201
|
Hu H, Zhou S, Sun X, Xue Y, Yan L, Sun X, Lei M, Li J, Zeng X, Hao L. A potent antiarrhythmic drug N-methyl berbamine extends the action potential through inhibiting both calcium and potassium currents. J Pharmacol Sci 2020; 142:131-139. [DOI: 10.1016/j.jphs.2019.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023] Open
|
202
|
Bumped Kinase Inhibitors as therapy for apicomplexan parasitic diseases: lessons learned. Int J Parasitol 2020; 50:413-422. [PMID: 32224121 DOI: 10.1016/j.ijpara.2020.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 11/24/2022]
Abstract
Bumped Kinase Inhibitors, targeting Calcium-dependent Protein Kinase 1 in apicomplexan parasites with a glycine gatekeeper, are promising new therapeutics for apicomplexan diseases. Here we will review advances, as well as challenges and lessons learned regarding efficacy, safety, and pharmacology that have shaped our selection of pre-clinical candidates.
Collapse
|
203
|
AKAP5 anchors PKA to enhance regulation of the HERG channel. Int J Biochem Cell Biol 2020; 122:105741. [PMID: 32173522 DOI: 10.1016/j.biocel.2020.105741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 11/21/2022]
Abstract
The activation of the β-adrenergic receptor (β-AR) regulates the human ether a-go-go-related gene (HERG) channel via protein kinase A (PKA), which in turn induces lethal arrhythmia in patients with long QT syndromes (LQTS). However, the role of A-kinase anchoring proteins (AKAPs) in PKA's regulation of the HERG channel and its molecular mechanism are not clear. Here, HEK293 cells were transfected with the HERG gene alone or co-transfected with HERG and AKAP5 using Lipofectamine 2000. Western blotting was performed to determine HERG protein expression, and immunofluorescence and immunoprecipitation were used to assess the binding and cellular colocalization of HERG, AKAP5, and PKA. The HEK293-HERG and HEK293-HERG + AKAP5 cells were treated with forskolin at different concentrations and different time. HERG protein expression significantly increased under all treatment conditions (P < 0.001). The level of HERG protein expression in HEK293-HERG + AKAP5 cells was higher than that observed in HEK293-HERG cells (P < 0.001). Immunofluorescence and immunoprecipitation indicated that HERG bound to PKA and AKAP5 and was colocalized at the cell membrane. The HERG channel protein, AKAP5, and PKA interacted with each other and appeared to form intracellular complexes. These results provide evidence for a novel mechanism which AKAP5 anchors PKA to up-regulate the HERG channel protein.
Collapse
|
204
|
Orvos P, Kohajda Z, Szlovák J, Gazdag P, Árpádffy-Lovas T, Tóth D, Geramipour A, Tálosi L, Jost N, Varró A, Virág L. Evaluation of Possible Proarrhythmic Potency: Comparison of the Effect of Dofetilide, Cisapride, Sotalol, Terfenadine, and Verapamil on hERG and Native IKr Currents and on Cardiac Action Potential. Toxicol Sci 2020; 168:365-380. [PMID: 30561737 DOI: 10.1093/toxsci/kfy299] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The proarrhythmic potency of drugs is usually attributed to the IKr current block. During safety pharmacology testing analysis of IKr in cardiomyocytes was replaced by human ether-a-go-go-related gene (hERG) test using automated patch-clamp systems in stable transfected cell lines. Aim of this study was to compare the effect of proarrhythmic compounds on hERG and IKr currents and on cardiac action potential. The hERG current was measured by using both automated and manual patch-clamp methods on HEK293 cells. The native ion currents (IKr, INaL, ICaL) were recorded from rabbit ventricular myocytes by manual patch-clamp technique. Action potentials in rabbit ventricular muscle and undiseased human donor hearts were studied by conventional microelectrode technique. Dofetilide, cisapride, sotalol, terfenadine, and verapamil blocked hERG channels at 37°C with an IC50 of 7 nM, 18 nM, 343 μM, 165 nM, and 214 nM, respectively. Using manual patch-clamp, the IC50 values of sotalol and terfenadine were 78 µM and 31 nM, respectively. The IC50 values calculated from IKr measurements at 37°C were 13 nM, 26 nM, 52 μM, 54 nM, and 268 nM, respectively. Cisapride, dofetilide, and sotalol excessively lengthened, terfenadine, and verapamil did not influence the action potential duration. Terfenadine significantly inhibited INaL and moderately ICaL, verapamil blocked only ICaL. Automated hERG assays may over/underestimate proarrhythmic risk. Manual patch-clamp has substantially higher sensitivity to certain drugs. Action potential studies are also required to analyze complex multichannel effects. Therefore, manual patch-clamp and action potential experiments should be a part of preclinical safety tests.
Collapse
Affiliation(s)
- Péter Orvos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine.,Department of Ophthalmology, University of Szeged, Szeged H-6720, Hungary
| | - Zsófia Kohajda
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine.,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged H-6720, Hungary
| | - Jozefina Szlovák
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine
| | - Péter Gazdag
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine
| | | | - Dániel Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine
| | - Amir Geramipour
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine
| | | | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine.,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged H-6720, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine.,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged H-6720, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine.,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged H-6720, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
| |
Collapse
|
205
|
Boldrini-França J, Pinheiro-Junior EL, Peigneur S, Pucca MB, Cerni FA, Borges RJ, Costa TR, Carone SEI, Fontes MRDM, Sampaio SV, Arantes EC, Tytgat J. Beyond hemostasis: a snake venom serine protease with potassium channel blocking and potential antitumor activities. Sci Rep 2020; 10:4476. [PMID: 32161292 PMCID: PMC7066243 DOI: 10.1038/s41598-020-61258-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Snake venom serine proteases (SVSPs) are complex and multifunctional enzymes, acting primarily on hemostasis. In this work, we report the hitherto unknown inhibitory effect of a SVSP, named collinein-1, isolated from the venom of Crotalus durissus collilineatus, on a cancer-relevant voltage-gated potassium channel (hEAG1). Among 12 voltage-gated ion channels tested, collinein-1 selectively inhibited hEAG1 currents, with a mechanism independent of its enzymatic activity. Corroboratively, we demonstrated that collinein-1 reduced the viability of human breast cancer cell line MCF7 (high expression of hEAG1), but does not affect the liver carcinoma and the non-tumorigenic epithelial breast cell lines (HepG2 and MCF10A, respectively), which present low expression of hEAG1. In order to obtain both functional and structural validation of this unexpected discovery, where an unusually large ligand acts as an inhibitor of an ion channel, a recombinant and catalytically inactive mutant of collinein-1 (His43Arg) was produced and found to preserve its capability to inhibit hEAG1. A molecular docking model was proposed in which Arg79 of the SVSP 99-loop interacts directly with the potassium selectivity filter of the hEAG1 channel.
Collapse
Affiliation(s)
- Johara Boldrini-França
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil.,University of Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista II, 29102-920, Vila Velha, ES, Brazil
| | - Ernesto Lopes Pinheiro-Junior
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil.,Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, PO 922, 3000, Leuven, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, PO 922, 3000, Leuven, Belgium
| | - Manuela Berto Pucca
- Medical School of Roraima, Federal University of Roraima, Av. Capitão Ene Garcez, 2413, Bairro Aeroporto, 69310-970, Boa Vista, RR, Brazil
| | - Felipe Augusto Cerni
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Rafael Junqueira Borges
- Institute of Biosciences, São Paulo State University (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, 250, 18618-689, Botucatu, SP, Brazil
| | - Tássia Rafaella Costa
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Sante Emmanuel Imai Carone
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Marcos Roberto de Mattos Fontes
- Institute of Biosciences, São Paulo State University (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, 250, 18618-689, Botucatu, SP, Brazil
| | - Suely Vilela Sampaio
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903, Ribeirão Preto, SP, Brazil.
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, PO 922, 3000, Leuven, Belgium.
| |
Collapse
|
206
|
El Harchi A, Butler AS, Zhang Y, Dempsey CE, Hancox JC. The macrolide drug erythromycin does not protect the hERG channel from inhibition by thioridazine and terfenadine. Physiol Rep 2020; 8:e14385. [PMID: 32147975 PMCID: PMC7061092 DOI: 10.14814/phy2.14385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022] Open
Abstract
The macrolide antibiotic erythromycin has been associated with QT interval prolongation and inhibition of the hERG-encoded channels responsible for the rapid delayed rectifier K+ current I(Kr ). It has been suggested that low concentrations of erythromycin may have a protective effect against hERG block and associated drug-induced arrhythmia by reducing the affinity of the pore-binding site for high potency hERG inhibitors. This study aimed to explore further the notion of a potentially protective effect of erythromycin. Whole-cell patch-clamp experiments were performed in which hERG-expressing mammalian (Human Embryonic Kidney; HEK) cells were preincubated with low to moderate concentrations of erythromycin (3 or 30 µM) prior to whole-cell patch clamp recordings of hERG current (IhERG ) at 37°C. In contrast to a previous report, exposure to low concentrations of erythromycin did not reduce pharmacological sensitivity of hERG to the antipsychotic thioridazine and antihistamine terfenadine. The IC50 value for IhERG tail inhibition by terfenadine was decreased by ~32-fold in the presence of 3 µM erythromycin (p < .05 vs. no preincubation). Sensitivity to thioridazine remained unchanged (p > .05 vs. no preincubation). The effects of low concentrations of erythromycin were investigated for a series of pore blocking drugs, and the results obtained were consistent with additive and/or synergistic effects. Experiments with the externally acting blocker BeKm-1 on WT hERG and a pore mutant (F656V) were used to explore the location of the binding site for erythromycin. Our data are inconsistent with the use of erythromycin for the management of drug-induced QT prolongation.
Collapse
Affiliation(s)
- Aziza El Harchi
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| | - Andrew S Butler
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| | - Yihong Zhang
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| | - Christopher E Dempsey
- School of Biochemistry, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| | - Jules C Hancox
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol, UK
| |
Collapse
|
207
|
He S, Moutaoufik MT, Islam S, Persad A, Wu A, Aly KA, Fonge H, Babu M, Cayabyab FS. HERG channel and cancer: A mechanistic review of carcinogenic processes and therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1873:188355. [PMID: 32135169 DOI: 10.1016/j.bbcan.2020.188355] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
Abstract
The human ether-à-go-go related gene (HERG) encodes the alpha subunit of Kv11.1, which is a voltage-gated K+ channel protein mainly expressed in heart and brain tissue. HERG plays critical role in cardiac repolarization, and mutations in HERG can cause long QT syndrome. More recently, evidence has emerged that HERG channels are aberrantly expressed in many kinds of cancer cells and play important roles in cancer progression. HERG could therefore be a potential biomarker for cancer and a possible molecular target for anticancer drug design. HERG affects a number of cellular processes, including cell proliferation, apoptosis, angiogenesis and migration, any of which could be affected by dysregulation of HERG. This review provides an overview of available information on HERG channel as it relates to cancer, with focus on the mechanism by which HERG influences cancer progression. Molecular docking attempts suggest two possible protein-protein interactions of HERG with the ß1-integrin receptor and the transcription factor STAT-1 as novel HERG-directed therapeutic targeting which avoids possible cardiotoxicity. The role of epigenetics in regulating HERG channel expression and activity in cancer will also be discussed. Finally, given its inherent extracellular accessibility as an ion channel, we discuss regulatory roles of this molecule in cancer physiology and therapeutic potential. Future research should be directed to explore the possibilities of therapeutic interventions targeting HERG channels while minding possible complications.
Collapse
Affiliation(s)
- Siyi He
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | - Saadul Islam
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Amit Persad
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Adam Wu
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W8, Canada; Department of Medical Imaging, Royal University Hospital, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Francisco S Cayabyab
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
208
|
Ferrão-Filho ADS, da Silva DAC. Saxitoxin-producing Raphidiopsis raciborskii (cyanobacteria) inhibits swimming and physiological parameters in Daphnia similis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135751. [PMID: 31831237 DOI: 10.1016/j.scitotenv.2019.135751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/16/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
In this study we tested the effects of a neurotoxic strain of the cyanobacterium Raphidiopsis raciborskii (CYRF-01) on the swimming activity and physiological parameters of Daphnia similis such as movements of the antennae, thoracic limbs, post-abdominal claw and heart rate. An acute assay was performed to test the effect on swimming activity, exposing newborns (<24 h) to different concentrations of live cells and observing the number of immobilized animals over a period of 48 h. For testing the effects on physiological parameters adult females (10-15 days) were exposed in a flow-through system and recorded with a digital camera. Results showed rapid effect of the strain CYRF on all parameters. Animals started to be immobilized in the first 30 min exposure and showed complete paralysis after 2 h in 500 μg L-1 and after 24 h in the other concentrations. Physiological parameters accompanied the same response pattern with effects starting after 30 min and some recovery at the end of 6 h exposure. Antennae stopped moving after 2-3 h at 250-500 μg L-1, explaining the paralysis of the swimming activity in Daphnia. Thoracic limbs movements were significantly inhibited after 30 min in all concentrations, staying at lower levels than control through the experiment. Post-abdominal claw movement were completely ceased after 30 min and remained stopped until the end of the trial. Heart rate showed a tendency to decrease abruptly in the first 30 min exposure in all concentrations, but showed significant lower values than control only at 500 μg L-1, between 3 and 4 h exposure, and a recovery at the end of 6 h. In conclusion, results show that neurotoxic cyanobacteria can impose severe constrains on the physiology of daphniids, which can have consequences to the oxygen uptake, swimming and feeding behavior and to the overall fitness of those organisms.
Collapse
Affiliation(s)
- Aloysio da S Ferrão-Filho
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil.
| | - Diego Amparo C da Silva
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| |
Collapse
|
209
|
Shi YP, Thouta S, Claydon TW. Modulation of hERG K + Channel Deactivation by Voltage Sensor Relaxation. Front Pharmacol 2020; 11:139. [PMID: 32184724 PMCID: PMC7059196 DOI: 10.3389/fphar.2020.00139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
The hERG (human-ether-à-go-go-related gene) channel underlies the rapid delayed rectifier current, Ikr, in the heart, which is essential for normal cardiac electrical activity and rhythm. Slow deactivation is one of the hallmark features of the unusual gating characteristics of hERG channels, and plays a crucial role in providing a robust current that aids repolarization of the cardiac action potential. As such, there is significant interest in elucidating the underlying mechanistic determinants of slow hERG channel deactivation. Recent work has shown that the hERG channel S4 voltage sensor is stabilized following activation in a process termed relaxation. Voltage sensor relaxation results in energetic separation of the activation and deactivation pathways, producing a hysteresis, which modulates the kinetics of deactivation gating. Despite widespread observation of relaxation behaviour in other voltage-gated K+ channels, such as Shaker, Kv1.2 and Kv3.1, as well as the voltage-sensing phosphatase Ci-VSP, the relationship between stabilization of the activated voltage sensor by the open pore and voltage sensor relaxation in the control of deactivation has only recently begun to be explored. In this review, we discuss present knowledge and questions raised related to the voltage sensor relaxation mechanism in hERG channels and compare structure-function aspects of relaxation with those observed in related ion channels. We focus discussion, in particular, on the mechanism of coupling between voltage sensor relaxation and deactivation gating to highlight the insight that these studies provide into the control of hERG channel deactivation gating during their physiological functioning.
Collapse
Affiliation(s)
- Yu Patrick Shi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Samrat Thouta
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Thomas W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
210
|
Kistamás K, Veress R, Horváth B, Bányász T, Nánási PP, Eisner DA. Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Front Pharmacol 2020; 11:72. [PMID: 32161540 PMCID: PMC7052815 DOI: 10.3389/fphar.2020.00072] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium ions (Ca2+) play a major role in the cardiac excitation-contraction coupling. Intracellular Ca2+ concentration increases during systole and falls in diastole thereby determining cardiac contraction and relaxation. Normal cardiac function also requires perfect organization of the ion currents at the cellular level to drive action potentials and to maintain action potential propagation and electrical homogeneity at the tissue level. Any imbalance in Ca2+ homeostasis of a cardiac myocyte can lead to electrical disturbances. This review aims to discuss cardiac physiology and pathophysiology from the elementary membrane processes that can cause the electrical instability of the ventricular myocytes through intracellular Ca2+ handling maladies to inherited and acquired arrhythmias. Finally, the paper will discuss the current therapeutic approaches targeting cardiac arrhythmias.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Roland Veress
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - David A Eisner
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
211
|
DeepHIT: a deep learning framework for prediction of hERG-induced cardiotoxicity. Bioinformatics 2020; 36:3049-3055. [DOI: 10.1093/bioinformatics/btaa075] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/29/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Blockade of the human ether-à-go-go-related gene (hERG) channel by small compounds causes a prolonged QT interval that can lead to severe cardiotoxicity and is a major cause of the many failures in drug development. Thus, evaluating the hERG-blocking activity of small compounds is important for successful drug development. To this end, various computational prediction tools have been developed, but their prediction performances in terms of sensitivity and negative predictive value (NPV) need to be improved to reduce false negative predictions.
Results
We propose a computational framework, DeepHIT, which predicts hERG blockers and non-blockers for input compounds. For the development of DeepHIT, we generated a large-scale gold-standard dataset, which includes 6632 hERG blockers and 7808 hERG non-blockers. DeepHIT is designed to contain three deep learning models to improve sensitivity and NPV, which, in turn, produce fewer false negative predictions. DeepHIT outperforms currently available tools in terms of accuracy (0.773), MCC (0.476), sensitivity (0.833) and NPV (0.643) on an external test dataset. We also developed an in silico chemical transformation module that generates virtual compounds from a seed compound, based on the known chemical transformation patterns. As a proof-of-concept study, we identified novel urotensin II receptor (UT) antagonists without hERG-blocking activity derived from a seed compound of a previously reported UT antagonist (KR-36676) with a strong hERG-blocking activity. In summary, DeepHIT will serve as a useful tool to predict hERG-induced cardiotoxicity of small compounds in the early stages of drug discovery and development.
Availability and implementation
https://bitbucket.org/krictai/deephit and https://bitbucket.org/krictai/chemtrans
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
|
212
|
Zangerl-Plessl EM, Berger M, Drescher M, Chen Y, Wu W, Maulide N, Sanguinetti M, Stary-Weinzinger A. Toward a Structural View of hERG Activation by the Small-Molecule Activator ICA-105574. J Chem Inf Model 2020; 60:360-371. [PMID: 31877041 DOI: 10.1021/acs.jcim.9b00737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Outward current conducted by human ether-à-go-go-related gene type 1 (hERG1) K+ channels is important for action potential repolarization in the human ventricle. Rapid, voltage-dependent inactivation greatly reduces outward currents conducted by hERG1 channels and involves conformational changes in the ion selectivity filter (SF). Recently, compounds have been found that activate hERG1 channel function by modulating gating mechanisms such as reducing inactivation. Such activating compounds could represent a novel approach to prevent arrhythmias associated with prolonged ventricular repolarization associated with inherited or acquired long QT syndrome. ICA-105574 (ICA), a 3-nitro-n-(4-phenoxyphenyl) benzamide derivative activates hERG1 by strongly attenuating pore-type inactivation. We previously mapped the putative binding site for ICA to a hydrophobic pocket located between two adjacent subunits. Here, we used the recently reported cryoelectron microscopy structures of hERG1 to elucidate the structural mechanisms by which ICA influences the stability of the SF. By combining molecular dynamics simulations, voltage-clamp electrophysiology, and the synthesis of novel ICA derivatives, we provide atomistic insights into SF dynamics and propose a structural link between the SF and S6 segments. Further, our study highlights the importance of the nitro moiety, at the meta position of the benzamide ring, for the activity of ICA and reveals that the (bio)isosteric substitution of this side chain can switch the activity to weak inhibitors. Our findings indicate that ICA increases the stability of the SF to attenuate channel inactivation, and this action requires a fine-tuned compound geometry.
Collapse
Affiliation(s)
- Eva-Maria Zangerl-Plessl
- Department of Pharmacology and Toxicology , University of Vienna , Althanstrasse 14 , Wien , Vienna 1090 , Austria
| | - Martin Berger
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Martina Drescher
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Yong Chen
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Wei Wu
- Nora Eccles Harrison Cardiovascular Research and Training Institute and Division of Cardiovascular Medicine, Department of Internal Medicine , University of Utah , Salt Lake City , Utah 84132-340 , United States
| | - Nuno Maulide
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Michael Sanguinetti
- Nora Eccles Harrison Cardiovascular Research and Training Institute and Division of Cardiovascular Medicine, Department of Internal Medicine , University of Utah , Salt Lake City , Utah 84132-340 , United States
| | - Anna Stary-Weinzinger
- Department of Pharmacology and Toxicology , University of Vienna , Althanstrasse 14 , Wien , Vienna 1090 , Austria
| |
Collapse
|
213
|
Selectivity filter modalities and rapid inactivation of the hERG1 channel. Proc Natl Acad Sci U S A 2020; 117:2795-2804. [PMID: 31980532 DOI: 10.1073/pnas.1909196117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human ether-á-go-go-related gene (hERG1) channel conducts small outward K+ currents that are critical for cardiomyocyte membrane repolarization. The gain-of-function mutation N629D at the outer mouth of the selectivity filter (SF) disrupts inactivation and K+-selective transport in hERG1, leading to arrhythmogenic phenotypes associated with long-QT syndrome. Here, we combined computational electrophysiology with Markov state model analysis to investigate how SF-level gating modalities control selective cation transport in wild-type (WT) and mutant (N629D) hERG1 variants. Starting from the recently reported cryogenic electron microscopy (cryo-EM) open-state channel structure, multiple microseconds-long molecular-dynamics (MD) trajectories were generated using different cation configurations at the filter, voltages, electrolyte concentrations, and force-field parameters. Most of the K+ permeation events observed in hERG1-WT simulations occurred at microsecond timescales, influenced by the spontaneous dehydration/rehydration dynamics at the filter. The SF region displayed conductive, constricted, occluded, and dilated states, in qualitative agreement with the well-documented flickering conductance of hERG1. In line with mutagenesis studies, these gating modalities resulted from dynamic interaction networks involving residues from the SF, outer-mouth vestibule, P-helices, and S5-P segments. We found that N629D mutation significantly stabilizes the SF in a state that is permeable to both K+ and Na+, which is reminiscent of the SF in the nonselective bacterial NaK channel. Increasing the external K+ concentration induced "WT-like" SF dynamics in N629D, in qualitative agreement with the recovery of flickering currents in experiments. Overall, our findings provide an understanding of the molecular mechanisms controlling selective transport in K+ channels with a nonconventional SF sequence.
Collapse
|
214
|
Pourrier M, Fedida D. The Emergence of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) as a Platform to Model Arrhythmogenic Diseases. Int J Mol Sci 2020; 21:ijms21020657. [PMID: 31963859 PMCID: PMC7013748 DOI: 10.3390/ijms21020657] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
There is a need for improved in vitro models of inherited cardiac diseases to better understand basic cellular and molecular mechanisms and advance drug development. Most of these diseases are associated with arrhythmias, as a result of mutations in ion channel or ion channel-modulatory proteins. Thus far, the electrophysiological phenotype of these mutations has been typically studied using transgenic animal models and heterologous expression systems. Although they have played a major role in advancing the understanding of the pathophysiology of arrhythmogenesis, more physiological and predictive preclinical models are necessary to optimize the treatment strategy for individual patients. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have generated much interest as an alternative tool to model arrhythmogenic diseases. They provide a unique opportunity to recapitulate the native-like environment required for mutated proteins to reproduce the human cellular disease phenotype. However, it is also important to recognize the limitations of this technology, specifically their fetal electrophysiological phenotype, which differentiates them from adult human myocytes. In this review, we provide an overview of the major inherited arrhythmogenic cardiac diseases modeled using hiPSC-CMs and for which the cellular disease phenotype has been somewhat characterized.
Collapse
Affiliation(s)
- Marc Pourrier
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- IonsGate Preclinical Services Inc., Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
215
|
Allen ND, Leung JG, Palmer BA. Mirtazapine's effect on the QT interval in medically hospitalized patients. Ment Health Clin 2020; 10:30-33. [PMID: 31942276 PMCID: PMC6956977 DOI: 10.9740/mhc.2020.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Introduction Mirtazapine is generally well tolerated in medically ill patients with and without formal psychiatric comorbidity to target sleep, appetite, nausea, and pain. However, there is little data regarding mirtazapine's potential to prolong the corrected QT interval (QTc) in this population. Methods From a retrospective cohort of patients hospitalized on a variety of medical units for whom a psychiatric consult recommended mirtazapine, electrocardiogram (ECG) data were extracted for ECGs obtained up to 3 days before and 6 days after the initial consult. Descriptive statistics were used to characterize the QTc changes and adverse cardiac outcomes, including incident ventricular tachycardia, torsades de pointes, and sudden cardiac death. Multiple linear regression models were completed to assess the effect of potential confounding variables on QTc changes. Results Complete premirtazapine and postmirtazapine ECG data were available for 61 patients, and the average change in QTc was –0.31 ms (SD = 36.62 ms). No incidental adverse cardiac outcomes were found. QTc changes were not significantly affected by patient age and sex, initial and maximum mirtazapine dose, days between ECGs, number of concomitant QTc prolonging medications, Charlson comorbidity scores, and electrolyte abnormalities. Due to incomplete potassium, magnesium, and ionized calcium data, electrolytes were excluded from the final regression model. Discussion Despite the limitations of this retrospective study, these data suggest that modest doses of mirtazapine may not significantly affect the QTc in medically ill patients. Retrospective cohorts are more feasibly analyzed, but prospective controlled trials could more systematically assess QTc changes with higher doses of mirtazapine in medical settings.
Collapse
|
216
|
Roberts JD, Asaki SY, Mazzanti A, Bos JM, Tuleta I, Muir AR, Crotti L, Krahn AD, Kutyifa V, Shoemaker MB, Johnsrude CL, Aiba T, Marcondes L, Baban A, Udupa S, Dechert B, Fischbach P, Knight LM, Vittinghoff E, Kukavica D, Stallmeyer B, Giudicessi JR, Spazzolini C, Shimamoto K, Tadros R, Cadrin-Tourigny J, Duff HJ, Simpson CS, Roston TM, Wijeyeratne YD, El Hajjaji I, Yousif MD, Gula LJ, Leong-Sit P, Chavali N, Landstrom AP, Marcus GM, Dittmann S, Wilde AAM, Behr ER, Tfelt-Hansen J, Scheinman MM, Perez MV, Kaski JP, Gow RM, Drago F, Aziz PF, Abrams DJ, Gollob MH, Skinner JR, Shimizu W, Kaufman ES, Roden DM, Zareba W, Schwartz PJ, Schulze-Bahr E, Etheridge SP, Priori SG, Ackerman MJ. An International Multicenter Evaluation of Type 5 Long QT Syndrome: A Low Penetrant Primary Arrhythmic Condition. Circulation 2020; 141:429-439. [PMID: 31941373 DOI: 10.1161/circulationaha.119.043114] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Insight into type 5 long QT syndrome (LQT5) has been limited to case reports and small family series. Improved understanding of the clinical phenotype and genetic features associated with rare KCNE1 variants implicated in LQT5 was sought through an international multicenter collaboration. METHODS Patients with either presumed autosomal dominant LQT5 (N = 229) or the recessive Type 2 Jervell and Lange-Nielsen syndrome (N = 19) were enrolled from 22 genetic arrhythmia clinics and 4 registries from 9 countries. KCNE1 variants were evaluated for ECG penetrance (defined as QTc >460 ms on presenting ECG) and genotype-phenotype segregation. Multivariable Cox regression was used to compare the associations between clinical and genetic variables with a composite primary outcome of definite arrhythmic events, including appropriate implantable cardioverter-defibrillator shocks, aborted cardiac arrest, and sudden cardiac death. RESULTS A total of 32 distinct KCNE1 rare variants were identified in 89 probands and 140 genotype positive family members with presumed LQT5 and an additional 19 Type 2 Jervell and Lange-Nielsen syndrome patients. Among presumed LQT5 patients, the mean QTc on presenting ECG was significantly longer in probands (476.9±38.6 ms) compared with genotype positive family members (441.8±30.9 ms, P<0.001). ECG penetrance for heterozygous genotype positive family members was 20.7% (29/140). A definite arrhythmic event was experienced in 16.9% (15/89) of heterozygous probands in comparison with 1.4% (2/140) of family members (adjusted hazard ratio [HR] 11.6 [95% CI, 2.6-52.2]; P=0.001). Event incidence did not differ significantly for Type 2 Jervell and Lange-Nielsen syndrome patients relative to the overall heterozygous cohort (10.5% [2/19]; HR 1.7 [95% CI, 0.3-10.8], P=0.590). The cumulative prevalence of the 32 KCNE1 variants in the Genome Aggregation Database, which is a human database of exome and genome sequencing data from now over 140 000 individuals, was 238-fold greater than the anticipated prevalence of all LQT5 combined (0.238% vs 0.001%). CONCLUSIONS The present study suggests that putative/confirmed loss-of-function KCNE1 variants predispose to QT prolongation, however, the low ECG penetrance observed suggests they do not manifest clinically in the majority of individuals, aligning with the mild phenotype observed for Type 2 Jervell and Lange-Nielsen syndrome patients.
Collapse
Affiliation(s)
- Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada (J.D.R., I.E.H., M.D.Y., L.J.G., P.L.-S.)
| | - S Yukiko Asaki
- Department of Pediatrics, University of Utah, and Primary Children's Hospital, Salt Lake City (S.Y.A., S.P.E.)
| | - Andrea Mazzanti
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico and Department of Molecular Medicine, University of Pavia, Italy (A.M., D.K., S.G.P.).,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.)
| | | | - Izabela Tuleta
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Department of Cardiology I (I.T.), University Hospital Muenster, Germany
| | - Alison R Muir
- Northern Ireland Inherited Cardiac Conditions Service, Belfast City Hospital, United Kingdom (A.R.M.)
| | - Lia Crotti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., C.S., P.J.S.).,Department of Medicine and Surgery, University of Milano-Bicocca, Italy (L.C.).,Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy (L.C.)
| | - Andrew D Krahn
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada (A.D.K., T.M.R.)
| | - Valentina Kutyifa
- Clinical Cardiovascular Research Center, University of Rochester Medical Center, NY (V.K., W.Z.)
| | - M Benjamin Shoemaker
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN (M.B., J.R.G., M.J.A.).,Departments of Medicine (M.B.S., N.C., D.M.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Christopher L Johnsrude
- Division of Pediatric Cardiology, Department of Pediatrics, University of Louisville, KY (C.L.J.)
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan (T.A., K.S., W.S.)
| | - Luciana Marcondes
- Cardiac Inherited Disease Group New Zealand, Paediatric and Congenital Cardiac Services, Starship Children's Hospital, Auckland (L.M., J.R.S.)
| | - Anwar Baban
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy (A.B., F.D.)
| | - Sharmila Udupa
- Children's Hospital of Eastern Ontario, Department of Pediatrics, University of Ottawa, Canada (S.U., R.M.G.)
| | - Brynn Dechert
- Division of Cardiology, Department of Pediatrics, University of Michigan Children's Hospital, University of Michigan, Ann Arbor (B.D.)
| | - Peter Fischbach
- Children's Healthcare of Atlanta, Sibley Heart Center Cardiology, GA (P.F., L.M.K.)
| | - Linda M Knight
- Children's Healthcare of Atlanta, Sibley Heart Center Cardiology, GA (P.F., L.M.K.)
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics (E.V.), University of California San Francisco
| | - Deni Kukavica
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico and Department of Molecular Medicine, University of Pavia, Italy (A.M., D.K., S.G.P.).,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.)
| | - Birgit Stallmeyer
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Institute for Genetics of Heart Disease (B.S., S.D., E.S.-B.), University Hospital Muenster, Germany
| | - John R Giudicessi
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN (M.B., J.R.G., M.J.A.)
| | - Carla Spazzolini
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., C.S., P.J.S.)
| | - Keiko Shimamoto
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan (T.A., K.S., W.S.)
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Quebec, Canada (R.T., J., C.-T.)
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Quebec, Canada (R.T., J., C.-T.)
| | - Henry J Duff
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Canada (H.J.D.)
| | | | - Thomas M Roston
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada (A.D.K., T.M.R.)
| | - Yanushi D Wijeyeratne
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St. George's University of London, and St. George's University Hospitals NHS Foundation Trust, United Kingdom (Y.D.W., E.R.B.)
| | - Imane El Hajjaji
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada (J.D.R., I.E.H., M.D.Y., L.J.G., P.L.-S.)
| | - Maisoon D Yousif
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada (J.D.R., I.E.H., M.D.Y., L.J.G., P.L.-S.)
| | - Lorne J Gula
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada (J.D.R., I.E.H., M.D.Y., L.J.G., P.L.-S.)
| | - Peter Leong-Sit
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada (J.D.R., I.E.H., M.D.Y., L.J.G., P.L.-S.)
| | - Nikhil Chavali
- Departments of Medicine (M.B.S., N.C., D.M.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Pediatric Cardiology, and Department of Cell Biology, Duke University School of Medicine, Durham, NC (A.P.L.)
| | - Gregory M Marcus
- Amsterdam University Medical Centre, location AMC, Heart Center, Department of Clinical and Experimental Cardiology, The Netherlands (G.M.M., A.A.M.W.)
| | - Sven Dittmann
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Institute for Genetics of Heart Disease (B.S., S.D., E.S.-B.), University Hospital Muenster, Germany
| | - Arthur A M Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Amsterdam University Medical Centre, location AMC, Heart Center, Department of Clinical and Experimental Cardiology, The Netherlands (G.M.M., A.A.M.W.)
| | - Elijah R Behr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St. George's University of London, and St. George's University Hospitals NHS Foundation Trust, United Kingdom (Y.D.W., E.R.B.)
| | - Jacob Tfelt-Hansen
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark (J.T.-H.)
| | - Melvin M Scheinman
- Department of Medicine, Division of Cardiology, Section of Cardiac Electrophysiology M.M.S.), University of California San Francisco
| | - Marco V Perez
- Division of Cardiovascular Medicine, Stanford University School of Medicine, CA (M.V.P.)
| | - Juan Pablo Kaski
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital and UCL Institute of Cardiovascular Science, London, United Kingdom (J.P.K.)
| | - Robert M Gow
- Children's Hospital of Eastern Ontario, Department of Pediatrics, University of Ottawa, Canada (S.U., R.M.G.)
| | - Fabrizio Drago
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy (A.B., F.D.)
| | - Peter F Aziz
- Department of Pediatric Cardiology, Cleveland Clinic, OH (P.F.A.)
| | - Dominic J Abrams
- Inherited Cardiac Arrhythmia Program, Boston Children's Hospital, Harvard Medical School, MA (D.J.A.)
| | - Michael H Gollob
- Department of Physiology and Department of Medicine, Toronto General Hospital, University of Toronto, Ontario, Canada (M.H.G.)
| | - Jonathan R Skinner
- Cardiac Inherited Disease Group New Zealand, Paediatric and Congenital Cardiac Services, Starship Children's Hospital, Auckland (L.M., J.R.S.)
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan (T.A., K.S., W.S.).,Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (W.S.)
| | - Elizabeth S Kaufman
- The Heart and Vascular Research Center, Metro-Health Campus, Case Western Reserve University, Cleveland, OH (E.S.K.)
| | - Dan M Roden
- Departments of Medicine (M.B.S., N.C., D.M.R.), Vanderbilt University Medical Center, Nashville, TN.,Pharmacology (D.M.R.), Vanderbilt University Medical Center, Nashville, TN.,Biomedical Informatics (D.M.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Wojciech Zareba
- Clinical Cardiovascular Research Center, University of Rochester Medical Center, NY (V.K., W.Z.)
| | - Peter J Schwartz
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., C.S., P.J.S.)
| | - Eric Schulze-Bahr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.).,Institute for Genetics of Heart Disease (B.S., S.D., E.S.-B.), University Hospital Muenster, Germany
| | - Susan P Etheridge
- Department of Pediatrics, University of Utah, and Primary Children's Hospital, Salt Lake City (S.Y.A., S.P.E.)
| | - Silvia G Priori
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico and Department of Molecular Medicine, University of Pavia, Italy (A.M., D.K., S.G.P.).,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (A.M., I.T., L.C., A.B., D.K., B.S., C.S., Y.D.W., S.D., A.A.M.W., E.R.B., J.T.-H., J.P.K., F.D., P.J.S., E.S.-B., S.G.P.)
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN (M.B., J.R.G., M.J.A.)
| |
Collapse
|
217
|
Gray B, Semsarian C. Utility of genetic testing in athletes. Clin Cardiol 2020; 43:915-920. [PMID: 31925963 PMCID: PMC7403674 DOI: 10.1002/clc.23289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
Athletes are some of the fittest members of our society, yet paradoxically carry an increased risk of sudden cardiac death (SCD). The athlete's underlying risk of SCD in sports may be increased due to a number of underlying structural, arrhythmic and inherited cardiac conditions (ICCs). There are also physiological adaptations, which occur in the cardiovascular system in athletes as a result of high‐level athletic activity and may be misinterpreted as pathology. Differentiation of “athlete's heart” from heart disease may be challenging due to the effects of exercise on the electrical and structural cardiac remodeling. Features such as prolongation of the QT interval, left ventricular hypertrophy and cavity dilatation, create significant overlap between physiology and inherited channelopathies and cardiomyopathies. Most inherited cardiac conditions have an underlying genetic basis to disease and genetic testing in an athlete can have diagnostic, prognostic and therapeutic implications, including guiding exercise recommendations. Therefore, genetic testing can be a useful diagnostic tool when used carefully and appropriately by a trained cardio‐genetics expert.
Collapse
Affiliation(s)
- Belinda Gray
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, New South Wales, Australia.,Faculty of Health and Medical Sciences, University of Sydney, New South Wales, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, New South Wales, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, New South Wales, Australia.,Faculty of Health and Medical Sciences, University of Sydney, New South Wales, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, New South Wales, Australia
| |
Collapse
|
218
|
Shults NV, Rybka V, Suzuki YJ, Brelidze TI. Increased Smooth Muscle Kv11.1 Channel Expression in Pulmonary Hypertension and Protective Role of Kv11.1 Channel Blocker Dofetilide. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:48-56. [PMID: 31839145 PMCID: PMC6943378 DOI: 10.1016/j.ajpath.2019.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023]
Abstract
Kv11.1 potassium channels are essential for heart repolarization. Prescription medication that blocks Kv11.1 channels lengthens the ventricular action potential and causes cardiac arrhythmias. Surprisingly little is known about the Kv11.1 channel expression and function in the lung tissue. Here we report that Kv11.1 channels were abundantly expressed in the large pulmonary arteries (PAs) of healthy lung tissues from humans and rats. Kv11.1 channel expression was increased in the lungs of humans affected by chronic obstructive pulmonary disease-associated pulmonary hypertension and in the lungs of rats with pulmonary arterial hypertension (PAH). In healthy lung tissues from humans and rats, Kv11.1 channels were confined to the large PAs. In humans with chronic obstructive pulmonary disease-associated pulmonary hypertension and in rats with PAH, Kv11.1 channels were expressed in both the large and small PAs. The increase in Kv11.1 channel expression closely followed the time-course of the development of pulmonary vascular remodeling in PAH rats. Treatment of PAH rats with dofetilide, an Kv11.1 channel blocker approved by the US Food and Drug Administration for use in the treatment of arrythmia, inhibited PAH-associated pulmonary vascular remodeling. Taken together, the findings from this study uncovered a novel role of Kv11.1 channels in lung function and their potential as new drug targets in the treatment of pulmonary hypertension. The protective effect of dofetilide raises the possibility of repurposing this antiarrhythmic drug for the treatment of patients with pulmonary hypertension.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/pathology
- Arrhythmias, Cardiac/prevention & control
- Case-Control Studies
- ERG1 Potassium Channel/antagonists & inhibitors
- ERG1 Potassium Channel/metabolism
- Female
- Follow-Up Studies
- Humans
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Phenethylamines/pharmacology
- Potassium Channel Blockers/pharmacology
- Prognosis
- Pulmonary Arterial Hypertension/complications
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Rats, Sprague-Dawley
- Sulfonamides/pharmacology
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Nataliia V Shults
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia
| | - Vladyslava Rybka
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia.
| |
Collapse
|
219
|
Paik DT, Chandy M, Wu JC. Patient and Disease-Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics. Pharmacol Rev 2020; 72:320-342. [PMID: 31871214 PMCID: PMC6934989 DOI: 10.1124/pr.116.013003] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) have emerged as an effective platform for regenerative therapy, disease modeling, and drug discovery. iPSCs allow for the production of limitless supply of patient-specific somatic cells that enable advancement in cardiovascular precision medicine. Over the past decade, researchers have developed protocols to differentiate iPSCs to multiple cardiovascular lineages, as well as to enhance the maturity and functionality of these cells. Despite significant advances, drug therapy and discovery for cardiovascular disease have lagged behind other fields such as oncology. We speculate that this paucity of drug discovery is due to a previous lack of efficient, reproducible, and translational model systems. Notably, existing drug discovery and testing platforms rely on animal studies and clinical trials, but investigations in animal models have inherent limitations due to interspecies differences. Moreover, clinical trials are inherently flawed by assuming that all individuals with a disease will respond identically to a therapy, ignoring the genetic and epigenomic variations that define our individuality. With ever-improving differentiation and phenotyping methods, patient-specific iPSC-derived cardiovascular cells allow unprecedented opportunities to discover new drug targets and screen compounds for cardiovascular disease. Imbued with the genetic information of an individual, iPSCs will vastly improve our ability to test drugs efficiently, as well as tailor and titrate drug therapy for each patient.
Collapse
Affiliation(s)
- David T Paik
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Mark Chandy
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| |
Collapse
|
220
|
Wilson SL, Dempsey CE, Hancox JC, Marrion NV. Identification of a proton sensor that regulates conductance and open time of single hERG channels. Sci Rep 2019; 9:19825. [PMID: 31882846 PMCID: PMC6934679 DOI: 10.1038/s41598-019-56081-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022] Open
Abstract
The hERG potassium channel influences ventricular action potential duration. Extracellular acidosis occurs in pathological states including cardiac ischaemia. It reduces the amplitude of hERG current and speeds up deactivation, which can alter cardiac excitability. This study aimed to identify the site of action by which extracellular protons regulate the amplitude of macroscopic hERG current. Recordings of macroscopic and single hERG1a and 1b channel activity, mutagenesis, and the recent cryoEM structure for hERG were employed. Single hERG1a and 1b channels displayed open times that decreased with membrane depolarization, suggestive of a blocking mechanism that senses approximately 20% of the membrane electric field. This mechanism was sensitive to pH; extracellular acidosis reduced both hERG1a and1b channel open time and conductance. The effects of acidosis on macroscopic current amplitude and deactivation displayed different sensitivities to protons. Point mutation of a pair of residues (E575/H578) in the pore turret abolished the acidosis-induced decrease of current amplitude, without affecting the change in current deactivation. In single hERG1a channel recordings, the conductance of the double-mutant channel was unaffected by extracellular acidosis. These findings identify residues in the outer turret of the hERG channel that act as a proton sensor to regulate open time and channel conductance.
Collapse
Affiliation(s)
- Stacey L Wilson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.,Covance, Wooley Road, Alconbury, Huntingdon, Cambridgeshire, PE28 4HS, UK
| | | | - Jules C Hancox
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Neil V Marrion
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
221
|
Mesquita FCP, Arantes PC, Kasai-Brunswick TH, Araujo DS, Gubert F, Monnerat G, Silva Dos Santos D, Neiman G, Leitão IC, Barbosa RAQ, Coutinho JL, Vaz IM, Dos Santos MN, Borgonovo T, Cruz FES, Miriuka S, Medei EH, Campos de Carvalho AC, Carvalho AB. R534C mutation in hERG causes a trafficking defect in iPSC-derived cardiomyocytes from patients with type 2 long QT syndrome. Sci Rep 2019; 9:19203. [PMID: 31844156 PMCID: PMC6915575 DOI: 10.1038/s41598-019-55837-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Patient-specific cardiomyocytes obtained from induced pluripotent stem cells (CM-iPSC) offer unprecedented mechanistic insights in the study of inherited cardiac diseases. The objective of this work was to study a type 2 long QT syndrome (LQTS2)-associated mutation (c.1600C > T in KCNH2, p.R534C in hERG) in CM-iPSC. Peripheral blood mononuclear cells were isolated from two patients with the R534C mutation and iPSCs were generated. In addition, the same mutation was inserted in a control iPSC line by genome editing using CRISPR/Cas9. Cells expressed pluripotency markers and showed spontaneous differentiation into the three embryonic germ layers. Electrophysiology demonstrated that action potential duration (APD) of LQTS2 CM-iPSC was significantly longer than that of the control line, as well as the triangulation of the action potentials (AP), implying a longer duration of phase 3. Treatment with the IKr inhibitor E4031 only caused APD prolongation in the control line. Patch clamp showed a reduction of IKr on LQTS2 CM-iPSC compared to control, but channel activation was not significantly affected. Immunofluorescence for hERG demonstrated perinuclear staining in LQTS2 CM-iPSC. In conclusion, CM-iPSC recapitulated the LQTS2 phenotype and our findings suggest that the R534C mutation in KCNH2 leads to a channel trafficking defect to the plasma membrane.
Collapse
Affiliation(s)
- Fernanda C P Mesquita
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Paulo C Arantes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Tais H Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Dayana S Araujo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda Gubert
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco F, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gustavo Monnerat
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Danúbia Silva Dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gabriel Neiman
- FLENI Foundation, Sede Escobar. Ruta 9, Km 53, Belen de Escobar, BA, B1625, Argentina
| | - Isabela C Leitão
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Raiana A Q Barbosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Jorge L Coutinho
- National Institute of Cardiology, Rua das Laranjeiras 374, Rio de Janeiro, RJ, 22240-006, Brazil
| | - Isadora M Vaz
- Pontifical Catholic University of Parana. Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil
| | - Marcus N Dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Tamara Borgonovo
- Pontifical Catholic University of Parana. Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil
| | - Fernando E S Cruz
- National Institute of Cardiology, Rua das Laranjeiras 374, Rio de Janeiro, RJ, 22240-006, Brazil
| | - Santiago Miriuka
- FLENI Foundation, Sede Escobar. Ruta 9, Km 53, Belen de Escobar, BA, B1625, Argentina
| | - Emiliano H Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Antonio C Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Institute of Cardiology, Rua das Laranjeiras 374, Rio de Janeiro, RJ, 22240-006, Brazil.
- National Institute for Science and Technology in Regenerative Medicine. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Adriana B Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Institute for Science and Technology in Regenerative Medicine. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
222
|
From Hyper- to Hypoinsulinemia and Diabetes: Effect of KCNH6 on Insulin Secretion. Cell Rep 2019; 25:3800-3810.e6. [PMID: 30590050 DOI: 10.1016/j.celrep.2018.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/26/2018] [Accepted: 11/30/2018] [Indexed: 01/03/2023] Open
Abstract
Glucose-stimulated insulin secretion from islet β cells is mediated by KATP channels. However, the role of non-KATP K+ channels in insulin secretion is largely unknown. Here, we show that a non-KATP K+ channel, KCNH6, plays a key role in insulin secretion and glucose hemostasis in humans and mice. KCNH6 p.P235L heterozygous mutation co-separated with diabetes in a four-generation pedigree. Kcnh6 knockout (KO) or Kcnh6 p.P235L knockin (KI) mice had a phenotype characterized by changing from hypoglycemia with hyperinsulinemia to hyperglycemia with insulin deficiency. Islets from the young KO mice had increased intracellular calcium concentration and increased insulin secretion. However, islets from the adult KO mice not only had increased intracellular calcium levels but also had remarkable ER stress and apoptosis, associated with loss of β cell mass and decreased insulin secretion. Therefore, dysfunction of KCNH6 causes overstimulation of insulin secretion in the short term and β cell failure in the long term.
Collapse
|
223
|
PKCβII specifically regulates KCNQ1/KCNE1 channel membrane localization. J Mol Cell Cardiol 2019; 138:283-290. [PMID: 31785237 DOI: 10.1016/j.yjmcc.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/06/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023]
Abstract
The slow voltage-gated potassium channel (IKs) is composed of the KCNQ1 and KCNE1 subunits and is one of the major repolarizing currents in the heart. Activation of protein kinase C (PKC) has been linked to cardiac arrhythmias. Although PKC has been shown to be a regulator of a number of cardiac channels, including IKs, little is known about regulation of the channel by specific isoforms of PKC. Here we studied the role of different PKC isoforms on IKs channel membrane localization and function. Our studies focused on PKC isoforms that translocate to the plasma membrane in response to Gq-coupled receptor (GqPCR) stimulation: PKCα, PKCβI, PKCβII and PKCε. Prolonged stimulation of GqPCRs has been shown to decrease IKs membrane expression, but the specific role of each PKC isoform is unclear. Here we show that stimulation of calcium-dependent isoforms of PKC (cPKC) but not PKCε mimic receptor activation. In addition, we show that general PKCβ (LY-333531) and PKCβII inhibitors but not PKCα or PKCβI inhibitors blocked the effect of cPKC on the KCNQ1/KCNE1 channel. PKCβ inhibitors also blocked GqPCR-mediated decrease in channel membrane expression in cardiomyocytes. Direct activation of PKCβII using constitutively active PKCβII construct mimicked agonist-induced decrease in membrane expression and channel function, while dominant negative PKCβII showed no effect. This suggests that the KCNQ1/KCNE1 channel was not regulated by basal levels of PKCβII activity. Our results indicate that PKCβII is a specific regulator of IKs membrane localization. PKCβII expression and activation are strongly increased in many disease states, including heart disease and diabetes. Thus, our results suggest that PKCβII inhibition may protect against acquired QT prolongation associated with heart disease.
Collapse
|
224
|
Cavalluzzi MM, Imbrici P, Gualdani R, Stefanachi A, Mangiatordi GF, Lentini G, Nicolotti O. Human ether-à-go-go-related potassium channel: exploring SAR to improve drug design. Drug Discov Today 2019; 25:344-366. [PMID: 31756511 DOI: 10.1016/j.drudis.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
hERG is best known as a primary anti-target, the inhibition of which is responsible for serious side effects. A renewed interest in hERG as a desired target, especially in oncology, was sparked because of its role in cellular proliferation and apoptosis. In this study, we survey the most recent advances regarding hERG by focusing on SAR in the attempt to elucidate, at a molecular level, off-target and on-target actions of potential hERG binders, which are highly promiscuous and largely varying in structure. Understanding the rationale behind hERG interactions and the molecular determinants of hERG activity is a real challenge and comprehension of this is of the utmost importance to prioritize compounds in early stages of drug discovery and to minimize cardiotoxicity attrition in preclinical and clinical studies.
Collapse
Affiliation(s)
- Maria Maddalena Cavalluzzi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Paola Imbrici
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Roberta Gualdani
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Angela Stefanachi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | | | - Giovanni Lentini
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy.
| |
Collapse
|
225
|
Eichel CA, Ríos-Pérez EB, Liu F, Jameson MB, Jones DK, Knickelbine JJ, Robertson GA. A microtranslatome coordinately regulates sodium and potassium currents in the human heart. eLife 2019; 8:52654. [PMID: 31670657 PMCID: PMC6867827 DOI: 10.7554/elife.52654] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Catastrophic arrhythmias and sudden cardiac death can occur with even a small imbalance between inward sodium currents and outward potassium currents, but mechanisms establishing this critical balance are not understood. Here, we show that mRNA transcripts encoding INa and IKr channels (SCN5A and hERG, respectively) are associated in defined complexes during protein translation. Using biochemical, electrophysiological and single-molecule fluorescence localization approaches, we find that roughly half the hERG translational complexes contain SCN5A transcripts. Moreover, the transcripts are regulated in a way that alters functional expression of both channels at the membrane. Association and coordinate regulation of transcripts in discrete ‘microtranslatomes’ represents a new paradigm controlling electrical activity in heart and other excitable tissues.
Collapse
Affiliation(s)
- Catherine A Eichel
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Erick B Ríos-Pérez
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Fang Liu
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Margaret B Jameson
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - David K Jones
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Jennifer J Knickelbine
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Gail A Robertson
- Department of Neuroscience and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
226
|
Hull CM, Genge CE, Hobbs Y, Rayani K, Lin E, Gunawan M, Shafaattalab S, Tibbits GF, Claydon TW. Investigating the utility of adult zebrafish ex vivo whole hearts to pharmacologically screen hERG channel activator compounds. Am J Physiol Regul Integr Comp Physiol 2019; 317:R921-R931. [PMID: 31664867 DOI: 10.1152/ajpregu.00190.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is significant interest in the potential utility of small-molecule activator compounds to mitigate cardiac arrhythmia caused by loss of function of hERG1a voltage-gated potassium channels. Zebrafish (Danio rerio) have been proposed as a cost-effective, high-throughput drug-screening model to identify compounds that cause hERG1a dysfunction. However, there are no reports on the effects of hERG1a activator compounds in zebrafish and consequently on the utility of the model to screen for potential gain-of-function therapeutics. Here, we examined the effects of hERG1a blocker and types 1 and 2 activator compounds on isolated zkcnh6a (zERG3) channels in the Xenopus oocyte expression system as well as action potentials recorded from ex vivo adult zebrafish whole hearts using optical mapping. Our functional data from isolated zkcnh6a channels show that under the conditions tested, these channels are blocked by hERG1a channel blockers (dofetilide and terfenadine), and activated by type 1 (RPR260243) and type 2 (NS1643, PD-118057) hERG1a activators with higher affinity than hKCNH2a channels (except NS1643), with differences accounted for by different biophysical properties in the two channels. In ex vivo zebrafish whole hearts, two of the three hERG1a activators examined caused abbreviation of the action potential duration (APD), whereas hERG1a blockers caused APD prolongation. These data represent, to our knowledge, the first pharmacological characterization of isolated zkcnh6a channels and the first assessment of hERG enhancing therapeutics in zebrafish. Our findings lead us to suggest that the zebrafish ex vivo whole heart model serves as a valuable tool in the screening of hKCNH2a blocker and activator compounds.
Collapse
Affiliation(s)
- Christina M Hull
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yuki Hobbs
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eric Lin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Marvin Gunawan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sanam Shafaattalab
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Glen F Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tom W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
227
|
Robertson GA, Morais-Cabral JH. hERG Function in Light of Structure. Biophys J 2019; 118:790-797. [PMID: 31669064 DOI: 10.1016/j.bpj.2019.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/25/2022] Open
Abstract
The human ether-a-go-go-related gene1 (hERG) ion channel has been the subject of fascination since it was identified as a target of long QT syndrome more than 20 years ago. In this Biophysical Perspective, we look at what makes hERG intriguing and vexingly unique. By probing recent high-resolution structures in the context of functional and biochemical data, we attempt to summarize new insights into hERG-specific function and articulate important unanswered questions. X-ray crystallography and cryo-electron microscopy have revealed features not previously on the radar-the "nonswapped" transmembrane architecture, an "intrinsic ligand," and hydrophobic pockets off a pore cavity that is surprisingly small. Advances in our understanding of drug block and inactivation mechanisms are noted, but a full picture will require more investigation.
Collapse
Affiliation(s)
- Gail A Robertson
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
| | - João H Morais-Cabral
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
228
|
Kodirov SA, Zhuravlev VL, Brachmann J. Prevailing Effects of Ibutilide on Fast Delayed Rectifier K + Channel. J Membr Biol 2019; 252:609-616. [PMID: 31584122 DOI: 10.1007/s00232-019-00098-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/29/2019] [Indexed: 11/27/2022]
Abstract
Effects of ibutilide, a class III antiarrhythmic drug, on delayed rectifier potassium currents (IK) in freshly isolated guinea pig ventricular myocytes were studied. Experiments were performed using the whole-cell configuration of patch-clamp technique under blockade of L-type calcium currents (Cav1). Ibutilide at concentrations ranging between 10 nM and 100 µM inhibited IKr in dose-dependent manner with a half maximal effective concentration of 2.03 ± 0.74 µM (n = 5-10). The amplitude of tail currents activated by prepulse to + 20 mV was decreased from 253 ± 52 to 130 ± 25 pA (n = 8, p < 0.01) in the presence of 1 µM ibutilide. The envelope test revealed time-dependent changes in ratio of IK-tail/ΔIK during 0.2-2 s pulse durations in the absence of drug. With ibutilide, regardless of pulse duration, a relatively constant ratio was estimated, indicative of predominant involvement of IKr component. The slow IKs persisted to greater extent even at 100 μM ibutilide revealing a distinguishable selectivity toward the IKr component.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Department of Cardiology, University Hospital Heidelberg, 69120, Heidelberg, Germany. .,Department of Physiology, Saint Petersburg University, Saint Petersburg, Russia, 199034. .,Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St., 02-093, Warsaw, Poland. .,Department of Cardiology, Klinikum Coburg, Teaching Hospital of the University of Würzburg, Coburg, Germany.
| | - Vladimir L Zhuravlev
- Department of Cardiology, University Hospital Heidelberg, 69120, Heidelberg, Germany.,Department of Physiology, Saint Petersburg University, Saint Petersburg, Russia, 199034
| | - Johannes Brachmann
- Department of Cardiology, University Hospital Heidelberg, 69120, Heidelberg, Germany.,Department of Cardiology, Klinikum Coburg, Teaching Hospital of the University of Würzburg, Coburg, Germany
| |
Collapse
|
229
|
Rotenone and 3-bromopyruvate toxicity impacts electrical and structural cardiac remodeling in rats. Toxicol Lett 2019; 318:57-64. [PMID: 31585160 DOI: 10.1016/j.toxlet.2019.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/06/2019] [Accepted: 09/29/2019] [Indexed: 12/14/2022]
Abstract
3-Bromopyruvate (3-BrPA) is a promising agent that has been widely studied in the treatment of cancer and pulmonary hypertension. Rotenone is a pesticide commonly used on farms and was shown to have anti-cancer activity and delay fibrosis progression in chronic kidney disease in a recent study. However, there are few studies showing the toxicity of rotenone and 3-BrPA in the myocardium. To support further medical exploration, it is necessary to clarify the side effects of these compounds on the heart. This study was designed to examine the cardiotoxicity of 3-BrPA and rotenone by investigating electrical and structural cardiac remodeling in rats. Forty male rats were divided into 4 groups (n = 10 in each group) and injected intraperitoneally with 3-BrPA, rotenone or a combination of 3-BrPA and rotenone. The ventricular effective refractory period (VERP), corrected QT interval (QTc), and ventricular tachycardia/ventricular fibrillation (VT/VF) inducibility were measured. The expression of Cx43, Kir2.1, Kir6.2, DHPRα1, KCNH2, caspase3, caspase9, Bax, Bcl2, and P53 was detected. Masson's trichrome, TUNEL, HE, and PAS staining and transmission electron microscopy were used to detect pathological and ultrastructural changes. Our results showed that rotenone alone and rotenone combined with 3-BrPA significantly increased the risk of ventricular arrhythmias. Rotenone combined with 3-BrPA caused myocardial apoptosis, and rotenone alone and rotenone combined with 3-BrPA caused electrical and structural cardiac remodeling in rats.
Collapse
|
230
|
Santori M, Gil R, Blanco-Verea A, Riuró H, Díaz-Castro Ó, López-Abel B, Brugada R, Carracedo Á, Pérez GJ, Scornik FS, Brion M. Sudden infant death as the most severe phenotype caused by genetic modulation in a family with atrial fibrillation. Forensic Sci Int Genet 2019; 43:102159. [PMID: 31522018 DOI: 10.1016/j.fsigen.2019.102159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022]
Abstract
AIMS To assess the functional impact of two combined KCNH2 variants involved in atrial fibrillation, syncope and sudden infant death syndrome. METHODS AND RESULTS Genetic testing of a 4-month old SIDS victim identified a rare missense heterozygous in KCNH2 variant (V483I) and a missense homozygous polymorphism (K897T) which is often described as a genetic modifier. Electrophysiological characterisation of heterologous HERG channels representing two different KCNH2 genotypes within the family, showed significant differences in both voltage and time dependence of activation and inactivation with a global gain-of-function effect of mutant versus wild type channels and, also, differences between both types of recombinant channels. CONCLUSIONS The rare variant V483I in combination with K897T produces a gain-of-function effect that represents a pathological substrate for atrial fibrillation, syncope and sudden infant death syndrome events in this family. Ascertaining the genotype-phenotype correlation of genetic variants is imperative for the correct assessment of genetic testing and counselling. TRANSLATIONAL PERSPECTIVE According to the current guidelines for clinical interpretation of sequence variants, functional studies are an essential tool for the ascertainment of variant pathogenicity. They are especially relevant in the context of sudden infant death syndrome and sudden cardiac death, where individuals cannot be clinically evaluated. The patch-clamp technique is a gold-standard for analysis of the biophysical mechanisms of ion channels.
Collapse
Affiliation(s)
- Montserrat Santori
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Spain.
| | - Rocío Gil
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Spain
| | - Alejandro Blanco-Verea
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Spain
| | - Helena Riuró
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona, Spain; Department of Medical Sciences, Medical School, Universitat de Girona, Spain
| | - Óscar Díaz-Castro
- Servizo de Cardioloxía, Hospital de Pontevedra, Servizo Galego de Saúde, Pontevedra, Spain
| | - Bernardo López-Abel
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Servizo de Pediatría, Hospital Clínico Universitario de Santiago de Compostela, Spain
| | - Ramón Brugada
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona, Spain; Department of Medical Sciences, Medical School, Universitat de Girona, Spain; Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Guillermo J Pérez
- Department of Medical Sciences, Medical School, Universitat de Girona, Spain; Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Fabiana S Scornik
- Department of Medical Sciences, Medical School, Universitat de Girona, Spain; Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - María Brion
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Spain; Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
231
|
Kügler P, Rast G, Guth BD. Comparison of in vitro and computational experiments on the relation of inter-beat interval and duration of repolarization in a specific type of human induced pluripotent stem cell-derived cardiomyocytes. PLoS One 2019; 14:e0221763. [PMID: 31498812 PMCID: PMC6733510 DOI: 10.1371/journal.pone.0221763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
We compared a published computational model of the action potential of a specific type of human induced pluripotent stem cell -derived cardiomyocytes (hiPSC-CM) with experimental field potential data with regard to their inter-beat interval and the duration of repolarization. In particular, concomitant changes in inter-beat interval and duration of repolarization were calculated after reduction and/or augmentation of specific ion channel conductances as a surrogate for pharmacological manipulation. The observed mismatches between calculations and experimental data indicate that there is information missing about the cellular test system. Based on our results we hypothesize that, among other currents, the actual If (“funny current”) may deviate from the prediction. We show that replacement of the If formulation by alternative equations causes the model predictions to change qualitatively, however, none of the available formulations is actually achieving a satisfactory match with experimental data. We suggest a strategy to clarify whether the mismatch can be completely resolved at all using single cell models and, if yes, how this goal could be reached.
Collapse
Affiliation(s)
- Philipp Kügler
- Institute of Applied Mathematics and Statistics, Computational Science Lab, University of Hohenheim, Stuttgart, Germany
| | - Georg Rast
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- * E-mail:
| | - Brian D. Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Department of Pharmaceutical Sciences, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| |
Collapse
|
232
|
Cernuda B, Fernandes CT, Allam SM, Orzillo M, Suppa G, Chia Chang Z, Athanasopoulos D, Buraei Z. The molecular determinants of R-roscovitine block of hERG channels. PLoS One 2019; 14:e0217733. [PMID: 31479461 PMCID: PMC6719874 DOI: 10.1371/journal.pone.0217733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/17/2019] [Indexed: 02/06/2023] Open
Abstract
Human ether-à-go-go-related gene (Kv11.1, or hERG) is a potassium channel that conducts the delayed rectifier potassium current (IKr) during the repolarization phase of cardiac action potentials. hERG channels have a larger pore than other K+channels and can trap many unintended drugs, often resulting in acquired LQTS (aLQTS). R-roscovitine is a cyclin-dependent kinase (CDK) inhibitor that induces apoptosis in colorectal, breast, prostate, multiple myeloma, other cancer cell lines, and tumor xenografts, in micromolar concentrations. It is well tolerated in phase II clinical trials. R-roscovitine inhibits open hERG channels but does not become trapped in the pore. Two-electrode voltage clamp recordings from Xenopus oocytes expressing wild-type (WT) or hERG pore mutant channels (T623A, S624A, Y652A, F656A) demonstrated that compared to WT hERG, T623A, Y652A, and F656A inhibition by 200 μM R-roscovitine was ~ 48%, 29%, and 73% weaker, respectively. In contrast, S624A hERG was inhibited more potently than WT hERG, with a ~ 34% stronger inhibition. These findings were further supported by the IC50 values, which were increased for T623A, Y652A and F656A (by ~5.5, 2.75, and 42 fold respectively) and reduced 1.3 fold for the S624A mutant. Our data suggest that while T623, Y652, and F656 are critical for R-roscovitine-mediated inhibition, S624 may not be. Docking studies further support our findings. Thus, R-roscovitine’s relatively unique features, coupled with its tolerance in clinical trials, could guide future drug screens.
Collapse
Affiliation(s)
- Bryan Cernuda
- Department of Biology, Pace University, New York, NY, United States of America
| | | | - Salma Mohamed Allam
- Department of Biology, Pace University, New York, NY, United States of America
| | - Matthew Orzillo
- Department of Biology, Pace University, New York, NY, United States of America
| | - Gabrielle Suppa
- Department of Biology, Pace University, New York, NY, United States of America
| | - Zuleen Chia Chang
- Department of Biology, Pace University, New York, NY, United States of America
| | | | - Zafir Buraei
- Department of Biology, Pace University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
233
|
Germann AL, Pierce SR, Burbridge AB, Steinbach JH, Akk G. Steady-State Activation and Modulation of the Concatemeric α1 β2 γ2L GABA A Receptor. Mol Pharmacol 2019; 96:320-329. [PMID: 31263018 PMCID: PMC6658920 DOI: 10.1124/mol.119.116913] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022] Open
Abstract
The two-state coagonist model has been successfully used to analyze and predict peak current responses of the γ-aminobutyric acid type A (GABAA) receptor. The goal of the present study was to provide a model-based description of GABAA receptor activity under steady-state conditions after desensitization has occurred. We describe the derivation and properties of the cyclic three-state resting-active-desensitized (RAD) model. The relationship of the model to receptor behavior was tested using concatemeric α1β2γ2 GABAA receptors expressed in Xenopus oocytes. The receptors were activated by the orthosteric agonists GABA or β-alanine, the allosteric agonist propofol, or combinations of GABA, propofol, pentobarbital, and the steroid allopregnanolone, and the observed steady-state responses were compared with those predicted by the model. A modified RAD model was employed to analyze and describe the actions on steady-state current of the inhibitory steroid pregnenolone sulfate. The findings indicate that the steady-state activity in the presence of multiple active agents that interact with distinct binding sites follows standard energetic additivity. The derived equations enable prediction of peak and steady-state activity in the presence of orthosteric and allosteric agonists, and the inhibitory steroid pregnenolone sulfate. SIGNIFICANCE STATEMENT: The study describes derivation and properties of a three-state resting-active-desensitized model. The model and associated equations can be used to analyze and predict peak and steady-state activity in the presence of one or more active agents.
Collapse
Affiliation(s)
- Allison L Germann
- Department of Anesthesiology (A.L.G., S.R.P., A.B.B., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Spencer R Pierce
- Department of Anesthesiology (A.L.G., S.R.P., A.B.B., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Ariel B Burbridge
- Department of Anesthesiology (A.L.G., S.R.P., A.B.B., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Joe Henry Steinbach
- Department of Anesthesiology (A.L.G., S.R.P., A.B.B., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology (A.L.G., S.R.P., A.B.B., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
234
|
Lo YC, Kuo CC. Temperature Dependence of the Biophysical Mechanisms Underlying the Inhibition and Enhancement Effect of Amiodarone on hERG Channels. Mol Pharmacol 2019; 96:330-344. [PMID: 31253645 DOI: 10.1124/mol.119.116400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/21/2019] [Indexed: 11/22/2022] Open
Abstract
hERG K+ channel is important for controlling the duration of cardiac action potentials. Amiodarone (AMD), a widely prescribed class III antiarrhythmic, could inhibit hERG currents with relatively few tachyarrhythmic adverse events. We use injected Xenopus oocyte with two-electrode voltage clamp techniques to characterize the action of AMD on hERG channels. We found that AMD binds to the resting hERG channel with an apparent dissociation constant of ∼1.4 μM, and inhibits hERG currents at mild and strong depolarization pulses by slowing activation and enhancing inactivation, respectively, at 22°C. The activation kinetics of hERG channel activation are much faster, but inactivation kinetics are slower at 37°C. AMD accordingly has a 15% to 20% weaker and stronger inhibitory effect at mild and strong depolarization (e.g., -60 and +30 mV, 0.3-second pulse), respectively. In the meanwhile, the resurgent hERG tail currents are dose-dependently inhibited by AMD without altering the kinetics of current decay at both 22°C and 37°C, indicating facilitation of recovery from inactivation via the silent route. Most importantly, AMD no longer inhibits but enhances hERG currents at a mild pulse shortly after a prepulse at 37°C, but not so much at 22°C. We conclude that AMD is an effective hERG channel-gating modifier capable of lengthening the plateau phase of cardiac action potential (without increasing the chance of afterdepolarization). AMD, however, should be used with caution in hypothermia or the other scenarios that slow hERG channel activation. SIGNIFICANCE STATEMENT: It is known that amiodarone (AMD) acts on hERG K+ channels to treat cardiac arrhythmias with relatively little arrhythmogenicity. We found that AMD enhances hERG channel inactivation but slows activation as well as recovery from inactivation, and thus has a differential inhibition and enhancement effect on hERG currents at different phases of membrane voltage changes, especially at 37°C, but not so much at 22°C. AMD is therefore a relatively ideal agent against tachyarrhythmia at 37°C, but should be more cautiously used at lower temperatures or relevant pathophysiological/pharmacological scenarios associated with slower hERG channel activation because of the increased chances of adverse events.
Collapse
Affiliation(s)
- Yung-Chen Lo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan; and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan; and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
235
|
Gualdani R, Guerrini A, Fantechi E, Tadini-Buoninsegni F, Moncelli MR, Sangregorio C. Superparamagnetic iron oxide nanoparticles (SPIONs) modulate hERG ion channel activity. Nanotoxicology 2019; 13:1197-1209. [PMID: 31437063 DOI: 10.1080/17435390.2019.1650969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used in various biomedical applications, such as diagnostic agents in magnetic resonance imaging (MRI), for drug delivery vehicles and in hyperthermia treatment of tumors. Although the potential benefits of SPIONs are considerable, there is a distinct need to identify any potential cellular damage associated with their use. Since human ether à go-go-related gene (hERG) channel, a protein involved in the repolarization phase of cardiac action potential, is considered one of the main targets in the drug discovery process, we decided to evaluate the effects of SPIONs on hERG channel activity and to determine whether the oxidation state, the dimensions and the coating of nanoparticles (NPs) can influence the interaction with hERG channel. Using patch clamp recordings, we found that SPIONs inhibit hERG current and this effect depends on the coating of NPs. In particular, SPIONs with covalent coating aminopropylphosphonic acid (APPA) have a milder effect on hERG activity. We observed that the time-course of hERG channel modulation by SPIONs is biphasic, with a transient increase (∼20% of the amplitude) occurring within the first 1-3 min of perfusion of NPs, followed by a slower inhibition. Moreover, in the presence of SPIONs, deactivation kinetics accelerated and the activation and inactivation I-V curves were right-shifted, similarly to the effect described for the binding of other divalent metal ions (e.g. Cd2+ and Zn2+). Finally, our data show that a bigger size and the complete oxidation of SPIONs can significantly decrease hERG channel inhibition. Taken together, these results support the view that Fe2+ ions released from magnetite NPs may represent a cardiac risk factor, since they alter hERG gating and these alterations could compromise the cardiac action potential.
Collapse
Affiliation(s)
- Roberta Gualdani
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze , Sesto Fiorentino , Italy.,Institute of Neuroscience, Laboratory of Cell Physiology, Université Catholique de Louvain , Brussels , Belgium
| | - Andrea Guerrini
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze , Sesto Fiorentino , Italy
| | - Elvira Fantechi
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze , Sesto Fiorentino , Italy
| | | | - Maria Rosa Moncelli
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze , Sesto Fiorentino , Italy
| | - Claudio Sangregorio
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze , Sesto Fiorentino , Italy.,ICCOM-CNR and INSTM , Sesto Fiorentino , Italy
| |
Collapse
|
236
|
Ether N, Leishman D, Bailie M, Lauver A. Relationship of clinical adverse event reports to models of arrhythmia risk. J Pharmacol Toxicol Methods 2019; 100:106622. [PMID: 31398384 DOI: 10.1016/j.vascn.2019.106622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/05/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
Abstract
A vital aspect of the drug discovery and development process is the identification and filtering of drugs with high risk of dangerous adverse events. Torsade de Pointes (TdP) is one example of an adverse event that requires thorough in vitro and in vivo drug screening. This is because TdP, a tachycardic ventricular arrhythmia, can develop into fatal cardiac events if left unresolved and has been missed during drug development with profound consequences. These factors led to the development of pre-clinical screening guidelines based on the presence of drug induced QT prolongation (QTp), which has been linked to TdP. These guidelines have high sensitivity, but low specificity, as they tend to predict QTp, which precedes TdP events but does not always lead to TdP. Computational models have the potential to improve these prediction methods by bridging the gaps between preclinical and clinical data. This study proposes the use of adverse event reports obtained from the FDA Adverse Event Reporting System as a representation of clinical TdP risk. By incorporating these reports into computational models, a more accurate risk prediction may be developed.
Collapse
Affiliation(s)
- Nicholas Ether
- Michigan State University, East Lansing, MI 48824, United States
| | - Derek Leishman
- Michigan State University, East Lansing, MI 48824, United States; Eli Lilly and Co., Indianapolis, IN 46285, United States
| | - Marc Bailie
- Michigan State University, East Lansing, MI 48824, United States
| | - Adam Lauver
- Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
237
|
Dierich M, van Ham WB, Stary‐Weinzinger A, Leitner MG. Histidine at position 462 determines the low quinine sensitivity of ether-à-go-go channel superfamily member K v 12.1. Br J Pharmacol 2019; 176:2708-2723. [PMID: 31032878 PMCID: PMC6609544 DOI: 10.1111/bph.14693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The ether-à-go-go (Eag) Kv superfamily comprises closely related Kv 10, Kv 11, and Kv 12 subunits. Kv 11.1 (termed hERG in humans) gained much attention, as drug-induced inhibition of these channels is a frequent cause of sudden death in humans. The exclusive drug sensitivity of Kv 11.1 can be explained by central drug-binding pockets that are absent in most other channels. Currently, it is unknown whether Kv 12 channels are equipped with an analogous drug-binding pocket and whether drug-binding properties are conserved in all Eag superfamily members. EXPERIMENTAL APPROACH We analysed sensitivity of recombinant Kv 12.1 channels to quinine, a substituted quinoline that blocks Kv 10.1 and Kv 11.1 at low micromolar concentrations. KEY RESULTS Quinine inhibited Kv 12.1, but its affinity was 10-fold lower than for Kv 11.1. Contrary to Kv 11.1, quinine inhibited Kv 12.1 in a largely voltage-independent manner and induced channel opening at more depolarised potentials. Low sensitivity of Kv 12.1 and characteristics of quinine-dependent inhibition were determined by histidine 462, as site-directed mutagenesis of this residue into the homologous tyrosine of Kv 11.1 conferred Kv 11.1-like quinine block to Kv 12.1(H462Y). Molecular modelling demonstrated that the low affinity of Kv 12.1 was determined by only weak interactions of residues in the central cavity with quinine. In contrast, more favourable interactions can explain the higher quinine sensitivity of Kv 12.1(H462Y) and Kv 11.1 channels. CONCLUSIONS AND IMPLICATIONS The quinoline-binding "motif" is not conserved within the Eag superfamily, although the overall architecture of these channels is apparently similar. Our findings highlight functional and pharmacological diversity in this group of evolutionary-conserved channels.
Collapse
Affiliation(s)
- Marlen Dierich
- Department of Neurophysiology, Institute of Physiology and PathophysiologyPhilipps‐University MarburgMarburgGermany
| | - Willem B. van Ham
- Department of Medical PhysiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Pharmacology and ToxicologyUniversity of ViennaViennaAustria
| | | | - Michael G. Leitner
- Department of Neurophysiology, Institute of Physiology and PathophysiologyPhilipps‐University MarburgMarburgGermany
- Division of Physiology, Department of Physiology and Medical PhysicsMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
238
|
Perissinotti L, Guo J, Kudaibergenova M, Lees-Miller J, Ol'khovich M, Sharapova A, Perlovich GL, Muruve DA, Gerull B, Noskov SY, Duff HJ. The Pore-Lipid Interface: Role of Amino-Acid Determinants of Lipophilic Access by Ivabradine to the hERG1 Pore Domain. Mol Pharmacol 2019; 96:259-271. [PMID: 31182542 PMCID: PMC6666383 DOI: 10.1124/mol.118.115642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Abnormal cardiac electrical activity is a common side effect caused by unintended block of the promiscuous drug target human ether-à-go-go-related gene (hERG1), the pore-forming domain of the delayed rectifier K+ channel in the heart. hERG1 block leads to a prolongation of the QT interval, a phase of the cardiac cycle that underlies myocyte repolarization detectable on the electrocardiogram. Even newly released drugs such as heart-rate lowering agent ivabradine block the rapid delayed rectifier current IKr, prolong action potential duration, and induce potentially lethal arrhythmia known as torsades de pointes. In this study, we describe a critical drug-binding pocket located at the lateral pore surface facing the cellular membrane. Mutations of the conserved M651 residue alter ivabradine-induced block but not by the common hERG1 blocker dofetilide. As revealed by molecular dynamics simulations, binding of ivabradine to a lipophilic pore access site is coupled to a state-dependent reorientation of aromatic residues F557 and F656 in the S5 and S6 helices. We show that the M651 mutation impedes state-dependent dynamics of F557 and F656 aromatic cassettes at the protein-lipid interface, which has a potential to disrupt drug-induced block of the channel. This fundamentally new mechanism coupling the channel dynamics and small-molecule access from the membrane into the hERG1 intracavitary site provides a simple rationale for the well established state-dependence of drug blockade. SIGNIFICANCE STATEMENT: The drug interference with the function of the cardiac hERG channels represents one of the major sources of drug-induced heart disturbances. We found a novel and a critical drug-binding pocket adjacent to a lipid-facing surface of the hERG1 channel, which furthers our molecular understanding of drug-induced QT syndrome.
Collapse
Affiliation(s)
- Laura Perissinotti
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Jiqing Guo
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Meruyert Kudaibergenova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - James Lees-Miller
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Marina Ol'khovich
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Angelica Sharapova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - German L Perlovich
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Daniel A Muruve
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Brenda Gerull
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Sergei Yu Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| | - Henry J Duff
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada (L.P., M.K., S.Y.N.); Libin Cardiovascular Institute of Alberta (J.G., J.-L.M., H.J.D.) and Snyder Institute for Chronic Diseases (D.A.M.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation (M.O., A.S., G.L.P.); Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (B.G.); and Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (B.G.)
| |
Collapse
|
239
|
De Zio R, Gerbino A, Forleo C, Pepe M, Milano S, Favale S, Procino G, Svelto M, Carmosino M. Functional study of a KCNH2 mutant: Novel insights on the pathogenesis of the LQT2 syndrome. J Cell Mol Med 2019; 23:6331-6342. [PMID: 31361068 PMCID: PMC6714209 DOI: 10.1111/jcmm.14521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 12/29/2022] Open
Abstract
The K+ voltage-gated channel subfamily H member 2 (KCNH2) transports the rapid component of the cardiac delayed rectifying K+ current. The aim of this study was to characterize the biophysical properties of a C-terminus-truncated KCNH2 channel, G1006fs/49 causing long QT syndrome type II in heterozygous members of an Italian family. Mutant carriers underwent clinical workup, including 12-lead electrocardiogram, transthoracic echocardiography and 24-hour ECG recording. Electrophysiological experiments compared the biophysical properties of G1006fs/49 with those of KCNH2 both expressed either as homotetramers or as heterotetramers in HEK293 cells. Major findings of this work are as follows: (a) G1006fs/49 is functional at the plasma membrane even when co-expressed with KCNH2, (b) G1006fs/49 exerts a dominant-negative effect on KCNH2 conferring specific biophysical properties to the heterotetrameric channel such as a significant delay in the voltage-sensitive transition to the open state, faster kinetics of both inactivation and recovery from the inactivation and (c) the activation kinetics of the G1006fs/49 heterotetrameric channels is partially restored by a specific KCNH2 activator. The functional characterization of G1006fs/49 homo/heterotetramers provided crucial findings about the pathogenesis of LQTS type II in the mutant carriers, thus providing a new and potential pharmacological strategy.
Collapse
Affiliation(s)
- Roberta De Zio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Cinzia Forleo
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Martino Pepe
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Favale
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Monica Carmosino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
240
|
Lei CL, Clerx M, Beattie KA, Melgari D, Hancox JC, Gavaghan DJ, Polonchuk L, Wang K, Mirams GR. Rapid Characterization of hERG Channel Kinetics II: Temperature Dependence. Biophys J 2019; 117:2455-2470. [PMID: 31451180 PMCID: PMC6990152 DOI: 10.1016/j.bpj.2019.07.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022] Open
Abstract
Ion channel behavior can depend strongly on temperature, with faster kinetics at physiological temperatures leading to considerable changes in currents relative to room temperature. These temperature-dependent changes in voltage-dependent ion channel kinetics (rates of opening, closing, inactivating, and recovery) are commonly represented with Q10 coefficients or an Eyring relationship. In this article, we assess the validity of these representations by characterizing channel kinetics at multiple temperatures. We focus on the human Ether-à-go-go-Related Gene (hERG) channel, which is important in drug safety assessment and commonly screened at room temperature so that results require extrapolation to physiological temperature. In Part I of this study, we established a reliable method for high-throughput characterization of hERG1a (Kv11.1) kinetics, using a 15-second information-rich optimized protocol. In this Part II, we use this protocol to study the temperature dependence of hERG kinetics using Chinese hamster ovary cells overexpressing hERG1a on the Nanion SyncroPatch 384PE, a 384-well automated patch-clamp platform, with temperature control. We characterize the temperature dependence of hERG gating by fitting the parameters of a mathematical model of hERG kinetics to data obtained at five distinct temperatures between 25 and 37°C and validate the models using different protocols. Our models reveal that activation is far more temperature sensitive than inactivation, and we observe that the temperature dependency of the kinetic parameters is not represented well by Q10 coefficients; it broadly follows a generalized, but not the standardly-used, Eyring relationship. We also demonstrate that experimental estimations of Q10 coefficients are protocol dependent. Our results show that a direct fit using our 15-s protocol best represents hERG kinetics at any given temperature and suggests that using the Generalized Eyring theory is preferable if no experimental data are available to derive model parameters at a given temperature.
Collapse
Affiliation(s)
- Chon Lok Lei
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Michael Clerx
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Kylie A Beattie
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Dario Melgari
- School of Physiology, Pharmacology and Neuroscience, and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - David J Gavaghan
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Liudmila Polonchuk
- Pharma Research and Early Development, Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Ken Wang
- Pharma Research and Early Development, Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Gary R Mirams
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
241
|
Lei CL, Clerx M, Gavaghan DJ, Polonchuk L, Mirams GR, Wang K. Rapid Characterization of hERG Channel Kinetics I: Using an Automated High-Throughput System. Biophys J 2019; 117:2438-2454. [PMID: 31447109 PMCID: PMC6990155 DOI: 10.1016/j.bpj.2019.07.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 07/17/2019] [Indexed: 11/27/2022] Open
Abstract
Predicting how pharmaceuticals may affect heart rhythm is a crucial step in drug development and requires a deep understanding of a compound’s action on ion channels. In vitro hERG channel current recordings are an important step in evaluating the proarrhythmic potential of small molecules and are now routinely performed using automated high-throughput patch-clamp platforms. These machines can execute traditional voltage-clamp protocols aimed at specific gating processes, but the array of protocols needed to fully characterize a current is typically too long to be applied in a single cell. Shorter high-information protocols have recently been introduced that have this capability, but they are not typically compatible with high-throughput platforms. We present a new 15 second protocol to characterize hERG (Kv11.1) kinetics, suitable for both manual and high-throughput systems. We demonstrate its use on the Nanion SyncroPatch 384PE, a 384-well automated patch-clamp platform, by applying it to Chinese hamster ovary cells stably expressing hERG1a. From these recordings, we construct 124 cell-specific variants/parameterizations of a hERG model at 25°C. A further eight independent protocols are run in each cell and are used to validate the model predictions. We then combine the experimental recordings using a hierarchical Bayesian model, which we use to quantify the uncertainty in the model parameters, and their variability from cell-to-cell; we use this model to suggest reasons for the variability. This study demonstrates a robust method to measure and quantify uncertainty and shows that it is possible and practical to use high-throughput systems to capture full hERG channel kinetics quantitatively and rapidly.
Collapse
Affiliation(s)
- Chon Lok Lei
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Michael Clerx
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - David J Gavaghan
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Liudmila Polonchuk
- Pharma Research and Early Development, Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Gary R Mirams
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom.
| | - Ken Wang
- Pharma Research and Early Development, Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
242
|
Vyas VK, Parikh P, Ramani J, Ghate M. Medicinal Chemistry of Potassium Channel Modulators: An Update of Recent Progress (2011-2017). Curr Med Chem 2019; 26:2062-2084. [PMID: 29714134 DOI: 10.2174/0929867325666180430152023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/22/2017] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Potassium (K+) channels participate in many physiological processes, cardiac function, cell proliferation, neuronal signaling, muscle contractility, immune function, hormone secretion, osmotic pressure, changes in gene expression, and are involved in critical biological functions, and in a variety of diseases. Potassium channels represent a large family of tetrameric membrane proteins. Potassium channels activation reduces excitability, whereas channel inhibition increases excitability. OBJECTIVE Small molecule K+ channel activators and inhibitors interact with voltage-gated, inward rectifying, and two-pore tandem potassium channels. Due to their involvement in biological functions, and in a variety of diseases, small molecules as potassium channel modulators have received great scientific attention. METHODS In this review, we have compiled the literature, patents and patent applications (2011 to 2017) related to different chemical classes of potassium channel openers and blockers as therapeutic agents for the treatment of various diseases. Many different chemical classes of selective small molecule have emerged as potassium channel modulators over the past years. CONCLUSION This review discussed the current understanding of medicinal chemistry research in the field of potassium channel modulators to update the key advances in this field.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Palak Parikh
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Jonali Ramani
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Manjunath Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| |
Collapse
|
243
|
Ványolós A, Orvos P, Chuluunbaatar B, Tálosi L, Hohmann J. GIRK channel activity of Hungarian mushrooms: From screening to biologically active metabolites. Fitoterapia 2019; 137:104272. [PMID: 31326417 DOI: 10.1016/j.fitote.2019.104272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022]
Abstract
In the current study effects of fungal extracts on the G-protein-activated inwardly rectifying potassium channel (GIRK1/4) were screened using the automated patch-clamp method. 40 organic (n-hexane, chloroform, and 50% methanol) and aqueous extracts were prepared from 10 mushroom species native to Hungary. Among the examined fungal fractions of different polarities some n-hexane and chloroform extracts exerted considerable ion channel activity. One of the most active fungal species, Hypholoma lateritium was selected for further detailed examination to determine the compounds responsible for the observed pharmacological property. Evaluation of the ion channel activity of mushroom metabolites 1-10 revealed that lanosta-7,9(11)-diene-12β,21α-epoxy-2α,3β,24β,25-tetraol (5) demonstrates remarkable blocking activity on GIRK current (IC50 395.1 ± 31.8 nM). Investigation of the selectivity of the GIRK inhibitory effect proved that lanosta-7,9(11)-diene-12β,21α-epoxy-2α,3β,24β,25-tetraol (5) has only weak inhibitory activity on hERG channel (7.9 ± 2.8% at 100 μM), exerting more than three orders of magnitude lower blocking activity on hERG channel than on GIRK channel.
Collapse
Affiliation(s)
- Attila Ványolós
- Department of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Péter Orvos
- Department of Ophthalmology, University of Szeged, Korányi fasor 10-11, H-6720 Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary
| | - Bayar Chuluunbaatar
- Department of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - László Tálosi
- Department of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
244
|
Pfeiffer-Kaushik ER, Smith GL, Cai B, Dempsey GT, Hortigon-Vinagre MP, Zamora V, Feng S, Ingermanson R, Zhu R, Hariharan V, Nguyen C, Pierson J, Gintant GA, Tung L. Electrophysiological characterization of drug response in hSC-derived cardiomyocytes using voltage-sensitive optical platforms. J Pharmacol Toxicol Methods 2019; 99:106612. [PMID: 31319140 DOI: 10.1016/j.vascn.2019.106612] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Voltage-sensitive optical (VSO) sensors offer a minimally invasive method to study the time course of repolarization of the cardiac action potential (AP). This Comprehensive in vitro Proarrhythmia Assay (CiPA) cross-platform study investigates protocol design and measurement variability of VSO sensors for preclinical cardiac electrophysiology assays. METHODS Three commercial and one academic laboratory completed a limited study of the effects of 8 blinded compounds on the electrophysiology of 2 commercial lines of human induced pluripotent stem-cell derived cardiomyocytes (hSC-CMs). Acquisition technologies included CMOS camera and photometry; fluorescent voltage sensors included di-4-ANEPPS, FluoVolt and genetically encoded QuasAr2. The experimental protocol was standardized with respect to cell lines, plating and maintenance media, blinded compounds, and action potential parameters measured. Serum-free media was used to study the action of drugs, but the exact composition and the protocols for cell preparation and drug additions varied among sites. RESULTS Baseline AP waveforms differed across platforms and between cell types. Despite these differences, the relative responses to four selective ion channel blockers (E-4031, nifedipine, mexiletine, and JNJ 303 blocking IKr, ICaL, INa, and IKs, respectively) were similar across all platforms and cell lines although the absolute changes differed. Similarly, four mixed ion channel blockers (flecainide, moxifloxacin, quinidine, and ranolazine) had comparable effects in all platforms. Differences in repolarisation time course and response to drugs could be attributed to cell type and experimental method differences such as composition of the assay media, stimulated versus spontaneous activity, and single versus cumulative compound addition. DISCUSSION In conclusion, VSOs represent a powerful and appropriate method to assess the electrophysiological effects of drugs on iPSC-CMs for the evaluation of proarrhythmic risk. Protocol considerations and recommendations are provided toward standardizing conditions to reduce variability of baseline AP waveform characteristics and drug responses.
Collapse
Affiliation(s)
| | - Godfrey L Smith
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Beibei Cai
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Graham T Dempsey
- Q-State Biosciences Inc., 179 Sidney Street, Cambridge, MA 02139, USA
| | - Maria P Hortigon-Vinagre
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Victor Zamora
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Shuyun Feng
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Randall Ingermanson
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Renjun Zhu
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Venkatesh Hariharan
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Cuong Nguyen
- Q-State Biosciences Inc., 179 Sidney Street, Cambridge, MA 02139, USA
| | - Jennifer Pierson
- Health and Environmental Sciences Institute, Washington, D.C. 20009, USA.
| | - Gary A Gintant
- AbbVie, 1 North Waukegan Road, Department ZR-13, Building AP-9A, North Chicago, IL 60064-6119, USA
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| |
Collapse
|
245
|
Molecular Docking Guided Grid-Independent Descriptor Analysis to Probe the Impact of Water Molecules on Conformational Changes of hERG Inhibitors in Drug Trapping Phenomenon. Int J Mol Sci 2019; 20:ijms20143385. [PMID: 31295848 PMCID: PMC6678931 DOI: 10.3390/ijms20143385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 12/17/2022] Open
Abstract
Human ether a-go-go related gene (hERG) or KV11.1 potassium channels mediate the rapid delayed rectifier current (IKr) in cardiac myocytes. Drug-induced inhibition of hERG channels has been implicated in the development of acquired long QT syndrome type (aLQTS) and fatal arrhythmias. Several marketed drugs have been withdrawn for this reason. Therefore, there is considerable interest in developing better tests for predicting drugs which can block the hERG channel. The drug-binding pocket in hERG channels, which lies below the selectivity filter, normally contains K+ ions and water molecules. In this study, we test the hypothesis that these water molecules impact drug binding to hERG. We developed 3D QSAR models based on alignment independent descriptors (GRIND) using docked ligands in open and closed conformations of hERG in the presence (solvated) and absence (non-solvated) of water molecules. The ligand–protein interaction fingerprints (PLIF) scheme was used to summarize and compare the interactions. All models delineated similar 3D hERG binding features, however, small deviations of about ~0.4 Å were observed between important hotspots of molecular interaction fields (MIFs) between solvated and non-solvated hERG models. These small changes in conformations do not affect the performance and predictive power of the model to any significant extent. The model that exhibits the best statistical values was attained with a cryo_EM structure of the hERG channel in open state without water. This model also showed the best R2 of 0.58 and 0.51 for the internal and external validation test sets respectively. Our results suggest that the inclusion of water molecules during the docking process has little effect on conformations and this conformational change does not impact the predictive ability of the 3D QSAR models.
Collapse
|
246
|
Sutherland-Deveen ME, Wang T, Lamothe SM, Tschirhart JN, Guo J, Li W, Yang T, Du Y, Zhang S. Differential Regulation of Human Ether-à-Go-Go-Related Gene (hERG) Current and Expression by Activation of Protein Kinase C. Mol Pharmacol 2019; 96:1-12. [PMID: 31015282 DOI: 10.1124/mol.118.115188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/17/2019] [Indexed: 02/14/2025] Open
Abstract
The human ether-à-go-go-related gene (hERG) encodes the channel that conducts the rapidly activating delayed rectifier potassium current (IKr) in the heart. Reduction in IKr causes long QT syndrome, which can lead to fatal arrhythmias triggered by stress. One potential link between stress and hERG function is protein kinase C (PKC) activation; however, seemingly conflicting results regarding PKC regulation of hERG have been reported. We investigated the effects of PKC activation using phorbol 12-myristate 13-acetate (PMA) on hERG channels expressed in human embryonic kidney cell line 293 (HEK293) cells and IKr in isolated neonatal rat ventricular myocytes. Acute activation of PKC by PMA (30 nM, 30 minutes) reduced both hERG current (IhERG) and IKr Chronic activation of PKC by PMA (30 nM, 16 hours) increased IKr in cardiomyocytes and the expression level of hERG proteins; however, chronic (30 nM, 16 hours) PMA treatment decreased IhERG, which became larger than untreated control IhERG after PMA removal for 4 hours. Deletion of amino acid residues 2-354 (Δ2-354 hERG) or 1-136 of the N terminus (ΔN 136 hERG) abolished acute PMA (30 nM, 30 minutes)-mediated IhERG reduction. In contrast to wild-type hERG channels, chronic activation of PKC by PMA (30 nM, 16 hours) increased both Δ2-354 hERG and ΔN136 hERG expression levels and currents. The increase in hERG protein was associated with PKC-induced phosphorylation (inhibition) of Nedd4-2, an E3 ubiquitin ligase that mediates hERG degradation. We conclude that PKC regulates hERG in a balanced manner, increasing expression through inhibiting Nedd4-2 while decreasing current through targeting a site(s) within the N terminus.
Collapse
Affiliation(s)
| | - Tingzhong Wang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shawn M Lamothe
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jared N Tschirhart
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yuan Du
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
247
|
Kodirov SA. Tale of tail current. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:78-97. [PMID: 31238048 DOI: 10.1016/j.pbiomolbio.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/22/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023]
Abstract
The largest biomass of channel proteins is located in unicellular organisms and bacteria that have no organs. However, orchestrated bidirectional ionic currents across the cell membrane via the channels are important for the functioning of organs of organisms, and equally concern both fauna or flora. Several ion channels are activated in the course of action potentials. One of the hallmarks of voltage-dependent channels is a 'tail current' - deactivation as observed after prior and sufficient activation predominantly at more depolarized potentials e.g. for Kv while upon hyperpolarization for HCN α subunits. Tail current also reflects the timing of channel closure that is initiated upon termination of stimuli. Finally, deactivation of currents during repolarization could be a selective estimate for given channel as in case of HERG, if dedicated long and more depolarized 'tail pulse' is used. Since from a holding potential of e.g. -70 mV are often a family of outward K+ currents comprising IA and IK are simultaneously activated in native cells.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Almazov Federal Heart, Blood and Endocrinology Centre, Saint Petersburg, 197341, Russia; Institute of Experimental Medicine, I. P. Pavlov Department of Physiology, Russian Academy of Medical Sciences, Saint Petersburg, Russia; Laboratory of Emotions' Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, 02-093, Poland.
| |
Collapse
|
248
|
Wu W, Liang Y, Wu G, Su Y, Zhang H, Zhang Z, Deng C, Wang Q, Huang B, Tan B, Zhou C, Song J. Effect of artemisinin-piperaquine treatment on the electrocardiogram of malaria patients. Rev Soc Bras Med Trop 2019; 52:e20180453. [PMID: 31141053 DOI: 10.1590/0037-8682-0453-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Concern regarding the cardiotoxicity of antimalarials has been renewed because of their potential to cause QT/QTc interval prolongation related to torsade de pointes (TdP). Artemisinin-piperaquine (AP) is considered an effective artemisinin-based combination therapy (ACT) for malaria. METHODS This study involved a retrospective analysis of clinical data of 93 hospitalized malaria patients who had received AP orally. Electrocardiograms (ECGs) were obtained at specific time points in the original study. RESULTS Some cases of QT prolongation were observed. However, no TdP was found. CONCLUSIONS AP may cause QT interval prolongation in some malaria patients but may not lead to TdP.
Collapse
Affiliation(s)
- Wanting Wu
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Yuan Liang
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Guangchao Wu
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Yinghang Su
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Hongying Zhang
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Zhenyan Zhang
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Changsheng Deng
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China.,Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Qi Wang
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Bo Huang
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China.,Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Bo Tan
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chongjun Zhou
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jianping Song
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China.,Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
249
|
Hegyi B, Chen-Izu Y, Izu LT, Bányász T. Altered K + current profiles underlie cardiac action potential shortening in hyperkalemia and β-adrenergic stimulation. Can J Physiol Pharmacol 2019; 97:773-780. [PMID: 31091413 DOI: 10.1139/cjpp-2019-0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hyperkalemia is known to develop in various conditions including vigorous physical exercise. In the heart, hyperkalemia is associated with action potential (AP) shortening that was attributed to altered gating of K+ channels. However, it remains unknown how hyperkalemia changes the profiles of each K+ current under a cardiac AP. Therefore, we recorded the major K+ currents (inward rectifier K+ current, IK1; rapid and slow delayed rectifier K+ currents, IKr and IKs, respectively) using AP-clamp in rabbit ventricular myocytes. As K+ may accumulate at rapid heart rates during sympathetic stimulation, we also examined the effect of isoproterenol on these K+ currents. We found that IK1 was significantly increased in hyperkalemia, whereas the reduction of driving force for K+ efflux dominated over the altered channel gating in case of IKr and IKs. Overall, the markedly increased IK1 in hyperkalemia overcame the relative decreases of IKr and IKs during AP, resulting in an increased net repolarizing current during AP phase 3. β-Adrenergic stimulation of IKs also provided further repolarizing power during sympathetic activation, although hyperkalemia limited IKs upregulation. These results indicate that facilitation of IK1 in hyperkalemia and β-adrenergic stimulation of IKs represent important compensatory mechanisms against AP prolongation and arrhythmia susceptibility.
Collapse
Affiliation(s)
- Bence Hegyi
- a Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Ye Chen-Izu
- a Department of Pharmacology, University of California, Davis, CA 95616, USA.,b Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.,c Department of Internal Medicine/Cardiology, University of California, Davis, CA 95616, USA
| | - Leighton T Izu
- a Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Tamás Bányász
- a Department of Pharmacology, University of California, Davis, CA 95616, USA.,d Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
250
|
Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules 2019; 24:E1846. [PMID: 31091684 PMCID: PMC6571724 DOI: 10.3390/molecules24101846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Venom from mammals, amphibians, snakes, arachnids, sea anemones and insects provides diverse sources of peptides with different potential medical applications. Several of these peptides have already been converted into drugs and some are still in the clinical phase. Diabetes type 2 is one of the diseases with the highest mortality rate worldwide, requiring specific attention. Diverse drugs are available (e.g., Sulfonylureas) for effective treatment, but with several adverse secondary effects, most of them related to the low specificity of these compounds to the target. In this context, the search for specific and high-affinity compounds for the management of this metabolic disease is growing. Toxins isolated from animal venom have high specificity and affinity for different molecular targets, of which the most important are ion channels. This review will present an overview about the electrical activity of the ion channels present in pancreatic β cells that are involved in the insulin secretion process, in addition to the diversity of peptides that can interact and modulate the electrical activity of pancreatic β cells. The importance of prospecting bioactive peptides for therapeutic use is also reinforced.
Collapse
Affiliation(s)
- Beatriz Elena Sarmiento
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth F Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|