201
|
Beckerman P, Bi-Karchin J, Park ASD, Qiu C, Dummer PD, Soomro I, Boustany-Kari CM, Pullen SS, Miner JH, Hu CAA, Rohacs T, Inoue K, Ishibe S, Saleem MA, Palmer MB, Cuervo AM, Kopp JB, Susztak K. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat Med 2017; 23:429-438. [PMID: 28218918 DOI: 10.1038/nm.4287] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
African Americans have a heightened risk of developing chronic and end-stage kidney disease, an association that is largely attributed to two common genetic variants, termed G1 and G2, in the APOL1 gene. Direct evidence demonstrating that these APOL1 risk alleles are pathogenic is still lacking because the APOL1 gene is present in only some primates and humans; thus it has been challenging to demonstrate experimental proof of causality of these risk alleles for renal disease. Here we generated mice with podocyte-specific inducible expression of the APOL1 reference allele (termed G0) or each of the risk-conferring alleles (G1 or G2). We show that mice with podocyte-specific expression of either APOL1 risk allele, but not of the G0 allele, develop functional (albuminuria and azotemia), structural (foot-process effacement and glomerulosclerosis) and molecular (gene-expression) changes that closely resemble human kidney disease. Disease development was cell-type specific and likely reversible, and the severity correlated with the level of expression of the risk allele. We further found that expression of the risk-variant APOL1 alleles interferes with endosomal trafficking and blocks autophagic flux, which ultimately leads to inflammatory-mediated podocyte death and glomerular scarring. In summary, this is the first demonstration that the expression of APOL1 risk alleles is causal for altered podocyte function and glomerular disease in vivo.
Collapse
Affiliation(s)
- Pazit Beckerman
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Bi-Karchin
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ae Seo Deok Park
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chengxiang Qiu
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick D Dummer
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Irfana Soomro
- Division of Nephrology, New York University, New York, New York, USA
| | - Carine M Boustany-Kari
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Steven S Pullen
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chien-An A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Health Sciences Center, Albuquerque, New Mexico, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology &Neuroscience, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Kazunori Inoue
- Division of Nephrology, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Shuta Ishibe
- Division of Nephrology, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Moin A Saleem
- Bristol Renal and Children's Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Matthew B Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
202
|
Non-apoptotic cell death in animal development. Cell Death Differ 2017; 24:1326-1336. [PMID: 28211869 DOI: 10.1038/cdd.2017.20] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death (PCD) is an important process in the development of multicellular organisms. Apoptosis, a form of PCD characterized morphologically by chromatin condensation, membrane blebbing, and cytoplasm compaction, and molecularly by the activation of caspase proteases, has been extensively investigated. Studies in Caenorhabditis elegans, Drosophila, mice, and the developing chick have revealed, however, that developmental PCD also occurs through other mechanisms, morphologically and molecularly distinct from apoptosis. Some non-apoptotic PCD pathways, including those regulating germ cell death in Drosophila, still appear to employ caspases. However, another prominent cell death program, linker cell-type death (LCD), is morphologically conserved, and independent of the key genes that drive apoptosis, functioning, at least in part, through the ubiquitin proteasome system. These non-apoptotic processes may serve as backup programs when caspases are inactivated or unavailable, or, more likely, as freestanding cell culling programs. Non-apoptotic PCD has been documented extensively in the developing nervous system, and during the formation of germline and somatic gonadal structures, suggesting that preservation of these mechanisms is likely under strong selective pressure. Here, we discuss our current understanding of non-apoptotic PCD in animal development, and explore possible roles for LCD and other non-apoptotic developmental pathways in vertebrates. We raise the possibility that during vertebrate development, apoptosis may not be the major PCD mechanism.
Collapse
|
203
|
Crowley SM, Vallance BA, Knodler LA. Noncanonical inflammasomes: Antimicrobial defense that does not play by the rules. Cell Microbiol 2017; 19. [PMID: 28117938 DOI: 10.1111/cmi.12730] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022]
Abstract
Although much research has focused on defining the actions of caspase-1 containing canonical inflammasomes in promoting host defense, noncanonical inflammasomes have received comparatively little attention. Exciting new concepts have recently emerged detailing their atypical mechanism of activation, importance in defending against cytosolic Gram-negative pathogens, and role in innate immune defenses of nonmyeloid cells, which has revamped interest in the study of noncanonical inflammmasomes. Here, we will discuss these latest findings about caspase-4, -5, and -11 containing inflammasomes in the context of their role in pathogen elimination in mice and humans.
Collapse
Affiliation(s)
- Shauna M Crowley
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Leigh A Knodler
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
204
|
Sharma D, Sharma BR, Vogel P, Kanneganti TD. IL-1β and Caspase-1 Drive Autoinflammatory Disease Independently of IL-1α or Caspase-8 in a Mouse Model of Familial Mediterranean Fever. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:236-244. [PMID: 27998728 PMCID: PMC5389372 DOI: 10.1016/j.ajpath.2016.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022]
Abstract
Mutations in the gene encoding pyrin are associated with autoinflammatory disorder Familial Mediterranean Fever (FMF). A FMF-knock-in mouse strain that expresses chimeric pyrin protein with a V726A mutation (MefvV726A/V726A) was generated to model human FMF. This mouse strain shows an autoinflammatory disorder that is prevented by genetic deletion of IL-1 (IL-1) receptor or apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC). ASC-mediated cell death leads to the release of IL-1α and IL-1β, both of which signal through IL-1 receptor. Furthermore, caspase-1 and caspase-8 can interact with ASC to mediate secretion of IL-1 cytokines. The specific IL-1 cytokine instigating development of FMF and the enzymatic caspase involved in its secretion currently are unknown. In this study, we show that the autoinflammation observed in MefvV726A/V726A mice is mediated specifically by IL-1β and not IL-1α. Furthermore, the disorder is dependent on the caspase-1-ASC axis, whereas caspase-8 is dispensable. Concurrently, aberrant IL-1β release by MefvV726A/V726A monocytes in response to stimulation with lipopolysaccharide also is dependent on the caspase-1-ASC axis. In conclusion, our studies have uncovered a specific role for caspase-1-mediated IL-1β release in the manifestation of FMF.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
205
|
Niforopoulou P, Iacovidou N, Lelovas P, Karlis G, Papalois Α, Siakavellas S, Spapis V, Kaparos G, Siafaka I, Xanthos T. Correlation of Impedance Threshold Device use during cardiopulmonary resuscitation with post-cardiac arrest Acute Kidney Injury. Am J Emerg Med 2017; 35:846-854. [PMID: 28131602 DOI: 10.1016/j.ajem.2017.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To assess whether use of Impedance Threshold Device (ITD) during cardiopulmonary resuscitation (CPR) reduces the degree of post-cardiac arrest Acute Kidney Injury (AKI), as a result of improved hemodynamics, in a porcine model of ventricular fibrillation (VF) cardiac arrest. METHODS After 8 min of untreated cardiac arrest, the animals were resuscitated either with active compression-decompression (ACD) CPR plus a sham ITD (control group, n=8) or with ACD-CPR plus an active ITD (ITD group, n=8). Adrenaline was administered every 4 min and electrical defibrillation was attempted every 2 min until return of spontaneous circulation (ROSC) or asystole. After ROSC the animals were monitored for 6 h under general anesthesia and then returned to their cages for a 48 h observation, before euthanasia. Two novel biomarkers, Neutrophil Gelatinase-Associated Lipocalin (NGAL) in plasma and Interleukin-18 (IL-18) in urine, were measured at 2 h, 4 h, 6 h, 24 h and 48 h post-ROSC, in order to assess the degree of AKI. RESULTS ROSC was observed in 7 (87.5%) animals treated with the sham valve and 8 (100%) animals treated with the active valve (P=NS). However, more than twice as many animals survived at 48 h in the ITD group (n=8, 100%) compared to the control group (n=3, 37.5%). Urine IL-18 and plasma NGAL levels were augmented post-ROSC in both groups, but they were significantly higher in the control group compared with the ITD group, at all measured time points. CONCLUSION Use of ITD during ACD-CPR improved hemodynamic parameters, increased 48 h survival and decreased the degree of post-cardiac arrest AKI in the resuscitated animals.
Collapse
Affiliation(s)
- Panagiota Niforopoulou
- National and Kapodistrian University of Athens, Medical School, 3A Parou st, Melissia, Athens 15127, Greece.
| | - Nicoletta Iacovidou
- National and Kapodistrian University of Athens, Medical School, 3 Pavlou Mela st, Athens 16233, Greece.
| | - Pavlos Lelovas
- National and Kapodistrian University of Athens, Medical School, Laboratory of Research of the Musculoskeletal System, 10 Athinas st, Kifissia, Athens 14561, Greece.
| | - George Karlis
- National and Kapodistrian University of Athens, Medical School, 45-47 Ypsilantou st, Athens 10676, Greece.
| | - Αpostolos Papalois
- Experimental-Research Centre, ELPEN Pharmaceutical Co. Inc., 95 Marathonos Ave, Pikermi, Athens 19009, Greece.
| | - Spyros Siakavellas
- National and Kapodistrian University of Athens, Medical School, Academic Department of Gastroenterology, Laikon General Hospital, 17 Aghiou Thoma st, Athens 11527, Greece.
| | - Vasileios Spapis
- Hippokrateion General Hospital of Athens, 114 Vassilissis Sofias Ave, Athens, 11527, Greece.
| | - George Kaparos
- Aretaieion University Hospital, Biopathology Department, 76 Vassilissis Sofias Ave, Athens 11528, Greece.
| | - Ioanna Siafaka
- National and Kapodistrian University of Athens, Medical School, Aretaieion University Hospital, 76 Vassilissis Sofias Ave, Athens 11528, Greece.
| | - Theodoros Xanthos
- European University of Cyprus, School of Medicine, 6 Diogenis str, Engomi, Nicosia 1516, Cyprus.
| |
Collapse
|
206
|
Bomfim GF, Rodrigues FL, Carneiro FS. Are the innate and adaptive immune systems setting hypertension on fire? Pharmacol Res 2017; 117:377-393. [PMID: 28093357 DOI: 10.1016/j.phrs.2017.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/06/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023]
Abstract
Hypertension is the most common chronic cardiovascular disease and is associated with several pathological states, being an important cause of morbidity and mortality around the world. Low-grade inflammation plays a key role in hypertension and the innate and adaptive immune systems seem to contribute to hypertension development and maintenance. Hypertension is associated with vascular inflammation, increased vascular cytokines levels and infiltration of immune cells in the vasculature, kidneys and heart. However, the mechanisms that trigger inflammation and immune system activation in hypertension are completely unknown. Cells from the innate immune system express pattern recognition receptors (PRR), which detect conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) that induce innate effector mechanisms to produce endogenous signals, such as inflammatory cytokines and chemokines, to alert the host about danger. Additionally, antigen-presenting cells (APC) act as sentinels that are activated by PAMPs and DAMPs to sense the presence of the antigen/neoantigen, which ensues the adaptive immune system activation. In this context, different lymphocyte types are activated and contribute to inflammation and end-organ damage in hypertension. This review will focus on experimental and clinical evidence demonstrating the contribution of the innate and adaptive immune systems to the development of hypertension.
Collapse
Affiliation(s)
- Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Fernanda Luciano Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
207
|
Abstract
Caspase-1 is an integral regulator of the innate immune system. Its core functions are the processing and secretion of the proinflammatory cytokines interleukin 1β (IL-1 beta) and IL-18 and the initiation of proinflammatory cell death, which is referred to as pyroptosis. Activation of caspase-1 plays a pivotal role during immune defense mechanisms against infections by the innate immune system. Dysregulated activation of caspase-1 has been recognized to be involved in the pathophysiology of a constantly increasing number of inflammatory diseases. This article gives an overview of the regulation and function of caspase-1 and its involvement in monogenic, polygenic and/or polyetiological rheumatic diseases.
Collapse
Affiliation(s)
- S Winkler
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - C M Hedrich
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - A Rösen-Wolff
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| |
Collapse
|
208
|
Sharma S, Joshi A, Hemalatha S. Protective Effect of Withania coagulans Fruit Extract on Cisplatin-induced Nephrotoxicity in Rats. Pharmacognosy Res 2017; 9:354-361. [PMID: 29263628 PMCID: PMC5717787 DOI: 10.4103/pr.pr_1_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Fruits of Withania coagulans (Solanaceae) reported to possess several bioactive compounds as curative agents for various clinical conditions. Cisplatin is a chemotherapeutic drug to treat sarcomas, carcinomas, lymphomas, cervical cancer, germ cell tumors, etc. The major factor that limits its clinical use is its dose-dependent nephrotoxicity. Aim: To explore the nephroprotective effect of W. coagulans extract and its modulatory effects against cisplatin-induced nephrotoxicity and genotoxicity. Materials and Methods: W. coagulans fruit extract was quantitatively standardized with withaferin A using high-performance thin-layer chromatography. The subacute toxicity study was performed according to OECD guidelines in experimental rats. Nephrotoxicity in rats was induced by a single dose of cisplatin (6 mg/kg, intraperitoneal). Nephroprotective role of W. coagulans fruit extract at different doses had been evaluated. It includes quantification of serum kidney toxicity markers, renal tissue oxidative stress biomarkers and pro-inflammatory cytokines level, DNA fragmentation assay, and histopathological examination of renal tissue. Results: Withaferin A was found 3.56 mg/g of W. coagulans fruit extract. It significantly prevented the rise in serum urea and creatinine level and also preserve rat kidneys from oxidative stress and free radical induced DNA damage. Histopathological study showed extract treatment eliminates tubular swelling, cellular necrosis, and protein cast deposition in cisplatin treated kidney tissue. It averted the decline in glutathione content, activities of superoxide dismutase and catalase. These parameters were restored to near normal levels by extract in a dose of 400 mg/kg, per oral. Conclusion: It can be justified that W. coagulans possess dose dependent protective effect against cisplatin induced kidney damages, primarily through its free radical scavenging and anti inflammatory activity SUMMARY Authentication and standardization of Withania coagulans fruits Subacute oral toxicity study Evaluation of nephroprotective activity against cisplatin-induced nephrotoxicity DNA fragmentation assay and histopathological examination of kidney tissue in experimental rats.
Abbreviations Used: WHO: World Health Organization, SOD: Superoxide dismutase, CAT: Catalase, HPTLC: High-performance thin layer chromatography, p.o.: Per.oral, i.p.: Intraperitoneal, TNF-α: Tumor necrosis factor-alpha, IL-1β: Interleukin 1-beta, IL-6: Interleukin-6
Collapse
Affiliation(s)
- Sonam Sharma
- Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Apurva Joshi
- Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Siva Hemalatha
- Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
209
|
Hughes MM, McGettrick AF, O'Neill LAJ. Glutathione and Glutathione Transferase Omega 1 as Key Posttranslational Regulators in Macrophages. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0044-2016. [PMID: 28102119 PMCID: PMC11687437 DOI: 10.1128/microbiolspec.mchd-0044-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
Macrophage activation during phagocytosis or by pattern recognition receptors, such as Toll-like receptor 4, leads to the accumulation of reactive oxygen species (ROS). ROS act as a microbicidal defense mechanism, promoting clearance of infection, allowing for resolution of inflammation. Overproduction of ROS, however, overwhelms our cellular antioxidant defense system, promoting oxidation of protein machinery, leading to macrophage dysregulation and pathophysiology of chronic inflammatory conditions, such as atherosclerosis. Here we will describe the role of the antioxidant tripeptide glutathione (GSH). Until recently, the binding of GSH, termed glutathionylation, was only considered to maintain the integrity of cellular components, limiting the damaging effects of an aberrant oxidative environment. GSH can, however, have positive and negative regulatory effects on protein function in macrophages. GSH regulates protein secretion, driving tumor necrosis factor α release, hypoxia-inducible factor-1α stability, STAT3 phosphorylation, and caspase-1 activation in macrophages. GSH also plays a role in host defense against Listeria monocytogenes, modifying the key virulence protein PrfA in infected macrophages. We will also discuss glutathione transferase omega 1, a deglutathionylating enzyme recently shown to play a role in many aspects of macrophage activity, including metabolism, NF-κB activation, and cell survival pathways. Glutathionylation is emerging as a key regulatory event in macrophage biology that might be susceptible to therapeutic targeting.
Collapse
Affiliation(s)
- Mark M Hughes
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
210
|
Marneros AG. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol Med 2016; 8:208-31. [PMID: 26912740 PMCID: PMC4772957 DOI: 10.15252/emmm.201505613] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
While increased VEGF‐A has been associated with neovascular age‐related macular degeneration (AMD), it is not known whether VEGF‐A may also promote other age‐related eye diseases. Here, we show that an increase in VEGF‐A is sufficient to cause multiple distinct common aging diseases of the eye, including cataracts and both neovascular and non‐exudative AMD‐like pathologies. In the lens, increased VEGF‐A induces age‐related opacifications that are associated with ERK hyperactivation, increased oxidative damage, and higher expression of the NLRP3 inflammasome effector cytokine IL‐1β. Similarly, increased VEGF‐A induces oxidative stress and IL‐1β expression also in the retinal pigment epithelium (RPE). Targeting NLRP3 inflammasome components or Il1r1 strongly inhibited not only VEGF‐A‐induced cataract formation, but also both neovascular and non‐exudative AMD‐like pathologies. Moreover, increased VEGF‐A expression specifically in the RPE was sufficient to cause choroidal neovascularization (CNV) as in neovascular AMD, which could be inhibited by RPE‐specific inactivation of Flk1, while Tlr2 inactivation strongly reduced CNV. These findings suggest a shared pathogenic role of VEGF‐A‐induced and NLRP3 inflammasome‐mediated IL‐1β activation for multiple distinct ocular aging diseases.
Collapse
Affiliation(s)
- Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, USA Department of Dermatology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
211
|
Non-Canonical Cell Death Induced by p53. Int J Mol Sci 2016; 17:ijms17122068. [PMID: 27941671 PMCID: PMC5187868 DOI: 10.3390/ijms17122068] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death is a vital biological process for multicellular organisms to maintain cellular homeostasis, which is regulated in a complex manner. Over the past several years, apart from apoptosis, which is the principal mechanism of caspase-dependent cell death, research on non-apoptotic forms of programmed cell death has gained momentum. p53 is a well characterized tumor suppressor that controls cell proliferation and apoptosis and has also been linked to non-apoptotic, non-canonical cell death mechanisms. p53 impacts these non-canonical forms of cell death through transcriptional regulation of its downstream targets, as well as direct interactions with key players involved in these mechanisms, in a cell type- or tissue context-dependent manner. In this review article, we summarize and discuss the involvement of p53 in several non-canonical modes of cell death, including caspase-independent apoptosis (CIA), ferroptosis, necroptosis, autophagic cell death, mitotic catastrophe, paraptosis, and pyroptosis, as well as its role in efferocytosis which is the process of clearing dead or dying cells.
Collapse
|
212
|
Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci 2016; 42:245-254. [PMID: 27932073 DOI: 10.1016/j.tibs.2016.10.004] [Citation(s) in RCA: 2091] [Impact Index Per Article: 232.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 02/08/2023]
Abstract
Pyroptosis was long regarded as caspase-1-mediated monocyte death in response to certain bacterial insults. Caspase-1 is activated upon various infectious and immunological challenges through different inflammasomes. The discovery of caspase-11/4/5 function in sensing intracellular lipopolysaccharide expands the spectrum of pyroptosis mediators and also reveals that pyroptosis is not cell type specific. Recent studies identified the pyroptosis executioner, gasdermin D (GSDMD), a substrate of both caspase-1 and caspase-11/4/5. GSDMD represents a large gasdermin family bearing a novel membrane pore-forming activity. Thus, pyroptosis is redefined as gasdermin-mediated programmed necrosis. Gasdermins are associated with various genetic diseases, but their cellular function and mechanism of activation (except for GSDMD) are unknown. The gasdermin family suggests a new area of research on pyroptosis function in immunity, disease, and beyond.
Collapse
Affiliation(s)
- Jianjin Shi
- National Institute of Biological Sciences, Number 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Wenqing Gao
- National Institute of Biological Sciences, Number 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Feng Shao
- National Institute of Biological Sciences, Number 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.
| |
Collapse
|
213
|
Bliss-Moreau M, Chen AA, D'Cruz AA, Croker BA. A motive for killing: effector functions of regulated lytic cell death. Immunol Cell Biol 2016; 95:146-151. [PMID: 27826146 DOI: 10.1038/icb.2016.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/23/2022]
Abstract
Immunological responses activated by pathogen recognition come in many guises. The proliferation, differentiation and recruitment of immune cells, and the production of inflammatory cytokines and chemokines are central to lifelong immunity. Cell death serves as a key function in the resolution of innate and adaptive immune responses. It also coordinates cell-intrinsic effector functions to restrict infection. Necrosis was formally considered a passive form of cell death or a consequence of pathogen virulence factor expression, and necrotic tissue is frequently associated with infection. However, there is now emerging evidence that points to a role for regulated forms of necrosis, such as pyroptosis and necroptosis, driving inflammation and shaping the immune response.
Collapse
Affiliation(s)
- Meghan Bliss-Moreau
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alyce A Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Akshay A D'Cruz
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ben A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
214
|
Zhang P, Tsuchiya K, Kinoshita T, Kushiyama H, Suidasari S, Hatakeyama M, Imura H, Kato N, Suda T. Vitamin B6 Prevents IL-1β Protein Production by Inhibiting NLRP3 Inflammasome Activation. J Biol Chem 2016; 291:24517-24527. [PMID: 27733681 DOI: 10.1074/jbc.m116.743815] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/01/2016] [Indexed: 12/14/2022] Open
Abstract
Vitamin B6 includes six water-soluble vitamers: pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), and their phosphorylated forms. Pyridoxal 5'-phosphate (PLP) is an important cofactor for many metabolic enzymes. Several lines of evidence demonstrate that blood levels of PLP are significantly lower in patients with inflammation than in control subjects and that vitamin B6 has anti-inflammatory effects, with therapeutic potential for a variety of inflammatory diseases. Although one of our group previously demonstrated that PL inhibits the NF-κB pathway, the molecular mechanism by which vitamin B6 suppresses inflammation is not well understood. Here, we showed that both PL and PLP suppressed the expression of cytokine genes in macrophages by inhibiting Toll-like receptor (TLR)-mediated TAK1 phosphorylation and the subsequent NF-κB and JNK activation. Furthermore, PL and PLP abolished NLRP3-dependent caspase-1 processing and the subsequent secretion of mature IL-1β and IL-18 in LPS-primed macrophages. In contrast, PM and PN had little effect on IL-1β production. PLP, but not PL, markedly reduced the production of mitochondrial reactive oxygen species (ROS) in peritoneal macrophages. Importantly, PL and PLP reduced IL-1β production induced by LPS and ATP, or by LPS alone, in mice. Moreover, PL and PLP protected mice from lethal endotoxic shock. Collectively, these findings reveal novel anti-inflammatory activities for vitamin B6 and suggest its potential for preventing inflammatory diseases driven by the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Peipei Zhang
- From the Department of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192
| | - Kohsuke Tsuchiya
- From the Department of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192
| | - Takeshi Kinoshita
- From the Department of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192
| | - Hiroko Kushiyama
- From the Department of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192
| | - Sofya Suidasari
- the Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, and
| | - Mizuki Hatakeyama
- the Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hisanori Imura
- the Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Norihisa Kato
- the Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, and
| | - Takashi Suda
- From the Department of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192,.
| |
Collapse
|
215
|
Affiliation(s)
- Gregory F. Erickson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
216
|
Sawaya ME, Blume-Peytavi U, Mullins DL, Nusbaum BP, Whiting D, Nicholson DW, Lotocki G, Keane RW. Effects of Finasteride on Apoptosis and Regulation of the Human Hair Cycle. J Cutan Med Surg 2016. [DOI: 10.1177/120347540200600101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: A number of studies have provided evidence that apoptosis is a central element in the regulation of hair follicle regression. In androgenetic alopecia (AGA), the exact location and control of key players in the apoptotic pathways remains obscure. Objective: In the present study, we used a panel of antibodies and investigated the spatial and cellular pattern of expression of caspases and inhibitors of apoptosis (IAPs), such as XIAP and FLIP, in men with normal scalp and in men with AGA before and after 6 months of treatment with 1 mg oral finasteride treatment. Methods and Results: Constitutive expression of caspases-1, −3, −8, and −9 and XIAP was detected predominantly within the isthmic and infundibular hair follicle area, basilar layer of the epidermis, and eccrine and sebaceous glands. AGA-affected tissues showed an increase in caspase (−1, −3, −6, −9) immunoreactivity with a concomitant decrease in XIAP staining. After 6 months of finasteride treatment, both caspases and XIAP were similar to levels exhibited by normal subjects. Immunoblot analysis was performed to determine antibody specificity and cellular expression of caspases. Purified populations of keratinocytes, melanocytes, dermal papilla, and dermal fibroblasts derived from human hair follicles were cultured in vitro and treated with 0.5 μm staurosporin. Time-course experiments revealed that processing of caspase-3 is a principal event during apoptosis of these hair cell types. Conclusion: These data suggest that alterations in levels of caspases and IAPs regulate hair follicle homeostasis. Moreover, finasteride appears to influence caspase and XIAP expression in hair follicle cells thus signaling anagen, active growth in the hair cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | - George Lotocki
- Department of Physiology and Biophysics, University of Miami, Miami, Florida, USA
| | - Robert W. Keane
- Department of Physiology and Biophysics, University of Miami, Miami, Florida, USA
| |
Collapse
|
217
|
Interleukin-18 deficiency protects against renal interstitial fibrosis in aldosterone/salt-treated mice. Clin Sci (Lond) 2016; 130:1727-39. [DOI: 10.1042/cs20160183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022]
Abstract
Interleukin (IL)-18 is a member of the IL-1 family of cytokines and was described originally as an interferon γ-inducing factor. Aldosterone plays a central role in the regulation of sodium and potassium homoeostasis by binding to the mineralocorticoid receptor and contributes to kidney and cardiovascular damage. Aldosterone has been reported to induce IL-18, resulting in cardiac fibrosis with induced IL-18-mediated osteopontin (OPN). We therefore hypothesized that aldosterone-induced renal fibrosis via OPN may be mediated by IL-18. To verify this hypothesis, we compared mice deficient in IL-18 and wild-type (WT) mice in a model of aldosterone/salt-induced hypertension. IL-18−/− and C57BL/6 WT mice were used for the uninephrectomized aldosterone/salt hypertensive model, whereas NRK-52E cells (rat kidney epithelial cells) were used in an in vitro model. In the present in vivo study, IL-18 protein expression was localized in medullary tubules in the WT mice, whereas in aldosterone-infused WT mice this expression was up-regulated markedly in the proximal tubules, especially in injured and dilated tubules. This renal damage caused by aldosterone was attenuated significantly by IL-18 knockout with down-regulation of OPN expression. In the present in vitro study, aldosterone directly induced IL-18 gene expression in renal tubular epithelial cells in a concentration- and time-dependent manner. These effects were inhibited completely by spironolactone. IL-18 may be a key mediator of aldosterone-induced renal fibrosis by inducing OPN, thereby exacerbating renal interstitial fibrosis. Inhibition of IL-18 may therefore provide a potential target for therapeutic intervention aimed at preventing the progression of renal injury.
Collapse
|
218
|
Balza E, Piccioli P, Carta S, Lavieri R, Gattorno M, Semino C, Castellani P, Rubartelli A. Proton pump inhibitors protect mice from acute systemic inflammation and induce long-term cross-tolerance. Cell Death Dis 2016; 7:e2304. [PMID: 27441656 PMCID: PMC4973356 DOI: 10.1038/cddis.2016.218] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/10/2016] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
Incidence of sepsis is increasing, representing a tremendous burden for health-care systems. Death in acute sepsis is attributed to hyperinflammatory responses, but the underlying mechanisms are still unclear. We report here that proton pump inhibitors (PPIs), which block gastric acid secretion, selectively inhibited tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) secretion by Toll-like receptor (TLR)-activated human monocytes in vitro, in the absence of toxic effects. Remarkably, the oversecretion of IL-1β that represents a hallmark of monocytes from patients affected by cryopyrin-associated periodic syndrome is also blocked. Based on these propaedeutic experiments, we tested the effects of high doses of PPIs in vivo in the mouse model of endotoxic shock. Our data show that a single administration of PPI protected mice from death (60% survival versus 5% of untreated mice) and decreased TNF-α and IL-1β systemic production. PPIs were efficacious even when administered after lipopolysaccharide (LPS) injection. PPI-treated mice that survived developed a long-term cross-tolerance, becoming resistant to LPS- and zymosan-induced sepsis. In vitro, their macrophages displayed impaired TNF-α and IL-1β to different TLR ligands. PPIs also prevented sodium thioglycollate-induced peritoneal inflammation, indicating their efficacy also in a non-infectious setting independent of TLR stimulation. Lack of toxicity and therapeutic effectiveness make PPIs promising new drugs against sepsis and other severe inflammatory conditions.
Collapse
Affiliation(s)
- E Balza
- Cell Biology Unit, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| | - P Piccioli
- Cell Biology Unit, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| | - S Carta
- Cell Biology Unit, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| | - R Lavieri
- Cell Biology Unit, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| | - M Gattorno
- Pediatrics II Unit, G Gaslini Institute, 16147 Genoa, Italy
| | - C Semino
- Protein Transport Unit, Division of Cell and Molecular Biology, San Raffaele Institute, 20132 Milan, Italy
| | - P Castellani
- Cell Biology Unit, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| | - A Rubartelli
- Cell Biology Unit, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| |
Collapse
|
219
|
Russo HM, Rathkey J, Boyd-Tressler A, Katsnelson MA, Abbott DW, Dubyak GR. Active Caspase-1 Induces Plasma Membrane Pores That Precede Pyroptotic Lysis and Are Blocked by Lanthanides. THE JOURNAL OF IMMUNOLOGY 2016; 197:1353-67. [PMID: 27385778 DOI: 10.4049/jimmunol.1600699] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/04/2016] [Indexed: 12/27/2022]
Abstract
Canonical inflammasome activation induces a caspase-1/gasdermin D (Gsdmd)-dependent lytic cell death called pyroptosis that promotes antimicrobial host defense but may contribute to sepsis. The nature of the caspase-1-dependent change in plasma membrane (PM) permeability during pyroptotic progression remains incompletely defined. We assayed propidium(2+) (Pro(2+)) influx kinetics during NLRP3 or Pyrin inflammasome activation in murine bone marrow-derived macrophages (BMDMs) as an indicator of this PM permeabilization. BMDMs were characterized by rapid Pro(2+) influx after initiation of NLRP3 or Pyrin inflammasomes by nigericin (NG) or Clostridium difficile toxin B (TcdB), respectively. No Pro(2+) uptake in response to NG or TcdB was observed in Casp1(-/-) or Asc(-/-) BMDMs. The cytoprotectant glycine profoundly suppressed NG and TcdB-induced lysis but not Pro(2+) influx. The absence of Gsdmd expression resulted in suppression of NG-stimulated Pro(2+) influx and pyroptotic lysis. Extracellular La(3+) and Gd(3+) rapidly and reversibly blocked the induced Pro(2+) influx and markedly delayed pyroptotic lysis without limiting upstream inflammasome assembly and caspase-1 activation. Thus, caspase-1-driven pyroptosis requires induction of initial prelytic pores in the PM that are dependent on Gsdmd expression. These PM pores also facilitated the efflux of cytosolic ATP and influx of extracellular Ca(2+) Although lanthanides and Gsdmd deletion both suppressed PM pore activity and pyroptotic lysis, robust IL-1β release was observed in lanthanide-treated BMDMs but not in Gsdmd-deficient cells. This suggests roles for Gsdmd in both passive IL-1β release secondary to pyroptotic lysis and in nonlytic/nonclassical IL-1β export.
Collapse
Affiliation(s)
- Hana M Russo
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Joseph Rathkey
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Andrea Boyd-Tressler
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106; and
| | | | - Derek W Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - George R Dubyak
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106; and Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
220
|
Role of the IL-1 Pathway in Dopaminergic Neurodegeneration and Decreased Voluntary Movement. Mol Neurobiol 2016; 54:4486-4495. [PMID: 27356916 PMCID: PMC5509814 DOI: 10.1007/s12035-016-9988-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 12/26/2022]
Abstract
Interleukin-1 (IL-1), a proinflammatory cytokine synthesized and released by activated microglia, can cause dopaminergic neurodegeneration leading to Parkinson’s disease (PD). However, it is uncertain whether IL-1 can act directly, or by exacerbating the harmful actions of other brain insults. To ascertain the role of the IL-1 pathway on dopaminergic neurodegeneration and motor skills during aging, we compared mice with impaired [caspase-1 knockout (casp1−/−)] or overactivated IL-1 activity [IL-1 receptor antagonist knockout (IL-1ra−/−)] to wild-type (wt) mice at young and middle age. Their motor skills were evaluated by the open-field and rotarod tests, and quantification of their dopamine neurons and activated microglia within the substantia nigra were performed by immunohistochemistry. IL-1ra−/− mice showed an age-related decline in motor skills, a reduced number of dopamine neurons, and an increase in activated microglia when compared to wt or casp1−/− mice. Casp1−/− mice had similar changes in motor skills and dopamine neurons, but fewer activated microglia cells than wt mice. Our results suggest that the overactivated IL-1 pathway occurring in IL-1ra−/− mice in the absence of inflammatory interventions (e.g., intracerebral injections performed in animal models of PD) increased activated microglia, decreased the number of dopaminergic neurons, and reduced their motor skills. Decreased IL-1 activity in casp1−/− mice did not yield clear protective effects when compared with wt mice. In summary, in the absence of overt brain insults, chronic activation of the IL-1 pathway may promote pathological aspects of PD per se, but its impairment does not appear to yield advantages over wt mice.
Collapse
|
221
|
Martin SJ. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J 2016; 283:2599-615. [PMID: 27273805 DOI: 10.1111/febs.13775] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023]
Abstract
It is well known that necrotic cells are capable of promoting inflammation through releasing so-called endogenous 'danger signals' that can promote activation of macrophages, dendritic cells, and other sentinel cells of the innate immune system. However, the identity of these endogenous proinflammatory molecules, also called damage-associated molecular patterns (DAMPs), has been debated since the 'danger model' was first advanced 20 years ago. While a relatively large number of molecules have been proposed to act as DAMPs, little consensus has emerged concerning which of these represent the key activators of sterile inflammation. Here I argue that the canonical DAMPs have long been hiding in plain sight, in the form of members of the extended IL-1 cytokine family (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, and IL-36γ). The latter cytokines possess all of the characteristics expected of endogenous DAMPs and initiate inflammation in a manner strikingly similar to that utilized by the other major category of inflammatory triggers, pathogen-associated molecular patterns (PAMPs). Furthermore, many PAMPs upregulate the expression of IL-1 family DAMPs, enabling robust synergy between these distinct classes of inflammatory triggers. Thus, multiple lines of evidence now suggest that IL-1 family cytokines represent the key initiators of necrosis-initiated sterile inflammation, as well as amplifiers of inflammation in response to infection-associated tissue injury.
Collapse
Affiliation(s)
- Seamus J Martin
- Department of Genetics, Molecular Cell Biology Laboratory, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
222
|
Müller AA, Dolowschiak T, Sellin ME, Felmy B, Verbree C, Gadient S, Westermann AJ, Vogel J, LeibundGut-Landmann S, Hardt WD. An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection. PLoS Pathog 2016; 12:e1005723. [PMID: 27341123 PMCID: PMC4920399 DOI: 10.1371/journal.ppat.1005723] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/03/2016] [Indexed: 01/26/2023] Open
Abstract
Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and –injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf-/- ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens. Salmonella Typhimurium is a common cause of foodborne diarrhea. The disease symptoms arise already a few hours after infection. However, it had remained unclear how the immune system can mount the responses eliciting the disease symptoms so quickly. Earlier work in a mouse model had shown that the gut epithelium expresses a sensor, called NAIP/NLRC4/caspase-1 inflammasome that can detect the pathogen and mount a defense by 12-18h p.i. However, it has remained uncharacterized how inflammasome sensing drives the initial gut inflammation. Here, we found that the caspase-1 inflammasome triggers the production of IL-18, a pro-inflammatory cytokine that appears essential for the early onset of inflammation. IL-18 is driving the accumulation of NK cells into the infected mucosa, via the upregulation of NK cell chemoattractants and by the stimulation of their migratory capacity. Mature NK cells seem to induce mucosal inflammation via a perforin-mediated cytotoxic response. These data suggest that the inflammasome/IL-18/NK cell axis is a driver of early mucosal inflammation via a perforin-dependent cytotoxic NK cell response. Future work will have to address, if this mechanism is equally potent in the human gut and may contribute to ramping up the host's response during the first hours of infection. This may have implications for other gut infections and might provide leads for developing therapies.
Collapse
Affiliation(s)
- Anna A. Müller
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Mikael E. Sellin
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
- Department of Cell and Molecular Biology, Microbiology, Uppsala University, Uppsala, Sweden
| | - Boas Felmy
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Sandra Gadient
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
223
|
Kim MJ, Bae SH, Ryu JC, Kwon Y, Oh JH, Kwon J, Moon JS, Kim K, Miyawaki A, Lee MG, Shin J, Kim YS, Kim CH, Ryter SW, Choi AMK, Rhee SG, Ryu JH, Yoon JH. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 2016; 12:1272-91. [PMID: 27337507 DOI: 10.1080/15548627.2016.1183081] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Proper regulation of mitophagy for mitochondrial homeostasis is important in various inflammatory diseases. However, the precise mechanisms by which mitophagy is activated to regulate inflammatory responses remain largely unknown. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome serves as a platform that triggers the activation of CASP1 (caspase 1) and secretion of proinflammatory cytokines. Here, we demonstrate that SESN2 (sestrin 2), known as stress-inducible protein, suppresses prolonged NLRP3 inflammasome activation by clearance of damaged mitochondria through inducing mitophagy in macrophages. SESN2 plays a dual role in inducing mitophagy in response to inflammasome activation. First, SESN2 induces "mitochondrial priming" by marking mitochondria for recognition by the autophagic machinery. For mitochondrial preparing, SESN2 facilitates the perinuclear-clustering of mitochondria by mediating aggregation of SQSTM1 (sequestosome 1) and its binding to lysine 63 (Lys63)-linked ubiquitins on the mitochondrial surface. Second, SESN2 activates the specific autophagic machinery for degradation of primed mitochondria via an increase of ULK1 (unc-51 like kinase 1) protein levels. Moreover, increased SESN2 expression by extended LPS (lipopolysaccharide) stimulation is mediated by NOS2 (nitric oxide synthase 2, inducible)-mediated NO (nitric oxide) in macrophages. Thus, Sesn2-deficient mice displayed defective mitophagy, which resulted in hyperactivation of inflammasomes and increased mortality in 2 different sepsis models. Our findings define a unique regulatory mechanism of mitophagy activation for immunological homeostasis that protects the host from sepsis.
Collapse
Affiliation(s)
- Min-Ji Kim
- a Research Center for Natural Human Defense System , Yonsei University College of Medicine , Seoul , Korea.,b Brain Korea 21 PLUS Project for Medical Science , Yonsei University College of Medicine , Seoul , Korea
| | - Soo Han Bae
- c Severance Biomedical Science Institute, Yonsei University College of Medicine , Seoul , Korea
| | - Jae-Chan Ryu
- a Research Center for Natural Human Defense System , Yonsei University College of Medicine , Seoul , Korea.,b Brain Korea 21 PLUS Project for Medical Science , Yonsei University College of Medicine , Seoul , Korea
| | - Younghee Kwon
- a Research Center for Natural Human Defense System , Yonsei University College of Medicine , Seoul , Korea.,b Brain Korea 21 PLUS Project for Medical Science , Yonsei University College of Medicine , Seoul , Korea
| | - Ji-Hwan Oh
- a Research Center for Natural Human Defense System , Yonsei University College of Medicine , Seoul , Korea.,b Brain Korea 21 PLUS Project for Medical Science , Yonsei University College of Medicine , Seoul , Korea
| | - Jeongho Kwon
- d Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute , Suwon , Korea
| | - Jong-Seok Moon
- e Joan and Sanford I. Weill Department of Medicine , Weill Cornell Medical College and New York-Presbyterian Hospital , New York , NY USA.,f Division of Pulmonary and Critical Care Medicine , Weill Cornell Medical College , New York , NY USA
| | - Kyubo Kim
- g Department of Otorhinolaryngology-Head and Neck Surgery , Hallym University College of Medicine, Kangdong Sacred Heart Hospital , Seoul , Korea
| | - Atsushi Miyawaki
- h Laboratory for Cell Function Dynamics , Brain Science Institute, RIKEN , Wako, Saitama Japan
| | - Min Goo Lee
- b Brain Korea 21 PLUS Project for Medical Science , Yonsei University College of Medicine , Seoul , Korea.,c Severance Biomedical Science Institute, Yonsei University College of Medicine , Seoul , Korea.,i Department of Pharmacology , Yonsei University College of Medicine , Seoul , Korea
| | - Jaekyoon Shin
- d Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute , Suwon , Korea
| | - Young Sam Kim
- j Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| | - Chang-Hoon Kim
- k Department of Otorhinolaryngology.,l The Airway Mucus Institute, Yonsei University College of Medicine , Seoul , Korea
| | - Stefan W Ryter
- e Joan and Sanford I. Weill Department of Medicine , Weill Cornell Medical College and New York-Presbyterian Hospital , New York , NY USA.,f Division of Pulmonary and Critical Care Medicine , Weill Cornell Medical College , New York , NY USA
| | - Augustine M K Choi
- e Joan and Sanford I. Weill Department of Medicine , Weill Cornell Medical College and New York-Presbyterian Hospital , New York , NY USA.,f Division of Pulmonary and Critical Care Medicine , Weill Cornell Medical College , New York , NY USA
| | - Sue Goo Rhee
- c Severance Biomedical Science Institute, Yonsei University College of Medicine , Seoul , Korea
| | - Ji-Hwan Ryu
- b Brain Korea 21 PLUS Project for Medical Science , Yonsei University College of Medicine , Seoul , Korea.,c Severance Biomedical Science Institute, Yonsei University College of Medicine , Seoul , Korea
| | - Joo-Heon Yoon
- a Research Center for Natural Human Defense System , Yonsei University College of Medicine , Seoul , Korea.,b Brain Korea 21 PLUS Project for Medical Science , Yonsei University College of Medicine , Seoul , Korea.,k Department of Otorhinolaryngology.,l The Airway Mucus Institute, Yonsei University College of Medicine , Seoul , Korea
| |
Collapse
|
224
|
Wong ML, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J, Kentish S, Xie P, Morrison M, Wesselingh SL, Rogers GB, Licinio J. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry 2016; 21:797-805. [PMID: 27090302 PMCID: PMC4879188 DOI: 10.1038/mp.2016.46] [Citation(s) in RCA: 405] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022]
Abstract
The inflammasome is hypothesized to be a key mediator of the response to physiological and psychological stressors, and its dysregulation may be implicated in major depressive disorder. Inflammasome activation causes the maturation of caspase-1 and activation of interleukin (IL)-1β and IL-18, two proinflammatory cytokines involved in neuroimmunomodulation, neuroinflammation and neurodegeneration. In this study, C57BL/6 mice with genetic deficiency or pharmacological inhibition of caspase-1 were screened for anxiety- and depressive-like behaviors, and locomotion at baseline and after chronic stress. We found that genetic deficiency of caspase-1 decreased depressive- and anxiety-like behaviors, and conversely increased locomotor activity and skills. Caspase-1 deficiency also prevented the exacerbation of depressive-like behaviors following chronic stress. Furthermore, pharmacological caspase-1 antagonism with minocycline ameliorated stress-induced depressive-like behavior in wild-type mice. Interestingly, chronic stress or pharmacological inhibition of caspase-1 per se altered the fecal microbiome in a very similar manner. When stressed mice were treated with minocycline, the observed gut microbiota changes included increase in relative abundance of Akkermansia spp. and Blautia spp., which are compatible with beneficial effects of attenuated inflammation and rebalance of gut microbiota, respectively, and the increment in Lachnospiracea abundance was consistent with microbiota changes of caspase-1 deficiency. Our results suggest that the protective effect of caspase-1 inhibition involves the modulation of the relationship between stress and gut microbiota composition, and establishes the basis for a gut microbiota-inflammasome-brain axis, whereby the gut microbiota via inflammasome signaling modulate pathways that will alter brain function, and affect depressive- and anxiety-like behaviors. Our data also suggest that further elucidation of the gut microbiota-inflammasome-brain axis may offer novel therapeutic targets for psychiatric disorders.
Collapse
Affiliation(s)
- M-L Wong
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Psychiatry, Flinders Medical Centre, Adelaide, SA, Australia
| | - A Inserra
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Psychiatry, Flinders Medical Centre, Adelaide, SA, Australia
| | - M D Lewis
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Psychiatry, Flinders Medical Centre, Adelaide, SA, Australia
| | - C A Mastronardi
- Genomics and Predictive Medicine, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - L Leong
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Microbiology and Infectious Diseases, Flinders University School of Medicine and Flinders Medical Centre, Adelaide, SA, Australia
| | - J Choo
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Microbiology and Infectious Diseases, Flinders University School of Medicine and Flinders Medical Centre, Adelaide, SA, Australia
| | - S Kentish
- Gastrointestinal Vagal Afferent Research Group, The University of Adelaide, Adelaide, SA, Australia
| | - P Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurobiology, and Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - M Morrison
- Translational Research Institute, The University of Queensland Diamantine Institute, Wooloongabba, QLD, Australia
| | - S L Wesselingh
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Microbiology and Infectious Diseases, Flinders University School of Medicine and Flinders Medical Centre, Adelaide, SA, Australia
| | - G B Rogers
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Microbiology and Infectious Diseases, Flinders University School of Medicine and Flinders Medical Centre, Adelaide, SA, Australia
| | - J Licinio
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Psychiatry, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
225
|
Castiglia V, Piersigilli A, Ebner F, Janos M, Goldmann O, Damböck U, Kröger A, Weiss S, Knapp S, Jamieson AM, Kirschning C, Kalinke U, Strobl B, Müller M, Stoiber D, Lienenklaus S, Kovarik P. Type I Interferon Signaling Prevents IL-1β-Driven Lethal Systemic Hyperinflammation during Invasive Bacterial Infection of Soft Tissue. Cell Host Microbe 2016; 19:375-87. [PMID: 26962946 DOI: 10.1016/j.chom.2016.02.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/19/2015] [Accepted: 02/11/2016] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFN-Is) are fundamental for antiviral immunity, but their role in bacterial infections is contradictory and incompletely described. Streptococcus pyogenes activates IFN-I production in innate immune cells, and IFN-I receptor 1 (Ifnar1)-deficient mice are highly susceptible to S. pyogenes infection. Here we report that IFN-I signaling protects the host against invasive S. pyogenes infection by restricting inflammation-driven damage in distant tissues. Lethality following infection in Ifnar1-deficient mice is caused by systemically exacerbated levels of the proinflammatory cytokine IL-1β. Critical cellular effectors of IFN-I in vivo are LysM+ and CD11c+ myeloid cells, which exhibit suppression of Il1b transcription upon Ifnar1 engagement. These cells are also the major source of IFN-β, which is significantly induced by S. pyogenes 23S rRNA in an Irf5-dependent manner. Our study establishes IL-1β and IFN-I levels as key homeostatic variables of protective, yet tuned, immune responses against severe invasive bacterial infection.
Collapse
Affiliation(s)
- Virginia Castiglia
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Alessandra Piersigilli
- Institute of Animal Pathology (COMPATH), University of Bern, 3012 Bern, Switzerland; Life Science Faculty, EPFL, 1015 Lausanne, Switzerland
| | - Florian Ebner
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Marton Janos
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Ursula Damböck
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Andrea Kröger
- Institute of Medical Microbiology, Otto-von-Guericke-University, 39106 Magdeburg, Germany; Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sigfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sylvia Knapp
- Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Amanda M Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Carsten Kirschning
- Institute of Medical Microbiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover Medical School and Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Dagmar Stoiber
- Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - Stefan Lienenklaus
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover Medical School and Helmholtz Centre for Infection Research, 30625 Hannover, Germany; Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
226
|
Galluzzi L, López-Soto A, Kumar S, Kroemer G. Caspases Connect Cell-Death Signaling to Organismal Homeostasis. Immunity 2016; 44:221-31. [DOI: 10.1016/j.immuni.2016.01.020] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 01/01/2023]
|
227
|
Abstract
Inflammasomes are protein complexes that promote the maturation and release of pro-inflammatory cytokines and danger signals as well as pyroptosis in response to infections and cellular stress. Inflammasomes consist of a sensor, an adapter, and the effector caspase-1, which interact through homotypic interactions of caspase recruitment domains (CARDs) or PYRIN domains (PYDs). Hence, decoy proteins encoding only a CARD or PYD, COPs and POPs, respectively, are assumed to inhibit inflammasome assembly. Sensors encoding a PYD belong to the families of NOD-like receptors containing a PYD (NLRPs) or AIM2-like receptors (ALRs), which interact with the PYD- and CARD-containing adapter ASC through homotypic PYD interactions. Subsequently, ASC undergoes PYD-dependent oligomerization, which promotes CARD-mediated interactions between ASC and caspase-1, resulting in caspase-1 activation. POPs are suggested to interfere with the interaction between NLRPs/ALRs and ASC to prevent nucleation of ASC and therefore prevent an oligomeric platform for caspase-1 activation. Similarly, COPs are suggested to bind to the CARD of caspase-1 to prevent its recruitment to the oligomeric ASC platform and its activation. Alternatively, the adapter ASC may regulate inflammasome activity by expressing different isoforms, which are either capable or incapable of assembling an oligomeric ASC platform. The molecular mechanism of inflammasome assembly has only recently been elucidated, but the effects of most COPs and POPs on inflammasome assembly have not been investigated. Here, we discuss our model of COP- and POP-mediated inflammasome regulation.
Collapse
Affiliation(s)
- Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
228
|
Abstract
As a front line of defense against pathogenic microbes, our body employs a primitive, yet highly sophisticated and potent innate immune response pathway collectively referred to as the inflammasome. Innate immune cells, epithelial cells, and many other cell types are capable of detecting infection or tissue injury and mounting a coordinated molecular defense. For example, Gram-negative bacteria are specifically detected via a surveillance mechanism that involves activation of extracellular receptors such as Toll-like receptors (TLRs) followed by intracellular recognition and activation of pathways such as caspase-11 (caspase-4/5 in humans). Importantly, lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is a strong trigger of these pathways. Extracellular LPS primarily stimulates TLR4, which can serve as a priming signal for expression of inflammasome components. Intracellular LPS can then trigger caspase-11-dependent inflammasome activation in the cytoplasm. Here, we briefly review the burgeoning caspase-11-dependent non-canonical inflammasome field, focusing mainly on the innate sensing of LPS.
Collapse
Affiliation(s)
- Irma Stowe
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
229
|
Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 2016; 265:130-42. [PMID: 25879289 DOI: 10.1111/imr.12287] [Citation(s) in RCA: 780] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory caspases play a central role in innate immunity by responding to cytosolic signals and initiating a twofold response. First, caspase-1 induces the activation and secretion of the two prominent pro-inflammatory cytokines, interleukin-1β (IL-1β) and IL-18. Second, either caspase-1 or caspase-11 can trigger a form of lytic, programmed cell death called pyroptosis. Pyroptosis operates to remove the replication niche of intracellular pathogens, making them susceptible to phagocytosis and killing by a secondary phagocyte. However, aberrant, systemic activation of pyroptosis in vivo may contribute to sepsis. Emphasizing the efficiency of inflammasome detection of microbial infections, many pathogens have evolved to avoid or subvert pyroptosis. This review focuses on molecular and morphological characteristics of pyroptosis and the individual inflammasomes and their contribution to defense against infection in mice and humans.
Collapse
Affiliation(s)
- Ine Jorgensen
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
230
|
Hu Z, Murakami T, Suzuki K, Tamura H, Reich J, Kuwahara-Arai K, Iba T, Nagaoka I. Antimicrobial cathelicidin peptide LL-37 inhibits the pyroptosis of macrophages and improves the survival of polybacterial septic mice. Int Immunol 2016; 28:245-53. [PMID: 26746575 DOI: 10.1093/intimm/dxv113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 12/24/2015] [Indexed: 01/21/2023] Open
Abstract
LL-37 is the only known member of the cathelicidin family of antimicrobial peptides in humans. In addition to its broad spectrum of antimicrobial activities, LL-37 can modulate various inflammatory reactions. We previously revealed that LL-37 suppresses the LPS/ATP-induced pyroptosis of macrophages in vitro by both neutralizing the action of LPS and inhibiting the response of P2X7 (a nucleotide receptor) to ATP. Thus, in this study, we further evaluated the effect of LL-37 on pyroptosis in vivo using a cecal ligation and puncture (CLP) sepsis model. As a result, the intravenous administration of LL-37 improved the survival of the CLP septic mice. Interestingly, LL-37 inhibited the CLP-induced caspase-1 activation and pyroptosis of peritoneal macrophages. Moreover, LL-37 modulated the levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) in both peritoneal fluids and sera, and suppressed the activation of peritoneal macrophages (as evidenced by the increase in the intracellular levels of IL-1β, IL-6 and TNF-α). Finally, LL-37 reduced the bacterial burdens in both peritoneal fluids and blood samples. Together, these observations suggest that LL-37 improves the survival of CLP septic mice by possibly suppressing the pyroptosis of macrophages, and inflammatory cytokine production by activated macrophages and bacterial growth. Thus, the present findings imply that LL-37 can be a promising candidate for sepsis because of its many functions, such as the inhibition of pyroptosis, modulation of inflammatory cytokine production and antimicrobial activity.
Collapse
Affiliation(s)
- Zhongshuang Hu
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Taisuke Murakami
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kaori Suzuki
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hiroshi Tamura
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan Laboratory Program Support (LPS) Consulting Office, Tokyo 160-0023, Japan
| | - Johannes Reich
- Institute of Physical and Theoretical Chemistry, University of Regensburg 93040, Regensburg, Germany
| | - Kyoko Kuwahara-Arai
- Department of Bacteriology, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
231
|
HU ZHONGSHUANG, NAGAOKA ISAO. Modulation of Macrophage Cell Death, Pyroptosis by Host Defense Peptide LL-37. JUNTENDO IJI ZASSHI 2016. [DOI: 10.14789/jmj.62.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- ZHONGSHUANG HU
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine
| | - ISAO NAGAOKA
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine
| |
Collapse
|
232
|
Human Primary Keratinocytes as a Tool for the Analysis of Caspase-1-Dependent Unconventional Protein Secretion. Methods Mol Biol 2016; 1459:135-47. [PMID: 27665556 DOI: 10.1007/978-1-4939-3804-9_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammasomes comprise a group of protein complexes, which activate the protease caspase-1 upon sensing a variety of stress factors. Active caspase-1 in turn cleaves and thereby activates the pro-inflammatory cytokines prointerleukin (IL)-1β and -18, and induces unconventional protein secretion (UPS) of mature IL-1β, IL-18, as well as of many other proteins involved in and required for induction of inflammation. Human primary keratinocytes (HPKs) represent epithelial cells able to activate caspase-1 in an inflammasome-dependent manner upon irradiation with a physiological dose of ultraviolet B (UVB) light. Here, we describe the isolation of keratinocytes from human skin, their cultivation, and induction of caspase-1-dependent UPS upon UVB irradiation as well as its siRNA- and chemical-mediated inhibition. In contrast to inflammasome activation of professional immune cells, UVB-irradiated HPKs represent a robust and physiological cell culture system for the analysis of UPS induced by active caspase-1.
Collapse
|
233
|
Mitra S, Wewers MD, Sarkar A. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury. PLoS One 2015; 10:e0145607. [PMID: 26710067 PMCID: PMC4692444 DOI: 10.1371/journal.pone.0145607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
Abstract
Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.
Collapse
Affiliation(s)
- Srabani Mitra
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Anasuya Sarkar
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
234
|
Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 2015; 16:7-21. [PMID: 26655628 DOI: 10.1038/nri.2015.7] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory and apoptotic caspases are central players in inflammation and apoptosis, respectively. However, recent studies have revealed that these caspases have functions beyond their established roles. In addition to mediating cleavage of the inflammasome-associated cytokines interleukin-1β (IL-1β) and IL-18, inflammatory caspases modulate distinct forms of programmed cell death and coordinate cell-autonomous immunity and other fundamental cellular processes. Certain apoptotic caspases assemble structurally diverse and dynamic complexes that direct inflammasome and interferon responses to fine-tune inflammation. In this Review, we discuss the expanding and interconnected roles of caspases that highlight new aspects of this family of cysteine proteases in innate immunity.
Collapse
|
235
|
Garcia-Martinez I, Shaker ME, Mehal WZ. Therapeutic Opportunities in Damage-Associated Molecular Pattern-Driven Metabolic Diseases. Antioxid Redox Signal 2015; 23:1305-15. [PMID: 26055926 PMCID: PMC4685500 DOI: 10.1089/ars.2015.6383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Sterile inflammation is a common finding present in various metabolic disorders. This type of inflammation is mediated by damage-associated molecular patterns (DAMPs) that are released upon cellular injury to activate pattern recognition receptors on innate immune cells and amplify organ damage. RECENT ADVANCES In the last decade, DAMPs, such as high-mobility group protein B1, nucleic acids (DNA, RNA), adenosine triphosphate, and other metabolites, were found to contribute to the inflammatory response in diabetes, gout, obesity, steatohepatitis, and atherosclerosis. Varied receptors, including Toll-like receptors (TLRs), the purinergic P2X(7) receptors, and nucleotide-binding domain, and leucine-rich repeat protein 3 (NLRP3)-inflammasome sense DAMPs and DAMP-like molecules and release the proinflammatory cytokines, interleukin (IL)-1β and IL-18. CRITICAL ISSUES Available therapeutic approaches that interfered with the signaling of TLRs, P2X(7), NLRP3-inflammasome, and IL-1β showed encouraging results in metabolic diseases, which will be also highlighted in this review. FUTURE DIRECTIONS It is important to understand the origination of DAMPs and how they contribute to the inflammatory response in metabolic disorders to develop selective and efficient therapeutics for intervention.
Collapse
Affiliation(s)
- Irma Garcia-Martinez
- 1 Section of Digestive Diseases, Department of Internal Medicine, Yale University , New Haven, Connecticut
| | - Mohamed E Shaker
- 1 Section of Digestive Diseases, Department of Internal Medicine, Yale University , New Haven, Connecticut.,2 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University , Mansoura, Egypt
| | - Wajahat Z Mehal
- 1 Section of Digestive Diseases, Department of Internal Medicine, Yale University , New Haven, Connecticut
| |
Collapse
|
236
|
Nadeau-Vallée M, Obari D, Quiniou C, Lubell WD, Olson DM, Girard S, Chemtob S. A critical role of interleukin-1 in preterm labor. Cytokine Growth Factor Rev 2015; 28:37-51. [PMID: 26684042 DOI: 10.1016/j.cytogfr.2015.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 12/16/2022]
Abstract
Preterm birth (PTB) is a leading cause of neonatal mortality and morbidity worldwide, and represents a heavy economic and social burden. Despite its broad etiology, PTB has been firmly linked to inflammatory processes. Pro-inflammatory cytokines are produced in gestational tissues in response to stressors and can prematurely induce uterine activation, which precedes the onset of preterm labor. Of all cytokines implicated, interleukin (IL)-1 has been largely studied, revealing a central role in preterm labor. However, currently approved IL-1-targeting therapies have failed to show expected efficacy in pre-clinical studies of preterm labor. Herein, we (a) summarize animal and human studies in which IL-1 or IL-1-targeting therapeutics are implicated with preterm labor, (b) focus on novel IL-1-targeting therapies and diagnostic tests, and (c) develop the case for commercialization and translation means to hasten their development.
Collapse
Affiliation(s)
- Mathieu Nadeau-Vallée
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montréal H3C 3J7, Canada
| | - Dima Obari
- Department of Pharmacology, Université de Montréal, Montréal H3C 3J7, Canada
| | - Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton AB TG6 2S2, Canada
| | - Sylvie Girard
- Departments of Obstetrics and Gynecology, CHU Sainte-Justine Research Centre, Montréal H3T 1C5, Canada.
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada.
| |
Collapse
|
237
|
Gnauck A, Lentle RG, Kruger MC. The Characteristics and Function of Bacterial Lipopolysaccharides and Their Endotoxic Potential in Humans. Int Rev Immunol 2015; 35:189-218. [PMID: 26606737 DOI: 10.3109/08830185.2015.1087518] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cross-talk between enteral microbiota and human host is essential for the development and maintenance of the human gastrointestinal and systemic immune systems. The presence of lipopolysaccharides (LPS) lysed from the cell membrane of Gram-negative bacteria in the gut lumen is thought to promote the development of a balanced gut immune response whilst the entry of the same LPS into systemic circulation may lead to a deleterious pro-inflammatory systemic immune response. Recent data suggest that chronically low levels of circulating LPS may be associated with the development of metabolic diseases such as insulin resistance, type 2 diabetes, atherosclerosis and cardiovascular disease. This review focuses on the cross-talk between enteral commensal bacteria and the human immune system via LPS. We explain the structural characterisation of the LPS molecule and its function in the bacteria. We then examine how LPS is recognised by various elements of the human immune system and the signalling pathways that are activated by the structure of the LPS molecule and the effect of various concentrations. Further, we discuss the sequelae of this signalling in the gut-associated and systemic immune systems i.e. the neutralisation of LPS and the development of tolerance to LPS.
Collapse
Affiliation(s)
- Anne Gnauck
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| | - Roger G Lentle
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| | - Marlena C Kruger
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| |
Collapse
|
238
|
Yazdi AS, Röcken M, Ghoreschi K. Cutaneous immunology: basics and new concepts. Semin Immunopathol 2015; 38:3-10. [PMID: 26563284 DOI: 10.1007/s00281-015-0545-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.
Collapse
Affiliation(s)
- Amir S Yazdi
- Department of Dermatology, University Medical Center, Eberhard Karls University, Tübingen, Germany
| | - Martin Röcken
- Department of Dermatology, University Medical Center, Eberhard Karls University, Tübingen, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, University Medical Center, Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
239
|
Abstract
Inflammatory hyperalgesia is a complex process that depends on the sensitization of primary nociceptive neurons triggered by proinflammatory mediators, such as interleukin 1β (IL-1β). Recently, the peripheral activation of caspase-1 (previously known as IL-1β-converting enzyme) was implicated in the induction of acute inflammatory pain by promoting the processing of IL-1β from its precursor form, pro-IL-1β. Caspase-1 activation in several systems requires the assembly of an intracellular molecular platform called an inflammasome. Inflammasomes consist of 1 nucleotide-binding oligomerization domain-like receptor (NLR), the adapter molecule apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), and caspase-1. NLRP3 and NLRC4 inflammasomes are well described. However, the identity of the inflammasome that is involved in the peripheral activation of caspase-1 that accounts for acute inflammatory hyperalgesia has not been described. The present findings demonstrated that mice deficient in NLRC4 or ASC, but not in NLRP3, present reduced mechanical and thermal acute inflammatory hyperalgesia induced by carrageenan. The reduced hyperalgesia was accompanied by significant impairments in the levels of mature forms of IL-1β (p17) and caspase-1 (p20) compared to wild-type mice at the inflammatory site. Therefore, these results identified the inflammasome components NLRC4 and ASC as the molecular platform involved in the peripheral activation of caspase-1 and IL-1β maturation, which are responsible for the induction of acute inflammatory pain. In conclusion, our study provides new therapeutic targets for the control of acute inflammatory pain.
Collapse
|
240
|
Molecular hydrogen inhibits lipopolysaccharide-triggered NLRP3 inflammasome activation in macrophages by targeting the mitochondrial reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:50-5. [PMID: 26488087 DOI: 10.1016/j.bbamcr.2015.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/26/2015] [Accepted: 10/10/2015] [Indexed: 12/11/2022]
Abstract
The NLRP3 inflammasome, an intracellular multi-protein complex controlling the maturation of cytokine interleukin-1β, plays an important role in lipopolysaccharide (LPS)-induced inflammatory cascades. Recently, the production of mitochondrial reactive oxygen species (mtROS) in macrophages stimulated with LPS has been suggested to act as a trigger during the process of NLRP3 inflammasome activation that can be blocked by some mitochondria-targeted antioxidants. Known as a ROS scavenger, molecular hydrogen (H2) has been shown to possess therapeutic benefit on LPS-induced inflammatory damage in many animal experiments. Due to the unique molecular structure, H2 can easily target the mitochondria, suggesting that H2 is a potential antagonist of mtROS-dependent NLRP3 inflammasome activation. Here we have showed that, in mouse macrophages, H2 exhibited substantial inhibitory activity against LPS-initiated NLRP3 inflammasome activation by scavenging mtROS. Moreover, the elimination of mtROS by H2 resultantly inhibited mtROS-mediated NLRP3 deubiquitination, a non-transcriptional priming signal of NLRP3 in response to the stimulation of LPS. Additionally, the removal of mtROS by H2 reduced the generation of oxidized mitochondrial DNA and consequently decreased its binding to NLRP3, thereby inhibiting the NLRP3 inflammasome activation. Our findings have, for the first time, revealed the novel mechanism underlying the inhibitory effect of molecular hydrogen on LPS-caused NLRP3 inflammasome activation, highlighting the promising application of this new antioxidant in the treatment of LPS-associated inflammatory pathological damage.
Collapse
|
241
|
Vajjhala PR, Lu A, Brown DL, Pang SW, Sagulenko V, Sester DP, Cridland SO, Hill JM, Schroder K, Stow JL, Wu H, Stacey KJ. The Inflammasome Adaptor ASC Induces Procaspase-8 Death Effector Domain Filaments. J Biol Chem 2015; 290:29217-30. [PMID: 26468282 DOI: 10.1074/jbc.m115.687731] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 01/19/2023] Open
Abstract
Inflammasomes mediate inflammatory and cell death responses to pathogens and cellular stress signals via activation of procaspases-1 and -8. During inflammasome assembly, activated receptors of the NLR or PYHIN family recruit the adaptor protein ASC and initiate polymerization of its pyrin domain (PYD) into filaments. We show that ASC filaments in turn nucleate procaspase-8 death effector domain (DED) filaments in vitro and in vivo. Interaction between ASC PYD and procaspase-8 tandem DEDs optimally required both DEDs and represents an unusual heterotypic interaction between domains of the death fold superfamily. Analysis of ASC PYD mutants showed that interaction surfaces that mediate procaspase-8 interaction overlap with those required for ASC self-association and interaction with the PYDs of inflammasome initiators. Our data indicate that multiple types of death fold domain filaments form at inflammasomes and that PYD/DED and homotypic PYD interaction modes are similar. Interestingly, we observed condensation of procaspase-8 filaments containing the catalytic domain, suggesting that procaspase-8 interactions within and/or between filaments may be involved in caspase-8 activation. Procaspase-8 filaments may also be relevant to apoptosis induced by death receptors.
Collapse
Affiliation(s)
| | - Alvin Lu
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, and the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Darren L Brown
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Siew Wai Pang
- From the School of Chemistry and Molecular Biosciences and
| | | | - David P Sester
- From the School of Chemistry and Molecular Biosciences and
| | | | - Justine M Hill
- From the School of Chemistry and Molecular Biosciences and
| | - Kate Schroder
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer L Stow
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hao Wu
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, and the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Katryn J Stacey
- From the School of Chemistry and Molecular Biosciences and the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia,
| |
Collapse
|
242
|
Rivers-Auty J, Brough D. Potassium efflux fires the canon: Potassium efflux as a common trigger for canonical and noncanonical NLRP3 pathways. Eur J Immunol 2015; 45:2758-61. [PMID: 26332156 DOI: 10.1002/eji.201545958] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 08/12/2015] [Accepted: 08/21/2015] [Indexed: 01/10/2023]
Abstract
Murine caspase-11 and its human orthologues, caspase-4 and caspase-5, activate an inflammatory response following cytoplasmic recognition of cell wall constituents from Gram-negative bacteria, such as LPS. This inflammatory response involves pyroptotic cell death and the concomitant release of IL-1α, as well as the production of IL-1β and IL-18 through the noncanonical NLR family, pyrin domain containing 3 (NLRP3) pathway. This commentary discusses three papers in this issue of the European Journal of Immunology that advance our understanding of the roles of caspase-11, -4, and -5 in the noncanonical pathway. By utilizing the new gene editing technique, clustered regularly interspaced short palindromic repeats (CRISPR), as well as sensitive cell imaging techniques, these papers establish that cytoplasmic LPS-dependent IL-1β production requires the NLRP3 inflammasome and that its activation is dependent on K(+) efflux, whereas IL-1α release and pyroptotic cell death pathways are NLRP3-independent. These findings expand on previous research implicating K(+) efflux as the principal trigger for NLRP3 activation and suggest that canonical and noncanonical NLRP3 pathways are not as dissimilar as first thought.
Collapse
Affiliation(s)
- Jack Rivers-Auty
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - David Brough
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
243
|
Gong Z, Zhou J, Li H, Gao Y, Xu C, Zhao S, Chen Y, Cai W, Wu J. Curcumin suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Mol Nutr Food Res 2015; 59:2132-42. [PMID: 26250869 DOI: 10.1002/mnfr.201500316] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/09/2015] [Accepted: 07/24/2015] [Indexed: 01/13/2023]
Abstract
SCOPE The NLRP3 inflammasome responds to various pathogen-derived factors and danger-associated molecules, mediating IL-1β maturation, therefore is involved in multiple inflammatory diseases. Curcumin has been shown to possess strong anti-inflammatory activity, but the underlying mechanism is not fully understood. Here, we sought to investigate the role and mechanism of curcumin on the inhibition of mature IL-1β production via the regulation of NLRP3 inflammasome. METHODS AND RESULTS Curcumin dramatically inhibited the production of mature IL-1β in LPS-primed macrophages triggered by multiple NLRP3 inflammasome activators, and also reduced the level of cleaved caspase-1 as measured by western blot and ELISA. Curcumin prevented K(+) efflux, the common trigger for NLRP3 inflammasome activation, and attenuated lysosomes disruption and intracellular ROS formation as well. The inhibition of NLRP3 inflammasome by curcumin was in part mediated via the suppression of extracellular regulated protein kinases phosphorylation. Furthermore, administration of curcumin significantly reduced peritoneal IL-1β and HMGB-1 concentration induced by LPS and improved the survival of mice suffering from lethal endotoxic shock. CONCLUSION Curcumin potently inhibits the activation of NLRP3 inflammasome which may contribute to its anti-inflammatory activity. Our finding offers a mechanistic basis for the therapeutic potential of curcumin in septic shock and other NLRP3 inflammasome-driven diseases.
Collapse
Affiliation(s)
- Zizhen Gong
- Department of pediatric Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China.,Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, P. R. China
| | - Jiefei Zhou
- Department of pediatric Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China.,Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, P. R. China
| | - Hui Li
- Department of Pathology, Shanghai institute of Health Science, Shanghai, P. R. China
| | - Yanhong Gao
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Congfeng Xu
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Shengnan Zhao
- Department of pediatric Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China.,Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, P. R. China
| | - Yingwei Chen
- Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, P. R. China
| | - Wei Cai
- Department of pediatric Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China.,Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, P. R. China
| | - Jin Wu
- Department of pediatric Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China.,Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, P. R. China
| |
Collapse
|
244
|
Albertsmeier M, Pratschke S, Chaudry I, Angele MK. Gender-Specific Effects on Immune Response and Cardiac Function after Trauma Hemorrhage and Sepsis. VISZERALMEDIZIN 2015; 30:91-6. [PMID: 26288583 PMCID: PMC4513799 DOI: 10.1159/000360149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background Studies in human as well as animal models indicate a gender-specific responsiveness of the immune and organ systems with regard to shock, trauma, and sepsis. Methods A literature review was performed. Results Cell-mediated immune responses and cardiovascular functions are suppressed in males following trauma hemorrhage, whereas they are maintained or even enhanced in females in the proestrus state of the estrus cycle. Experimental studies have demonstrated that divergent immune responses in males and females following adverse circulatory conditions are mediated by the gender-specific hormones testosterone and estrogen. Several clinical trials, however, failed to demonstrate a significant association of gender and inflammatory response. This may be explained by the heterogeneity of the population in terms of their hormonal status at the time of injury. Conclusions With regard to the underlying mechanisms, receptors for sex hormones have been identified on various immune cells, suggesting direct effects of these hormones on immune function. Alternatively, indirect effects of sex steroids such as changes in cardiovascular responses or androgen- and estrogen-synthesizing enzymes might contribute to gender-specific immune responses. Clinical studies suggest that sex hormones, such as dehydroepiandrosterone, modulate the function of peripheral blood mononuclear cells also following abdominal surgery. Thus, sex hormones, receptor antagonists, and sex steroid-synthesizing enzymes might be useful in the future for modulating the complex immune responses after trauma hemorrhage and sepsis.
Collapse
Affiliation(s)
- Markus Albertsmeier
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Ludwig Maximilian University, Munich, Germany
| | - Sebastian Pratschke
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Ludwig Maximilian University, Munich, Germany
| | - Irshad Chaudry
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin K Angele
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
245
|
Antonopoulos C, Russo HM, El Sanadi C, Martin BN, Li X, Kaiser WJ, Mocarski ES, Dubyak GR. Caspase-8 as an Effector and Regulator of NLRP3 Inflammasome Signaling. J Biol Chem 2015; 290:20167-84. [PMID: 26100631 PMCID: PMC4536427 DOI: 10.1074/jbc.m115.652321] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/12/2015] [Indexed: 12/20/2022] Open
Abstract
We recently described the induction of noncanonical IL-1β processing via caspase-8 recruited to ripoptosome signaling platforms in myeloid leukocytes. Here, we demonstrate that activated NLRP3·ASC inflammasomes recruit caspase-8 to drive IL-1β processing in murine bone marrow-derived dendritic cells (BMDC) independent of caspase-1 and -11. Sustained stimulation (>2 h) of LPS-primed caspase-1-deficient (Casp1/11(-/-)) BMDC with the canonical NLRP3 inflammasome agonist nigericin results in release of bioactive IL-1β in conjunction with robust caspase-8 activation. This IL-1β processing and caspase-8 activation do not proceed in Nlrp3(-/-) or Asc(-/-) BMDC and are suppressed by pharmacological inhibition of caspase-8, indicating that caspase-8 can act as a direct IL-1β-converting enzyme during NLRP3 inflammasome activation. In contrast to the rapid caspase-1-mediated death of wild type (WT) BMDC via NLRP3-dependent pyroptosis, nigericin-stimulated Casp1/11(-/-) BMDC exhibit markedly delayed cell death via NLRP3-dependent apoptosis. Biochemical analyses of WT and Casp1/11(-/-) BMDC indicated that caspase-8 is proteolytically processed within detergent-insoluble ASC-enriched protein complexes prior to extracellular export during nigericin treatment. Although nigericin-stimulated caspase-1 activation and activity are only modestly attenuated in caspase-8-deficient (Casp8(-/-)Rip3(-/-)) BMDC, these cells do not exhibit the rapid loss of viability of WT cells. These results support a contribution of caspase-8 to both IL-1β production and regulated death signaling via NLRP3 inflammasomes. In the absence of caspase-1, NLRP3 inflammasomes directly utilize caspase-8 as both a pro-apoptotic initiator and major IL-1β-converting protease. In the presence of caspase-1, caspase-8 acts as a positive modulator of the NLRP3-dependent caspase-1 signaling cascades that drive both IL-1β production and pyroptotic death.
Collapse
Affiliation(s)
| | - Hana M Russo
- Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | - Bradley N Martin
- Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, the Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Xiaoxia Li
- the Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - William J Kaiser
- the Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Edward S Mocarski
- the Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - George R Dubyak
- Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, From the Departments of Physiology and Biophysics and
| |
Collapse
|
246
|
White AFB, Demchenko AV. Modulating LPS signal transduction at the LPS receptor complex with synthetic Lipid A analogues. Adv Carbohydr Chem Biochem 2015; 71:339-89. [PMID: 25480508 DOI: 10.1016/b978-0-12-800128-8.00005-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis, defined as a clinical syndrome brought about by an amplified and dysregulated inflammatory response to infections, is one of the leading causes of death worldwide. Despite persistent attempts to develop treatment strategies to manage sepsis in the clinical setting, the basic elements of treatment have not changed since the 1960s. As such, the development of effective therapies for reducing inflammatory reactions and end-organ dysfunction in critically ill patients with sepsis remains a global priority. Advances in understanding of the immune response to sepsis provide the opportunity to develop more effective pharmaceuticals. This article details current information on the modulation of the lipopolysaccharide (LPS) receptor complex with synthetic Lipid A mimetics. As the initial and most critical event in sepsis pathophysiology, the LPS receptor provides an attractive target for antisepsis agents. One of the well-studied approaches to sepsis therapy involves the use of derivatives of Lipid A, the membrane-anchor portion of an LPS, which is largely responsible for its endotoxic activity. This article describes the structural and conformational requirements influencing the ability of Lipid A analogues to compete with LPS for binding to the LPS receptor complex and to inhibit the induction of the signal transduction pathway by impairing LPS-initiated receptor dimerization.
Collapse
Affiliation(s)
- Aileen F B White
- Dextra Laboratories Ltd., Science and Technology Centre, Earley Gate, Reading, United Kingdom.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, USA.
| |
Collapse
|
247
|
Kistowska M, Fenini G, Jankovic D, Feldmeyer L, Kerl K, Bosshard P, Contassot E, French LE. Malassezia yeasts activate the NLRP3 inflammasome in antigen-presenting cells via Syk-kinase signalling. Exp Dermatol 2015; 23:884-9. [PMID: 25267545 DOI: 10.1111/exd.12552] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2014] [Indexed: 12/22/2022]
Abstract
Although being a normal part of the skin flora, yeasts of the genus Malassezia are associated with several common dermatologic conditions including pityriasis versicolour, seborrhoeic dermatitis (SD), folliculitis, atopic eczema/dermatitis (AE/AD) and dandruff. While Malassezia spp. are aetiological agents of pityriasis versicolour, a causal role of Malassezia spp. in AE/AD and SD remains to be established. Previous reports have shown that fungi such as Candida albicans and Aspergillus fumigatus are able to efficiently activate the NLRP3 inflammasome leading to robust secretion of the pro-inflammatory cytokine IL-1β. To date, innate immune responses to Malassezia spp. are not well characterized. Here, we show that different Malassezia species could induce NLRP3 inflammasome activation and subsequent IL-1β secretion in human antigen-presenting cells. In contrast, keratinocytes were not able to secrete IL-1β when exposed to Malassezia spp. Moreover, we demonstrate that IL-1β secretion in antigen-presenting cells was dependent on Syk-kinase signalling. Our results identify Malassezia spp. as potential strong inducers of pro-inflammatory responses when taken up by antigen-presenting cells and identify C-type lectin receptors and the NLRP3 inflammasome as crucial actors in this process.
Collapse
|
248
|
Diamond CE, Khameneh HJ, Brough D, Mortellaro A. Novel perspectives on non-canonical inflammasome activation. Immunotargets Ther 2015; 4:131-41. [PMID: 27471719 PMCID: PMC4918253 DOI: 10.2147/itt.s57976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Inflammasomes are cytosolic multi-protein complexes that regulate the secretion of the proinflammatory cytokines, IL-1β and IL-18, and induce pyroptosis, an inflammatory form of cell death. The NLRP3 inflammasome is the most well-characterized member of this family and functions by sensing intracellular pathogen- and damage-associated molecular patterns and activating caspase-1, which processes the biologically inactive IL-1β and IL-18 precursors into active cytokines. Recent studies have identified an alternative mechanism of inflammasome activation, termed the non-canonical inflammasome, which is triggered by cytosolic sensing of lipopolysaccharide (LPS) derived from bacteria that have escaped phagolysosomes. This pathway is independent of Toll-like receptor 4 (TLR4), the well-known extracellular receptor for LPS, but instead depends on the inflammatory protease, caspase-11. Although our understanding of caspase-11 activation is still in its infancy, it appears to be an essential mediator of septic shock and attenuates intestinal inflammation. In this review, we bring together the latest data on the roles of caspase-11 and the mechanisms underlying caspase-11-mediated activation of the non-canonical inflammasome, and consider the implications of this pathway on TLR4-independent immune responses to LPS.
Collapse
Affiliation(s)
- Catherine Emma Diamond
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore; Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Hanif Javanmard Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore
| | - David Brough
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore
| |
Collapse
|
249
|
Gentile LF, Cuenca AL, Cuenca AG, Nacionales DC, Ungaro R, Efron PA, Moldawer LL, Larson SD. Improved emergency myelopoiesis and survival in neonatal sepsis by caspase-1/11 ablation. Immunology 2015; 145:300-11. [PMID: 25684123 DOI: 10.1111/imm.12450] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 01/06/2023] Open
Abstract
Over one million newborns die annually from sepsis with the highest mortality in premature and low-birthweight infants. The inflammasome plays a central role in the regulation of innate immunity and inflammation, and is presumed to be involved in protective immunity, in large part through the caspase-1-dependent activation of interleukin-1β (IL-1β) and IL-18. Studies in endotoxic shock, however, suggest that endogenous caspase-1 activity and the inflammasome contribute to mortality primarily by promoting excessive systemic inflammatory responses. We examined whether caspase-1 and the inflammasome also regulate neonatal inflammation, host protective immunity and myelopoiesis during polymicrobial sepsis. Neonatal (5-7 days) C57BL/6 and caspase-1/11(-/-) mice underwent a low-lethality caecal slurry model of intra-abdominal sepsis (LD25-45 ). Ablation of caspase-1/11, but not apoptosis-associated speck-like protein containing a CARD domain or nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), improved neonatal survival following septic challenge compared with wild-type mice (P < 0·001), with decreased concentrations of inflammatory cytokines in the serum and peritoneum. Surprisingly, caspase-1/11(-/-) neonates also exhibited increased bone marrow and splenic haematopoietic stem cell expansion (P < 0·001), and increased concentrations of granulocyte and macrophage colony-stimulating factors in the peritoneum (P < 0·001) after sepsis. Ablation of caspase-1/11 signalling was also associated with increased recruitment of peritoneal macrophages and neutrophils (P < 0·001), increased phagocytosis by neutrophils (P = 0·003), and decreased bacterial colonization (P = 0·02) in the peritoneum. These findings suggest that endogenous caspase-1/11 activity, independent of the NLRP3 inflammasome, not only promotes the magnitude of the inflammatory response, but also suppresses protective immunity in the neonate, so contributing to innate immune dysfunction and poor survival in neonatal sepsis.
Collapse
Affiliation(s)
- Lori F Gentile
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Radian AD, Khare S, Chu LH, Dorfleutner A, Stehlik C. ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides. Mol Immunol 2015; 67:294-302. [PMID: 26143398 DOI: 10.1016/j.molimm.2015.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding oligimerization domain (NOD)-like receptors (NLRs) are pattern recognition receptors (PRRs) involved in innate immune responses. NLRs encode a central nucleotide-binding domain (NBD) consisting of the NAIP, CIITA, HET-E and TP1 (NACHT) domain and the NACHT associated domain (NAD), which facilitates receptor oligomerization and downstream inflammasome signaling. The NBD contains highly conserved regions, known as Walker motifs, that are required for nucleotide binding and hydrolysis. The NLR containing a PYRIN domain (PYD) 7 (NLRP7) has been recently shown to assemble an ASC and caspase-1-containing high molecular weight inflammasome complex in response to microbial acylated lipopeptides and Staphylococcus aureus infection. However, the molecular mechanism responsible for NLRP7 inflammasome activation is still elusive. Here we demonstrate that the NBD of NLRP7 is an ATP binding domain and has ATPase activity. We further show that an intact nucleotide-binding Walker A motif is required for NBD-mediated nucleotide binding and hydrolysis, oligomerization, and NLRP7 inflammasome formation and activity. Accordingly, THP-1 cells expressing a mutated Walker A motif display defective NLRP7 inflammasome activation, interleukin (IL)-1β release and pyroptosis in response to acylated lipopeptides and S. aureus infection. Taken together, our results provide novel insights into the mechanism of NLRP7 inflammasome assembly.
Collapse
Affiliation(s)
- Alexander D Radian
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Program in Life Sciences (DGP), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sonal Khare
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lan H Chu
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Program in Life Sciences (DGP), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|