201
|
O'Toole TE, Zheng YT, Hellmann J, Conklin DJ, Barski O, Bhatnagar A. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages. Toxicol Appl Pharmacol 2009; 236:194-201. [PMID: 19371603 DOI: 10.1016/j.taap.2009.01.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/06/2009] [Accepted: 01/26/2009] [Indexed: 12/19/2022]
Abstract
Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+](i)), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+](I) with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+](I), leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.
Collapse
Affiliation(s)
- Timothy E O'Toole
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | |
Collapse
|
202
|
Koleva YK, Madden JC, Cronin MTD. Formation of Categories from Structure−Activity Relationships To Allow Read-Across for Risk Assessment: Toxicity of α,β-Unsaturated Carbonyl Compounds. Chem Res Toxicol 2008; 21:2300-12. [DOI: 10.1021/tx8002438] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yana K. Koleva
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, England
| | - Judith C. Madden
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, England
| | - Mark T. D. Cronin
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, England
| |
Collapse
|
203
|
Protective role of luteolin on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. Biomed Pharmacother 2008; 62:590-7. [PMID: 18692983 DOI: 10.1016/j.biopha.2008.06.031] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 06/12/2008] [Indexed: 02/07/2023] Open
Abstract
The modifying effect of dietary exposure to a flavonoid, luteolin (LUT) during the azoxymethane (AOM)-induced colon carcinogenesis was investigated in this study. Aberrant crypt foci (ACF), lipid peroxidation (LPO), enzymic and non-enzymic antioxidants and histopathological analysis were performed. Colon carcinogenesis was induced by injecting 15 mg/body kg weight of AOM, intraperitoneally (i.p.), once in a week for 3 weeks in male Balb/c mice. AOM-induced mice were treated with LUT (1.2mg of LUT/kg body weight/day orally). After the experimental period, frequency of ACF, levels of thiobarbutaric acid reactive substances (TBARS) and hydroxy radical (OH ) were found to be increased, whereas glutathione (GSH), Vitamins C, E and A were decreased in the plasma and colon of AOM-induced mice. However, LUT treatment to AOM-induced mice significantly decreased the incidence of ACF, levels of TBARS and OH with a concordant increase in non-enzymic antioxidants in plasma and colon tissue. The activities of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were found to be decreased due to the induction of colon cancer in mouse. LUT treatment ameliorated the activities of these antioxidant enzymes. The histological study revealed a significant increase in the enlarged nuclei and hyperchromatism of cells in AOM-induced mice whereas LUT significantly reduced the signs in the colon. The immunohistochemical expression of MDA-DNA adduct was studied. In AOM-induced group, the expression was increased and treatment with LUT decreased significantly. The present study depicts that LUT can act as an effective chemopreventive agent against colon cancer.
Collapse
|
204
|
Haberzettl P, Vladykovskaya E, Srivastava S, Bhatnagar A. Role of endoplasmic reticulum stress in acrolein-induced endothelial activation. Toxicol Appl Pharmacol 2008; 234:14-24. [PMID: 18951912 DOI: 10.1016/j.taap.2008.09.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 09/09/2008] [Accepted: 09/11/2008] [Indexed: 11/15/2022]
Abstract
Acrolein is a ubiquitous environmental pollutant and an endogenous product of lipid peroxidation. It is also generated during the metabolism of several drugs and amino acids. In this study, we examined the effects of acrolein on endothelial cells. Treatment of human umbilical vein endothelial cells (HUVECs) with 2 to 10 microM acrolein led to an increase in the phosphorylation of eIF-2alpha within 10 to 30 min of exposure. This was followed by alternate splicing of XBP-1 mRNA and an increase in the expression of the endoplasmic reticulum (ER) chaperone genes Grp78 and Herp. Within 2-4 h of treatment, acrolein also increased the abundance and the nuclear transport of the transcription factors ATF3, AFT4, and CHOP. Acrolein-induced increase in ATF3 was prevented by treating the cells with the chemical chaperone - phenylbutyric acid (PBA). Treatment with acrolein increased phosphorylation of ERK1/2, p38, and JNK. The increase in JNK phosphorylation was prevented by PBA. Acrolein treatment led to activation and nuclear translocation of the transcription factor NF-kappaB and an increase in TNF-alpha, IL-6 and IL-8, but not MCP-1, mRNA. Increased expression of cytokine genes and NF-kappaB activation were not observed in cells treated with PBA. These findings suggest that exposure to acrolein induces ER stress and triggers the unfolded protein response and that NF-kappaB activation and stimulation of cytokine production by acrolein could be attributed, in part, to ER stress. Chemical chaperones of protein-folding may be useful in treating toxicological and pathological states associated with excessive acrolein exposure or production.
Collapse
Affiliation(s)
- Petra Haberzettl
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
205
|
Deisinger PJ, Boatman RJ. In vivometabolism and kinetics of ethylene glycol monobutyl ether and its metabolites, 2-butoxyacetaldehyde and 2-butoxyacetic acid, as measured in blood, liver and forestomach of mice. Xenobiotica 2008; 34:675-85. [PMID: 15672755 DOI: 10.1080/00498250412331281061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. Ethylene glycol monobutyl ether (EGBE) causes forestomach hyperplasia and neoplasia in mice when administered chronically by inhalation. 2. The study was initiated to test the physiologically based pharmacokinetic (PBPK) model prediction that 2-butoxyacetaldehyde (BAL), a transient, labile intermediate in the oxidation of EGBE to butoxyacetic acid (BAA), is unlikely to achieve concentrations sufficient to cause DNA damage in target tissues. 3. Male and female B6C3F1 mice were administered a high oral dose of EGBE (600mgkg(-1)), and tissues were collected at 5, 15, 45 and 90min following the dose. The tissues were processed for determination of EGBE, BAL and BAA by gas chromatography-mass spectrometry. 4. BAL was detected at low concentrations in all tissues sampled and at all time points following EGBE administration (about 0.3-33 microM). BAL concentrations were highest in the initial samples (5 min) in all tissues and declined from that point. 5. BAL concentrations in liver and forestomach tissues corresponded to the peak concentrations predicted by an already published PBPK model, and are higher than BAL concentrations that could be achieved by inhalation exposure to EGBE. 6. Mouse inhalation exposure to EGBE is therefore unlikely to generate BAL concentrations in tissues sufficient to initiate a carcinogenic response.
Collapse
Affiliation(s)
- P J Deisinger
- Health and Environment Laboratories, Eastman Kodak Company, Rochester, NY 14652-6272, USA.
| | | |
Collapse
|
206
|
A comparative 90-day toxicity study of allyl acetate, allyl alcohol and acrolein. Toxicology 2008; 253:79-88. [PMID: 18817840 DOI: 10.1016/j.tox.2008.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 11/24/2022]
Abstract
Allyl acetate (AAC), allyl alcohol (AAL), and acrolein (ACR) are used in the manufacture of detergents, plastics, pharmaceuticals, and chemicals and as agricultural agents. A metabolic relationship exists between these chemicals in which allyl acetate is metabolized to allyl alcohol and subsequently to the highly reactive, alpha,beta-unsaturated aldehyde, acrolein. Due to the weaker reactivity of the protoxicants, allyl acetate and allyl alcohol, relative to acrolien we hypothesized the protoxicants would attain greater systemic exposure and therefore deliver higher doses of acrolein to the internal organs. By extension, the higher systemic exposure to acrolein we hypothesized should lead to more internal organ toxicity in the allyl acetate and allyl alcohol treated animals relative to those treated with acrolein. To address our hypothesis we compared the range of toxicities produced by all three chemicals in male and female Fischer 344/N rats and B6C3F1 mice exposed 5 days a week for 3 months by gavage in 0.5% methylcellulose. Rats (10/group) were dosed with 0-100mg/kg allyl acetate, 0-25mg/kg allyl alcohol, or 0-10mg/kg acrolein. Mice (10/group) were dosed with 0-125mg/kg allyl acetate, 0-50mg/kg allyl alcohol, or 0-20mg/kg acrolein. The highest dose of allyl acetate and acrolein decreased survival in both mice and rats. The primary target organ for the toxicity of all three chemicals in both species and sexes was the forestomach; squamous epithelial hyperplasia was observed following exposure to each chemical. In both species the highest allyl acetate dose group exhibited forestomach epithelium necrosis and hemorrhage and the highest dose of acrolein led to glandular stomach hemorrhage. Liver histopathology was the most apparent with allyl acetate, was also observed with allyl alcohol, but was not observed with acrolein. All chemicals had effects on the hematopoietic system with allyl acetate having the most pronounced effect. When dosed at quantities limited by toxicity, allyl acetate and allyl alcohol produce higher levels of urinary mercapturic acids than the minimally toxic dose of acrolein. This observation is likely due to biotransformation of allyl acetate and ally alcohol to acrolein that occurs after absorption and suggests that these chemicals are protoxicants that increase systemic exposure of acrolein. Increased systemic exposure to acrolein is likely responsible for the differences in hepatic toxicological profile observed with these chemicals.
Collapse
|
207
|
Effect of Alcohol on Bacterial Hemolysis. Curr Microbiol 2008; 57:318-25. [DOI: 10.1007/s00284-008-9196-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 05/14/2008] [Indexed: 10/21/2022]
|
208
|
O'Toole TE, Conklin DJ, Bhatnagar A. Environmental risk factors for heart disease. REVIEWS ON ENVIRONMENTAL HEALTH 2008; 23:167-202. [PMID: 19119685 DOI: 10.1515/reveh.2008.23.3.167] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this review, we discuss current evidence linking environmental pollutants to cardiovascular disease (CVD). Extensive evidence indicates that environmental factors contribute to CVD risk, incidence, and severity. Migrant studies show that changes in the environment could substantially alter CVD risk in a genetically stable population. Additionally, CVD risk is affected by changes in nutritional and lifestyle choices. Recent studies in the field of environmental cardiology suggest that environmental toxins also influence CVD. Exposure to tobacco smoke is paradigmatic of such environmental risk and is strongly and positively associated with increased cardiovascular morbidity and mortality. In animal models of exposure, tobacco smoke induces endothelial dysfunction and prothrombotic responses and exacerbates atherogenesis and myocardial ischemic injury. Similar mechanism may be engaged by other pollutants or food constituents. Several large population-based studies indicate that exposure to fine or ultrafine particulate air pollution increases CVD morbidity and mortality, and the plausibility of this association is supported by data from animal studies. Exposure to other chemicals such as polyaromatic hydrocarbons, aldehydes, and metals has also been reported to elevate CVD risk by affecting atherogenesis, thrombosis, or blood pressure regulation. Maternal exposure to drugs, toxins, and infection has been linked with cardiac birth defects and premature CVD in later life. Collectively, the data support the notion that chronic environmental stress is an important determinant of CVD risk. Further work is required to assess the magnitude of this risk fully and to delineate specific mechanisms by which environmental toxins affect CVD.
Collapse
Affiliation(s)
- Timothy E O'Toole
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | | | | |
Collapse
|
209
|
Lachenmeier DW, Sohnius EM. The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: evidence from a large chemical survey. Food Chem Toxicol 2008; 46:2903-11. [PMID: 18577414 DOI: 10.1016/j.fct.2008.05.034] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 04/07/2008] [Accepted: 05/29/2008] [Indexed: 12/20/2022]
Abstract
Acetaldehyde is a volatile compound naturally found in alcoholic beverages, and it is regarded as possibly being carcinogenic to humans (IARC Group 2B). Acetaldehyde formed during ethanol metabolism is generally considered as a source of carcinogenicity in alcoholic beverages. However, no systematic data is available about its occurrence in alcoholic beverages and the carcinogenic potential of human exposure to this directly ingested form of acetaldehyde outside ethanol metabolism. In this study, we have analysed and evaluated a large sample collective of different alcoholic beverages (n=1,555). Beer (9+/-7 mg/l, range 0-63 mg/l) had significantly lower acetaldehyde contents than wine (34+/-34 mg/l, range 0-211 mg/l), or spirits (66+/-101 mg/l, range 0-1,159 mg/l). The highest acetaldehyde concentrations were generally found in fortified wines (118+/-120 mg/l, range 12-800 mg/l). Assuming an equal distribution between the beverage and saliva, the residual acetaldehyde concentrations in the saliva after swallowing could be on average 195 microM for beer, 734 microM for wine, 1,387 microM for spirits, or 2,417 microM for fortified wine, which are above levels previously regarded as potentially carcinogenic. Further research is needed to confirm the carcinogenic potential of directly ingested acetaldehyde. Until then, some possible preliminary interventions include the reduction of acetaldehyde in the beverages by improvement in production technology or the use of acetaldehyde binding additives. A re-evaluation of the 'generally recognized as safe' status of acetaldehyde is also required, which does not appear to be in agreement with its toxicity and carcinogenicity.
Collapse
Affiliation(s)
- Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Str. 3, D-76187 Karlsruhe, Germany.
| | | |
Collapse
|
210
|
Pyatt D, Natelson E, Golden R. Is inhalation exposure to formaldehyde a biologically plausible cause of lymphohematopoietic malignancies? Regul Toxicol Pharmacol 2008; 51:119-33. [DOI: 10.1016/j.yrtph.2008.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/26/2008] [Accepted: 03/05/2008] [Indexed: 11/25/2022]
|
211
|
Acrolein consumption exacerbates myocardial ischemic injury and blocks nitric oxide-induced PKCepsilon signaling and cardioprotection. J Mol Cell Cardiol 2008; 44:1016-1022. [PMID: 18468618 DOI: 10.1016/j.yjmcc.2008.03.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/21/2008] [Accepted: 03/22/2008] [Indexed: 11/21/2022]
Abstract
Aldehydes are common reactive constituents of food, water and air. Several food aldehydes are potentially carcinogenic and toxic; however, the direct effects of dietary aldehydes on cardiac ischemia-reperfusion (IR) injury are unknown. We tested the hypothesis that dietary consumption of aldehydes modulates myocardial IR injury and preconditioning. Mice were gavage-fed the alpha, beta-unsaturated aldehyde acrolein (5mg/kg) or water (vehicle) 24h prior to a 30-min coronary artery occlusion and 24-hour reperfusion. Myocardial infarct size was significantly increased in acrolein-treated mice, demonstrating that acute acrolein exposure worsens cardiac IR injury. Furthermore, late cardioprotection afforded by the nitric oxide (NO) donor diethylenetriamine/NO (DETA/NO; dose: 0.1mg/kg x 4, i.v.) was abrogated by the administration of acrolein 2h prior to DETA/NO treatment, indicating that oral acrolein impairs NO donor-induced late preconditioning. To examine potential intracellular targets of aldehydes, we investigated the impact of acrolein on mitochondrial PKCepsilon signaling in the heart. Acrolein-protein adducts were formed in a dose-dependent manner in isolated cardiac mitochondria in vitro and specific acrolein-PKCepsilon adducts were present in cardiac mitochondrial fractions following acrolein exposure in vivo, demonstrating that mitochondria are major targets of aldehyde toxicity. Furthermore, DETA/NO preconditioning induced both PKCepsilon translocation and increased mitochondrial PKCepsilon localization. Both of these responses were blocked by acrolein pretreatment, providing evidence that aldehydes disrupt cardioprotective signaling events involving PKCepsilon. Consumption of an aldehyde-rich diet could exacerbate cardiac IR injury and block NO donor-induced cardioprotection via mechanisms that disrupt PKCepsilon signaling.
Collapse
|
212
|
Ajith TA, Riji T, Anu V. In vitro anti-oxidant and DNA protective effects of the novel 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor rosuvastatin. Clin Exp Pharmacol Physiol 2008; 35:625-629. [PMID: 18177480 DOI: 10.1111/j.1440-1681.2007.04853.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Free radical-induced lipid peroxidation and changes in protein and nucleic acid structures can result in various human ailments, including ageing, neurodegenerative disorders and cancer. High body fat or dietary fat further enhances the free radical-mediated pathogenesis of various diseases. 2. In the present study, the in vitro anti-oxidant and DNA protective effects of the novel cardiovascular drug rosuvastatin were evaluated. Anti-oxidant activity was evaluated on the basis of inhibition of lipid peroxidation, scavenging of superoxide radical and the reduction of ferric ions (Fe(3+)). Inhibition of lipid peroxidation was determined using Fenton's reaction-induced lipid peroxidation in rat liver and brain homogenates and liver mitochondria. Superoxide radical-scavenging activity was evaluated by scavenging of the superoxide anion generated by photo illumination of riboflavin and Fe(3+)-reducing activity was determined by the ferric-reducing anti-oxidant power (FRAP) assay. DNA protection was evaluated according to changes in H(2)O(2)-induced pBR322 plasmid DNA and Fenton's reaction-induced-fragmentation of rat liver DNA. 3. The results indicate that rosuvastatin (1.5 or 2 mg/mL) is able to protect against lipid peroxidation. Furthermore, H(2)O(2)-induced changes in pBR322 plasmid DNA and fragmentation of hepatic DNA were alleviated by rosuvastatin. However, rosuvastatin did not show any superoxide anion-scavenging activity. The protective mechanism of rosuvastatin can be correlated with the reducing equivalent donating property or direct hydroxyl radical-scavenging activity of the drug. 4. The pleiotropic activities of rosuvastatin exhibited suggest its clinical advantages against oxidative stress-induced human ailments in addition to its widely using hypolipidaemic effect.
Collapse
Affiliation(s)
- T A Ajith
- Department of Biochemistry, Amala Institute of Medical Sciences, Amala Nagar, Thrissur, Kerala, India.
| | | | | |
Collapse
|
213
|
Flavouring Group Evaluation 2, Revision 1 (FGE.02) : Branched- and straight-chain aliphatic saturated primary alcohols and related esters of primary alcohols and straight-chain carboxylic acids and one straight-chain aldehyde from chemical groups 1 and 2. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
214
|
Dorman DC, Struve MF, Wong BA, Gross EA, Parkinson C, Willson GA, Tan YM, Campbell JL, Teeguarden JG, Clewell HJ, Andersen ME. Derivation of an inhalation reference concentration based upon olfactory neuronal loss in male rats following subchronic acetaldehyde inhalation. Inhal Toxicol 2008; 20:245-56. [PMID: 18300046 DOI: 10.1080/08958370701864250] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Acetaldehyde inhalation induces neoplastic and nonneoplastic responses in the rodent nasal cavity. This experiment further characterizes the dose-response relationship for nasal pathology, nasal epithelial cell proliferation, and DNA-protein cross-link formation in F-344 rats exposed subchronically to acetaldehyde. Animals underwent whole-body exposure to 0, 50, 150, 500, or 1500 ppm acetaldehyde for 6 h/day, 5 days/wk for up to 65 exposure days. Respiratory tract histopathology was evaluated after 4, 9, 14, 30, and 65 exposure days. Acetaldehyde exposure was not associated with reduced body weight gain or other evidence of systemic toxicity. Histologic evaluation of the nasal cavity showed an increased incidence of olfactory neuronal loss (ONL) following acute to subchronic exposure to > or = 150 ppm acetaldehyde and increased olfactory epithelial cell proliferation following exposure to 1500 ppm acetaldehyde. The severity of the ONL demonstrated dose- and temporal-dependent behaviors, with minimal effects noted at 150-500 ppm acetaldehyde and moderately severe lesions seen in the highest exposure group, with increased lesion severity and extent as the exposure duration increased. Acetaldehyde exposure was also associated with inflammation, hyperplasia, and squamous metaplasia of the respiratory epithelium. These responses were seen in animals exposed to > or = 500 ppm acetaldehyde. Acetaldehyde exposure was not associated with increased DNA-protein cross-link formation in the respiratory or olfactory epithelium. A model of acetaldehyde pharmacokinetics in the nose was used to derive an inhalation reference concentration (RfC) of 0.4 ppm, based on the no-observed-adverse-effect level (NOAEL) of 50 ppm for the nasal pathology seen in this study.
Collapse
Affiliation(s)
- David C Dorman
- CIIT at The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA. david
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Teeguarden JG, Bogdanffy MS, Covington TR, Tan C, Jarabek AM. A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry. Inhal Toxicol 2008; 20:375-90. [PMID: 18302046 DOI: 10.1080/08958370801903750] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Acetaldehyde is an important intermediate in the chemical synthesis and normal oxidative metabolism of several industrially important compounds, including ethanol, ethyl acetate, and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneration of the olfactory and respiratory epithelium in rats at concentrations > 50 ppm (90 day exposure) and respiratory and olfactory nasal tumors at concentrations > or = 750 ppm, the lowest concentration tested in the 2-yr chronic bioassay. Differences in the anatomy and biochemistry of the rodent and human nose, including polymorphisms in human high-affinity acetaldehyde dehydrogenase (ALDH2), are important considerations for interspecies extrapolations in the risk assessment of acetaldehyde. A physiologically based pharmacokinetic model of rat and human nasal tissues was constructed for acetaldehyde to support a dosimetry-based risk assessment for acetaldehyde (Dorman et al., 2008). The rodent model was developed using published metabolic constants and calibrated using upper-respiratory-tract acetaldehyde extraction data. The human nasal model incorporates previously published tissue volumes, blood flows, and acetaldehyde metabolic constants. ALDH2 polymorphisms were represented in the human model as reduced rates of acetaldehyde metabolism. Steady-state dorsal olfactory epithelial tissue acetaldehyde concentrations in the rat were predicted to be 409, 6287, and 12,634 microM at noncytotoxic (50 ppm), and cytotoxic/tumorigenic exposure concentrations (750 and 1500 ppm), respectively. The human equivalent concentration (HEC) of the rat no-observed-adverse-effect level (NOAEL) of 50 ppm, based on steady-state acetaldehyde concentrations from continual exposures, was 67 ppm. Respiratory and olfactory epithelial tissue acetaldehyde and H(+) (pH) concentrations were largely linear functions of exposure in both species. The impact of presumed ALDH2 polymorphisms on human olfactory tissue concentrations was negligible; the high-affinity, low-capacity ALDH2 does not contribute significantly to acetaldehyde metabolism in the nasal tissues. The human equivalent acetaldehyde concentration for homozygous low activity was 66 ppm, 1.5% lower than for the homozygous full activity phenotype. The rat and human acetaldehyde PBPK models developed here can also be used as a bridge between acetaldehyde dose-response and mode-of-action data as well as between similar databases for other acetaldehyde-producing nasal toxicants.
Collapse
Affiliation(s)
- Justin G Teeguarden
- Biological Monitoring and Modeling, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | |
Collapse
|
216
|
Kim SI, Pfeifer GP, Besaratinia A. Lack of mutagenicity of acrolein-induced DNA adducts in mouse and human cells. Cancer Res 2008; 67:11640-7. [PMID: 18089793 DOI: 10.1158/0008-5472.can-07-2528] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acrolein is an endogenous metabolite and a ubiquitous environmental pollutant. Recently, it has been suggested that acrolein is a major etiologic agent for tobacco smoking-related lung cancer. Despite the known DNA-damaging effects of acrolein, its mutagenicity to mammalian cells remains uncertain. We have investigated acrolein-induced DNA damage in relation to mutagenesis, with special focus on DNA repair, in mouse and human cells. We mapped the formation of acrolein-induced DNA adducts and the kinetics of repair of the induced lesions in the cII transgene, the mutational target, in acrolein-treated transgenic mouse fibroblasts. Acrolein-DNA adducts were formed preferentially at specific nucleotide positions, mainly at G:C base pairs, along the cII transgene. The induced acrolein-DNA adducts were moderately resistant to DNA repair. Quantification of cII mutant frequency in acrolein-treated cells, however, revealed that acrolein was not mutagenic to these cells at doses sufficient to produce DNA adducts. Determination of supF mutant frequency in DNA repair-proficient and DNA repair-deficient human fibroblasts transfected with acrolein-treated plasmids confirmed a lack of acrolein mutagenicity. Because CpG methylation may intensify acrolein-DNA adduction, we examined whether the extent of CpG methylation in the supF gene can determine acrolein-induced mutagenesis in human cells. Enhancement of acrolein-DNA adduction by methylating CpGs in the supF sequence did not elicit a mutagenic response in human fibroblasts, however. We conclude that acrolein is not mutagenic to mouse and human fibroblasts, regardless of DNA repair capacity or methylation status of CpGs, possibly because of a highly accurate replication bypass of the induced lesions.
Collapse
Affiliation(s)
- Sang-in Kim
- Division of Biology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California 91010-3000, USA
| | | | | |
Collapse
|
217
|
Yan R, Zu X, Ma J, Liu Z, Adeyanju M, Cao D. Aldo-keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: Implication for cancer intervention. Int J Cancer 2007; 121:2301-6. [PMID: 17597105 DOI: 10.1002/ijc.22933] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aldo-keto reductase family 1 B10 (AKR1B10), a member of aldo-keto reductase superfamily, is overexpressed in human hepatocellular carcinoma, lung squamous cell carcinoma and lung adenocarcinoma. Our previous study had demonstrated that the ectopic expression of AKR1B10 in 293T cells promotes cell proliferation. To evaluate its potential as a target for cancer intervention, in the current study we knocked down AKR1B10 expression in HCT-8 cells derived from a colorectal carcinoma, using chemically synthesized small interfering RNA (siRNA). The siRNA 1, targeted to encoding region, downregulated AKR1B10 expression by more than 60%, and siRNA 2, targeted to 3' untranslational region, reduced AKR1B10 expression by more than 95%. AKR1B10 silencing resulted in approximately a 50% decrease in cell growth rate and nearly 40% suppression of DNA synthesis. More importantly, AKR1B10 downregulation significantly reduced focus formation rate and colony size in semisolid culture, indicating the critical role of AKR1B10 in HCT-8 cell proliferation. Recombinant AKR1B10 protein showed strong enzymatic activity to acrolein and crotonaldehyde, with K(m) = 110.1 +/- 12.2 microM and V(max) = 3,122.0 +/- 64.7 nmol/mg protein/min for acrolein and K(m) = 86.7 +/- 14.3 microM and V(max) = 2,647.5 +/- 132.2 nmol/mg protein/min for crotonaldehyde. AKR1B10 downregulation enhanced the susceptibility of HCT-8 cells to acrolein (25 microM) and crotonaldehyde (50 microM), resulting in rapid oncotic cell death characterized with lactate dehydrogenase efflux and annexin-V staining. These results suggest that AKR1B10 may regulate cell proliferation and cellular response to additional carbonyl stress, thus being a potential target for cancer intervention.
Collapse
Affiliation(s)
- Ruilan Yan
- Department of Medical Microbiology, Immunology and Cell Biology, SimmonsCooper Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | | | | | | | | |
Collapse
|
218
|
Hamann K, Nehrt G, Ouyang H, Duerstock B, Shi R. Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord. J Neurochem 2007; 104:708-18. [PMID: 17995940 DOI: 10.1111/j.1471-4159.2007.05002.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown that acrolein, a lipid peroxidation byproduct, is significantly increased following spinal cord injury in vivo, and that exposure to neuronal cells results in oxidative stress, mitochondrial dysfunction, increased membrane permeability, impaired axonal conductivity, and eventually cell death. Acrolein thus may be a key player in the pathogenesis of spinal cord injury, where lipid peroxidation is known to be involved. The current study demonstrates that the acrolein scavenger hydralazine protects against not only acrolein-mediated injury, but also compression in guinea pig spinal cord ex vivo. Specifically, hydralazine (500 mumol/L to 1 mmol/L) can significantly alleviate acrolein (100-500 mumol/L)-induced superoxide production, glutathione depletion, mitochondrial dysfunction, loss of membrane integrity, and reduced compound action potential conduction. Additionally, 500 mumol/L hydralazine significantly attenuated compression-mediated membrane disruptions at 2 and 3 h following injury. This was consistent with our findings that acrolein-lys adducts were increased following compression injury ex vivo, an effect that was prevented by hydralazine treatment. These findings provide further evidence for the role of acrolein in spinal cord injury, and suggest that acrolein-scavenging drugs such as hydralazine may represent a novel therapy to effectively reduce oxidative stress in disorders such as spinal cord injury and neurodegenerative diseases, where oxidative stress is known to play a role.
Collapse
Affiliation(s)
- Kristin Hamann
- Department of Basic Medical Sciences, Center for Paralysis Research, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
219
|
Patel M, Lu L, Zander DS, Sreerama L, Coco D, Moreb JS. ALDH1A1 and ALDH3A1 expression in lung cancers: correlation with histologic type and potential precursors. Lung Cancer 2007; 59:340-9. [PMID: 17920722 DOI: 10.1016/j.lungcan.2007.08.033] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 08/14/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
We hypothesize that aldehyde dehydrogenase (ALDH) isozymes may be upregulated in lung tissue as a result of exposure to carcinogenic aldehydes found in cigarette smoke. To investigate this hypothesis, we studied the expression of two ALDH isozymes in lung cancer from patient samples and its relationship to the history of cigarette smoking. Immunohistochemical staining for ALDH1A1 and ALDH3A1 was performed on archival specimens from control patients without lung cancer, and patients with one of the primary lung cancers: squamous cell cancer (SCCA), adenocarcinoma (AdenoCA), and small cell lung cancer (SCLC). An overall score was obtained for each sample based upon multiplying the staining intensity (0-3) and the extensiveness (0-100%). Mean+/-S.E.M. for each experimental group was calculated and compared. Our results indicate a significantly higher level of expression of ALDH1A1 and ALDH3A1 in SCCA (155+/-19 and 162+/-17, respectively) and AdenoCA (116+/-12 and 107+/-10) than SCLC (39+/-11 and 42+/-12) (P<0.01). Atypical pneumocytes demonstrated significantly higher levels of expression of ALDH1A1 and ALDH3A1 than normal pneumocytes (a normal counterpart of AdenoCA), which is suggestive of up regulation during malignant transformation to AdenoCA. A subset analysis of all samples studied revealed increased expression of ALDH1A1 (P=0.055) and ALDH3A1 (P=0.0093) in normal pneumocytes of smokers (n=32) in comparison to those of non-smokers (n=17). Non-small cell lung cancer (NSCLC) express very high levels of ALDH1A1 and ALDH3A1 in comparison with SCLC, elevated expression of both enzymes may be associated with malignant transformation to AdenoCA, and cigarette smoking seems to result in increased expression of these enzymes in normal pneumocytes.
Collapse
Affiliation(s)
- Miten Patel
- Department of Medicine, University of Florida, FL, USA
| | | | | | | | | | | |
Collapse
|
220
|
Cheng Y, Zhang J, Li Y, Wang Y, Gong J. Proteome analysis of human gastric cardia adenocarcinoma by laser capture microdissection. BMC Cancer 2007; 7:191. [PMID: 17927838 PMCID: PMC2151079 DOI: 10.1186/1471-2407-7-191] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 10/11/2007] [Indexed: 12/26/2022] Open
Abstract
Background The incidence of gastric cardiac adenocarcinoma (GCA) has been increasing in the past two decades in China, but the molecular changes relating to carcinogenesis have not been well characterised. Methods In this study, we used a comparative proteomic approach to analyse the malignant and nonmalignant gastric cardia epithelial cells isolated by navigated laser capture microdissection (LCM) from paired surgical specimens of human GCA. Results Twenty-seven spots corresponding to 23 proteins were consistently differentially regulated. Fifteen proteins were shown to be up-regulated, while eight proteins were shown to be down-regulated in malignant cells compared with nonmalignant columnar epithelial cells. The identified proteins appeared to be involved in metabolism, chaperone, antioxidation, signal transduction, apoptosis, cell proliferation, and differentiation. In addition, expressions of HSP27, 60, and Prx-2 in GCA specimens were further confirmed by immunohistochemical and western blot analyses. Conclusion These data indicate that the combination of navigated LCM with 2-DE provides an effective strategy for discovering proteins that are differentially expressed in GCA. Such proteins may contribute in elucidating the molecular mechanisms of GCA carcinogenesis. Furthermore, the combination provides potential clinical biomarkers that aid in early detection and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Gastroenterology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| | | | | | | | | |
Collapse
|
221
|
Luo J, Hill BG, Gu Y, Cai J, Srivastava S, Bhatnagar A, Prabhu SD. Mechanisms of acrolein-induced myocardial dysfunction: implications for environmental and endogenous aldehyde exposure. Am J Physiol Heart Circ Physiol 2007; 293:H3673-84. [PMID: 17921335 DOI: 10.1152/ajpheart.00284.2007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aldehydes are ubiquitous pollutants generated during the combustion of organic materials and are present in air, water, and food. Several aldehydes are also endogenous products of lipid peroxidation and by-products of drug metabolism. Despite well-documented high reactivity of unsaturated aldehydes, little is known regarding their cardiovascular effects and their role in cardiac pathology. Accordingly, we examined the myocardial effects of the model unsaturated aldehyde acrolein. In closed-chest mice, intravenous acrolein (0.5 mg/kg) induced rapid but reversible left ventricular dilatation and dysfunction. In mouse myocytes, micromolar acrolein acutely depressed myofilament Ca(2+) responsiveness without altering catecholamine sensitivity, similar to the phenotype of stunned myocardium. Immunoblotting revealed increased acrolein-protein adducts and protein-carbonyls in both acrolein-exposed myocardium (1.8-fold increase, P < 0.002) and myocytes (6.4-fold increase, P < 0.02). Both the contractile dysfunction and adduct formation were markedly attenuated by pretreatment with the thiol donor N-acetylcysteine (5 mM). Two-dimensional gel electrophoresis and mass-assisted laser desorption/ionization time-of-flight mass spectrometry analysis revealed two groups of adducted proteins, sarcomeric/cytoskeletal proteins (cardiac alpha-actin, desmin, myosin light polypeptide 3) and energy metabolism proteins (mitochondrial creatine kinase-2, ATP synthase), indicating site-specific protein modification that was confirmed by immunohistochemical colocalization. We conclude that direct exposure to acrolein induces selective myofilament impairment, which may be, in part, related to the modification of proteins involved in myocardial contraction and energy metabolism. Myocardial dysfunction induced by acrolein and related aldehydes may be symptomatic of toxicological states associated with ambient or occupational exposures or drug toxicity. Moreover, aldehydes such as acrolein may mediate cardiac dysfunction in pathologies characterized by high-oxidative stress.
Collapse
Affiliation(s)
- Jianzhu Luo
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, 550 South Jackson Street, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
222
|
Characterization of aldehyde oxidase from Brevibacillus sp. MEY43 and its application to oxidative removal of glutaraldehyde. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9541-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
223
|
Geroyiannaki M, Komaitis M, Stavrakas D, Polysiou M, Athanasopoulos P, Spanos M. Evaluation of acetaldehyde and methanol in greek traditional alcoholic beverages from varietal fermented grape pomaces (Vitis vinifera L.). Food Control 2007. [DOI: 10.1016/j.foodcont.2006.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
224
|
Valerio LG, Arvidson KB, Chanderbhan RF, Contrera JF. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Toxicol Appl Pharmacol 2007; 222:1-16. [PMID: 17482223 DOI: 10.1016/j.taap.2007.03.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/27/2007] [Accepted: 03/08/2007] [Indexed: 12/24/2022]
Abstract
Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals, comprised primarily of pharmaceutical, industrial and some natural products developed under an FDA-MDL cooperative research and development agreement (CRADA). The predictive performance for this group of dietary natural products and the control group was 97% sensitivity and 80% concordance. Specificity was marginal at 53%. This study finds that the in silico QSAR analysis employing this software's rodent carcinogenicity database is capable of identifying the rodent carcinogenic potential of naturally occurring organic molecules found in the human diet with a high degree of sensitivity. It is the first study to demonstrate successful QSAR predictive modeling of naturally occurring carcinogens found in the human diet using an external validation test. Further test validation of this software and expansion of the training data set for dietary chemicals will help to support the future use of such QSAR methods for screening and prioritizing the risk of dietary chemicals when actual animal data are inadequate, equivocal, or absent.
Collapse
Affiliation(s)
- Luis G Valerio
- Division of Biotechnology and GRAS Notice Review, US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, HFS-255, 5100 Paint Branch Parkway, College Park, MD 20740, USA.
| | | | | | | |
Collapse
|
225
|
Demkiv OM, Paryzhak SY, Gayda GZ, Sibirny VA, Gonchar MV. Formaldehyde dehydrogenase from the recombinant yeast Hansenula polymorpha: isolation and bioanalytic application. FEMS Yeast Res 2007; 7:1153-9. [PMID: 17565589 DOI: 10.1111/j.1567-1364.2007.00255.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A recombinant yeast clone, a derivative of the recipient Hansenula polymorpha strain NCYC 495, was chosen as an NAD and glutathione-dependent formaldehyde dehydrogenase overproducer. Optimal cultivation conditions for the highest yield of enzyme were established. A simple scheme for the isolation of formaldehyde dehydrogenase from the recombinant strain was proposed, and some characteristics of the purified enzyme were studied. An enzymatic method for formaldehyde assay based on formaldehyde dehydrogenase was developed and used for testing real samples.
Collapse
Affiliation(s)
- Olha M Demkiv
- Department of Analytical Biotechnology, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
| | | | | | | | | |
Collapse
|
226
|
Ben Ali M, Gonchar M, Gayda G, Paryzhak S, Maaref MA, Jaffrezic-Renault N, Korpan Y. Formaldehyde-sensitive sensor based on recombinant formaldehyde dehydrogenase using capacitance versus voltage measurements. Biosens Bioelectron 2007; 22:2790-5. [PMID: 17098416 DOI: 10.1016/j.bios.2006.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 09/21/2006] [Accepted: 10/05/2006] [Indexed: 10/23/2022]
Abstract
A new formaldehyde-selective biosensor was constructed using NAD(+)- and glutathione-dependent recombinant formaldehyde dehydrogenase as a bio-recognition element immobilised on the surface of Si/SiO(2)/Si(3)N(4) structure. Sensor's response to formaldehyde was evaluated by capacitance measurements. The calibration curves obtained for formaldehyde concentration range from 10 microM to 20mM showed a broad linear response with a sensitivity of 31 mV/decade and a detection limit about 10 microM. It has been shown that the output signal decreases with the increase of borate buffer concentration and the best sensitivity is observed in 2.5mM borate buffer, pH 8.40. The response of the created formaldehyde-sensitive biosensor has also been examined in 2.5mM Tris-HCl buffer, and the shift to the positive bias of the C(V) curves along with the potential axis has been observed, but the sensitivity of the biosensor in this buffer is decreased dramatically to the value of 2.4 mV/decade.
Collapse
Affiliation(s)
- M Ben Ali
- Institut Supérieur des Sciences, Appliquées et de Technologies de Sousse, Cité Taffela , Ibn Khaldoun, 4003, Sousse Tunisia.
| | | | | | | | | | | | | |
Collapse
|
227
|
Gosepath J, Brieger J, Muttray A, Best S, Pourianfar M, Jung D, Letzel S, Mann WJ. mRNA induction and cytokine release of inflammatory mediators during in vitro exposure of human nasal respiratory epithelia to acetaldehyde. Inhal Toxicol 2007; 18:1083-90. [PMID: 17050345 DOI: 10.1080/08958370600945549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Acetaldehyde has been shown to be cytotoxic and carcinogenic to the upper respiratory tract epithelium of rodents following long-term exposure. Most animal studies have concentrated on carcinogenicity and DNA-protein cross-link formation, while less is known about potential dose- and time-dependent induction of aldehyde-induced rhinitis in humans. In this in vitro study, 22 primary cell cultures established from inferior turbinate tissue of healthy individuals were exposed to acetaldehyde concentrations of 50 (German MAK value) or 500 ppm for 4 or 24 h. mRNA expression and protein levels of cytokines and other inflammatory mediators were quantified at the end of the 4- and 24-h exposures. Controls were exposed to synthetic air. Quantitative polymerase chain reaction (Q-PCR) analysis was performed for interleukin (IL)-6, IL-8, IL-1beta, monocyte chemotactic protein (MCP)-1, tumor necrosis factor (TNF)-alpha, GMCSF, Cox-1, and Cox-2. Enzyme-linked immunosorbent assay (ELISA) was performed from culture supernatants for IL-6, IL-8, IL-1beta, MCP-1, TNF-alpha, and GMCSF. Significant inductions of IL-1beta, TNF-alpha, and Cox-1 and Cox-2 mRNA were observed following exposure to > or =50 ppm acetaldehyde for 4 h. IL-6 and MCP-1 were also induced following a 4-h exposure to 500 ppm acetaldehyde. For all these parameters, effects were significantly stronger at the higher concentration. After 24-h of exposure only Cox-2 remained significantly elevated at 500 ppm but not at 50 ppm, while all other mediators had been downregulated. The obtained data suggest that with exposure to 500 ppm and remarkably also at the level of the occupational exposure limit of 50 ppm, an immediate transient upregulation of inflammatory mediator mRNA is induced, possibly leading to subclinical inflammatory effects.
Collapse
Affiliation(s)
- Jan Gosepath
- Department of Otolaryngology, Head and Neck Surgery, University of Mainz, School of Medicine, Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Uchida H, Hojyo M, Fujii Y, Maeda Y, Kajimura R, Yamanaka H, Sakurai A, Sakakibara M, Aisaka K. Purification, characterization, and potential applications of formate oxidase from Debaryomyces vanrijiae MH201. Appl Microbiol Biotechnol 2007; 74:805-12. [PMID: 17106679 DOI: 10.1007/s00253-006-0638-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 10/23/2022]
Abstract
Formate oxidase was found in cell-free extracts of Debaryomyces vanrijiae MH201, a soil isolate. After purification by column chromatography, the preparation showed a protein band corresponding to a molecular mass (MM) of 64 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The MM, estimated by a gel filtration, was 99 kDa. The preparation showed two and three bands on isoelectric focusing under denaturing and native conditions, respectively. These results suggest that the preparation contained three isoforms, each of which might be composed of alphaalpha, alphabeta, and betabeta subunits with apparently similar MM. The preparation acted on formate with K (m) and V (max) values of 11.7 mM and 262 micromol min(-1) mg(-1), respectively, at pH 4.5 and 25 degrees C, but showed no evidence of activity on the other compounds tested. The optimum pH and temperature were pH 4.0 and 35 degrees C, respectively. The preparation showed activities of 85% of the initial activity after storage at pH 6.0 and 4 degrees C for 8 weeks. When 10 mM formaldehyde was reacted with 2.0 U ml(-1) of the enzyme preparation at pH 5.5 and room temperature in the presence of 2.0 U ml(-1) of a microbial aldehyde oxidase and 100 U ml(-1) of catalase for 180 min, neither of formate nor formaldehyde was detected, suggesting that the reaction involved the quantitative conversion of formaldehyde to carbon dioxide.
Collapse
Affiliation(s)
- H Uchida
- Applied Chemistry and Biotechnology, Faculty of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui-Shi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Ishikawa H, Ishikawa T, Yamamoto H, Fukao A, Yokoyama K. Genotoxic effects of alcohol in human peripheral lymphocytes modulated by ADH1B and ALDH2 gene polymorphisms. Mutat Res 2007; 615:134-42. [PMID: 17207821 DOI: 10.1016/j.mrfmmm.2006.11.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/14/2006] [Accepted: 11/17/2006] [Indexed: 11/17/2022]
Abstract
Ethanol is almost totally broken down by oxidative metabolism in vivo. Ethanol per se is considered to be neither carcinogenic, mutagenic nor genotoxic. However, during the metabolic conversion of ethanol to acetaldehyde and acetate, the organism is exposed to both ethanol and acetaldehyde and therefore ethanol is suspected to be co-carcinogenic. The genetic polymorphisms of alcohol dehydrogenase-2 (ADH1B) and acetaldehyde dehydrogenase-2 (ALDH2) influence the metabolism of alcohol. The ADH1B*1/*1 genotype encodes the low-activity form of ADH1B, and ALDH2*1/*2 and ALDH2*2/*2 genotype encode inactive ALDH2. The aim of this study was to test the hypothesis that polymorphisms of the ADH1B and ALDH2 genes are significantly associated with genotoxicity induced by alcohol drinking, measured using the cytokinesis-block micronucleus (CBMN) assay, an established biomarker of genome instability, in peripheral blood lymphocytes of 286 healthy Japanese men. There was a significant trend for the mean micronuclei (MN) frequency in habitual or moderate drinkers without a smoking habit to increase as the numbers of the *1 allele in ADH1B increased (P=0.039 or P=0.029) and the *2 allele in ALDH2 increased (P=0.019 or P=0.037). A logistic regression analysis showed that the number of subjects with MN frequency levels more than median value of MN (3.0) was significantly higher in the subjects with the ADH1B*1 allele as adjusted estimates (OR 2.08, 95% C.I. 1.24-3.48), when the OR for the subjects with the ADH1B*2/*2 genotype was defined as 1.00. The number of subjects with MN frequency levels more than median value of MN was also significantly higher in the subjects with the ALDH2*2 allele as adjusted estimates (OR 1.79, 95% C.I. 1.04-3.11), when the OR for the subjects with the ALDH2*1/*1 genotype was defined as 1.00. The results of this study have identified important novel associations between ADH1B/ALDH2 polymorphisms and genotoxicity in alcohol drinkers.
Collapse
Affiliation(s)
- Hitoshi Ishikawa
- Department of Public Health and Occupational Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan.
| | | | | | | | | |
Collapse
|
230
|
Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J Natl Cancer Inst 2006; 98:1382-96. [PMID: 17018785 DOI: 10.1093/jnci/djj374] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Breast Cancer Association Consortium (BCAC) is an international collaboration that was established to provide large sample sizes for examining genetic associations. We conducted combined analyses on all single-nucleotide polymorphisms (SNPs) whose associations with breast cancer have been investigated by at least three participating groups. METHODS Data from up to 12 studies were pooled for each SNP (ADH1C I350V, AURKA F31I, BRCA2 N372H, CASP8 D302H, ERCC2 D312N, IGFBP3 -202 c>a, LIG4 D501D, PGR V660L, SOD2 V16A, TGFB1 L10P, TP53 R72P, XRCC1 R399Q, XRCC2 R188H, XRCC3 T241M, XRCC3 5' UTR, and XRCC3 IVS7-14). Genotype frequencies in case and control subjects were compared, and genotype-specific odds ratios for the risk of breast cancer in heterozygotes and homozygotes for the rare allele compared with homozygotes for the common allele were estimated with logistic regression. Statistical tests were two-sided. RESULTS The total number of subjects for analysis of each SNP ranged from 12,013 to 31,595. For five SNPs--CASP8 D302H, IGFBP3 -202 c>a, PGR V660L, SOD2 V16A, and TGFB1 L10P--the associations with breast cancer were of borderline statistical significance (P = .016, .060, .047, .056, and .0088 respectively). The remaining 11 SNPs were not associated with breast cancer risk; genotype-specific odds ratios were close to unity. There was some evidence for between-study heterogeneity (P<.05) for four of the 11 SNPs (ADH1C I350V, ERCC2 D312N, XRCC1 R399Q, and XRCC3 IVS5-14). CONCLUSION Pooling data within a large consortium has helped to clarify associations of SNPs with breast cancer. In the future, consortia such as the BCAC will be important in the analysis of rare polymorphisms and gene x gene or gene x environment interactions, for which individual studies have low power to identify associations, and in the validation of associations identified from genome-wide association studies.
Collapse
|
231
|
Abstract
Retinoids are natural and synthetic vitamin A derivatives. They are lipophilic molecules and easily penetrate the epidermis. Their biologically active forms can modulate the expression of genes involved in cellular differentiation and proliferation. Retinoic acid (tretinoin), its 13-cis isomer isotretinoin, as well as various synthetic retinoids are used for therapeutic purposes, whereas retinaldehyde, retinol, and retinyl esters, because of their controlled conversion to retinoic acid or their direct receptor-independent biologic action, can be used as cosmeceuticals. These natural retinoic acid precursors are thus expected to be helpful in (i) renewing epidermal cells, (ii) acting as UV filters, (iii) preventing oxidative stress, (iv) controlling cutaneous bacterial flora, and (v) improving skin aging and photoaging. Retinol and retinyl esters are not irritant, whereas demonstrating only a modest clinical efficiency. On the other hand, retinaldehyde, which is fairly well tolerated, seems to be the most efficient cosmeceutical retinoid; it has significant efficiency toward oxidative stress, cutaneous bacterial flora, epidermis renewing, and photoaging.
Collapse
Affiliation(s)
- Olivier Sorg
- Clinique de Dermatologie, Geneva University Hospital, Geneva, Switzerland.
| | | | | | | |
Collapse
|
232
|
Awe SO, Adeagbo ASO, D'Souza SE, Bhatnagar A, Conklin DJ. Acrolein induces vasodilatation of rodent mesenteric bed via an EDHF-dependent mechanism. Toxicol Appl Pharmacol 2006; 217:266-76. [PMID: 17069868 PMCID: PMC1828436 DOI: 10.1016/j.taap.2006.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/11/2006] [Accepted: 08/16/2006] [Indexed: 12/17/2022]
Abstract
Acrolein is generated endogenously during lipid peroxidation and inflammation and is an environmental pollutant. Protein adducts of acrolein are detected in atherosclerotic plaques and neurons of patients with Alzheimer's disease. To understand vascular effects of acrolein exposure, we studied acrolein vasoreactivity in perfused rodent mesenteric bed. Acrolein induced endothelium-dependent vasodilatation that was more robust and more sensitive than dilation induced by 4-hydroxy-trans-2-nonenal, trans-2-hexenal, or propionaldehyde. Acrolein-induced vasodilatation was mediated by K(+)-sensitive components, e.g., it was abolished in 0 [K(+)](o) buffer or in 3 mM tetrabutylammonium, inhibited 75% in 50 microM ouabain, and inhibited 64% in 20 mM K(+) buffer. Moreover, combined treatment with the Ca(2+)-activated K(+) channel inhibitors 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34, 100 nM) and apamin (5 microM) significantly reduced vasodilatation without altering sensitivity to acrolein. However, acrolein-induced % dilation was unaffected by l-NAME or indomethacin pretreatment indicating mechanistic independence of NO and prostaglandins. Moreover, acrolein induced vasodilatation in cirazoline-precontracted mesenteric bed of eNOS-null mice confirming eNOS independence. Pretreatment with 6-(2-propargyloxyphenyl) hexanoic acid (PPOH 50 microM), an epoxygenase inhibitor, or the superoxide dismutase mimetic Tempol (100 microM) significantly attenuated acrolein-induced vasodilatation. Collectively, these data indicate that acrolein stimulates mesenteric bed vasodilatation due to endothelium-derived signal(s) that is K(+)-, ouabain-, PPOH-, and Tempol-sensitive, and thus, a likely endothelium-derived hyperpolarizing factor (EDHF). These data indicate that low level acrolein exposure associated with vascular oxidative stress or inflammation stimulates vasodilatation via EDHF release in medium-sized arteries--a novel function.
Collapse
Affiliation(s)
- S O Awe
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
233
|
Abstract
Benzaldehyde is an aromatic aldehyde used in cosmetics as a denaturant, a flavoring agent, and as a fragrance. Currently used in only seven cosmetic products, its highest reported concentration of use was 0.5% in perfumes. Benzaldehyde is a generally regarded as safe (GRAS) food additive in the United States and is accepted as a flavoring substance in the European Union. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde. Benzaldehyde is absorbed through skin and by the lungs, distributes to all well-perfused organs, but does not accumulate in any specific tissue type. After being metabolized to benzoic acid, conjugates are formed with glycine or glucuronic acid, and excreted in the urine. Little acute toxicity was seen. The oral LD(50) of Benzaldehyde in rats and mice ranged from 800 to 2850 mg/kg. The intraperitoneal LD(50) in white rats was 3265 mg/kg. In short-term oral studies, the no observed adverse effect level (NOAEL) was 400 mg/kg in rats and mice. In subchronic oral studies, the NOAEL was 400 mg/kg in rats and 600 mg/kg in mice. In a 16-week feeding study, rats given up to 10,000 ppm showed no signs of toxicity. Repeated inhalation of volatilized Benzaldehyde produced ocular and nasal irritation at 500 ppm and death in rabbits at 750 ppm. Undiluted Benzaldehyde was irritating to rabbit eyes, causing edema, erythema, and pain. Benzaldehyde was determined not to be a contact sensitizer, but did produce allergic reactions in a maximization test. Clinical reports of allergy to Benzaldehyde are rare. Benzoic Acid did not produce irritation or sensitization reactions in human clinical studies. Benzoic Acid also failed to produce reactions in phototoxicity and photosensitization tests. Neither Benzaldehyde, Benzoic Acid, nor Sodium Benzoate are reproductive or developmental toxicants at doses that are nontoxic to the mother. In a behavioral study, blood levels of 0.12 ng/ml Benzaldehyde produced a 44% reduction in motor activity in mice. Benzaldehyde did not produce mutations in bacterial assays, but did produce chromosomal abnormalities in Chinese hamster cells and increased mutations in a mouse lymphoma forward mutation assay. Benzaldehyde was evaluated by the National Toxicology Program, which found no evidence of carcinogenicity in rats, and some evidence of carcinogenicity in mice. Several studies have suggested that Benzaldehyde can have carcinostatic or antitumor properties. Overall, at the concentrations used in cosmetics, Benzaldehyde was not considered a carcinogenic risk to humans. Although there are limited irritation and sensitization data available for Benzaldehyde, the available dermal irritation and sensitization data and ultraviolet (UV) absorption and phototoxicity data demonstrating no adverse reactions to Benzoic Acid support the safety of Benzaldehyde as currently used in cosmetic products.
Collapse
Affiliation(s)
- Alan Andersen
- Cosmetic Ingredient Review, Washington, DC 20036, USA
| |
Collapse
|
234
|
Zararsiz I, Kus I, Akpolat N, Songur A, Ogeturk M, Sarsilmaz M. Protective effects of omega-3 essential fatty acids against formaldehyde-induced neuronal damage in prefrontal cortex of rats. Cell Biochem Funct 2006; 24:237-44. [PMID: 15648056 DOI: 10.1002/cbf.1204] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this study was to examine the neurotoxicity of formaldehyde on prefrontal cortex and the protective effects of omega-3 essential fatty acids against these toxic effects. For this purpose, 21 male Wistar rats were divided into three groups. The rats in group I comprised the controls, while the rats in group II were injected every other day with formaldehyde (FA). The rats in group III received omega-3 fatty acids daily while exposed to formaldehyde. At the end of the 14-day experimental period, all rats were killed by decapitation. The brains of the rats were removed and the prefrontal cortex tissues were obtained from all brain specimens. Some of the prefrontal cortex tissue specimens were used for determination of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels. The remaining prefrontal cortex tissue specimens were used for light microscopic and immunohistochemical evaluation. The levels of SOD and GSH-Px were significantly decreased, and MDA levels were significantly increased in rats treated with formaldehyde compared with those of the controls. Furthermore, in the microscopic examination of this group, formation of apoptotic bodies, pycnotic cells, and apoptotic cells including nuclear fragmentation and membrane budding were observed. However, increased SOD and GSH-Px enzyme activities, and decreased MDA levels were detected in the rats administered omega-3 fatty acids while exposed to formaldehyde. Additionally, cellular damage caused by formaldehyde was decreased, and structural appearance was similar to that of the control rats in this group. The biochemical and histological findings observed in all groups were also confirmed by immunohistochemical evaluation. It was determined that formaldehyde-induced neuronal damage in prefrontal cortex was prevented by administration of omega-3 essential fatty acids.
Collapse
Affiliation(s)
- Ismail Zararsiz
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, Turkey
| | | | | | | | | | | |
Collapse
|
235
|
Golden R, Pyatt D, Shields PG. Formaldehyde as a potential human leukemogen: an assessment of biological plausibility. Crit Rev Toxicol 2006; 36:135-53. [PMID: 16736940 DOI: 10.1080/10408440500533208] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The International Agency for Research on Cancer (IARC, 2004) recently reevaluated the epidemiological data on formaldehyde and concluded that there was "strong but not sufficient evidence for a causal association between leukaemia and occupational exposure to formaldehyde." This conclusion was tempered since a mechanism for leukemia induction could not be identified. Chemically induced leukemia is a well-studied phenomenon with benzene and a number of cancer chemotherapeutic drugs recognized as capable of causing this effect. Abundant in vitro and in vivo data in animals and humans demonstrate that exposure to sufficient doses of these recognized leukemogens can initiate a cascade of events leading to hematopoietic toxicity and the subsequent development of leukemia. This review addresses the biological plausibility that formaldehyde might be capable of causing any type of leukemia by providing a broad overview of the scientific data that must be considered in order to support or refute a conclusion that a particular substance might be leukemogenic. Data on benzene and selected chemotherapeutic cancer drugs are used as examples and are briefly summarized to demonstrate the similar biological events thought to result in leukemogenesis. These data are compared and contrasted with the available data on formaldehyde in order to judge whether they fulfill the criteria of biological plausibility that formaldehyde would be capable of inducing leukemia as suggested by the epidemiological data. Based on the epidemiological data, it is reasonable to expect that if formaldehyde was capable of inducing leukemia, in vivo and in vitro data would offer supporting evidence for biological plausibility. In particular, there is (1) no evidence to suggest that formaldehyde reaches any target organ beyond the site of administration including the bone marrow, (2) no indication that formaldehyde is toxic to the bone marrow/hematopoietic system in in vivo or in vitro studies, and (3) no credible evidence that formaldehyde induces leukemia in experimental animals. As discussed in this review, based on the key biological events that occur in the process of chemically induced leukemia, there is inadequate biological evidence currently available to corroborate existing weak epidemiological associations. This provides an insufficient database to conclude that there is a causal relationship for formaldehyde and leukemia risk.
Collapse
|
236
|
Ernstgård L, Iregren A, Sjögren B, Svedberg U, Johanson G. Acute effects of exposure to hexanal vapors in humans. J Occup Environ Med 2006; 48:573-80. [PMID: 16766921 DOI: 10.1097/01.jom.0000215235.42071.68] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE n-Hexanal is a major component in emissions from stored wood pellets. The production and use of wood pellets has increased dramatically. Our aim was to evaluate acute health effects of n-hexanal vapors. METHODS Twelve healthy volunteers were exposed to 0, 2, and 10 ppm n-hexanal for 2 hours at rest in a balanced order. RESULTS Ratings of discomfort in the eyes and nose, solvent smell, and headache increased significantly with the level of exposure. Frequency of blinking was significantly increased at 10 ppm. No effects on pulmonary function and nasal swelling were detected, except a not-significant tendency to increased nasal obstruction at 10 ppm. No clear effects on plasma inflammatory markers (C-reactive protein and interleukin-6) were observed. CONCLUSIONS Two hours of exposure to n-hexanal results in mild irritation at 10 ppm, with no apparent adversity at 2 ppm.
Collapse
Affiliation(s)
- Lena Ernstgård
- Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
237
|
Pladzyk A, Ramana KV, Ansari NH, Srivastava SK. Aldose reductase prevents aldehyde toxicity in cultured human lens epithelial cells. Exp Eye Res 2006; 83:408-16. [PMID: 16631166 DOI: 10.1016/j.exer.2006.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/09/2006] [Accepted: 01/11/2006] [Indexed: 02/03/2023]
Abstract
Aldehydes are widespread environmental and industrial compounds, which cause cytotoxicity, tissue damage, mutagenicity, and carcinogenicity leading to various disease conditions such as cardiovascular, bronchial, and visual complications. We have shown earlier that aldose reductase (AR) besides reducing glucose to sorbitol, efficiently reduces various toxic lipid-derived aldehydes, generated under oxidative stress, with K(m) in the physiological range. We have identified the role of AR in the prevention of various lipid aldehyde-induced cytotoxic signals leading to apoptosis in human lens epithelial cells (HLEC). HLEC were cultured without or with AR inhibitors followed by addition of various saturated and unsaturated lipid aldehydes with a carbon chain length varying from C3 to C10. The cell viability was assessed by cell counts and MTT assay, and apoptosis was measured by evaluating nucleosomal degradation and caspase-3 activation using specific ELISA kits. Although all the aldehydes caused apoptosis of HLEC, the unsaturated aldehydes were more toxic than saturated aldehydes. Inhibition of AR by sorbinil potentiated while the over-expression of AR prevented the apoptosis induced by various lipid aldehydes. AR over-expression also prevented the lipid aldehyde-induced activation of caspase-3, MAPK, JNK and the expression of Bcl-2 family of proteins in HLEC. The results indicate that the lipid aldehydes generated under oxidative stress are cytotoxic to HLEC leading to apoptosis and that the reduction of lipid aldehydes by AR would prevent it.
Collapse
Affiliation(s)
- Agnieszka Pladzyk
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., 6.644 Basic Science Bldg., Galveston, TX 77555-0647, USA
| | | | | | | |
Collapse
|
238
|
Oberholzer AE, Schneider P, Baumann U, Erni B. Crystal structure of the nucleotide-binding subunit DhaL of the Escherichia coli dihydroxyacetone kinase. J Mol Biol 2006; 359:539-45. [PMID: 16647083 DOI: 10.1016/j.jmb.2006.03.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/21/2006] [Accepted: 03/29/2006] [Indexed: 11/16/2022]
Abstract
Dihydroxyacetone (Dha) kinases are a family of sequence-related enzymes that utilize either ATP or phosphoenolpyruvate (PEP) as source of high energy phosphate. The PEP-dependent Dha kinase of Escherichia coli consists of three subunits. DhaK and DhaL are homologous to the Dha and nucleotide-binding domains of the ATP-dependent kinase of Citrobacter freundii. The DhaM subunit is a multiphosphorylprotein of the PEP:sugar phosphotransferase system (PTS). DhaL contains a tightly bound ADP as coenzyme that gets transiently phosphorylated in the double displacement of phosphate between DhaM and Dha. Here we report the 2.6A crystal structure of the E.coli DhaL subunit. DhaL folds into an eight-helix barrel of regular up-down topology with a hydrophobic core made up of eight interlocked aromatic residues and a molecule of ADP bound at the narrower end of the barrel. The alpha and beta phosphates of ADP are complexed by two Mg2+ and by a hydrogen bond to the imidazole ring of an invariant histidine. The Mg ions in turn are coordinated by three gamma-carboxyl groups of invariant aspartate residues. Water molecules complete the octahedral coordination sphere. The nucleotide is capped by an alpha-helical segment connecting helices 7 and 8 of the barrel. DhaL and the nucleotide-binding domain of the C.freundii kinase assume the same fold but display strongly different surface potentials. The latter observation and biochemical data indicate that the domains of the C.freundii Dha kinase constitute one cooperative unit and are not randomly interacting and independent like the subunits of the E.coli enzyme.
Collapse
Affiliation(s)
- Anselm Erich Oberholzer
- Departement of Chemistry und Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
239
|
Ben Ali M, Korpan Y, Gonchar M, El'skaya A, Maaref MA, Jaffrezic-Renault N, Martelet C. Formaldehyde assay by capacitance versus voltage and impedance measurements using bi-layer bio-recognition membrane. Biosens Bioelectron 2006; 22:575-81. [PMID: 16516460 DOI: 10.1016/j.bios.2006.01.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/29/2005] [Accepted: 01/23/2006] [Indexed: 11/26/2022]
Abstract
A novel formaldehyde sensitive biosensor based on bacterial formaldehyde dehydrogenase (FDH) as a bio-recognition element has been developed. The bio-recognition membrane had bi-layer architecture and consisted of FDH, cross-linked with albumin, and of the cofactor NAD at a high concentration level (first layer). The second layer was a negatively charged Nafion membrane, which prevented a leakage of negatively charged NAD molecules from the bio-membrane. As transducers, gold electrodes SiO(2)/Si/SiO(2)/Ti/Au and electrolyte-insulator-semiconductor Si/SiO(2) (EIS) structures have been used. Changes in capacitance and impedance properties of the bio-recognition membrane have been used for monitoring formaldehyde concentration in a bulk solution. It has been shown that formaldehyde can be detected within a concentration range from 1 microM to 20mM depending on the type of transduction used, with a detection limit of 1 and 100 microM for gold-based and EIS-based transducers, respectively.
Collapse
Affiliation(s)
- M Ben Ali
- Institut Supérieur des Sciences, Appliquées et de Technologies, Cité Taffela-Sousse 4003, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
240
|
Veskoukis AS, Kouretas D, Panoutsopoulos GI. Substrate specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase for methyl- and nitrobenzaldehydes. Eur J Drug Metab Pharmacokinet 2006; 31:11-6. [PMID: 16715777 DOI: 10.1007/bf03190636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Both aldehyde oxidase and xanthine oxidase catalyze the oxidation of a wide range of N-heterocycles and aldehydes. These enzymes are important in the oxidation of N-heterocyclic xenobiotics, whereas their role in the oxidation of xenobiotic aldehydes is usually ignored. The present investigation describes the interaction of methyl- and nitrosubstituted benzaldehydes, in the ortho-, meta- and parapositions, with guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase. The kinetic constants showed that most substituted benzaldehydes are excellent substrates of aldehyde oxidase with lower affinities for xanthine oxidase. Low Km values for aldehyde oxidase were observed with most benzaldehydes tested, with 3-nitrobenzaldehyde having the lowest Km value and 3-methylbenzaldehyde being the best substrate in terms of substrate efficiency (Ks). Additionally, low Km values for xanthine oxidase were found with most benzaldehydes tested. However, all benzaldehydes also had low Vmax values, which made them poor substrates of xanthine oxidase. It is therefore possible that aldehyde oxidase may be critical in the oxidation of xenobiotic and endobiotic derived aldehydes and its role in such reactions should not be ignored.
Collapse
|
241
|
O'Brien PJ, Siraki AG, Shangari N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 2006; 35:609-62. [PMID: 16417045 DOI: 10.1080/10408440591002183] [Citation(s) in RCA: 527] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aldehydes are organic compounds that are widespread in nature. They can be formed endogenously by lipid peroxidation (LPO), carbohydrate or metabolism ascorbate autoxidation, amine oxidases, cytochrome P-450s, or myeloperoxidase-catalyzed metabolic activation. This review compares the reactivity of many aldehydes towards biomolecules particularly macromolecules. Furthermore, it includes not only aldehydes of environmental or occupational concerns but also dietary aldehydes and aldehydes formed endogenously by intermediary metabolism. Drugs that are aldehydes or form reactive aldehyde metabolites that cause side-effect toxicity are also included. The effects of these aldehydes on biological function, their contribution to human diseases, and the role of nucleic acid and protein carbonylation/oxidation in mutagenicity and cytotoxicity mechanisms, respectively, as well as carbonyl signal transduction and gene expression, are reviewed. Aldehyde metabolic activation and detoxication by metabolizing enzymes are also reviewed, as well as the toxicological and anticancer therapeutic effects of metabolizing enzyme inhibitors. The human health risks from clinical and animal research studies are reviewed, including aldehydes as haptens in allergenic hypersensitivity diseases, respiratory allergies, and idiosyncratic drug toxicity; the potential carcinogenic risks of the carbonyl body burden; and the toxic effects of aldehydes in liver disease, embryo toxicity/teratogenicity, diabetes/hypertension, sclerosing peritonitis, cerebral ischemia/neurodegenerative diseases, and other aging-associated diseases.
Collapse
Affiliation(s)
- Peter J O'Brien
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
242
|
Benigni R, Conti L, Crebelli R, Rodomonte A, Vari' MR. Simple and alpha,beta-unsaturated aldehydes: correct prediction of genotoxic activity through structure-activity relationship models. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 46:268-80. [PMID: 15991240 DOI: 10.1002/em.20158] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aldehydes are widespread environmental and industrial compounds, able to stimulate a range of adverse health effects (e.g., general toxicity, allergenic reactions, mutagenicity, and carcinogenicity). We have previously presented quantitative structure-activity relationships (QSARs) for the genotoxicity of simple and alpha,beta-unsaturated aliphatic aldehydes. In this study, we show that the QSAR models are able to correctly predict--based only on the knowledge of the chemical structure--the genotoxicity of other aldehydes, not considered in the development phase of the models. This adds confidence to the reliability of our QSAR models as tools for the theoretical assessment of the genotoxic hazard posed by aldehydes. The analysis of SOS Chromotest induction ability and the ease of formation of DNA adducts by the aldehydes provided further mechanistic insights.
Collapse
Affiliation(s)
- Romualdo Benigni
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy.
| | | | | | | | | |
Collapse
|
243
|
Suzuki R, Ye W, Rylander-Rudqvist T, Saji S, Colditz GA, Wolk A. Alcohol and postmenopausal breast cancer risk defined by estrogen and progesterone receptor status: a prospective cohort study. J Natl Cancer Inst 2005; 97:1601-8. [PMID: 16264180 DOI: 10.1093/jnci/dji341] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alcohol intake has been reported to be positively associated with an increased risk of postmenopausal breast cancer; however, the association with the estrogen receptor (ER) and progesterone receptor (PR) status of the breast tumors remains unclear. METHODS Self-reported data on alcohol consumption were collected in 1987 and 1997 from 51,847 postmenopausal women in the population-based Swedish Mammography Cohort. Through June 30, 2004, 1188 invasive breast cancer case patients with known ER and PR status were identified during an average 8.3-year follow-up. We used Cox proportional hazards models to estimate multivariable relative risks (RRs) of breast cancer, adjusting for age; family history of breast cancer; body mass index; height; parity; age at menarche, first birth, and menopause; education level; use of postmenopausal hormones; and diet. Heterogeneity among groups was evaluated using the Wald test. All statistical tests were two-sided. RESULTS Alcohol consumption was associated with an increased risk for the development of ER-positive (+) tumors, irrespective of PR status (highest intake [> or = 10 g of alcohol per day] versus nondrinkers, multivariable RR = 1.35, 95% confidence interval [CI] = 1.02 to 1.80; Ptrend < .049 for ER+PR+ tumors; and RR = 2.36, 95% CI = 1.56 to 3.56; Ptrend < .001 for ER+PR-tumors). The absolute rate of ER+ breast cancer (standardized to the age distribution of person-years experienced by all study participants using 5-year age categories) was 232 per 100,000 person-years among women in the highest category of alcohol intake, and 158 per 100,000 person-years among nondrinkers. No association was observed between alcohol intake and the risk of developing ER-tumors. Furthermore, we observed a statistically significant interaction between alcohol intake and the use of postmenopausal hormones on the risk for ER+PR+ tumors (Pinteraction = .039). CONCLUSION The observed association between risk of developing postmenopausal ER+ breast cancer and alcohol drinking, especially among those women who use postmenopausal hormones, may be important, because the majority of breast tumors among postmenopausal women overexpress ER.
Collapse
Affiliation(s)
- Reiko Suzuki
- The National Institute of Environmental Medicine, Division of Nutritional Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
244
|
Demkiv OM, Paryzhak SY, Krasovs'ka ES, Stasyk OV, Gayda GZ, Sibirny AA, Gonchar MV. Construction of methylotrophic yeast Hansenula polymorpha strains over-producing formaldehyde dehydrogenase. ACTA ACUST UNITED AC 2005. [DOI: 10.7124/bc.000710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- O. M. Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine
| | - S. Ya. Paryzhak
- Institute of Cell Biology, National Academy of Sciences of Ukraine
| | - E. S. Krasovs'ka
- Institute of Cell Biology, National Academy of Sciences of Ukraine
| | - O. V. Stasyk
- Institute of Cell Biology, National Academy of Sciences of Ukraine
| | - G. Z. Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine
| | - A. A. Sibirny
- Institute of Cell Biology, National Academy of Sciences of Ukraine
| | - M. V. Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine
| |
Collapse
|
245
|
Yoon M, Madden MC, Barton HA. Developmental Expression of Aldehyde Dehydrogenase in Rat: a Comparison of Liver and Lung Development. Toxicol Sci 2005; 89:386-98. [PMID: 16291827 DOI: 10.1093/toxsci/kfj045] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabolism is one of the major determinants for age-related changes in susceptibility to chemicals. Aldehydes are highly reactive molecules present in the environment that also can be produced during biotransformation of xenobiotics and endogenous metabolism. Although the lung is a major target for aldehyde toxicity, early development of aldehyde dehydrogenases (ALDHs) in lung has been poorly studied. The expression of ALDH in liver and lung across ages (postnatal day 1, 8, 22, and 60) was investigated in Wistar-Han rats. In adult, the majority of hepatic ALDH activity was found in mitochondria, while cytosolic ALDH activity was the highest contributor in lung. Total aldehyde oxidation capability in liver increases with age, but stays constant in lung. These overall developmental profiles of ALDH expression in a tissue appear to be determined by the different composition of ALDH isoforms within the tissue and their independent temporal and tissue-specific development. ALDH2 showed the most notable tissue-specific development. Hepatic ALDH2 was increased with age, while the pulmonary form did not. ALDH1 was at its maximum value at postnatal day 1 (PND1) and decreased thereafter both in liver and lung. ALDH3 increased with age in liver and lung, although ALDH3A1 was only detectible in lung. Collectively, the present study indicates that, in the case of aldehyde exposure, the in vivo responses would be tissue and age dependent.
Collapse
Affiliation(s)
- Miyoung Yoon
- National Research Council Research Associateship Program, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill North Carolina 27599-7315, USA
| | | | | |
Collapse
|
246
|
Vorholt JA, Kalyuzhnaya MG, Hagemeier CH, Lidstrom ME, Chistoserdova L. MtdC, a novel class of methylene tetrahydromethanopterin dehydrogenases. J Bacteriol 2005; 187:6069-74. [PMID: 16109948 PMCID: PMC1196156 DOI: 10.1128/jb.187.17.6069-6074.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel methylene tetrahydromethanopterin (H4MPT) dehydrogenase enzymes, named MtdC, were purified after expressing in Escherichia coli genes from, respectively, Gemmata sp. strain Wa1-1 and environmental DNA originating from unidentified microbial species. The MtdC enzymes were shown to possess high affinities for methylene-H4MPT and NADP but low affinities for methylene tetrahydrofolate or NAD. The substrate range and the kinetic properties revealed by MtdC enzymes distinguish them from the previously characterized bacterial methylene-H4MPT dehydrogenases, MtdA and MtdB. While revealing higher sequence similarity to MtdA enzymes, MtdC enzymes appear to fulfill a function homologous to the function of MtdB, as part of the H4MPT-linked pathway for formaldehyde oxidation/detoxification.
Collapse
Affiliation(s)
- Julia A Vorholt
- Laboratorie des Interactions Plantes-Microorganismes, 31326 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
247
|
Panoutsopoulos GI, Beedham C. Enzymatic oxidation of vanillin, isovanillin and protocatechuic aldehyde with freshly prepared Guinea pig liver slices. Cell Physiol Biochem 2005; 15:89-98. [PMID: 15665519 DOI: 10.1159/000083641] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The oxidation of xenobiotic-derived aromatic aldehydes with freshly prepared liver slices has not been previously reported. The present investigation compares the relative contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase activities in the oxidation of vanillin, isovanillin and protocatechuic aldehyde with freshly prepared liver slices. METHODS Vanillin, isovanillin or protocatechuic aldehyde was incubated with liver slices in the presence/absence of specific inhibitors of each enzyme, followed by HPLC. RESULTS Vanillin was rapidly converted to vanillic acid. Vanillic acid formation was completely inhibited by isovanillin (aldehyde oxidase inhibitor), whereas disulfiram (aldehyde dehydrogenase inhibitor) inhibited acid formation by 16% and allopurinol (xanthine oxidase inhibitor) had no effect. Isovanillin was rapidly converted to isovanillic acid. The formation of isovanillic acid was not altered by allopurinol, but considerably inhibited by disulfiram. Protocatechuic aldehyde was converted to protocatechuic acid at a lower rate than that of vanillin or isovanillin. Allopurinol only slightly inhibited protocatechuic aldehyde oxidation, isovanillin had little effect, whereas disulfiram inhibited protocatechuic acid formation by 50%. CONCLUSIONS In freshly prepared liver slices, vanillin is rapidly oxidized by aldehyde oxidase with little contribution from xanthine oxidase or aldehyde dehydrogenase. Isovanillin is not a substrate for aldehyde oxidase and therefore it is metabolized to isovanillic acid predominantly by aldehyde dehydrogenase. All three enzymes contribute to the oxidation of protocatechuic aldehyde to its acid.
Collapse
|
248
|
Hirose M, Kono S, Tabata S, Ogawa S, Yamaguchi K, Mineshita M, Hagiwara T, Yin G, Lee KY, Tsuji A, Ikeda N. Genetic polymorphisms of methylenetetrahydrofolate reductase and aldehyde dehydrogenase 2, alcohol use and risk of colorectal adenomas: Self-Defense Forces Health Study. Cancer Sci 2005; 96:513-8. [PMID: 16108833 PMCID: PMC11159593 DOI: 10.1111/j.1349-7006.2005.00077.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Methylenetetrahydrofolate reductase is a key enzyme in folate metabolism, which affects DNA synthesis and methylation and is possibly linked to colorectal carcinogenesis. Alcohol and acetaldehyde have an adverse effect on folate metabolism. This study investigated the relationship of functional MTHFR C677T and ALDH2 polymorphisms to colorectal adenomas with reference to alcohol consumption in a case-control study of male officials in the Self-Defense Forces (SDF) who received a preretirement health examination at two SDF hospitals. The study subjects were 452 cases of colorectal adenoma and 1050 controls with no polyp who underwent total colonoscopy. Genotypes were determined by the PCR-RFLP method using genomic DNA extracted from the buffy coat. Statistical adjustment was made for age, hospital, rank in the SDF, body mass index, cigarette-years and alcohol intake. Neither MTHFR C677T nor ALDH2 showed a measurable association with colorectal adenoma. While high alcohol consumption was associated with a moderately increased risk of colorectal adenoma, neither of the two polymorphisms showed a significant effect on the association between alcohol and colorectal adenoma. Individuals with the variant alleles ALDH2*2 and MTHFR 677T had a decreased risk of colorectal adenomas, showing adjusted odds ratios of 0.70 (95% confidence interval 0.49-1.00) for all adenomas and 0.57 (0.34-0.95) for large adenomas (> or = 5 mm), as compared to individuals with ALDH2*1/1 and MTHFR 677CC genotypes combined. The findings may be interpreted as suggesting that folate inhibits the growth of colorectal adenomas, but further confirmation is needed.
Collapse
Affiliation(s)
- Maho Hirose
- Department of Preventive Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Songur A, Kuş İ, Şahin Ş, Söğüt S, Özen OA, Yaman M, Sarsılmaz M. THE CHANGES OF ZINC, COPPER, AND IRON LEVELS IN LUNG TISSUE AFTER FORMALDEHYDE INHALATION DURING THE EARLY POSTNATAL PERIOD OF RATS. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2005. [DOI: 10.29333/ejgm/82271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
250
|
Lin Z, Niu X, Wu C, Yin K, Cai Z. Prediction of the toxicological joint effects between cyanogenic toxicants and aldehydes toPhotobacterium phosphoreum. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/qsar.200430882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|