201
|
Pridgeon JW, Zhao L, Becnel JJ, Clark GG, Linthicum KJ. Developmental and environmental regulation of AaeIAP1 transcript in Aedes aegypti. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:1071-1079. [PMID: 19058631 DOI: 10.1603/0022-2585(2008)45[1071:daeroa]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Apoptosis (programmed cell death) is a tightly regulated physiological process. The inhibitors of apoptosis proteins (IAPs) are key regulators for apoptosis. An inhibitor of apoptosis protein gene IAP1 was recently cloned from Aedes aegypti (L.) (AaeIAP1, GenBank accession no. DQ993355); however, it is not clear whether AaeIAP1 is developmentally and environmentally regulated. In this study, we applied quantitative polymerase chain reaction (PCR) to investigate the expression levels of the AaeIAPI transcript in different developmental stages and under different environmental conditions. Our results revealed that the expression of the AaeIAP1 transcript was detectable in all life stages ofAe. aegypti, with significantly higher levels in pupal and adult stages than in larval stages. Furthermore, when Ae. aegypti was exposed to all stressful environmental conditions (e.g., low and high temperatures, UV radiation, acetone, and permethrin insecticide treatment), the expression level of AaeIAP1 transcript was increased significantly. Our results suggest that AaeIAP1 might play an important role in both the physiological development ofAe. aegypti and stress-induced apoptosis.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | | | | | | | | |
Collapse
|
202
|
Chatterjee S, Sang TK, Lawless GM, Jackson GR. Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model. Hum Mol Genet 2008; 18:164-77. [PMID: 18930955 PMCID: PMC2644648 DOI: 10.1093/hmg/ddn326] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hyperphosphorylation of tau at multiple sites has been implicated in the formation of neurofibrillary tangles in Alzheimer’s disease; however, the relationship between toxicity and phosphorylation of tau has not been clearly elucidated. Putative tau kinases that play a role in such phosphorylation events include the proline-directed kinases glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase 5 (Cdk5), as well as nonproline-directed kinases such as microtubule affinity-regulating kinase (MARK)/PAR-1; however, whether the cascade of events linking tau phosphorylation and neurodegeneration involves sequential action of kinases as opposed to parallel pathways is still a matter of controversy. Here, we employed a well-characterized Drosophila model of tauopathy to investigate the interdependence of tau kinases in regulating the phosphorylation and toxicity of tau in vivo. We found that tau mutants resistant to phosphorylation by MARK/PAR-1 were indeed less toxic than wild-type tau; however, this was not due to their resistance to phosphorylation by GSK-3β/Shaggy. On the contrary, a tau mutant resistant to phosphorylation by GSK-3β/Shaggy retained substantial toxicity and was found to have increased affinity for microtubules compared with wild-type tau. The fly homologs of Cdk5/p35 did not have major effects on tau toxicity or phosphorylation in this model. These data suggest that, in addition to tau phosphorylation, microtubule binding plays a crucial role in the regulation of tau toxicity when misexpressed. These data have important implications for the understanding and interpretation of animal models of tauopathy.
Collapse
Affiliation(s)
- Shreyasi Chatterjee
- Department of Neurology, Neurogenetics and Movement Disorders Programs, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
203
|
Dutta S, Baehrecke EH. Warts is required for PI3K-regulated growth arrest, autophagy, and autophagic cell death in Drosophila. Curr Biol 2008; 18:1466-75. [PMID: 18818081 PMCID: PMC2576500 DOI: 10.1016/j.cub.2008.08.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/30/2008] [Accepted: 08/12/2008] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cell growth arrest and autophagy are required for autophagic cell death in Drosophila. Maintenance of growth by expression of either activated Ras, Dp110, or Akt is sufficient to inhibit autophagy and cell death in Drosophila salivary glands, but the mechanism that controls growth arrest is unknown. Although the Warts (Wts) tumor suppressor is a critical regulator of tissue growth in animals, it is not clear how this signaling pathway controls cell growth. RESULTS Here, we show that genes in the Wts pathway are required for salivary gland degradation and that wts mutants have defects in cell growth arrest, caspase activity, and autophagy. Expression of Atg1, a regulator of autophagy, in salivary glands is sufficient to rescue wts mutant salivary gland destruction. Surprisingly, expression of Yorkie (Yki) and Scalloped (Sd) in salivary glands fails to phenocopy wts mutants. By contrast, misexpression of the Yki target bantam was able to inhibit salivary gland cell death, even though mutations in bantam fail to suppress the wts mutant salivary gland-persistence phenotype. Significantly, wts mutant salivary glands possess altered phosphoinositide signaling, and decreased function of the class I PI3K-pathway genes chico and TOR suppressed wts defects in cell death. CONCLUSIONS Although we have previously shown that salivary gland degradation requires genes in the Wts pathway, this study provides the first evidence that Wts influences autophagy. Our data indicate that the Wts-pathway components Yki, Sd, and bantam fail to function in salivary glands and that Wts regulates salivary gland cell death in a PI3K-dependent manner.
Collapse
Affiliation(s)
- Sudeshna Dutta
- Molecular and Cell Biology Program, University of Maryland, College Park, MD 20742 USA
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Eric H. Baehrecke
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| |
Collapse
|
204
|
Fan Y, Bergmann A. Apoptosis-induced compensatory proliferation. The Cell is dead. Long live the Cell! Trends Cell Biol 2008; 18:467-73. [PMID: 18774295 PMCID: PMC2705980 DOI: 10.1016/j.tcb.2008.08.001] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 11/29/2022]
Abstract
In multi-cellular organisms, activation of apoptosis can trigger compensatory proliferation in surrounding cells to maintain tissue homeostasis. Genetic studies in Drosophila have indicated that distinct mechanisms of compensatory proliferation are employed in apoptotic tissues of different developmental states. In proliferating eye and wing tissues, the initiator caspase Dronc coordinates cell death and compensatory proliferation through the Jun N-terminal kinase and p53. The mitogens Decapentaplegic and Wingless are induced in this process. By contrast, in differentiating eye tissues, the effector caspases DrICE and Dcp-1 activate the Hedgehog signaling pathway to induce compensatory proliferation. In this review, we summarize these findings and discuss how activation of apoptosis is linked to the process of compensatory proliferation. The developmental and pathological relevance of compensatory proliferation is also discussed.
Collapse
Affiliation(s)
- Yun Fan
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
205
|
STAT92E is a positive regulator of Drosophila inhibitor of apoptosis 1 (DIAP/1) and protects against radiation-induced apoptosis. Proc Natl Acad Sci U S A 2008; 105:13805-10. [PMID: 18779571 DOI: 10.1073/pnas.0806291105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The proapoptotic factors Reaper, Hid, Grim, and Sickle regulate apoptosis in Drosophila by inhibiting the antiapoptotic factor DIAP1 (Drosophila inhibitor of apoptosis 1). Heat, UV light, x-rays, and developmental signals can all increase the proapoptotic factors, but the control of transcription of the diap1 gene is unclear. We show that in imaginal discs the single Drosophila STAT protein (STAT92E) when activated can directly increase DIAP1 through binding to STAT DNA-binding sites in the diap1 promoter. The STAT92E contribution to DIAP1 production is required for cell survival after x-irradiation but not under unstressed conditions. Because DIAP1 prevents apoptosis after a variety of stresses, STAT92E may have a role in regulating stress responses in general.
Collapse
|
206
|
A genetic screen identifies new regulators of steroid-triggered programmed cell death in Drosophila. Genetics 2008; 180:269-81. [PMID: 18757938 DOI: 10.1534/genetics.108.092478] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The steroid hormone ecdysone triggers the rapid and massive destruction of larval tissues through transcriptional cascades that culminate in rpr and hid expression and caspase activation. Here we describe the use of genetic screens to further our understanding of this steroid-triggered programmed cell death response. Pupal lethal mutants were screened for specific defects in larval salivary gland destruction. A pilot screen using existing P-element collections resulted in the identification of mutations in known cell death regulators, E74 and hid, as well as multiple alleles in CBP (nejire) and dTrf2. A large-scale EMS mutagenesis screen on the third chromosome resulted in the recovery of 48 mutants. These include seven multiallelic complementation groups, at least five of which do not map to regions or genes previously associated with cell death. Five mutants display defects in the transcriptional induction of rpr and hid, and all display a penetrant block in caspase activation. Three were mapped to specific genes: CG5146, which encodes a protein of unknown function, Med24, which encodes a component of the RNA polymerase II mediator complex, and CG7998, which encodes a putative mitochondrial malate dehydrogenase. These genetic screens provide new directions for understanding the regulation of programmed cell death during development.
Collapse
|
207
|
|
208
|
Kato Y, Kato M, Tachibana M, Shinkai Y, Yamaguchi M. Characterization ofDrosophilaG9ain vivoand identification of genetic interactants. Genes Cells 2008; 13:703-22. [DOI: 10.1111/j.1365-2443.2008.01199.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
209
|
Basolateral junctions utilize warts signaling to control epithelial-mesenchymal transition and proliferation crucial for migration and invasion of Drosophila ovarian epithelial cells. Genetics 2008; 178:1947-71. [PMID: 18430928 DOI: 10.1534/genetics.108.086983] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fasciclin2 (Fas2) and Discslarge (Dlg) localize to the basolateral junction (BLJ) of Drosophila follicle epithelial cells and inhibit their proliferation and invasion. To identify a BLJ signaling pathway we completed a genomewide screen for mutants that enhance dlg tumorigenesis. We identified two genes that encode known BLJ scaffolding proteins, lethal giant larvae (lgl) and scribble (scrib), and several not previously associated with BLJ function, including warts (wts) and roughened eye (roe), which encode a serine-threonine kinase and a transcription factor, respectively. Like scrib, wts and roe also enhance Fas2 and lgl tumorigenesis. Further, scrib, wts, and roe block border cell migration, and cause noninvasive tumors that resemble dlg partial loss of function, suggesting that the BLJ utilizes Wts signaling to repress EMT and proliferation, but not motility. Apicolateral junction proteins Fat (Ft), Expanded (Ex), and Merlin (Mer) either are not involved in these processes, or have highly spatio-temporally restricted roles, diminishing their significance as upstream inputs to Wts in follicle cells. This is further indicated in that Wts targets, CyclinE and DIAP1, are elevated in Fas2, dlg, lgl, wts, and roe cells, but not Fat, ex, or mer cells. Thus, the BLJ appears to regulate epithelial polarity and dynamics not only as a localized scaffold, but also by communicating signals to the nucleus. Wts may be regulated by distinct junction inputs depending on developmental context.
Collapse
|
210
|
Caygill EE, Johnston LA. Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol 2008; 18:943-50. [PMID: 18571409 DOI: 10.1016/j.cub.2008.06.020] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND The let-7 and lin-4 microRNAs belong to a class of temporally expressed, noncoding regulatory RNAs that function as heterochronic switch genes in the nematode C. elegans. Heterochronic genes control the relative timing of events during development and are considered a major force in the rapid evolution of new morphologies. let-7 is highly conserved and in Drosophila is temporally coregulated with the lin-4 homolog, miR-125. Little is known, however, about their requirement outside the nematode or whether they universally control the timing of developmental processes. RESULTS We report the generation of a Drosophila mutant that lacks let-7 and miR-125 activities and that leads to a pleiotropic phenotype arising during metamorphosis. We focus on two defects and demonstrate that loss of let-7 and miR-125 results in temporal delays in two distinct metamorphic processes: the terminal cell-cycle exit in the wing and maturation of neuromuscular junctions (NMJs) at adult abdominal muscles. We identify the abrupt (ab) gene, encoding a nuclear protein, as a bona fide let-7 target and provide evidence that let-7 governs the maturation rate of abdominal NMJs during metamorphosis by regulating ab expression. CONCLUSIONS Drosophila Iet-7 and miR-125 mutants exhibit temporal misregulation of specific metamorphic processes. As in C. elegans, Drosophila let-7 is both necessary and sufficient for the appropriate timing of a specific cell-cycle exit, indicating that its function as a heterochronic microRNA is conserved. The ab gene is a target of let-7, and its repression in muscle is essential for the timing of NMJ maturation during metamorphosis. Our results suggest that let-7 and miR-125 serve as conserved regulators of events necessary for the transition from juvenile to adult life stages.
Collapse
Affiliation(s)
- Elizabeth E Caygill
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
211
|
Abstract
Throughout the process of pathogen–host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Sud 11, Villejuif, France
| | - Catherine Brenner
- University of Versailles/St Quentin, PRES UniverSud Paris, CNRS UMR8159, Versailles, France
- * E-mail: (CB); (GK)
| | - Eugenia Morselli
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Sud 11, Villejuif, France
| | - Zahia Touat
- University of Versailles/St Quentin, PRES UniverSud Paris, CNRS UMR8159, Versailles, France
| | - Guido Kroemer
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Sud 11, Villejuif, France
- * E-mail: (CB); (GK)
| |
Collapse
|
212
|
Pridgeon JW, Zhao L, Becnel JJ, Strickman DA, Clark GG, Linthicum KJ. Topically applied AaeIAP1 double-stranded RNA kills female adults of Aedes aegypti. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:414-420. [PMID: 18533434 DOI: 10.1603/0022-2585(2008)45[414:taadrk]2.0.co;2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of both dengue and yellow fever. Use of insecticides is one of the primary ways to control this medically important insect pest. However, few new insecticides have been developed for mosquito control in recent years. As a part of our effort to develop new insecticides to control mosquitoes, an inhibitor of apoptosis protein 1 gene in Aedes aegypti (AaeIAP1) was targeted for the development of molecular pesticides. Herein, for the first time, we report that topically applied AaeIAP1 double-stranded RNA products are able to kill female adults of Ae. aegypti. Our results indicate that critical pathways or genes could be targeted to develop molecular pesticides for the control of medically important diseases vectors.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | | | | | | | | | | |
Collapse
|
213
|
Fan Y, Bergmann A. Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 2008; 14:399-410. [PMID: 18331718 DOI: 10.1016/j.devcel.2008.01.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 10/15/2007] [Accepted: 01/07/2008] [Indexed: 01/08/2023]
Abstract
In multicellular organisms, apoptotic cells induce compensatory proliferation of neighboring cells to maintain tissue homeostasis. In the Drosophila wing imaginal disc, dying cells trigger compensatory proliferation through secretion of the mitogens Decapentaplegic (Dpp) and Wingless (Wg). This process is under control of the initiator caspase Dronc, but not effector caspases. Here we show that a second mechanism of apoptosis-induced compensatory proliferation exists. This mechanism is dependent on effector caspases which trigger the activation of Hedgehog (Hh) signaling for compensatory proliferation. Furthermore, whereas Dpp and Wg signaling is preferentially employed in apoptotic proliferating tissues, Hh signaling is activated in differentiating eye tissues. Interestingly, effector caspases in photoreceptor neurons stimulate Hh signaling which triggers cell-cycle reentry of cells that had previously exited the cell cycle. In summary, dependent on the developmental potential of the affected tissue, different caspases trigger distinct forms of compensatory proliferation in an apparent nonapoptotic function.
Collapse
Affiliation(s)
- Yun Fan
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
| | | |
Collapse
|
214
|
Rimkus SA, Katzenberger RJ, Trinh AT, Dodson GE, Tibbetts RS, Wassarman DA. Mutations in String/CDC25 inhibit cell cycle re-entry and neurodegeneration in a Drosophila model of Ataxia telangiectasia. Genes Dev 2008; 22:1205-20. [PMID: 18408079 DOI: 10.1101/gad.1639608] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutations in ATM (Ataxia telangiectasia mutated) result in Ataxia telangiectasia (A-T), a disorder characterized by progressive neurodegeneration. Despite advances in understanding how ATM signals cell cycle arrest, DNA repair, and apoptosis in response to DNA damage, it remains unclear why loss of ATM causes degeneration of post-mitotic neurons and why the neurological phenotype of ATM-null individuals varies in severity. To address these issues, we generated a Drosophila model of A-T. RNAi knockdown of ATM in the eye caused progressive degeneration of adult neurons in the absence of exogenously induced DNA damage. Heterozygous mutations in select genes modified the neurodegeneration phenotype, suggesting that genetic background underlies variable neurodegeneration in A-T. The neuroprotective activity of ATM may be negatively regulated by deacetylation since mutations in a protein deacetylase gene, RPD3, suppressed neurodegeneration, and a human homolog of RPD3, histone deacetylase 2, bound ATM and abrogated ATM activation in cell culture. Moreover, knockdown of ATM in post-mitotic neurons caused cell cycle re-entry, and heterozygous mutations in the cell cycle activator gene String/CDC25 inhibited cell cycle re-entry and neurodegeneration. Thus, we hypothesize that ATM performs a cell cycle checkpoint function to protect post-mitotic neurons from degeneration and that cell cycle re-entry causes neurodegeneration in A-T.
Collapse
Affiliation(s)
- Stacey A Rimkus
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
215
|
A gain-of-function suppressor screen for genes involved in dorsal-ventral boundary formation in the Drosophila wing. Genetics 2008; 178:307-23. [PMID: 18202376 DOI: 10.1534/genetics.107.081869] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Drosophila wing primordium is subdivided into a dorsal (D) and a ventral (V) compartment by the activity of the LIM-homeodomain protein Apterous in D cells. Cell interactions between D and V cells induce the activation of Notch at the DV boundary. Notch is required for the maintenance of the compartment boundary and the growth of the wing primordium. Beadex, a gain-of-function allele of dLMO, results in increased levels of dLMO protein, which interferes with the activity of Apterous and results in defects in DV axis formation. We performed a gain-of-function enhancer-promoter (EP) screen to search for suppressors of Beadex when overexpressed in D cells. We identified 53 lines corresponding to 35 genes. Loci encoding for micro-RNAs and proteins involved in chromatin organization, transcriptional control, and vesicle trafficking were characterized in the context of dLMO activity and DV boundary formation. Our results indicate that a gain-of-function genetic screen in a sensitized background, as opposed to classical loss-of-function-based screenings, is a very efficient way to identify redundant genes involved in a developmental process.
Collapse
|
216
|
optomotor-blind suppresses instability at the A/P compartment boundary of the Drosophila wing. Mech Dev 2008; 125:233-46. [DOI: 10.1016/j.mod.2007.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/15/2007] [Accepted: 11/17/2007] [Indexed: 12/29/2022]
|
217
|
Ribeiro PS, Kuranaga E, Tenev T, Leulier F, Miura M, Meier P. DIAP2 functions as a mechanism-based regulator of drICE that contributes to the caspase activity threshold in living cells. ACTA ACUST UNITED AC 2008; 179:1467-80. [PMID: 18166655 PMCID: PMC2373516 DOI: 10.1083/jcb.200706027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In addition to their well-known function in apoptosis, caspases are also important in several nonapoptotic processes. How caspase activity is restrained and shut down under such nonapoptotic conditions remains unknown. Here, we show that Drosophila melanogaster inhibitor of apoptosis protein 2 (DIAP2) controls the level of caspase activity in living cells. Animals that lack DIAP2 have higher levels of drICE activity. Although diap2-deficient cells remain viable, they are sensitized to apoptosis following treatment with sublethal doses of x-ray irradiation. We find that DIAP2 regulates the effector caspase drICE through a mechanism that resembles the one of the caspase inhibitor p35. As for p35, cleavage of DIAP2 is required for caspase inhibition. Our data suggest that DIAP2 forms a covalent adduct with the catalytic machinery of drICE. In addition, DIAP2 also requires a functional RING finger domain to block cell death and target drICE for ubiquitylation. Because DIAP2 efficiently interacts with drICE, our data suggest that DIAP2 controls drICE in its apoptotic and nonapoptotic roles.
Collapse
Affiliation(s)
- Paulo S Ribeiro
- Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, England, UK
| | | | | | | | | | | |
Collapse
|
218
|
Vicente-Crespo M, Pascual M, Fernandez-Costa JM, Garcia-Lopez A, Monferrer L, Miranda ME, Zhou L, Artero RD. Drosophila muscleblind is involved in troponin T alternative splicing and apoptosis. PLoS One 2008; 3:e1613. [PMID: 18286170 PMCID: PMC2238819 DOI: 10.1371/journal.pone.0001613] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 01/17/2008] [Indexed: 01/01/2023] Open
Abstract
Background Muscleblind-like proteins (MBNL) have been involved in a developmental switch in the use of defined cassette exons. Such transition fails in the CTG repeat expansion disease myotonic dystrophy due, in part, to sequestration of MBNL proteins by CUG repeat RNA. Four protein isoforms (MblA-D) are coded by the unique Drosophila muscleblind gene. Methodology/Principal Findings We used evolutionary, genetic and cell culture approaches to study muscleblind (mbl) function in flies. The evolutionary study showed that the MblC protein isoform was readily conserved from nematods to Drosophila, which suggests that it performs the most ancestral muscleblind functions. Overexpression of MblC in the fly eye precursors led to an externally rough eye morphology. This phenotype was used in a genetic screen to identify five dominant suppressors and 13 dominant enhancers including Drosophila CUG-BP1 homolog aret, exon junction complex components tsunagi and Aly, and pro-apoptotic genes Traf1 and reaper. We further investigated Muscleblind implication in apoptosis and splicing regulation. We found missplicing of troponin T in muscleblind mutant pupae and confirmed Muscleblind ability to regulate mouse fast skeletal muscle Troponin T (TnnT3) minigene splicing in human HEK cells. MblC overexpression in the wing imaginal disc activated apoptosis in a spatially restricted manner. Bioinformatics analysis identified a conserved FKRP motif, weakly resembling a sumoylation target site, in the MblC-specific sequence. Site-directed mutagenesis of the motif revealed no change in activity of mutant MblC on TnnT3 minigene splicing or aberrant binding to CUG repeat RNA, but altered the ability of the protein to form perinuclear aggregates and enhanced cell death-inducing activity of MblC overexpression. Conclusions/Significance Taken together our genetic approach identify cellular processes influenced by Muscleblind function, whereas in vivo and cell culture experiments define Drosophila troponin T as a new Muscleblind target, reveal a potential involvement of MblC in programmed cell death and recognize the FKRP motif as a putative regulator of MblC function and/or subcellular location in the cell.
Collapse
Affiliation(s)
| | - Maya Pascual
- Department of Genetics, University of Valencia, Valencia, Spain
| | | | | | - Lidón Monferrer
- Department of Genetics, University of Valencia, Valencia, Spain
| | | | - Lei Zhou
- Department of Molecular Genetics and Microbiology Member, University of Florida Shands Cancer Center College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ruben D. Artero
- Department of Genetics, University of Valencia, Valencia, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
219
|
Sato S, Tetsuhashi M, Sekine K, Miyachi H, Naito M, Hashimoto Y, Aoyama H. Degradation-promoters of cellular inhibitor of apoptosis protein 1 based on bestatin and actinonin. Bioorg Med Chem 2008; 16:4685-98. [PMID: 18313309 DOI: 10.1016/j.bmc.2008.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/02/2008] [Accepted: 02/08/2008] [Indexed: 02/08/2023]
Abstract
A series of hybrid compounds of bestatin (1) and actinonin (3), which promote degradation of cellular inhibitor of apoptosis protein 1 (cIAP1), were designed and synthesized. Structure-activity relationship studies indicated that absolute configuration, hydrophobicity at the alpha-position of the internal amide carbonyl group, and the presence of a small substituent at the alpha-position of the ester group are important factors for the expression of potent cIAP1 degradation-promoting activity. HAB-5A (30b) showed the most potent activity (IC(50)=0.53 microM) among the compounds prepared.
Collapse
Affiliation(s)
- Shinichi Sato
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
220
|
Chu L, Gu J, Sun L, Qian Q, Qian C, Liu X. Oncolytic adenovirus-mediated shRNA against Apollon inhibits tumor cell growth and enhances antitumor effect of 5-fluorouracil. Gene Ther 2008; 15:484-94. [PMID: 18239605 DOI: 10.1038/gt.2008.6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Apollon, a membrane-associated inhibitor of apoptosis protein, protects cells against apoptosis and is upregulated in certain tumor cells. In this study, the effects of Apollon protein knockdown by RNA interference on the growth of human HeLa, HT-1080 and MCF-7 cells in vitro and in vivo were investigated. An oncolytic adenovirus (ZD55) containing the RNA polymerase III-dependent U6 promoter to express short hairpin RNA (shRNA) directed against Apollon (ZD55-siApollon) was constructed. Our data show that ZD55-siApollon successfully exerts a gene knockdown effect and causes the inhibition of tumor cell growth both in culture and in athymic mice in vivo. Cell cycle analysis, 4',6-diamidino-2-phenylindole staining and western blot analysis reveal that ZD55-siApollon-mediated suppression of Apollon induces apoptosis. Intratumoral injection of ZD55-siApollon significantly inhibits tumor growth in HT-1080 xenograft mice. Furthermore, ZD55-siApollon enhances the antitumor effect of 5-fluorouracil, a chemotherapeutic agent. In conclusion, these results suggest that the depletion of Apollon by oncolytic adenovirus-shRNA delivery system provides a promising method for cancer therapy.
Collapse
Affiliation(s)
- L Chu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
221
|
Gluderer S, Oldham S, Rintelen F, Sulzer A, Schütt C, Wu X, Raftery LA, Hafen E, Stocker H. Bunched, the Drosophila homolog of the mammalian tumor suppressor TSC-22, promotes cellular growth. BMC DEVELOPMENTAL BIOLOGY 2008; 8:10. [PMID: 18226226 PMCID: PMC2253523 DOI: 10.1186/1471-213x-8-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/28/2008] [Indexed: 01/21/2023]
Abstract
BACKGROUND Transforming Growth Factor-beta1 stimulated clone-22 (TSC-22) is assumed to act as a negative growth regulator and tumor suppressor. TSC-22 belongs to a family of putative transcription factors encoded by four distinct loci in mammals. Possible redundancy among the members of the TSC-22/Dip/Bun protein family complicates a genetic analysis. In Drosophila, all proteins homologous to the TSC-22/Dip/Bun family members are derived from a single locus called bunched (bun). RESULTS We have identified bun in an unbiased genetic screen for growth regulators in Drosophila. Rather unexpectedly, bun mutations result in a growth deficit. Under standard conditions, only the long protein isoform BunA - but not the short isoforms BunB and BunC - is essential and affects growth. Whereas reducing bunA function diminishes cell number and cell size, overexpression of the short isoforms BunB and BunC antagonizes bunA function. CONCLUSION Our findings establish a growth-promoting function of Drosophila BunA. Since the published studies on mammalian systems have largely neglected the long TSC-22 protein version, we hypothesize that the long TSC-22 protein is a functional homolog of BunA in growth regulation, and that it is antagonized by the short TSC-22 protein.
Collapse
Affiliation(s)
- Silvia Gluderer
- Institute of Molecular Systems Biology, ETH Zürich, Wolfgang-Pauli-Str, 16, 8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Li YH, Hu CF, Shao Q, Huang MY, Hou JH, Xie D, Zeng YX, Shao JY. Elevated expressions of survivin and VEGF protein are strong independent predictors of survival in advanced nasopharyngeal carcinoma. J Transl Med 2008; 6:1. [PMID: 18171482 PMCID: PMC2254380 DOI: 10.1186/1479-5876-6-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Accepted: 01/03/2008] [Indexed: 01/29/2023] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in southern China. The China 1992 TNM staging system has been widely used for prognosis prediction of NPC patients in China. Although NPC patients can be classified according to their clinical stage in this system, their prognosis may vary significantly. Method 280 cases of NPC with clinical follow-up data were collected and expressions of survivin and VEGF in tumor tissues were investigated by immunohistochemistry (IHC). Apoptosis index (AI) in 100 cases of NPC was detected by the TUNEL method. Results Expression of survivin and VEGF were significantly associated with TNM stage, T-stage and metastasis of NPC. The patients with survivin and VEGF over-expression presented lower 5-year survival rate, as compared to those of low-expression (42.32% vs. 70.54%, 40.1% vs. 67.8%, respectively, P < 0.05), especially in advanced stage patients (36.51% vs. 73.41%, 35.03% vs. 65.22%, respectively, P < 0.05). The 5-year survival rate in NPC patients with survivin and VEGF dual over-expression was significantly lower than that of patients with dual low-expression (18.22% vs. 73.54%, respectively; P = 0.0003). Multivariate analysis indicated that both survivin and VEGF over-expression in NPC tumor tissues were strong independent factors of poor prognosis in NPC patients. The mean AI in the 39 survivin low-expression cases was 144.7 ± 39.9, which was significantly higher than that in 61 survivin over-expression cases (111.6 ± 39.8) (T test, P < 0.05). Conclusion Survivin and VEGF over-expression are independent prognostic factors for the patients with NPC. These results also suggest that tumor survivin and VEGF expressions are valuable prognostic markers for prognosis prediction in NPC patients.
Collapse
Affiliation(s)
- Yu-Hong Li
- State Key Laboratory of Oncology in Southern China, Guangzhou 510060, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Leu JH, Kuo YC, Kou GH, Lo CF. Molecular cloning and characterization of an inhibitor of apoptosis protein (IAP) from the tiger shrimp, Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:121-33. [PMID: 17628672 DOI: 10.1016/j.dci.2007.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/19/2007] [Accepted: 05/07/2007] [Indexed: 05/16/2023]
Abstract
The inhibitor of apoptosis proteins (IAPs) play important roles in both apoptosis and innate immunity. Here, we report the first cloning and characterization of a novel IAP family member, PmIAP, from Penaeus monodon. The full-length PmIAP cDNA is 4769bp, with an ORF encoding a protein of 698 amino acids. The PmIAP protein contains three BIR domains and a C-terminal RING domain, and its mRNA was expressed in all analyzed tissues. In insect cells, PmIAP, together with Spodoptera frugiperda IAP, AcMNPV P35, and WSSV449 (or ORF390, an anti-apoptosis protein encoded by white spot syndrome virus), could all block the apoptosis induced by Drosophila Reaper protein (Rpr), whereas only P35 and WSSV449 could block the apoptosis induced by actinomycin D. Co-immunoprecipitation showed that PmIAP physically interacted with Rpr, and in an immunofluorescent analysis the two proteins produced co-localized punctate signals in the cytoplasm. Deletion analysis revealed that both the BIR2 and BIR3 domains of PmIAP could independently bind to and inhibit Rpr, whereas the BIR1 domain could not. These results strongly suggest that PmIAP blocks Rpr's pro-apoptotic activity through mechanisms that are evolutionarily conserved across crustaceans, insects, and mammals.
Collapse
Affiliation(s)
- Jiann-Horng Leu
- Institute of Zoology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | | | | | | |
Collapse
|
224
|
|
225
|
Denton D, Mills K, Kumar S. Chapter 2 Methods and Protocols for Studying Cell Death in Drosophila. Methods Enzymol 2008; 446:17-37. [DOI: 10.1016/s0076-6879(08)01602-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
226
|
Arama E, Bader M, Rieckhof GE, Steller H. A ubiquitin ligase complex regulates caspase activation during sperm differentiation in Drosophila. PLoS Biol 2007; 5:e251. [PMID: 17880263 PMCID: PMC1976628 DOI: 10.1371/journal.pbio.0050251] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 07/25/2007] [Indexed: 11/19/2022] Open
Abstract
In both insects and mammals, spermatids eliminate their bulk cytoplasm as they undergo terminal differentiation. In Drosophila, this process of dramatic cellular remodeling requires apoptotic proteins, including caspases. To gain further insight into the regulation of caspases, we screened a large collection of sterile male flies for mutants that block effector caspase activation at the onset of spermatid individualization. Here, we describe the identification and characterization of a testis-specific, Cullin-3-dependent ubiquitin ligase complex that is required for caspase activation in spermatids. Mutations in either a testis-specific isoform of Cullin-3 (Cul3(Testis)), the small RING protein Roc1b, or a Drosophila orthologue of the mammalian BTB-Kelch protein Klhl10 all reduce or eliminate effector caspase activation in spermatids. Importantly, all three genes encode proteins that can physically interact to form a ubiquitin ligase complex. Roc1b binds to the catalytic core of Cullin-3, and Klhl10 binds specifically to a unique testis-specific N-terminal Cullin-3 (TeNC) domain of Cul3(Testis) that is required for activation of effector caspase in spermatids. Finally, the BIR domain region of the giant inhibitor of apoptosis-like protein dBruce is sufficient to bind to Klhl10, which is consistent with the idea that dBruce is a substrate for the Cullin-3-based E3-ligase complex. These findings reveal a novel role of Cullin-based ubiquitin ligases in caspase regulation.
Collapse
Affiliation(s)
- Eli Arama
- Strang Laboratory of Cancer Research, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Maya Bader
- Strang Laboratory of Cancer Research, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle E Rieckhof
- Strang Laboratory of Cancer Research, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Hermann Steller
- Strang Laboratory of Cancer Research, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
227
|
Lee TV, Ding T, Chen Z, Rajendran V, Scherr H, Lackey M, Bolduc C, Bergmann A. The E1 ubiquitin-activating enzyme Uba1 in Drosophila controls apoptosis autonomously and tissue growth non-autonomously. Development 2007; 135:43-52. [PMID: 18045837 DOI: 10.1242/dev.011288] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ubiquitination is an essential process regulating turnover of proteins for basic cellular processes such as the cell cycle and cell death (apoptosis). Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Conjugation of target proteins with ubiquitin is then mediated by ubiquitin ligases (E3). Ubiquitination has been well characterized using mammalian cell lines and yeast genetics. However, the consequences of partial or complete loss of ubiquitin conjugation in a multi-cellular organism are not well understood. Here, we report the characterization of Uba1, the only E1 in Drosophila. We found that weak and strong Uba1 alleles behave genetically differently with sometimes opposing phenotypes. Whereas weak Uba1 alleles protect cells from cell death, clones of strong Uba1 alleles are highly apoptotic. Strong Uba1 alleles cause cell cycle arrest which correlates with failure to reduce cyclin levels. Surprisingly, clones of strong Uba1 mutants stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner giving rise to overgrowth phenotypes of the mosaic fly. We demonstrate that the non-autonomous overgrowth is caused by failure to downregulate Notch signaling in Uba1 mutant clones. In summary, the phenotypic analysis of Uba1 demonstrates that impaired ubiquitin conjugation has significant consequences for the organism, and may implicate Uba1 as a tumor suppressor gene.
Collapse
Affiliation(s)
- Tom V Lee
- The University of Texas M D Anderson Cancer Center, Department of Biochemistry and Molecular Biology, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Chou YT, Tam B, Linay F, Lai EC. Transgenic inhibitors of RNA interference in Drosophila. Fly (Austin) 2007; 1:311-6. [PMID: 18820441 DOI: 10.4161/fly.5606] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA silencing functions as an adaptive antiviral defense in both plants and animals. In turn, viruses commonly encode suppressors of RNA silencing, which enable them to mount productive infection. These inhibitor proteins may be exploited as reagents with which to probe mechanisms and functions of RNA silencing pathways. In this report, we describe transgenic Drosophila strains that allow inducible expression of the viral RNA silencing inhibitors Flock House virus-B2, Nodamura virus-B2, vaccinia virus-E3L, influenza A virus-NS1 and tombusvirus P19. Some of these, especially the B2 proteins, are effective transgenic inhibitors of double strand RNA-induced gene silencing in flies. On the other hand, none of them is effective against the Drosophila microRNA pathway. Their functional selectivity makes these viral silencing proteins useful reagents with which to study biological functions of the Drosophila RNA interference pathway.
Collapse
Affiliation(s)
- Yu-ting Chou
- Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | |
Collapse
|
229
|
Nachmias B, Lazar I, Elmalech M, Abed-El-Rahaman I, Asshab Y, Mandelboim O, Perlman R, Ben-Yehuda D. Subcellular localization determines the delicate balance between the anti- and pro-apoptotic activity of Livin. Apoptosis 2007; 12:1129-42. [PMID: 17294084 DOI: 10.1007/s10495-006-0049-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Livin is a member of the Inhibitor of Apoptosis Protein family which inhibits apoptosis induced by a variety of stimuli. We previously identified Livin and demonstrated that following apoptotic stimuli, Livin is cleaved by effector caspases to produce a truncated form with paradoxical pro-apoptotic activity. In the present study, we reveal that while full-length Livin shows diffuse cytoplasmic localization, truncated Livin (tLivin) is found in a peri-nuclear distribution with marked localization to the Golgi apparatus. Using mutation analysis, we identified two domains that are crucial for the pro-apoptotic activity of tLivin: the N-terminal region of tLivin which is exposed by cleavage, and the RING domain. We demonstrate that, of the N-terminal sequence, only the first N-terminal glycine residue dictates the peri-nuclear distribution of tLivin. However, while the perinuclear localization of tLivin is essential, it is not sufficient for tLivin to exert its pro-apoptotic function. Once tLivin is properly localized, an intact RING domain enables its pro-apoptotic function.
Collapse
Affiliation(s)
- Boaz Nachmias
- Department of Hematology, Hadassah - Hebrew University Medical Center, P.O.B. 12000, Jerusalem, 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Beck ET, Blair CD, Black WC, Beaty BJ, Blitvich BJ. Alternative splicing generates multiple transcripts of the inhibitor of apoptosis protein 1 in Aedes and Culex spp. mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:1222-1233. [PMID: 17916508 PMCID: PMC2065863 DOI: 10.1016/j.ibmb.2007.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 07/16/2007] [Accepted: 07/20/2007] [Indexed: 05/25/2023]
Abstract
We determined the sequences of cDNA encoding Inhibitor of Apoptosis Protein 1 (IAP1) homologues from Aedes triseriatus, Aedes albopictus, Aedes aegypti, Culex pipiens and Culex tarsalis. The cDNAs encode translation products that share > or = 84% sequence similarity. The IAP1 mRNA of each mosquito species exists as 3-5 distinct variants due to the presence of heterogeneous sequences at the distal end of their 5'UTRs. Partial genomic sequencing upstream of the 5' end of the Ae. triseriatus IAP1 gene, and analysis of the Ae. aegypti genomic sequence, suggest that these mRNA variants are generated by alternative splicing. Each IAP1 mRNA variant from Ae. triseriatus and Cx. pipiens was detected by RT-PCR in all mosquito life-stages and adult tissues examined, and the relative concentration of each Ae. triseriatus IAP mRNA variant in various tissues was determined.
Collapse
Affiliation(s)
- Eric T Beck
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1692, USA
| | | | | | | | | |
Collapse
|
231
|
Umemori M, Takemura M, Maeda K, Ohba K, Adachi-Yamada T. Drosophila T-box transcription factor Optomotor-blind prevents pathological folding and local overgrowth in wing epithelium through confining Hh signal. Dev Biol 2007; 308:68-81. [PMID: 17573067 DOI: 10.1016/j.ydbio.2007.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 05/07/2007] [Accepted: 05/09/2007] [Indexed: 12/21/2022]
Abstract
Aberration of morphogen signaling leads directly to inappropriate cell differentiation and secondarily causes various pathological phenotypes such as abnormal morphogenesis and tumorigenesis. However, mechanisms for linking morphogen signaling and the higher order phenotypes have not been fully elucidated. Here we focus on the Drosophila T-box gene optomotor-blind (omb), a transcriptional target of a long-range morphogen Decapentaplegic (Dpp). Genetic analyses of omb function revealed that a negative feedback loop, where omb plays a crucial role, exists between Dpp and its upstream regulator Hedgehog (Hh), a short-range morphogen. Consequently, dysfunction of omb elicits hyperactivation of Hh signaling that causes an ectopic folding and local overgrowth in the wing columnar epithelium, neither of which are the direct results of reduced Dpp response. In the case of the local overgrowth, it was never seen in mutants for thick veins (tkv) encoding a Dpp receptor, suggesting that the Dpp signaling pathway is divided into two antagonistic branches, one of which contains Omb. Thus defect in feedback between the two morphogens explains both phenotypes, and disruption of a balance between the morphogen targets further accounts for the local overgrowth. These are the mechanisms for generating secondary phenotypes when a single signaling factor Omb fails to function.
Collapse
Affiliation(s)
- Makoto Umemori
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
232
|
Chandraratna D, Lawrence N, Welchman DP, Sanson B. An in vivo model of apoptosis: linking cell behaviours and caspase substrates in embryos lacking DIAP1. J Cell Sci 2007; 120:2594-608. [PMID: 17636001 DOI: 10.1242/jcs.03472] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The apoptotic phenotype is characterised by dynamic changes in cell behaviours such as cell rounding and blebbing, followed by chromatin condensation and cell fragmentation. Whereas the biochemical pathways leading to caspase activation have been actively studied, much less is known about how caspase activity changes cell behaviours during apoptosis. Here, we address this question using early Drosophila melanogaster embryos lacking DIAP1. Reflecting its central role in the inhibition of apoptosis, loss of DIAP1 causes massive caspase activation. We generated DIAP1-depleted embryos by either using homozygous null mutants for thread, the gene coding DIAP1, or by ectopically expressing in early embryos the RGH protein Reaper, which inhibits DIAP1. We show that (1) all cells in embryos lacking DIAP1 follow synchronously the stereotypic temporal sequence of behaviours described for apoptotic mammalian cells and (2) these cell behaviours specifically require caspase activity and are not merely a consequence of cellular stress. Next, we analyse the dynamic changes in the localisation of actomyosin, Discs large, Bazooka and DE-cadherin in the course of apoptosis. We show that early changes in Bazooka and Discs large correlate with early processing of these proteins by caspases. DE-cadherin and Myosin light chain do not appear to be cleaved, but their altered localisation can be explained by cleavage of known regulators. This illustrates how embryos lacking DIAP1 can be used to characterise apoptotic changes in the context of an embryo, thus providing an unprecedented in vivo model in which thousands of cells initiate apoptosis simultaneously.
Collapse
|
233
|
Lu M, Lin SC, Huang Y, Kang YJ, Rich R, Lo YC, Myszka D, Han J, Wu H. XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell 2007; 26:689-702. [PMID: 17560374 PMCID: PMC1991276 DOI: 10.1016/j.molcel.2007.05.006] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/03/2007] [Accepted: 05/07/2007] [Indexed: 11/20/2022]
Abstract
In addition to caspase inhibition, X-linked inhibitor of apoptosis (XIAP) induces NF-kappaB and MAP kinase activation during TGF-b and BMP receptor signaling and upon overexpression. Here we show that the BIR1 domain of XIAP, which has no previously ascribed function, directly interacts with TAB1 to induce NF-kappaB activation. TAB1 is an upstream adaptor for the activation of the kinase TAK1, which in turn couples to the NF-kappaB pathway. We report the crystal structures of BIR1, TAB1, and the BIR1/TAB1 complex. The BIR1/TAB1 structure reveals a striking butterfly-shaped dimer and the detailed interaction between BIR1 and TAB1. Structure-based mutagenesis and knockdown of TAB1 show unambiguously that the BIR1/TAB1 interaction is crucial for XIAP-induced TAK1 and NF-kappaB activation. We show that although not interacting with BIR1, Smac, the antagonist for caspase inhibition by XIAP, also inhibits the XIAP/TAB1 interaction. Disruption of BIR1 dimerization abolishes XIAP-mediated NF-kappaB activation, implicating a proximity-induced mechanism for TAK1 activation.
Collapse
Affiliation(s)
- Miao Lu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Su-Chang Lin
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Yihua Huang
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Young Jun Kang
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | - Rebecca Rich
- Center for Biomolecular Interaction Analysis, School of Medicine, University of Utah, Salt Lake City, Utah 84132
| | - Yu-Chih Lo
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - David Myszka
- Center for Biomolecular Interaction Analysis, School of Medicine, University of Utah, Salt Lake City, Utah 84132
| | - Jiahuai Han
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | - Hao Wu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| |
Collapse
|
234
|
echinus, required for interommatidial cell sorting and cell death in the Drosophila pupal retina, encodes a protein with homology to ubiquitin-specific proteases. BMC DEVELOPMENTAL BIOLOGY 2007; 7:82. [PMID: 17612403 PMCID: PMC1950886 DOI: 10.1186/1471-213x-7-82] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 07/05/2007] [Indexed: 01/03/2023]
Abstract
BACKGROUND Programmed cell death is used to remove excess cells between ommatidia in the Drosophila pupal retina. This death is required to establish the crystalline, hexagonal packing of ommatidia that characterizes the adult fly eye. In previously described echinus mutants, interommatidial cell sorting, which precedes cell death, occurred relatively normally. Interommatidial cell death was partially suppressed, resulting in adult eyes that contained excess pigment cells, and in which ommatidia were mildly disordered. These results have suggested that echinus functions in the pupal retina primarily to promote interommatidial cell death. RESULTS We generated a number of new echinus alleles, some likely null mutants. Analysis of these alleles provides evidence that echinus has roles in cell sorting as well as cell death. echinus encodes a protein with homology to ubiquitin-specific proteases. These proteins cleave ubiquitin-conjugated proteins at the ubiquitin C-terminus. The echinus locus encodes multiple splice forms, including two proteins that lack residues thought to be critical for deubiquitination activity. Surprisingly, ubiquitous expression in the eye of versions of Echinus that lack residues critical for ubiquitin specific protease activity, as well as a version predicted to be functional, rescue the echinus loss-of-function phenotype. Finally, genetic interactions were not detected between echinus loss and gain-of-function and a number of known apoptotic regulators. These include Notch, EGFR, the caspases Dronc, Drice, Dcp-1, Dream, the caspase activators, Rpr, Hid, and Grim, the caspase inhibitor DIAP1, and Lozenge or Klumpfuss. CONCLUSION The echinus locus encodes multiple splice forms of a protein with homology to ubiquitin-specific proteases, but protease activity is unlikely to be required for echinus function, at least when echinus is overexpressed. Characterization of likely echinus null alleles and genetic interactions suggests that echinus acts at a novel point(s) to regulate interommatidial cell sorting and/or cell death in the fly eye.
Collapse
|
235
|
Challa M, Malladi S, Pellock BJ, Dresnek D, Varadarajan S, Yin YW, White K, Bratton SB. Drosophila Omi, a mitochondrial-localized IAP antagonist and proapoptotic serine protease. EMBO J 2007; 26:3144-56. [PMID: 17557079 PMCID: PMC1914093 DOI: 10.1038/sj.emboj.7601745] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/10/2007] [Indexed: 12/16/2022] Open
Abstract
Although essential in mammals, in flies the importance of mitochondrial outer membrane permeabilization for apoptosis remains highly controversial. Herein, we demonstrate that Drosophila Omi (dOmi), a fly homologue of the serine protease Omi/HtrA2, is a developmentally regulated mitochondrial intermembrane space protein that undergoes processive cleavage, in situ, to generate two distinct inhibitor of apoptosis (IAP) binding motifs. Depending upon the proapoptotic stimulus, mature dOmi is then differentially released into the cytosol, where it binds selectively to the baculovirus IAP repeat 2 (BIR2) domain in Drosophila IAP1 (DIAP1) and displaces the initiator caspase DRONC. This interaction alone, however, is insufficient to promote apoptosis, as dOmi fails to displace the effector caspase DrICE from the BIR1 domain in DIAP1. Rather, dOmi alleviates DIAP1 inhibition of all caspases by proteolytically degrading DIAP1 and induces apoptosis both in cultured cells and in the developing fly eye. In summary, we demonstrate for the first time in flies that mitochondrial permeabilization not only occurs during apoptosis but also results in the release of a bona fide proapoptotic protein.
Collapse
Affiliation(s)
- Madhavi Challa
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Srinivas Malladi
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Brett J Pellock
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Douglas Dresnek
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shankar Varadarajan
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Y Whitney Yin
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX, USA
| | - Kristin White
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shawn B Bratton
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 1 University Station A1915, 2409 University Avenue, Austin, TX 78712-0125, USA. Tel.: +1 512 471 1735; Fax: +1 512 471 5002; E-mail:
| |
Collapse
|
236
|
Goyal G, Fell B, Sarin A, Youle RJ, Sriram V. Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Dev Cell 2007; 12:807-16. [PMID: 17488630 PMCID: PMC1885957 DOI: 10.1016/j.devcel.2007.02.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/24/2006] [Accepted: 02/05/2007] [Indexed: 01/11/2023]
Abstract
The role of mitochondria in Drosophila programmed cell death remains unclear, although certain gene products that regulate cell death seem to be evolutionarily conserved. We find that developmental programmed cell death stimuli in vivo and multiple apoptotic stimuli ex vivo induce dramatic mitochondrial fragmentation upstream of effector caspase activation, phosphatidylserine exposure, and nuclear condensation in Drosophila cells. Unlike genotoxic stress, a lipid cell death mediator induced an increase in mitochondrial contiguity prior to fragmentation of the mitochondria. Using genetic mutants and RNAi-mediated knockdown of drp-1, we find that Drp-1 not only regulates mitochondrial fission in normal cells, but mediates mitochondrial fragmentation during programmed cell death. Mitochondria in drp-1 mutants fail to fragment, resulting in hyperplasia of tissues in vivo and protection of cells from multiple apoptotic stimuli ex vivo. Thus, mitochondrial remodeling is capable of modifying the propensity of cells to undergo death in Drosophila.
Collapse
Affiliation(s)
- Gaurav Goyal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK-Campus, Bellary Road, Bangalore 560 065, India
| | - Brennan Fell
- Biochemistry Section, Surgical Neurology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Apurva Sarin
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK-Campus, Bellary Road, Bangalore 560 065, India
| | - Richard J. Youle
- Biochemistry Section, Surgical Neurology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - V. Sriram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK-Campus, Bellary Road, Bangalore 560 065, India
| |
Collapse
|
237
|
Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci 2007; 27:3338-46. [PMID: 17376994 PMCID: PMC6672466 DOI: 10.1523/jneurosci.0285-07.2007] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mutations in the synaptic protein alpha-synuclein cause rare genetic forms of Parkinson's disease. Alpha-synuclein is thought to play a critical role in more common sporadic cases of Parkinson's disease as well because the protein aggregates in the hallmark intraneuronal inclusions of the disorder, Lewy bodies. To test the role of protein aggregation in the pathogenesis of Parkinson's disease, we expressed a form of alpha-synuclein with a deletion of amino acids 71-82 that is unable to aggregate in vitro in a transgenic Drosophila model of the disorder. We found no evidence of large aggregates or oligomeric species of alpha-synuclein in these animals and no loss of tyrosine hydroxylase-positive neurons. We also expressed a truncated form of alpha-synuclein that has enhanced ability to aggregate in vitro. This truncated form of alpha-synuclein showed increased aggregation into large inclusions bodies, increased accumulation of high molecular weight alpha-synuclein species, and demonstrated enhanced neurotoxicity in vivo. Our findings thus support a critical role for aggregation of alpha-synuclein in mediating toxicity to dopaminergic neurons in vivo, although the precise role each aggregated form of alpha-synuclein plays in neurotoxicity remains to be determined.
Collapse
Affiliation(s)
| | | | | | - Michael G. Schlossmacher
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
238
|
Primrose DA, Chaudhry S, Johnson AGD, Hrdlicka A, Schindler A, Tran D, Foley E. Interactions of DNR1 with the apoptotic machinery of Drosophila melanogaster. J Cell Sci 2007; 120:1189-99. [PMID: 17341581 DOI: 10.1242/jcs.03417] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Caspases are crucial activators of apoptosis and NF-kappaB signaling in vertebrates and invertebrates. In Drosophila, the caspase-9 counterpart Dronc is essential for most apoptotic death, whereas the caspase-8 homolog Dredd activates NF-kappaB signaling in response to gram-negative bacterial infection. The mechanics of caspase regulation are conserved and include the activities of a family of inhibitor of apoptosis (IAP) proteins. The RING-domain-bearing protein Defense repressor 1 (Dnr1), blocks ectopic Dredd-mediated induction of an NF-kappaB reporter in the Drosophila S2 cell line. In this study, we present novel data indicating that Dnr1 impacts on Dronc-dependent regulation of the apoptotic program. We show that depletion of Dnr1 results in elevated Dronc protein levels, which translates to increased caspase activation and activity upon induction of apoptosis. Conversely, we demonstrate that overexpression of Dnr1 blocks apoptotic caspase activity and prevents induction of apoptosis in tissue culture assays. Furthermore, we show that Dnr1 overexpression significantly reduces Dronc protein levels and identify the domains of Dnr1 necessary for these effects. From these data, we propose that Dnr1 inhibits initiator caspases in S2 cells.
Collapse
Affiliation(s)
- David A Primrose
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB, T6G 2S2, Canada
| | | | | | | | | | | | | |
Collapse
|
239
|
Chan CM, Ma CW, Chan WY, Chan HYE. The SARS-Coronavirus Membrane protein induces apoptosis through modulating the Akt survival pathway. Arch Biochem Biophys 2007; 459:197-207. [PMID: 17306213 PMCID: PMC7094499 DOI: 10.1016/j.abb.2007.01.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/20/2006] [Accepted: 01/05/2007] [Indexed: 01/12/2023]
Abstract
A number of viral gene products are capable of triggering apoptotic cell death through interfering with cellular signaling cascades, including the Akt kinase pathway. In this study, the pro-apoptotic role of the SARS-CoV Membrane (M) structural protein is described. We found that the SARS-CoV M protein induced apoptosis in both HEK293T cells and transgenic Drosophila. We further showed that M protein-induced apoptosis involved mitochondrial release of cytochrome c protein, and could be suppressed by caspase inhibitors. Over-expression of M caused a dominant rough-eye phenotype in adult Drosophila. By performing a forward genetic modifier screen, we identified phosphoinositide-dependent kinase-1 (PDK-1) as a dominant suppressor of M-induced apoptotic cell death. Both PDK-1 and Akt kinases play essential roles in the cell survival signaling pathway. Altogether, our data show that SARS-CoV M protein induces apoptosis through the modulation of the cellular Akt pro-survival pathway and mitochondrial cytochrome c release.
Collapse
Affiliation(s)
- Chak-Ming Chan
- Laboratory of Drosophila Research, Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | |
Collapse
|
240
|
Doroquez DB, Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 2007; 41:339-85. [PMID: 17092823 DOI: 10.1080/10409230600914344] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
241
|
Herman-Bachinsky Y, Ryoo HD, Ciechanover A, Gonen H. Regulation of the Drosophila ubiquitin ligase DIAP1 is mediated via several distinct ubiquitin system pathways. Cell Death Differ 2007; 14:861-71. [PMID: 17205079 DOI: 10.1038/sj.cdd.4402079] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Inhibitors of apoptosis proteins (IAPs) suppress cell death by inactivating proapoptotic regulators, and therefore play important roles in controlling apoptosis in normal and malignant cells. Many IAPs are ubiquitin ligases, and their activity is mediated via ubiquitination and subsequent degradation of their targets. Here we corroborate a previous observation that DIAP1 (Drosophila IAP1) can be degraded via a two-step mechanism: (i) limited caspase-mediated cleavage and (ii) degradation of the released fragment via the ubiquitin N-end rule pathway. Yet, we demonstrate that this pathway is not the only one involved in DIAP1 degradation, and the intact protein can be degraded independent of prior caspase cleavage. Importantly, this mode of degradation does not require the RING-finger-mediated autoubiquitinating activity of DIAP1, believed to target many RING-finger E3s for self-destruction. Our preliminary data suggest that DIAP2 mediates DIAP1 degradation, suggesting a novel regulatory loop within the apoptotic pathway. Studying the role of the autoubiquitinating activity of DIAP1, we demonstrate that it does not involve formation of Lys48-based polyubiquitin chains, but probably chains linked via Lys63. Our preliminary data suggest that the autoubiquitination serves to attenuate the ligase activity of DIAP1 towards its exogenous substrates.
Collapse
Affiliation(s)
- Y Herman-Bachinsky
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
242
|
Abstract
Cell death plays many roles during development, in the adult, and in the genesis of many pathological states. Much of this death is apoptotic in nature and requires the activity of members of the caspase family of proteases. It is now possible uniquely in Drosophila to carry out genetic screens for genes that determine the fate-life or death-of any population of cells during development and adulthood. This, in conjunction with the ability to obtain biochemical quantities of material, has made Drosophila a useful organism for exploring the mechanisms by which apoptosis is carried out and regulated. This review summarizes our knowledge of caspase-dependent cell death in Drosophila and compares that knowledge with what is known in worms and mammals. We also discuss the significance of recent work showing that a number of key cell death activators also play nonapoptotic roles. We highlight opportunities and outstanding questions along the way.
Collapse
Affiliation(s)
- Bruce A Hay
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
243
|
Balakireva M, Rossé C, Langevin J, Chien YC, Gho M, Gonzy-Treboul G, Voegeling-Lemaire S, Aresta S, Lepesant JA, Bellaiche Y, White M, Camonis J. The Ral/exocyst effector complex counters c-Jun N-terminal kinase-dependent apoptosis in Drosophila melanogaster. Mol Cell Biol 2006; 26:8953-63. [PMID: 17000765 PMCID: PMC1636832 DOI: 10.1128/mcb.00506-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/08/2006] [Accepted: 09/11/2006] [Indexed: 11/20/2022] Open
Abstract
Ral GTPase activity is a crucial cell-autonomous factor supporting tumor initiation and progression. To decipher pathways impacted by Ral, we have generated null and hypomorph alleles of the Drosophila melanogaster Ral gene. Ral null animals were not viable. Reduced Ral expression in cells of the sensory organ lineage had no effect on cell division but led to postmitotic cell-specific apoptosis. Genetic epistasis and immunofluorescence in differentiating sensory organs suggested that Ral activity suppresses c-Jun N-terminal kinase (JNK) activation and induces p38 mitogen-activated protein (MAP) kinase activation. HPK1/GCK-like kinase (HGK), a MAP kinase kinase kinase kinase that can drive JNK activation, was found as an exocyst-associated protein in vivo. The exocyst is a Ral effector, and the epistasis between mutants of Ral and of msn, the fly ortholog of HGK, suggest the functional relevance of an exocyst/HGK interaction. Genetic analysis also showed that the exocyst is required for the execution of Ral function in apoptosis. We conclude that in Drosophila Ral counters apoptotic programs to support cell fate determination by acting as a negative regulator of JNK activity and a positive activator of p38 MAP kinase. We propose that the exocyst complex is Ral executioner in the JNK pathway and that a cascade from Ral to the exocyst to HGK would be a molecular basis of Ral action on JNK.
Collapse
Affiliation(s)
- Maria Balakireva
- Institut Curie, INSERM U528, Groupe d'Analyse des Réseaux de Transduction (ART), 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Wells BS, Yoshida E, Johnston LA. Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 2006; 16:1606-15. [PMID: 16920621 PMCID: PMC1764442 DOI: 10.1016/j.cub.2006.07.046] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/12/2006] [Accepted: 07/14/2006] [Indexed: 12/17/2022]
Abstract
BACKGROUND The p53 transcription factor directs a transcriptional program that determines whether a cell lives or dies after DNA damage. Animal survival after extensive cellular damage often requires that lost tissue be replaced through compensatory growth or regeneration. In Drosophila, damaged imaginal disc cells can induce the proliferation of neighboring viable cells, but how this is controlled is not clear. Here we provide evidence that Drosophila p53 (dp53) has a previously unidentified role in coordinating the compensatory growth response to tissue damage. RESULTS We find that dp53, the sole p53 ortholog in Drosophila, is required for each component of the response to cellular damage, including two separate cell-cycle arrests, changes in patterning gene expression, cell proliferation, and growth. We demonstrate that these processes are regulated by dp53 in a manner that is independent of DNA-damage sensing but that requires the initiator caspase Dronc. Our results indicate that once induced, dp53 amplifies and sustains the response through a positive feedback loop with Dronc and the apoptosis-inducing factors Hid and Reaper. CONCLUSIONS How cell death and cell proliferation are coordinated during development and after stress is a fundamental question that is critical for an understanding of growth regulation. Our data suggest that dp53 may carry out an ancestral function that promotes animal survival through the coordination of responses leading to compensatory growth after tissue damage.
Collapse
Affiliation(s)
- Brent S Wells
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
245
|
Leulier F, Lhocine N, Lemaitre B, Meier P. The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol Cell Biol 2006; 26:7821-31. [PMID: 16894030 PMCID: PMC1636742 DOI: 10.1128/mcb.00548-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 04/28/2006] [Accepted: 07/26/2006] [Indexed: 11/20/2022] Open
Abstract
The founding member of the inhibitor of apoptosis protein (IAP) family was originally identified as a cell death inhibitor. However, recent evidence suggests that IAPs are multifunctional signaling devices that influence diverse biological processes. To investigate the in vivo function of Drosophila melanogaster IAP2, we have generated diap2 null alleles. diap2 mutant animals develop normally and are fully viable, suggesting that diap2 is dispensable for proper development. However, these animals were acutely sensitive to infection by gram-negative bacteria. In Drosophila, infection by gram-negative bacteria triggers the innate immune response by activating the immune deficiency (imd) signaling cascade, a NF-kappaB-dependent pathway that shares striking similarities with the pathway of mammalian tumor necrosis factor receptor 1 (TNFR1). diap2 mutant flies failed to activate NF-kappaB-mediated expression of antibacterial peptide genes and, consequently, rapidly succumbed to bacterial infection. Our genetic epistasis analysis places diap2 downstream of or in parallel to imd, Dredd, Tak1, and Relish. Therefore, DIAP2 functions in the host immune response to gram-negative bacteria. In contrast, we find that the Drosophila TNFR-associated factor (Traf) family member Traf2 is dispensable in resistance to gram-negative bacterial infection. Taken together, our genetic data identify DIAP2 as an essential component of the Imd signaling cascade, protecting the organism from infiltrating microbes.
Collapse
Affiliation(s)
- François Leulier
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK.
| | | | | | | |
Collapse
|
246
|
Huh JR, Foe I, Muro I, Chen CH, Seol JH, Yoo SJ, Guo M, Park JM, Hay BA. The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers. J Biol Chem 2006; 282:2056-68. [PMID: 17068333 DOI: 10.1074/jbc.m608051200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many inhibitor of apoptosis (IAP) family proteins inhibit apoptosis. IAPs contain N-terminal baculovirus IAP repeat domains and a C-terminal RING ubiquitin ligase domain. Drosophila IAP DIAP1 is essential for the survival of many cells, protecting them from apoptosis by inhibiting active caspases. Apoptosis initiates when proteins such as Reaper, Hid, and Grim bind a surface groove in DIAP1 baculovirus IAP repeat domains via an N-terminal IAP-binding motif. This evolutionarily conserved interaction disrupts DIAP1-caspase interactions, unleashing apoptosis-inducing caspase activity. A second Drosophila IAP, DIAP2, also binds Rpr and Hid and inhibits apoptosis in multiple contexts when overexpressed. However, due to a lack of mutants, little is known about the normal functions of DIAP2. We report the generation of diap2 null mutants. These flies are viable and show no defects in developmental or stress-induced apoptosis. Instead, DIAP2 is required for the innate immune response to Gram-negative bacterial infection. DIAP2 promotes cytoplasmic cleavage and nuclear translocation of the NF-kappaB homolog Relish, and this requires the DIAP2 RING domain. Increasing the genetic dose of diap2 results in an increased immune response, whereas expression of Rpr or Hid results in down-regulation of DIAP2 protein levels. Together these observations suggest that DIAP2 can regulate immune signaling in a dose-dependent manner, and this can be regulated by IBM-containing proteins. Therefore, diap2 may identify a point of convergence between apoptosis and immune signaling pathways.
Collapse
Affiliation(s)
- Jun R Huh
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Karsten SL, Sang TK, Gehman LT, Chatterjee S, Liu J, Lawless GM, Sengupta S, Berry RW, Pomakian J, Oh HS, Schulz C, Hui KS, Wiedau-Pazos M, Vinters HV, Binder LI, Geschwind DH, Jackson GR. A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of tau-induced neurodegeneration. Neuron 2006; 51:549-60. [PMID: 16950154 DOI: 10.1016/j.neuron.2006.07.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/26/2006] [Accepted: 07/20/2006] [Indexed: 11/22/2022]
Abstract
Neurofibrillary tangles (NFT) containing tau are a hallmark of neurodegenerative diseases, including Alzheimer's disease (AD). NFT burden correlates with cognitive decline and neurodegeneration in AD. However, little is known about mechanisms that protect against tau-induced neurodegeneration. We used a cross species functional genomic approach to analyze gene expression in multiple brain regions in mouse, in parallel with validation in Drosophila, to identify tau modifiers, including the highly conserved protein puromycin-sensitive aminopeptidase (PSA/Npepps). PSA protected against tau-induced neurodegeneration in vivo, whereas PSA loss of function exacerbated neurodegeneration. We further show that human PSA directly proteolyzes tau in vitro. These data highlight the utility of using both evolutionarily distant species for genetic screening and functional assessment to identify modifiers of neurodegeneration. Further investigation is warranted in defining the role of PSA and other genes identified here as potential therapeutic targets in tauopathy.
Collapse
Affiliation(s)
- Stanislav L Karsten
- Program in Neurogenetics, Department of Neurology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Guan J, Li H, Rogulja A, Axelrod JD, Cadigan KM. The Drosophila casein kinase Iepsilon/delta Discs overgrown promotes cell survival via activation of DIAP1 expression. Dev Biol 2006; 303:16-28. [PMID: 17134692 PMCID: PMC2892850 DOI: 10.1016/j.ydbio.2006.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/17/2006] [Accepted: 10/18/2006] [Indexed: 01/07/2023]
Abstract
The proper number of cells in developing tissues is achieved by coordinating cell division with apoptosis. In Drosophila, the adult wing is derived from wing imaginal discs, which undergo a period of growth and proliferation during larval stages without much programmed cell death. In this report, we demonstrate that the Drosophila casein kinase Iepsilon/delta, known as Discs overgrown (Dco), is required for maintaining this low level of apoptosis. Expression of dco can suppress the apoptotic activity of Head involution defective (Hid) in the developing eye. Loss of dco in the wing disc results in a dramatic reduction in expression of the caspase inhibitor DIAP1 and a concomitant activation of caspases. The regulation of DIAP1 by Dco occurs by a post-transcriptional mechanism that is independent of hid. Mutant clones of dco are considerably smaller than controls even when apoptosis is inhibited, suggesting that Dco promotes cell division/growth in addition to its role in cell survival. The dco phenotype cannot be explained by defects Wingless (Wg) signaling. We propose that Dco coordinates tissue size by stimulating cell division/growth and blocking apoptosis via activation of DIAP1 expression.
Collapse
Affiliation(s)
- Ju Guan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor MI 48109-1048, USA
| | - Hui Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor MI 48109-1048, USA
| | - Ana Rogulja
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor MI 48109-1048, USA
| | - Jeff D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford CA 94305
| | - Ken M. Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor MI 48109-1048, USA
- Corresponding author. Fax: +1 734 647-0884. Email address: (K. Cadigan)
| |
Collapse
|
249
|
Grosskortenhaus R, Robinson KJ, Doe CQ. Pdm and Castor specify late-born motor neuron identity in the NB7-1 lineage. Genes Dev 2006; 20:2618-27. [PMID: 16980589 PMCID: PMC1578683 DOI: 10.1101/gad.1445306] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Embryonic development requires generating cell types at the right place (spatial patterning) and the right time (temporal patterning). Drosophila neuroblasts undergo stem cell-like divisions to generate an ordered sequence of neuronal progeny, making them an attractive system to study temporal patterning. Embryonic neuroblasts sequentially express Hunchback, Krüppel, Pdm1/Pdm2 (Pdm), and Castor (Cas) transcription factors. Hunchback and Krüppel specify early-born temporal identity, but the role of Pdm and Cas in specifying temporal identity has never been addressed. Here we show that Pdm and Cas regulate late-born motor neuron identity within the NB7-1 lineage: Pdm specifies fourth-born U4 motor neuron identity, while Pdm/Cas together specify fifth-born U5 motor neuron identity. We conclude that Pdm and Cas specify late-born neuronal identity; that Pdm and Cas act combinatorially to specify a temporal identity distinct from either protein alone, and that Cas repression of pdm expression regulates the generation of neuronal diversity.
Collapse
Affiliation(s)
- Ruth Grosskortenhaus
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, 97403, USA
| | | | | |
Collapse
|
250
|
Bennett FC, Harvey KF. Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 2006; 16:2101-10. [PMID: 17045801 DOI: 10.1016/j.cub.2006.09.045] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 09/04/2006] [Accepted: 09/22/2006] [Indexed: 12/14/2022]
Abstract
BACKGROUND The atypical Fat cadherin has long been known to control cell proliferation and organ size in Drosophila, but the mechanism by which Fat controls these processes has remained elusive. A newly emerging signaling pathway that controls organ size during development is the Salvador/Warts/Hippo pathway. RESULTS Here we demonstrate that Fat limits organ size by modulating activity of the Salvador/Warts/Hippo pathway. ft interacts genetically with positive and negative regulators of this pathway, and tissue lacking fat closely phenocopies tissue deficient for genes that normally promote Salvador/Warts/Hippo pathway activity. Cells lacking fat grow and proliferate more quickly than their wild-type counterparts and exhibit delayed cell-cycle exit as a result of elevated expression of Cyclin E. fat mutant cells display partial insensitivity to normal developmental apoptosis cues and express increased levels of the anti-apoptotic DIAP1 protein. Collectively, these defects lead to increased organ size and organism lethality in fat mutant animals. Fat modulates Salvador/Warts/Hippo pathway activity by promoting abundance and localization of Expanded protein at the apical membrane of epithelial tissues. CONCLUSIONS Fat restricts organ size during Drosophila development via the Salvador/Warts/Hippo pathway. These studies aid our understanding of developmental organ size control and have implications for human hyperproliferative disorders, such as cancers.
Collapse
Affiliation(s)
- F Christian Bennett
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | | |
Collapse
|