/jneurosci.5561-12.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 12/23/2022] Open
Abstract
Although the importance of spaced training trials in the formation of long-term memory (LTM) is widely appreciated, surprisingly little is known about the molecular mechanisms that support interactions between individual trials. The intertrial dynamics of ERK/MAPK activation have recently been correlated with effective training patterns for LTM. However, whether and how MAPK is required to mediate intertrial interactions remains unknown. Using a novel two-trial training pattern which induces LTM in Aplysia, we show that the first of two training trials recruits delayed protein synthesis-dependent nuclear MAPK activity that establishes a unique molecular context involving the recruitment of CREB kinase and ApC/EBP and is an essential intertrial signaling mechanism for LTM induction. These findings provide the first demonstration of a requirement for MAPK in the intertrial interactions during memory formation and suggest that the kinetics of MAPK activation following individual experiences determines effective training intervals for LTM formation.
Collapse
Affiliation(s)
- Gary T. Philips
- Center for Neural Science, New York University, New York, New York 10003
| | - Xiaojing Ye
- Center for Neural Science, New York University, New York, New York 10003
| | - Ashley M. Kopec
- Center for Neural Science, New York University, New York, New York 10003
| | - Thomas J. Carew
- Center for Neural Science, New York University, New York, New York 10003
| |
Collapse
|
214
|
Increasing CRTC1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality. J Neurosci 2013; 32:17857-68. [PMID: 23223304 DOI: 10.1523/jneurosci.1419-12.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Memory stabilization following encoding (synaptic consolidation) or memory reactivation (reconsolidation) requires gene expression and protein synthesis (Dudai and Eisenberg, 2004; Tronson and Taylor, 2007; Nader and Einarsson, 2010; Alberini, 2011). Although consolidation and reconsolidation may be mediated by distinct molecular mechanisms (Lee et al., 2004), disrupting the function of the transcription factor CREB impairs both processes (Kida et al., 2002; Mamiya et al., 2009). Phosphorylation of CREB at Ser133 recruits CREB binding protein (CBP)/p300 coactivators to activate transcription (Chrivia et al., 1993; Parker et al., 1996). In addition to this well known mechanism, CREB regulated transcription coactivators (CRTCs), previously called transducers of regulated CREB (TORC) activity, stimulate CREB-mediated transcription, even in the absence of CREB phosphorylation. Recently, CRTC1 has been shown to undergo activity-dependent trafficking from synapses and dendrites to the nucleus in excitatory hippocampal neurons (Ch'ng et al., 2012). Despite being a powerful and specific coactivator of CREB, the role of CRTC in memory is virtually unexplored. To examine the effects of increasing CRTC levels, we used viral vectors to locally and acutely increase CRTC1 in the dorsal hippocampus dentate gyrus region of mice before training or memory reactivation in context fear conditioning. Overexpressing CRTC1 enhanced both memory consolidation and reconsolidation; CRTC1-mediated memory facilitation was context specific (did not generalize to nontrained context) and long lasting (observed after virally expressed CRTC1 dissipated). CREB overexpression produced strikingly similar effects. Therefore, increasing CRTC1 or CREB function is sufficient to enhance the strength of new, as well as established reactivated, memories without compromising memory quality.
Collapse
|
215
|
Cyriac A, Holmes G, Lass J, Belchenko D, Calin-Jageman RJ, Calin-Jageman IE. An Aplysia Egr homolog is rapidly and persistently regulated by long-term sensitization training. Neurobiol Learn Mem 2013; 102:43-51. [PMID: 23567107 DOI: 10.1016/j.nlm.2013.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/21/2013] [Accepted: 03/24/2013] [Indexed: 02/03/2023]
Abstract
The Egr family of transcription factors plays a key role in long-term plasticity and memory in a number of vertebrate species. Here we identify and characterize ApEgr (GenBank: KC608221), an Egr homolog in the marine mollusk Aplysia californica. ApEgr codes for a predicted 593-amino acid protein with the highly conserved trio of zinc-fingered domains in the C-terminus that characterizes the Egr family of transcription factors. Promoter analysis shows that the ApEgr protein selectively recognizes the GSG motif recognized by vertebrate Egrs. Like mammalian Egrs, ApEgr is constitutively expressed in a range of tissues, including the CNS. Moreover, expression of ApEgr is bi-directionally regulated by changes in neural activity. Of most interest, the association between ApEgr function and memory may be conserved in Aplysia, as we observe rapid and long-lasting up-regulation of expression after long-term sensitization training. Taken together, our results suggest that Egrs may have memory functions that are conserved from mammals to mollusks.
Collapse
Affiliation(s)
- Ashly Cyriac
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | | | | | | | | | | |
Collapse
|
216
|
Kim J, Kwon JT, Kim HS, Han JH. CREB and neuronal selection for memory trace. Front Neural Circuits 2013; 7:44. [PMID: 23519079 PMCID: PMC3604628 DOI: 10.3389/fncir.2013.00044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/03/2013] [Indexed: 11/13/2022] Open
Abstract
Despite considerable progress over the past several decades, our understanding of the mechanisms underlying memory encoding, storage, and expression in a complex neural network are far from complete. In particular, how some neurons rather than others are selectively engaged to encode memory remains largely unknown. Using virus-mediated gene delivery into a small subset of neurons in a given network, molecular imaging of neuronal activity, pharmacological perturbation of specific neurons' activity and animal behavior assays, recent studies have begun to provide insight into molecular and cellular mechanisms responsible for the selection of neurons for inclusion into a memory trace. Here, we focus on a review of recent findings supporting the hypothesis that the level of the transcription factor CREB (cAMP/Ca2+-response element binding protein) is a key factor governing which neurons are recruited to a given memory trace. These recent findings open a new perspective on memory trace at the neural circuit level and also raise many important questions. Future studies employing more advanced neurobiological techniques for targeting defined populations of neurons and manipulating their activity in time and space in a complex neural network will give answers to these newly emerging questions and extend our understanding of the neurobiological basis of the memory trace.
Collapse
Affiliation(s)
- Jieun Kim
- Laboratory of Neural Circuit and Behavior, Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology Daejeon, Korea
| | | | | | | |
Collapse
|
217
|
Zhou G, Xiong W, Zhang X, Ge S. Retrieval of Consolidated Spatial Memory in the Water Maze Is Correlated with Expression of pCREB and Egr1 in the Hippocampus of Aged Mice. Dement Geriatr Cogn Dis Extra 2013; 3:39-47. [PMID: 23569457 PMCID: PMC3618049 DOI: 10.1159/000348349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective To study the relationship of the expression of phosphorylated cyclic AMP response element-binding protein (pCREB) and early growth response protein 1 (Egr1) in the hippocampus of aged mice with retrieval of consolidated spatial memory in a water maze. Methods Twenty-four aged mice were allocated into no training or probe test (naïve), no training but exposed to the same probe test (NTPRT), received training and probe test (PRT), and received training but no probe test (NPRT) groups. Twelve mice were trained in a water maze over 14 days. After the final probe trial on day 15, all mice were anesthetized and the brains were removed. pCREB immunoreactivity (pCREB-ir) and Egr1 immunoreactivity (Egr1-ir) in the hippocampal CA1 and CA3 areas were examined. Results pCREB-ir and Egr1-ir in the CA1 and CA3 areas of the NPRT and PRT groups were significantly higher than those of the naïve and NTPRT groups, and those in the PRT group were significantly higher than in the NPRT group. In all groups, pCREB-ir was significantly higher in the CA3 area compared to the CA1 area, while Egr1-ir was significantly higher in the CA1 area compared to the CA3 area. Conclusion Retrieval, as well as formation, of consolidated spatial memory in the water maze is correlated with expression of pCREB and Egr1 in the hippocampus of aged mice.
Collapse
Affiliation(s)
- Guoxia Zhou
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China ; Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China ; Department of Anesthesia, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
218
|
Abstract
Memories are classified as consolidated (stable) or labile according to whether they withstand amnestic treatment, or not. In contrast to the general prevalence of this classification, its neuronal and molecular basis is poorly understood. Here, we focused on consolidated and labile memories induced after a single cycle training in the Drosophila aversive olfactory conditioning paradigm and we used mutants to define the impact of cAMP signals. At the biochemical level we report that cAMP signals misrelated in either rutabaga (rut) or dunce (dnc) mutants separate between consolidated anesthesia-resistant memory (ARM) and labile anesthesia-sensitive memory (ASM). Those functionally distinct cAMP signals act within different neuronal populations: while rut-dependent cAMP signals act within Kenyon cells (KCs) of the mushroom bodies to support ASM, dnc-sensitive cAMP signals support ARM within antennal lobe local neurons (LNs) and KCs. Collectively, different key positions along the olfactory circuitry seem to get modified during storage of ARM or ASM independently. A precise separation between those functionally distinct cAMP signals seems mandatory to allocate how they support appropriate memories.
Collapse
|
219
|
Dubnau J, Chiang AS. Systems memory consolidation in Drosophila. Curr Opin Neurobiol 2013; 23:84-91. [DOI: 10.1016/j.conb.2012.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
220
|
Hirano Y, Masuda T, Naganos S, Matsuno M, Ueno K, Miyashita T, Horiuchi J, Saitoe M. Fasting Launches CRTC to Facilitate Long-Term Memory Formation in Drosophila. Science 2013; 339:443-6. [DOI: 10.1126/science.1227170] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
221
|
Rao Y, Mineur YS, Gan G, Wang AH, Liu ZW, Wu X, Suyama S, de Lecea L, Horvath TL, Picciotto MR, Gao XB. Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice. J Physiol 2013; 591:1951-66. [PMID: 23318871 DOI: 10.1113/jphysiol.2012.246983] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypocretin (orexin), a neuropeptide synthesized exclusively in the perifornical/lateral hypothalamus, is critical for drug seeking and relapse, but it is not clear how the circuitry centred on hypocretin-producing neurons (hypocretin neurons) is modified by drugs of abuse and how changes in this circuit might alter behaviours related to drug addiction. In this study, we show that repeated, but not single, in vivo cocaine administration leads to a long-lasting, experience-dependent potentiation of glutamatergic synapses on hypocretin neurons in mice following a cocaine-conditioned place preference (CPP) protocol. The synaptic potentiation occurs postsynaptically and probably involves up-regulation of AMPA-type glutamate receptors on hypocretin neurons. Phosphorylation of cAMP response element-binding protein (CREB) is also significantly increased in hypocretin neurons in cocaine-treated animals, suggesting that CREB-mediated pathways may contribute to synaptic potentiation in these cells. Furthermore, the potentiation of synaptic efficacy in hypocretin neurons persists during cocaine withdrawal, but reverses to baseline levels after prolonged abstinence. Finally, the induction of long-term potentiation (LTP) triggered by a high-frequency stimulation is facilitated in hypocretin neurons in cocaine-treated mice, suggesting that long-lasting changes in synapses onto hypocretin neurons would probably be further potentiated by other stimuli (such as concurrent environmental cues) paired with the drug. In summary, we show here that hypocretin neurons undergo experience-dependent synaptic potentiation that is distinct from that reported in other reward systems, such as the ventral tegmental area, following exposure to cocaine. These findings support the idea that the hypocretin system is important for behavioural changes associated with cocaine administration in animals and humans.
Collapse
Affiliation(s)
- Yan Rao
- Department of 1OB/GYN and Reproductive Science, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Thr136Ile polymorphism of human vesicular monoamine transporter-1 (SLC18A1 gene) influences its transport activity in vitro. Neural Plast 2013; 2012:945373. [PMID: 23213575 PMCID: PMC3504448 DOI: 10.1155/2012/945373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/22/2012] [Accepted: 09/23/2012] [Indexed: 12/23/2022] Open
Abstract
The hippocampus has the extraordinary capacity to process and store information. Consequently, there is an intense interest in the mechanisms that underline learning and memory. Synaptic plasticity has been hypothesized to be the neuronal substrate for learning. Ca2+ and Ca2+-activated kinases control cellular processes of most forms of hippocampal synapse plasticity. In this paper, I aim to integrate our current understanding of Ca2+-mediated synaptic plasticity and metaplasticity in motivational and reward-related learning in the hippocampus. I will introduce two representative neuromodulators that are widely studied in reward-related learning (e.g., ghrelin and endocannabinoids) and show how they might contribute to hippocampal neuron activities and Ca2+-mediated signaling processes in synaptic plasticity. Additionally, I will discuss functional significance of these two systems and their signaling pathways for its relevance to maladaptive reward learning leading to addiction.
Collapse
|
223
|
Kathirvelu B, East BS, Hill AR, Smith CA, Colombo PJ. Lentivirus-mediated chronic expression of dominant-negative CREB in the dorsal hippocampus impairs memory for place learning and contextual fear conditioning. Neurobiol Learn Mem 2013; 99:10-6. [PMID: 23110949 DOI: 10.1016/j.nlm.2012.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/18/2012] [Accepted: 10/15/2012] [Indexed: 12/30/2022]
Abstract
Extensive research has shown that the transcription factor CREB has an important role during memory formation. In the present study, we tested a new method for chronic, stable expression of a dominant-negative form of CREB (mCREB) in the dorsal hippocampus using lentiviral vectors. In specific, we tested whether lentivirus-mediated chronic expression of mutant CREB impairs memory for two hippocampus-dependent tasks - place training in the water maze and contextual fear conditioning. Two weeks following intra-hippocampal infusion, experimental (mCREB) and control (LacZ and saline) rats were trained for 30 trials in one session on a place task in a water plus-maze and tested for an additional 30 trials on day 2 and on day 7. On day 8, all rats were trained on a contextual fear conditioning task and tested 24h later. For place learning, there was no difference between treatment groups on day 1, indicating that treatment with the lentiviral vectors did not alter performance or acquisition of the task. In comparisons with controls, mCREB-treated rats were not significantly impaired on day 2, overall, but they showed significant impairment on day 7. Contextual fear memory was impaired in mCREB-infused rats in comparison with controls. At the end of the experiment, total CREB and phosphorylated CREB protein were measured by western blot. Levels of total CREB were increased by approximately 40% among mCREB-treated rats in comparisons with controls, whereas levels of pCREB did not differ between groups, suggesting that the treatment caused significant expression of mCREB. In addition, mCREB infused rats showed a significant reduction in the pCREB to CREB ratio in comparison with controls, suggesting that the memory deficit seen in mCREB rats is most likely due to disruption of gene regulation caused by expression of mutant CREB. Taken together, the present results show that lentivirus expressing mCREB can be used to effectively alter CREB function within the hippocampus and that the treatment impairs memory for hippocampus-dependent tasks.
Collapse
|
224
|
McBride SMJ, Holloway SL, Jongens TA. Using Drosophila as a tool to identify pharmacological therapies for fragile X syndrome. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 10:e129-36. [PMID: 24050241 DOI: 10.1016/j.ddtec.2012.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite obvious differences such as the ability to fly, the fruit fly Drosophila melanogaster is similar to humans at many different levels of complexity. Studies of development, cell growth and division, metabolism and even cognition, have borne out these similarities. For example, Drosophila bearing mutations in the fly gene homologue of the known human disease fragile X are affected in fundamentally similar ways as affected humans. The ramification of this degree of similarity is that Drosophila, as a model organism, is a rich resource for learning about human cells, development and even human cognition and behavior. Drosophila has a short generation time of ten days, is cheap to propagate and maintain and has a vast array of genetic tools available to it; making Drosophila an extremely attractive organism for the study of human disease. Here, we summarize research from our lab and others using Drosophila to understand the human neurological disease, called fragile X. We focus on the Drosophila model of fragile X, its characterization, and use as a tool to identify potential drugs for the treatment of fragile X. Several clinical trials are in progress now that were motivated by this research.
Collapse
|
225
|
Drosophila Memory Research through Four Eras. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
226
|
Latorre-Estivalis JM, Lazzari CR, Guarneri AA, Mota T, Omondi BA, Lorenzo MG. Genetic basis of triatomine behavior: lessons from available insect genomes. Mem Inst Oswaldo Cruz 2013; 108 Suppl 1:63-73. [PMID: 24473804 PMCID: PMC4109181 DOI: 10.1590/0074-0276130454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/10/2013] [Indexed: 01/20/2023] Open
Abstract
Triatomines have been important model organisms for behavioural research. Diverse reports about triatomine host search, pheromone communication in the sexual, shelter and alarm contexts, daily cycles of activity, refuge choice and behavioural plasticity have been published in the last two decades. In recent times, a variety of molecular genetics techniques has allowed researchers to investigate elaborate and complex questions about the genetic bases of the physiology of insects. This, together with the current characterisation of the genome sequence of Rhodnius prolixus allows the resurgence of this excellent insect physiology model in the omics era. In the present revision, we suggest that studying the molecular basis of behaviour and sensory ecology in triatomines will promote a deeper understanding of fundamental aspects of insect and, particularly, vector biology. This will allow uncovering unknown features of essential insect physiology questions for a hemimetabolous model organism, promoting more robust comparative studies of insect sensory function and cognition.
Collapse
Affiliation(s)
| | - Claudio Ricardo Lazzari
- Institut de Recherche sur la Biologie de l’Insecte, Université François
Rabelais de Tours, Tours, Indre et Loire, France
| | | | - Theo Mota
- Departamento de Fisiologia e Biofísica, Instituto de Ciências
Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG,
Brasil
| | - Bonaventure Aman Omondi
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish
University of Agricultural Sciences, Alnarp, Sweden
| | | |
Collapse
|
227
|
Wang Y, Zhao F, Liao Y, Jin Y, Sun G. Effects of arsenite in astrocytes on neuronal signaling transduction. Toxicology 2013; 303:43-53. [DOI: 10.1016/j.tox.2012.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/17/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
|
228
|
Palmeri A, Privitera L, Giunta S, Loreto C, Puzzo D. Inhibition of phosphodiesterase-5 rescues age-related impairment of synaptic plasticity and memory. Behav Brain Res 2012; 240:11-20. [PMID: 23174209 DOI: 10.1016/j.bbr.2012.10.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 12/14/2022]
Abstract
Aging is characterized by a progressive cognitive decline that leads to memory impairment. Because the cyclic nucleotide cascade is essential for the integrity of synaptic function and memory, and it is down-regulated during aging and in neurodegenerative disorders, we investigated whether an increase in cGMP levels might rescue age-related synaptic and memory deficits in mice. We demonstrated that acute perfusion with the phosphodiesterase-5 inhibitor sildenafil (50 nM) ameliorated long-term potentiation in hippocampal slices from 26-30-month-old mice. Moreover, chronic intraperitoneal injection of sildenafil (3mg/kg for 3 weeks) improved age-related spatial learning and reference memory as tested by the Morris Water Maze, and recognition memory as tested by the Object Recognition Test. Finally, sildenafil restored central cAMP responsive element-binding protein (CREB) phosphorylation, which is crucial for synaptic plasticity and memory. Our data suggest that inhibition of phosphodiesterase-5 may be beneficial to treat age-related cognitive dysfunction in a physiological mouse model of aging.
Collapse
Affiliation(s)
- Agostino Palmeri
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Catania, 95125, Italy
| | | | | | | | | |
Collapse
|
229
|
McNulty SE, Barrett RM, Vogel-Ciernia A, Malvaez M, Hernandez N, Davatolhagh MF, Matheos DP, Schiffman A, Wood MA. Differential roles for Nr4a1 and Nr4a2 in object location vs. object recognition long-term memory. Learn Mem 2012; 19:588-92. [PMID: 23161447 DOI: 10.1101/lm.026385.112] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nr4a1 and Nr4a2 are transcription factors and immediate early genes belonging to the nuclear receptor Nr4a family. In this study, we examine their role in long-term memory formation for object location and object recognition. Using siRNA to block expression of either Nr4a1 or Nr4a2, we found that Nr4a2 is necessary for both long-term memory for object location and object recognition. In contrast, Nr4a1 appears to be necessary only for object location. Indeed, their roles in these different types of long-term memory may be dependent on their expression in the brain, as NR4A2 was found to be expressed in hippocampal neurons (associated with object location memory) as well as in the insular and perirhinal cortex (associated with object recognition memory), whereas NR4A1 showed minimal neuronal expression in these cortical areas. These results begin to elucidate how NR4A1 and NR4A2 differentially contribute to object location versus object recognition memory.
Collapse
Affiliation(s)
- Susan E McNulty
- Department of Neurobiology & Behavior, Center for the Neurobiology of Learning & Memory, University of California, Irvine, Irvine, California 92697-3800, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Lau HL, Timbers TA, Mahmoud R, Rankin CH. Genetic dissection of memory for associative and non-associative learning inCaenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2012; 12:210-23. [DOI: 10.1111/j.1601-183x.2012.00863.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/30/2012] [Accepted: 09/22/2012] [Indexed: 01/20/2023]
|
231
|
A Permissive Role of Mushroom Body α/β Core Neurons in Long-Term Memory Consolidation in Drosophila. Curr Biol 2012; 22:1981-9. [DOI: 10.1016/j.cub.2012.08.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/18/2012] [Accepted: 08/21/2012] [Indexed: 11/23/2022]
|
232
|
Sacktor TC. Memory maintenance by PKMζ--an evolutionary perspective. Mol Brain 2012; 5:31. [PMID: 22986281 PMCID: PMC3517905 DOI: 10.1186/1756-6606-5-31] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/29/2012] [Indexed: 11/20/2022] Open
Abstract
Long-term memory is believed to be maintained by persistent modifications of synaptic transmission within the neural circuits that mediate behavior. Thus, long-term potentiation (LTP) is widely studied as a potential physiological basis for the persistent enhancement of synaptic strength that might sustain memory. Whereas the molecular mechanisms that initially induce LTP have been extensively characterized, the mechanisms that persistently maintain the potentiation have not. Recently, however, a candidate molecular mechanism linking the maintenance of LTP and the storage of long-term memory has been identified. The persistent activity of the autonomously active, atypical protein kinase C (aPKC) isoform, PKMζ, is both necessary and sufficient for maintaining LTP. Furthermore, blocking PKMζ activity by pharmacological or dominant negative inhibitors disrupts previously stored long-term memories in a variety of neural circuits, including spatial and trace memories in the hippocampus, aversive memories in the basolateral amygdala, appetitive memories in the nucleus accumbens, habit memory in the dorsal lateral striatum, and elementary associations, extinction, and skilled sensorimotor memories in the neocortex. During LTP and memory formation, PKMζ is synthesized de novo as a constitutively active kinase. This molecular mechanism for memory storage is evolutionarily conserved. PKMζ formation through new protein synthesis likely originated in early vertebrates ~500 million years ago during the Cambrian period. Other mechanisms for forming persistently active PKM from aPKC are found in invertebrates, and inhibiting this atypical PKM disrupts long-term memory in the invertebrate model systems Drosophila melanogaster and Aplysia californica. Conversely, overexpressing PKMζ enhances memory in flies and rodents. PKMζ persistently enhances synaptic strength by maintaining increased numbers of AMPA receptors at postsynaptic sites, a mechanism that might have evolved from the general function of aPKC in trafficking membrane proteins to the apical compartment of polarized cells. This mechanism of memory may have had adaptive advantages because it is both stable and reversible, as demonstrated by the downregulation of experience-dependent, long-term increases in PKMζ after extinction and reconsolidation blockade that attenuate learned behavior. Thus, PKMζ, the “working end” of LTP, is a component of an evolutionarily conserved molecular mechanism for the persistent, yet flexible storage of long-term memory.
Collapse
Affiliation(s)
- Todd Charlton Sacktor
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 10705, USA.
| |
Collapse
|
233
|
Miyashita T, Oda Y, Horiuchi J, Yin JCP, Morimoto T, Saitoe M. Mg(2+) block of Drosophila NMDA receptors is required for long-term memory formation and CREB-dependent gene expression. Neuron 2012; 74:887-98. [PMID: 22681692 DOI: 10.1016/j.neuron.2012.03.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
NMDA receptor (NMDAR) channels allow Ca(2+) influx only during correlated activation of both pre- and postsynaptic cells; a Mg(2+) block mechanism suppresses NMDAR activity when the postsynaptic cell is inactive. Although the importance of NMDARs in associative learning and long-term memory (LTM) formation has been demonstrated, the role of Mg(2+) block in these processes remains unclear. Using transgenic flies expressing NMDARs defective for Mg(2+) block, we found that Mg(2+) block mutants are defective for LTM formation but not associative learning. We demonstrate that LTM-dependent increases in expression of synaptic genes, including homer, staufen, and activin, are abolished in flies expressing Mg(2+) block defective NMDARs. Furthermore, we show that genetic and pharmacological reduction of Mg(2+) block significantly increases expression of a CREB repressor isoform. Our results suggest that Mg(2+) block of NMDARs functions to suppress basal expression of a CREB repressor, thus permitting CREB-dependent gene expression upon LTM induction.
Collapse
|
234
|
Xia Z, Storm DR. Role of signal transduction crosstalk between adenylyl cyclase and MAP kinase in hippocampus-dependent memory. Learn Mem 2012; 19:369-74. [PMID: 22904367 DOI: 10.1101/lm.027128.112] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
One of the intriguing questions in neurobiology is how long-term memory (LTM) traces are established and maintained in the brain. Memory can be divided into at least two temporally and mechanistically distinct forms. Short-term memory (STM) lasts no longer than several hours, while LTM persists for days or longer. A crucial step in the generation of LTM is consolidation, a process in which STM is converted to LTM. Hippocampus-dependent LTM depends on activation of Ca(2+), Erk/MAP kinase (MAPK), and cAMP signaling pathways, as well as de novo gene expression and translation. One of the transcriptional pathways strongly implicated in LTM is the CREB/CRE (calcium, cAMP response element) transcriptional pathway. Interestingly, this transcriptional pathway may also contribute to other forms of neuroplasticity including adaptive responses to drugs. Evidence discussed in this review indicates that activation of the Erk1/2 MAP Kinase (MAPK)/CRE transcriptional pathway during the formation of hippocampus-dependent memory depends on calmodulin (CaM)-stimulated adenylyl cyclases.
Collapse
Affiliation(s)
- Zhengui Xia
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
235
|
Inhibition of adult neurogenesis by inducible and targeted deletion of ERK5 mitogen-activated protein kinase specifically in adult neurogenic regions impairs contextual fear extinction and remote fear memory. J Neurosci 2012; 32:6444-55. [PMID: 22573667 DOI: 10.1523/jneurosci.6076-11.2012] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although there is evidence suggesting that adult neurogenesis may contribute to hippocampus-dependent memory, signaling mechanisms responsible for adult hippocampal neurogenesis are not well characterized. Here we report that ERK5 mitogen-activated protein kinase is specifically expressed in the neurogenic regions of the adult mouse brain. The inducible and conditional knock-out (icKO) of erk5 specifically in neural progenitors of the adult mouse brain attenuated adult hippocampal neurogenesis. It also caused deficits in several forms of hippocampus-dependent memory, including contextual fear conditioning generated by a weak footshock. The ERK5 icKO mice were also deficient in contextual fear extinction and reversal of Morris water maze spatial learning and memory, suggesting that adult neurogenesis plays an important role in hippocampus-dependent learning flexibility. Furthermore, our data suggest a critical role for ERK5-mediated adult neurogenesis in pattern separation, a form of dentate gyrus-dependent spatial learning and memory. Moreover, ERK5 icKO mice have no memory 21 d after training in the passive avoidance test, suggesting a pivotal role for adult hippocampal neurogenesis in the expression of remote memory. Together, our results implicate ERK5 as a novel signaling molecule regulating adult neurogenesis and provide strong evidence that adult neurogenesis is critical for several forms of hippocampus-dependent memory formation, including fear extinction, and for the expression of remote memory.
Collapse
|
236
|
Fass DM, Reis SA, Ghosh B, Hennig KM, Joseph NF, Zhao WN, Nieland TJF, Guan JS, Kuhnle CEG, Tang W, Barker DD, Mazitschek R, Schreiber SL, Tsai LH, Haggarty SJ. Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology 2012; 64:81-96. [PMID: 22771460 DOI: 10.1016/j.neuropharm.2012.06.043] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/06/2012] [Accepted: 06/21/2012] [Indexed: 12/16/2022]
Abstract
Long-term memory formation is known to be critically dependent upon de novo gene expression in the brain. As a consequence, pharmacological enhancement of the transcriptional processes mediating long-term memory formation provides a potential therapeutic strategy for cognitive disorders involving aberrant neuroplasticity. Here we focus on the identification and characterization of small molecule inhibitors of histone deacetylases (HDACs) as enhancers of CREB (cAMP response element-binding protein)-regulated transcription and modulators of chromatin-mediated neuroplasticity. Using a CREB reporter gene cell line, we screened a library of small molecules structurally related to known HDAC inhibitors leading to the identification of a probe we termed crebinostat that produced robust activation of CREB-mediated transcription. Further characterization of crebinostat revealed its potent inhibition of the deacetylase activity of recombinant class I HDACs 1, 2, 3, and class IIb HDAC6, with weaker inhibition of the class I HDAC8 and no significant inhibition of the class IIa HDACs 4, 5, 7, and 9. In cultured mouse primary neurons, crebinostat potently induced acetylation of both histone H3 and histone H4 as well as enhanced the expression of the CREB target gene Egr1 (early growth response 1). Using a hippocampus-dependent, contextual fear conditioning paradigm, mice systemically administered crebinostat for a ten day time period exhibited enhanced memory. To gain insight into the molecular mechanisms of memory enhancement by HDAC inhibitors, whole genome transcriptome profiling of cultured mouse primary neurons treated with crebinostat, combined with bioinformatic analyses of CREB-target genes, was performed revealing a highly connected protein-protein interaction network reflecting modules of genes important to synaptic structure and plasticity. Consistent with these findings, crebinostat treatment increased the density of synapsin-1 punctae along dendrites in cultured neurons. Finally, crebinostat treatment of cultured mouse primary neurons was found to upregulate Bdnf (brain-derived neurotrophic factor) and Grn (granulin) and downregulate Mapt (tau) gene expression-genes implicated in aging-related cognitive decline and cognitive disorders. Taken together, these results demonstrate that crebinostat provides a novel probe to modulate chromatin-mediated neuroplasticity and further suggests that pharmacological optimization of selective of HDAC inhibitors may provide an effective therapeutic approach for human cognitive disorders. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Daniel M Fass
- Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Mayford M, Siegelbaum SA, Kandel ER. Synapses and memory storage. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005751. [PMID: 22496389 DOI: 10.1101/cshperspect.a005751] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The synapse is the functional unit of the brain. During the last several decades we have acquired a great deal of information on its structure, molecular components, and physiological function. It is clear that synapses are morphologically and molecularly diverse and that this diversity is recruited to different functions. One of the most intriguing findings is that the size of the synaptic response in not invariant, but can be altered by a variety of homo- and heterosynaptic factors such as past patterns of use or modulatory neurotransmitters. Perhaps the most difficult challenge in neuroscience is to design experiments that reveal how these basic building blocks of the brain are put together and how they are regulated to mediate the information flow through neural circuits that is necessary to produce complex behaviors and store memories. In this review we will focus on studies that attempt to uncover the role of synaptic plasticity in the regulation of whole-animal behavior by learning and memory.
Collapse
Affiliation(s)
- Mark Mayford
- The Scripps Research Institute, Department of Cell Biology, La Jolla, California 92037, USA
| | | | | |
Collapse
|
238
|
Wu CL, Chiang AS. Genes and circuits for olfactory-associated long-term memory in Drosophila. J Neurogenet 2012; 22:257-84. [PMID: 19012072 DOI: 10.1080/01677060802307755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One of the formidable challenges in modern neuroscience is to identify the physical basis of long-term memory (LTM) storage−the engram. Cellular and molecular experiments have suggested that the engram for a particular behavioral task is encoded as changes in synaptic structure and function, yet distributed in an unknown fashion across an ill-defined neural circuit or network. Accumulating genetic and circuitry information has provided some clues toward resolving this engram puzzle.This review will focus on recent discoveries of genes and circuits involved in the formation of olfactory-associated LTM in Drosophila.
Collapse
Affiliation(s)
- Chia-Lin Wu
- Brain Research Center, Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | | |
Collapse
|
239
|
Divergent functions through alternative splicing: the Drosophila CRMP gene in pyrimidine metabolism, brain, and behavior. Genetics 2012; 191:1227-38. [PMID: 22649077 DOI: 10.1534/genetics.112.141101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DHP and CRMP proteins comprise a family of structurally similar proteins that perform divergent functions, DHP in pyrimidine catabolism in most organisms and CRMP in neuronal dynamics in animals. In vertebrates, one DHP and five CRMP proteins are products of six genes; however, Drosophila melanogaster has a single CRMP gene that encodes one DHP and one CRMP protein through tissue-specific, alternative splicing of a pair of paralogous exons. The proteins derived from the fly gene are identical over 90% of their lengths, suggesting that unique, novel functions of these proteins derive from the segment corresponding to the paralogous exons. Functional homologies of the Drosophila and mammalian CRMP proteins are revealed by several types of evidence. Loss-of-function CRMP mutation modifies both Ras and Rac misexpression phenotypes during fly eye development in a manner that is consistent with the roles of CRMP in Ras and Rac signaling pathways in mammalian neurons. In both mice and flies, CRMP mutation impairs learning and memory. CRMP mutant flies are defective in circadian activity rhythm. Thus, DHP and CRMP proteins are derived by different processes in flies (tissue-specific, alternative splicing of paralogous exons of a single gene) and vertebrates (tissue-specific expression of different genes), indicating that diverse genetic mechanisms have mediated the evolution of this protein family in animals.
Collapse
|
240
|
Trinh MA, Kaphzan H, Wek RC, Pierre P, Cavener DR, Klann E. Brain-specific disruption of the eIF2α kinase PERK decreases ATF4 expression and impairs behavioral flexibility. Cell Rep 2012; 1:676-88. [PMID: 22813743 DOI: 10.1016/j.celrep.2012.04.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 02/03/2023] Open
Abstract
Translational control depends on phosphorylation of eIF2α by PKR-like ER kinase (PERK). To examine the role of PERK in cognitive function, we selectively disrupted PERK expression in the adult mouse forebrain. In the prefrontal cortex (PFC) of PERK-deficient mice, eIF2α phosphorylation and ATF4 expression were diminished and were associated with enhanced behavioral perseveration, decreased prepulse inhibition, reduced fear extinction, and impaired behavioral flexibility. Treatment with the glycine transporter inhibitor SSR504734 normalized eIF2α phosphorylation, ATF4 expression, and behavioral flexibility in PERK-deficient mice. Moreover, the expression levels of PERK and ATF4 were reduced in the frontal cortex of human patients with schizophrenia. Together, our findings reveal that PERK plays a critical role in information processing and cognitive function and that modulation of eIF2α phosphorylation and ATF4 expression may represent an effective strategy for treating behavioral inflexibility associated with several neurological disorders such as schizophrenia.
Collapse
Affiliation(s)
- Mimi A Trinh
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | | | | | | | | |
Collapse
|
241
|
Kandel ER. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain 2012; 5:14. [PMID: 22583753 PMCID: PMC3514210 DOI: 10.1186/1756-6606-5-14] [Citation(s) in RCA: 618] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/18/2012] [Indexed: 11/17/2022] Open
Abstract
The analysis of the contributions to synaptic plasticity and memory of cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB has recruited the efforts of many laboratories all over the world. These are six key steps in the molecular biological delineation of short-term memory and its conversion to long-term memory for both implicit (procedural) and explicit (declarative) memory. I here first trace the background for the clinical and behavioral studies of implicit memory that made a molecular biology of memory storage possible, and then detail the discovery and early history of these six molecular steps and their roles in explicit memory.
Collapse
Affiliation(s)
- Eric R Kandel
- Department of Neuroscience, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
242
|
Morris KA, Gold PE. Age-related impairments in memory and in CREB and pCREB expression in hippocampus and amygdala following inhibitory avoidance training. Mech Ageing Dev 2012; 133:291-9. [PMID: 22445851 PMCID: PMC3359401 DOI: 10.1016/j.mad.2012.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 01/09/2023]
Abstract
This experiment examined whether age-related changes in CREB and pCREB contribute to the rapid forgetting seen in aged animals. Young (3-month-old) and aged (24-month-old) Fischer-344 rats received inhibitory avoidance training with a low (0.2 mA, 0.4 s) or moderate (0.5 mA, 0.5 s) foot shock; memory was measured 7 days later. Other rats were euthanized 30 min after training, and CREB and pCREB expression levels were examined in the hippocampus, amygdala, and piriform cortex using immunohistochemistry. CREB levels decreased with age in the hippocampus and amygdala. After training with either shock level, young rats exhibited good memory and increases in pCREB levels in the hippocampus and amygdala. Aged rats exhibited good memory for the moderate but not the low shock but did not show increases in pCREB levels after either shock intensity. These results suggest that decreases in total CREB and in pCREB activation in the hippocampus and amygdala may contribute to rapid forgetting in aged rats. After moderate foot shock, the stable memory in old rats together with absence of CREB activation suggests either that CREB was phosphorylated in a spatiotemporal pattern other than analyzed here or that the stronger training conditions engaged alternate mechanisms that promote long-lasting memory.
Collapse
Affiliation(s)
- Ken A. Morris
- Neuroscience Program, Institute for Genomic Biology, University of Illinois at Urbana-Champaign
- College of Medicine, Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| | - Paul E. Gold
- Neuroscience Program, Institute for Genomic Biology, University of Illinois at Urbana-Champaign
- Departments of Psychology, Psychiatry, Molecular and Integrative Physiology, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| |
Collapse
|
243
|
Tronson NC, Wiseman SL, Neve RL, Nestler EJ, Olausson P, Taylor JR. Distinctive roles for amygdalar CREB in reconsolidation and extinction of fear memory. Learn Mem 2012; 19:178-81. [PMID: 22505719 DOI: 10.1101/lm.025783.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic AMP response element binding protein (CREB) plays a critical role in fear memory formation. Here we determined the role of CREB selectively within the amygdala in reconsolidation and extinction of auditory fear. Viral overexpression of the inducible cAMP early repressor (ICER) or the dominant-negative mCREB, specifically within the lateral amygdala disrupted reconsolidation of auditory fear memories. In contrast, manipulations of CREB in the amygdala did not modify extinction of fear. These findings suggest that the role of CREB in modulation of memory after retrieval is dynamic and that CREB activity in the basolateral amygdala is involved in fear memory reconsolidation.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
244
|
Yu Y, Feng XL, Gao H, Xie ZL, Dai Y, Huang XJ, Kurihara H, Ye WC, Zhong Y, Yao XS. Chemical constituents from the fruits of Gardenia jasminoides Ellis. Fitoterapia 2012; 83:563-7. [DOI: 10.1016/j.fitote.2011.12.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
|
245
|
Molecular determinants of the spacing effect. Neural Plast 2012; 2012:581291. [PMID: 22548194 PMCID: PMC3323864 DOI: 10.1155/2012/581291] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/16/2011] [Accepted: 01/16/2012] [Indexed: 11/30/2022] Open
Abstract
Long-term memory formation is sensitive to the pattern of training sessions. Training distributed over time (spaced training) is superior at generating long-term memories than training presented with little or no rest interval (massed training). This spacing effect was observed in a range of organisms from invertebrates to humans. In the present paper, we discuss the evidence supporting cyclic-AMP response element-binding protein 2 (CREB), a transcription factor, as being an important molecule mediating long-term memory formation after spaced training. We also review the main upstream proteins that regulate CREB in different model organisms. Those include the eukaryotic translation initiation factor (eIF2α), protein phosphatase I (PP1), mitogen-activated protein kinase (MAPK), and the protein tyrosine phosphatase corkscrew. Finally, we discuss PKC activation and protein synthesis and degradation as mechanisms by which neurons decode the spacing intervals.
Collapse
|
246
|
Qin H, Cressy M, Li W, Coravos JS, Izzi SA, Dubnau J. Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila. Curr Biol 2012; 22:608-14. [PMID: 22425153 DOI: 10.1016/j.cub.2012.02.014] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/09/2012] [Accepted: 02/01/2012] [Indexed: 11/25/2022]
Abstract
Mushroom body (MB)-dependent olfactory learning in Drosophila provides a powerful model to investigate memory mechanisms. MBs integrate olfactory conditioned stimulus (CS) inputs with neuromodulatory reinforcement (unconditioned stimuli, US), which for aversive learning is thought to rely on dopaminergic (DA) signaling to DopR, a D1-like dopamine receptor expressed in MBs. A wealth of evidence suggests the conclusion that parallel and independent signaling occurs downstream of DopR within two MB neuron cell types, with each supporting half of memory performance. For instance, expression of the Rutabaga (Rut) adenylyl cyclase in γ neurons is sufficient to restore normal learning to rut mutants, whereas expression of Neurofibromatosis 1 (NF1) in α/β neurons is sufficient to rescue NF1 mutants. DopR mutations are the only case where memory performance is fully eliminated, consistent with the hypothesis that DopR receives the US inputs for both γ and α/β lobe traces. We demonstrate, however, that DopR expression in γ neurons is sufficient to fully support short- and long-term memory. We argue that DA-mediated CS-US association is formed in γ neurons followed by communication between γ and α/β neurons to drive consolidation.
Collapse
Affiliation(s)
- Hongtao Qin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | |
Collapse
|
247
|
Abstract
The superiority of spaced vs. massed training is a fundamental feature of learning. Here, we describe unanticipated timing rules for the production of long-term potentiation (LTP) in adult rat hippocampal slices that can account for one temporal segment of the spaced trials phenomenon. Successive bouts of naturalistic theta burst stimulation of field CA1 afferents markedly enhanced previously saturated LTP if spaced apart by 1 h or longer, but were without effect when shorter intervals were used. Analyses of F-actin-enriched spines to identify potentiated synapses indicated that the added LTP obtained with delayed theta trains involved recruitment of synapses that were "missed" by the first stimulation bout. Single spine glutamate-uncaging experiments confirmed that less than half of the spines in adult hippocampus are primed to undergo plasticity under baseline conditions, suggesting that intrinsic variability among individual synapses imposes a repetitive presentation requirement for maximizing the percentage of potentiated connections. We propose that a combination of local diffusion from initially modified spines coupled with much later membrane insertion events dictate that the repetitions be widely spaced. Thus, the synaptic mechanisms described here provide a neurobiological explanation for one component of a poorly understood, ubiquitous aspect of learning.
Collapse
|
248
|
Chen CC, Wu JK, Lin HW, Pai TP, Fu TF, Wu CL, Tully T, Chiang AS. Visualizing long-term memory formation in two neurons of the Drosophila brain. Science 2012; 335:678-85. [PMID: 22323813 DOI: 10.1126/science.1212735] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Long-term memory (LTM) depends on the synthesis of new proteins. Using a temperature-sensitive ribosome-inactivating toxin to acutely inhibit protein synthesis, we screened individual neurons making new proteins after olfactory associative conditioning in Drosophila. Surprisingly, LTM was impaired after inhibiting protein synthesis in two dorsal-anterior-lateral (DAL) neurons but not in the mushroom body (MB), which is considered the adult learning and memory center. Using a photoconvertible fluorescent protein KAEDE to report de novo protein synthesis, we have directly visualized cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB)-dependent transcriptional activation of calcium/calmodulin-dependent protein kinase II and period genes in the DAL neurons after spaced but not massed training. Memory retention was impaired by blocking neural output in DAL during retrieval but not during acquisition or consolidation. These findings suggest an extra-MB memory circuit in Drosophila: LTM consolidation (MB to DAL), storage (DAL), and retrieval (DAL to MB).
Collapse
Affiliation(s)
- Chun-Chao Chen
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Alberini CM, Chen DY. Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci 2012; 35:274-83. [PMID: 22341662 DOI: 10.1016/j.tins.2011.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/28/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022]
Abstract
Life and societies would change significantly if memory capacity or persistence in health and disease could be enhanced. It has been known for many years that memory can be improved and strengthened. Substances known to enhance memory include hormones, neurotransmitters, neuropeptides and metabolic substrates. Recently, attention has been given to identifying the molecular mechanisms and targets whereby memory enhancement can be achieved. One approach would be to target the physiological changes that are induced by learning and naturally required for memory strengthening via consolidation and reconsolidation. Here, we review approaches that boost memories by targeting the cAMP response element binding protein-CCAAT enhancer binding protein (CREB-C/EBP) pathway and/or its recently identified target gene insulin-like growth factor 2 (IGF2).
Collapse
|
250
|
|