201
|
Müller CP, Carey RJ, Huston JP, De Souza Silva MA. Serotonin and psychostimulant addiction: Focus on 5-HT1A-receptors. Prog Neurobiol 2007; 81:133-78. [PMID: 17316955 DOI: 10.1016/j.pneurobio.2007.01.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/04/2006] [Accepted: 01/03/2007] [Indexed: 01/03/2023]
Abstract
Serotonin(1A)-receptors (5-HT(1A)-Rs) are important components of the 5-HT system in the brain. As somatodendritic autoreceptors they control the activity of 5-HT neurons, and, as postsynaptic receptors, the activity in terminal areas. Cocaine (COC), amphetamine (AMPH), methamphetamine (METH) and 3,4-methylenedioxymethamphetamine ("Ecstasy", MDMA) are psychostimulant drugs that can lead to addiction-related behavior in humans and in animals. At the neurochemical level, these psychostimulant drugs interact with monoamine transporters and increase extracellular 5-HT, dopamine and noradrenalin activity in the brain. The increase in 5-HT, which, in addition to dopamine, is a core mechanism of action for drug addiction, hyperactivates 5-HT(1A)-Rs. Here, we first review the role of the various 5-HT(1A)-R populations in spontaneous behavior to provide a background to elucidate the contribution of the 5-HT(1A)-Rs to the organization of psychostimulant-induced addiction behavior. The progress achieved in this field shows the fundamental contribution of brain 5-HT(1A)-Rs to virtually all behaviors associated with psychostimulant addiction. Importantly, the contribution of pre- and postsynaptic 5-HT(1A)-Rs can be dissociated and frequently act in opposite directions. We conclude that 5-HT(1A)-autoreceptors mainly facilitate psychostimulant addiction-related behaviors by a limitation of the 5-HT response in terminal areas. Postsynaptic 5-HT(1A)-Rs, in contrast, predominantly inhibit the expression of various addiction-related behaviors directly. In addition, they may also influence the local 5-HT response by feedback mechanisms. The reviewed findings do not only show a crucial role of 5-HT(1A)-Rs in the control of brain 5-HT activity and spontaneous behavior, but also their complex role in the regulation of the psychostimulant-induced 5-HT response and subsequent addiction-related behaviors.
Collapse
Affiliation(s)
- Christian P Müller
- Institute of Physiological Psychology I, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
202
|
Krüger THC, Schiffer B, Eikermann M, Haake P, Gizewski E, Schedlowski M. Serial neurochemical measurement of cerebrospinal fluid during the human sexual response cycle. Eur J Neurosci 2006; 24:3445-52. [PMID: 17229093 DOI: 10.1111/j.1460-9568.2006.05215.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent studies examining the neuroendocrine response pattern underlying the human sexual response cycle revealed transient activation of the sympathoadrenal system and a substantial, long-lasting increase in plasma prolactin concentrations following orgasm in men and women. Prolactin has been discussed as being part of a feedback mechanism that signals centers in the central nervous system, such as the dopaminergic system controlling sexual arousal. To further elucidate the central role of neuropeptides, biogenic monoamines and neurotransmitters in human sexual behavior, a serial cerebrospinal fluid (CSF)-sampling technique was implemented using a previously established experimental paradigm for sexual activity in a laboratory setting. In parallel with peripheral endocrine measures, lumbar CSF was drawn via an indwelling spinal catheter during the sexual response cycle in 10 healthy males and 10 age-matched controls, and analysed for prolactin, oxytocin, biogenic monoamines and/or their metabolites as well as inhibitory and excitatory neurotransmitter concentrations. Parallel to raised peripheral sympathetic activity, norepinephrine also increased in CSF during audiovisual, masturbation-induced sexual arousal and orgasm, and remained elevated for the remainder of the session (F(4,72) = 8.79, P = 0.000). In contrast, none of the other measures, in particular prolactin and dopamine or its metabolites, reflected significant alteration. In conclusion, the human sexual response cycle is characterized by an increase in sympathetic activity in plasma and CSF, and by pronounced secretion of plasma prolactin after orgasm. However, alterations in dopaminergic or peptidergic activity are not found in lumbar CSF, possibly due to local and restricted release in diencephalic and mesencephalic brain regions.
Collapse
Affiliation(s)
- Tillmann H C Krüger
- Division of Psychology and Behavioral Immunobiology, Swiss Federal Institute of Technology Zürich, Universitätsstrasse 6, 8092 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
203
|
Lechan RM, Fekete C. The TRH neuron: a hypothalamic integrator of energy metabolism. PROGRESS IN BRAIN RESEARCH 2006; 153:209-35. [PMID: 16876577 DOI: 10.1016/s0079-6123(06)53012-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Thyrotropin-releasing hormone (TRH) has an important role in the regulation of energy homeostasis not only through effects on thyroid function orchestrated through hypophysiotropic neurons in the hypothalamic paraventricular nucleus (PVN), but also through central effects on feeding behavior, thermogenesis, locomotor activation and autonomic regulation. Hypophysiotropic TRH neurons are located in the medial and periventricular parvocellular subdivisions of the PVN and receive direct monosynaptic projections from two, separate, populations of leptin-responsive neurons in the hypothalamic arcuate nucleus containing either alpha-melanocyte-stimulating hormone (alpha-MSH) and cocaine- and amphetamine-regulated transcript (CART), peptides that promote weight loss and increase energy expenditure, or neuropeptide Y (NPY) and agouti-related protein (AGRP), peptides that promote weight gain and reduce energy expenditure. During fasting, the reduction in TRH mRNA in hypophysiotropic neurons mediated by suppression of alpha-MSH/CART simultaneously with an increase in NPY/AGRP gene expression in arcuate nucleus neurons contributes to the fall in circulating thyroid hormone levels, presumably by increasing the sensitivity of the TRH gene to negative feedback inhibition by thyroid hormone. Endotoxin administration, however, has the paradoxical effect of increasing circulating levels of leptin and melanocortin signaling and CART gene expression in arcuate nucleus neurons, but inhibiting TRH gene expression in hypophysiotropic neurons. This may be explained by an overriding inhibitory effect of endotoxin to increase type 2 iodothyroine deiodinase (D2) in a population of specialized glial cells, tanycytes, located in the base and infralateral walls of the third ventricle. By increasing the conversion of T4 into T3, tanycytes may increase local tissue concenetrations of thyroid hormone, and thereby induce a state of local tissue hyperthyroidism in the region of hypophysisotrophic TRH neurons. Other regions of the brain may also serve as metabolic sensors for hypophysiostropic TRH neurons including the ventrolateral medulla and dorsomedial nucleus of the hypothalamus that have direct monosynaptic projections to the PVN. TRH also exerts a number of effects within the central nervous system that may contribute to the regulation of energy homeostasis. Included are an increase in core body temperature mediated through neurons in the anterior hypothalamic-preoptic area that coordinate a variety of autonomic responses; arousal and locomotor activation through cholinergic and dopaminergic mechanisms on the septum and nucleus accumbens, respectively; and regulation of the cephalic phase of digestion. While the latter responses are largely mediated through cholinergic mechanisms via TRH neurons in the brainstem medullary raphe and dorsal motor nucleus of the vagus, effects of TRH on autonomic loci in the hypothalamic PVN may also be important. Contrary to the actions of T3 to increase appetite, TRH has central effects to reduce food intake in normal, fasting and stressed animals. The precise locus where TRH mediates this response is unknown. However, evidence that an anatomically separate population of nonhypophysiotropic TRH neurons in the anterior parvocellular subdivision of the PVN is integrated into the leptin regulatory control system by the same arcuate nucleus neuronal populations that innervate hypophysiotropic TRH neurons, raises the possibility that anterior parvocellular TRH neurons may be involved, possibly through interactions with the limbic nervous system.
Collapse
Affiliation(s)
- Ronald M Lechan
- Tupper Research Institute and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts-New England Medical Center, Boston, MA 02111, USA.
| | | |
Collapse
|
204
|
Kalinnikova TB, Timoshenko AK, Gainutdinov TM, Gindina VV, Gainutdinov MK. Adaptation of the nematode Caenorhabditis elegans to medium high temperature. J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s0022093006050073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
205
|
Klegeris A, Schulzer M, Harper DG, McGeer PL. Increase in core body temperature of Alzheimer's disease patients as a possible indicator of chronic neuroinflammation: a meta-analysis. Gerontology 2006; 53:7-11. [PMID: 16940734 DOI: 10.1159/000095386] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 05/20/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Neuroinflammation contributes to the pathogenesis of Alzheimer's disease (AD). Increased pro-inflammatory cytokine levels have been reported in the brain and cerebro-spinal fluid of individuals affected by this neurodegenerative disorder. These same cytokines, including interleukin -1, interleukin-6 and tumor necrosis factor-alpha, are also believed to be involved in thermoregulation. Furthermore, their effects are thought to be mediated through the induction of cyclooxygenases resulting in increased production of inflammatory prostaglandins. Such increases have been observed in AD brains. We hypothesized that these increased levels of inflammatory mediators could lead to an increase in core body temperature in AD patients. OBJECTIVE To determine whether clinical signs of AD are accompanied by an increase in core body temperature. METHODS Analysis of the scientific literature identified six studies that used continuous rectal measurements of core body temperature in AD and control patients. Meta-analysis was performed on these published data. RESULTS Meta-analysis showed that the mean core body temperature in AD patients was significantly increased by 0.10 degrees C when compared to healthy elderly subjects. The two-sided p value was 0.0355, and the 95% confidence interval was 0.0068-0.1950. The severity of AD pathology did not appear to contribute significantly (p = 0.235) to the heterogeneity in the core body temperature among different groups of AD patients. CONCLUSION The significant increase in core body temperature in AD patients could be a direct consequence of local inflammatory reactions in the brain. Although the changes observed are probably too small to be of any diagnostic value, these observations lend further support to the neuroinflammatory hypothesis of AD pathology.
Collapse
Affiliation(s)
- Andis Klegeris
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
206
|
John CE, Jones SR. Exocytotic release of dopamine in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice. Neurochem Int 2006; 49:737-45. [PMID: 16901588 DOI: 10.1016/j.neuint.2006.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/08/2006] [Accepted: 06/23/2006] [Indexed: 11/23/2022]
Abstract
The present study used voltammetry to ascertain whether electrically stimulated somatodendritic dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice was due to exocytosis or dopamine transporter reversal, as has been debated. The maximal concentration of electrically evoked dopamine release was similar between ventral tegmental area slices from dopamine transporter knockout and C57BL/6 mice. Dopamine transporter blockade (10 microM nomifensine) in slices from C57BL/6 mice inhibited dopamine uptake but did not alter peak evoked dopamine release. In addition, dopamine release and uptake kinetics in ventral tegmental area slices from dopamine transporter knockout mice were unaltered by the norepinephrine transporter inhibitor, desipramine (10 microM), or the serotonin transporter inhibitor, fluoxetine (10 microM). Furthermore, maximal dopamine release in ventral tegmental area slices from both C57BL/6 and dopamine transporter knockout mice was significantly decreased in response to Na(+) channel blockade by 1 microM tetrototoxin, removal of Ca(2+) from the perfusion media and neuronal vesicular monoamine transporter inhibition by RO-04-1284 (10 microM) or tetrabenazine (10 and 100 microM). Finally, the glutamate receptor antagonists AP-5 (50 and 100 microM) and CNQX (20 and 50 microM) had no effect on peak somatodendritic dopamine release in C57BL/6 mice. Overall, these data suggest that similar mechanisms, consistent with exocytosis, govern electrically evoked dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice.
Collapse
Affiliation(s)
- Carrie E John
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | | |
Collapse
|
207
|
Homola A, Zoremba N, Slais K, Kuhlen R, Syková E. Changes in diffusion parameters, energy-related metabolites and glutamate in the rat cortex after transient hypoxia/ischemia. Neurosci Lett 2006; 404:137-42. [PMID: 16759801 DOI: 10.1016/j.neulet.2006.05.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/12/2006] [Accepted: 05/14/2006] [Indexed: 11/29/2022]
Abstract
It has been shown that global anoxia leads to dramatic changes in the diffusion properties of the extracellular space (ECS). In this study, we investigated how changes in ECS volume and geometry in the rat somatosensory cortex during and after transient hypoxia/ischemia correlate with extracellular concentrations of energy-related metabolites and glutamate. Adult male Wistar rats (n = 12) were anesthetized and subjected to hypoxia/ischemia for 30 min (ventilation with 10% oxygen and unilateral carotid artery occlusion). The ECS diffusion parameters, volume fraction and tortuosity, were determined from concentration-time profiles of tetramethylammonium applied by iontophoresis. Concentrations of lactate, glucose, pyruvate and glutamate in the extracellular fluid (ECF) were monitored by microdialysis (n = 9). During hypoxia/ischemia, the ECS volume fraction decreased from initial values of 0.19 +/- 0.03 (mean +/- S.E.M.) to 0.07 +/- 0.01 and tortuosity increased from 1.57 +/- 0.01 to 1.88 +/- 0.03. During reperfusion the volume fraction returned to control values within 20 min and then increased to 0.23 +/- 0.01, while tortuosity only returned to original values (1.53 +/- 0.06). The concentrations of lactate and glutamate, and the lactate/pyruvate ratio, substantially increased during hypoxia/ischemia, followed by continuous recovery during reperfusion. The glucose concentration decreased rapidly during hypoxia/ischemia with a subsequent return to control values within 20 min of reperfusion. We conclude that transient hypoxia/ischemia causes similar changes in ECS diffusion parameters as does global anoxia and that the time course of the reduction in ECS volume fraction correlates with the increase of extracellular concentration of glutamate. The decrease in the ECS volume fraction can therefore contribute to an increased accumulation of toxic metabolites, which may aggravate functional deficits and lead to damage of the central nervous system (CNS).
Collapse
Affiliation(s)
- Ales Homola
- Department of Neuroscience and Centre for Cell Therapy and Tissue Repair, 2nd Medical Faculty, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
208
|
Mazloom M, Smith Y. Synaptic microcircuitry of tyrosine hydroxylase-containing neurons and terminals in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys. J Comp Neurol 2006; 495:453-69. [PMID: 16485290 PMCID: PMC2597082 DOI: 10.1002/cne.20894] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A population of tyrosine hydroxylase (TH)-containing neurons that is up-regulated after lesion of the nigrostriatal dopaminergic pathway has been described in the primate striatum. The goal of this study was to examine the morphology, synaptology, and chemical phenotype of these neurons and TH-immunoreactive (-ir) terminals in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rhesus monkeys. TH-ir perikarya were small (10-12 microm), displayed nuclear invaginations, and received very few synaptic inputs. On the other hand, TH-containing dendrites were typically large in diameter (>1.0 microm) and received scarce synaptic innervation from putative excitatory and inhibitory terminals forming asymmetric and symmetric synapses, respectively. More than 70% of TH-positive intrastriatal cell bodies were found in the caudate nucleus and the precommissural putamen, considered as the associative functional territories of the primate striatum. Under 10% of these cells displayed calretinin immunoreactivity. TH-ir terminals rarely formed clear synaptic contacts, except for a few that established asymmetric axodendritic synapses. Almost two-thirds of TH-containing boutons displayed gamma-aminobutyric acid (GABA) immunoreactivity in the striatum of parkinsonian monkeys, whereas under 5% did so in the normal striatum. These findings provide strong support for the existence of a population of putative catecholaminergic interneurons in the associative territory of the striatum in parkinsonian monkeys. Their sparse synaptic innervation raises interesting issues regarding synaptic and nonsynaptic mechanisms involved in the regulation and integration of these neurons in the striatal microcircuitry. Finally, the coexpression of GABA in TH-positive terminals in the striatum of dopamine-depleted monkeys suggests dramatic neurochemical changes in the catecholaminergic modulation of striatal activity in Parkinson's disease.
Collapse
Affiliation(s)
- Maney Mazloom
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
209
|
Lévesque M, Parent R, Parent A. Cellular and subcellular localization of neurokinin-1 and neurokinin-3 receptors in primate globus pallidus. Eur J Neurosci 2006; 23:2760-72. [PMID: 16817879 DOI: 10.1111/j.1460-9568.2006.04800.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The primate globus pallidus receives massive innervations from GABAergic striatal neurons that co-release the neuropeptide substance P (SP). To expand our knowledge regarding SP interaction at pallidal level, we used single and double antigen retrieval methods to study the cellular and subcellular localization of SP and its high-affinity receptors neurokinin-1 (NK-1R) and neurokinin-3 (NK-3R) in the globus pallidus of the squirrel monkey (Saimiri sciureus). At the light microscopic level, a large number of neurons and fibers located in both the external (GPe) and internal (GPi) segments of the globus pallidus expressed NK-1R or NK-3R immunoreactivity. At the electron microscopic level, both NK-1R and NK-3R were mainly associated with intracellular sites or located at extrasynaptic positions on the plasma membrane. Presynaptic axon terminals forming symmetric and asymmetric synapses occasionally contained NK-1R and NK-3R. Neurokinin receptors were also observed in a proportion of SP-immunoreactive axon terminals, but these terminals preferentially expressed NK-3R. The pattern of distribution of NK-1R and NK-3R in GPe and GPi indicates that SP effects at pallidal level are mediated through postsynaptic receptor as well as presynaptic autoreceptors and heteroreceptors. These morphological data suggest that, either alone or in conjunction with GABA, SP could have a wide range of effects at pallidal level. This neuroactive peptide may influence in a significant manner the integration and treatment of neural information that flows through the basal ganglia.
Collapse
Affiliation(s)
- Martin Lévesque
- Centre de recherche Université Laval Robert-Giffard, 2601, Chemin de la Canardière, Local F-6500, Beauport, Québec, Canada, G1J 2G3
| | | | | |
Collapse
|
210
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
211
|
Shin YW, Kwon JS, Ha TH, Park HJ, Kim DJ, Hong SB, Moon WJ, Lee JM, Kim IY, Kim SI, Chung EC. Increased water diffusivity in the frontal and temporal cortices of schizophrenic patients. Neuroimage 2006; 30:1285-91. [PMID: 16406258 DOI: 10.1016/j.neuroimage.2005.11.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 10/07/2005] [Accepted: 11/14/2005] [Indexed: 11/23/2022] Open
Abstract
Schizophrenia has been suggested to be the result of both macroscopic and microscopic abnormalities in the brain. Although no definitive clinico-pathological correlations have been found to reconcile the many facets inherent in this disorder, the recent development of the magnetic resonance diffusion tensor imaging (DTI) has allowed us to gather useful information regarding the microcircuitry of the brain. Specifically, the apparent diffusion coefficient (ADC) reflects the degree of diffusion barriers and heterosynaptic communication for the brain neurotransmitter. Nineteen patients with DSM-IV schizophrenia and 21 age- and sex-matched control subjects participated in DTI, and the severity of the patients' symptoms was evaluated according to the Positive and Negative Syndrome Scale (PANSS). The ADC values were determined and compared between patients and control subjects via voxel-based morphometry. The results show an increased ADC in the bilateral fronto-temporal regions of the schizophrenic patients, as compared with those of the control subjects. In addition, the ADC values in the area of the right insular were correlated with the negative syndromes from the PANSS. Our findings of increased water diffusivity in the fronto-temporal regions of schizophrenic patients and the correlation between negative symptom scales and the ADC in the right insular region indicate that damaged brain microcircuitry might contribute to the pathophysiology of schizophrenia. These findings contribute towards integrating micro and macrostructural abnormalities and syndromes of schizophrenia.
Collapse
Affiliation(s)
- Yong-Wook Shin
- Clinical Cognitive Neuroscience Center, SNU-MRC, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Ciranna L. Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr Neuropharmacol 2006; 4:101-14. [PMID: 18615128 PMCID: PMC2430669 DOI: 10.2174/157015906776359540] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/29/2005] [Accepted: 12/07/2005] [Indexed: 02/08/2023] Open
Abstract
The neurotransmitter serotonin (5-HT), widely distributed in the central nervous system (CNS), is involved in a large variety of physiological functions. In several brain regions 5-HT is diffusely released by volume transmission and behaves as a neuromodulator rather than as a "classical" neurotransmitter. In some cases 5-HT is co-localized in the same nerve terminal with other neurotransmitters and reciprocal interactions take place. This review will focus on the modulatory action of 5-HT on the effects of glutamate and gamma-amino-butyric acid (GABA), which are the principal neurotransmitters mediating respectively excitatory and inhibitory signals in the CNS. Examples of interaction at pre-and/or post-synaptic levels will be illustrated, as well as the receptors involved and their mechanisms of action. Finally, the physiological meaning of neuromodulatory effects of 5-HT will be briefly discussed with respect to pathologies deriving from malfunctioning of serotonin system.
Collapse
Affiliation(s)
- L Ciranna
- Dipartimento di Scienze Fisiologiche, Università di Catania, 6, Viale Andrea Doria, 95125 Catania, Italy.
| |
Collapse
|
213
|
Saul'skaya NB, Mikhailova MO. Vesicular and non-vesicular glutamate release in the nucleus accumbens in conditions of a forced change of behavioral strategy. ACTA ACUST UNITED AC 2006; 35:677-83. [PMID: 16433062 DOI: 10.1007/s11055-005-0110-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Studies on Sprague-Dawley rats used intracerebral dialysis and high-performance liquid chromatography to identify sources of glutamate release into the intercellular space of the nucleus accumbens during forced correction of food-related behavior, i.e., on presentation to the feeding rat of a conditioned signal previously combined with a pain stimulus or on replacement of a food reinforcement with an inedible food substitute. The results showed that glutamate release observed in the nucleus accumbens during these tests can be prevented by tetrodotoxin (1 microM), which blocks exocytosis, but not by (S)-4-carboxyphenylglycine (5 microM), which blocks non-vesicular glutamate release. Conversely, administration of (S)-4-carboxyphenylglycine halved baseline glutamate release, while administration of tetrodotoxin had no effect on this process. These data provide evidence that different mechanisms control glutamate release into the intercellular space of this nucleus in baseline conditions and in conditions of evoked correction of feeding behavior: the source of baseline glutamate release is non-vesicular glutamate release, while glutamate release seen during forced correction of feeding behavior results from increases in synaptic release.
Collapse
Affiliation(s)
- N B Saul'skaya
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg.
| | | |
Collapse
|
214
|
Jacobsen KX, Höistad M, Staines WA, Fuxe K. The distribution of dopamine D1 receptor and μ-opioid receptor 1 receptor immunoreactivities in the amygdala and interstitial nucleus of the posterior limb of the anterior commissure: Relationships to tyrosine hydroxylase and opioid peptide terminal systems. Neuroscience 2006; 141:2007-18. [PMID: 16820264 DOI: 10.1016/j.neuroscience.2006.05.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/25/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
Mismatches between dopamine innervation and dopamine D1 receptor (D1) distribution have previously been demonstrated in the intercalated cell masses of the rat amygdala. Here the distribution of enkephalin and beta-endorphin immunoreactive (IR) nerve terminals with respect to their mu-opioid receptors is examined in the intercalated cell masses, along with a further immunohistochemical analysis of the dopamine/D1 mismatches. A similar analysis is also made within the extended amygdala. A spatial mismatch in distribution patterns was found between the mu-opioid receptor-1 immunoreactivity and enkephalin IR in the main intercalated island of the amygdala. Discrete cell patches of dopamine D1 receptor and mu-opioid receptor-1 IR were also identified in a distinct region of the extended amygdala, the interstitial nucleus of the posterior limb of the anterior commissure, medial division (IPACM), which displayed sparse tyrosine hydroxylase or enkephalin/beta-endorphin IR nerve terminals. Furthermore, distinct regions of the main intercalated island that showed dopamine/D1 receptor matches (the rostral and rostrolateral parts) were associated with strong dopamine and cyclic AMP regulated phosphoprotein, 32 kDa-IR in several D1 IR neuronal cell bodies and dendrites, whereas this was not the case for the dopamine/D1 mismatch areas (the rostromedial and caudal parts) of the main intercalated island. The lack of correlation between the terminal/receptor distribution patterns suggests a role for volume transmission for mu-opioid receptor- and dopamine D1 receptor-mediated transmission in distinct regions of the amygdala and extended amygdala. This may have implications for amygdaloid function, where slow long lasting responses may develop as a result of volume transmission operating in opioid peptide and dopaminergic communication.
Collapse
Affiliation(s)
- K X Jacobsen
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smythe Road, Ottawa, Ontario K1H 8M5, Canada.
| | | | | | | |
Collapse
|
215
|
Morley BJ. Nicotinic cholinergic intercellular communication: implications for the developing auditory system. Hear Res 2005; 206:74-88. [PMID: 16081000 DOI: 10.1016/j.heares.2005.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 02/24/2005] [Indexed: 02/02/2023]
Abstract
In this paper, research on the temporal and spatial distribution of cholinergic-related molecules in the lower auditory brainstem, with an emphasis on nicotinic acetylcholine receptors (nAChRs), is reviewed. The possible functions of acetylcholine (ACh) in driving selective auditory neurons before the onset of hearing, inducing glutamate receptor gene expression, synaptogenesis, differentiation, and cell survival are discussed. Experiments conducted in other neuronal and non-neuronal systems are drawn on extensively to discuss putative functions of ACh and nAChRs. Data from other systems may provide insight into the functions of ACh and nAChRs in auditory processing. The mismatch of presynaptic and postsynaptic markers and novel endogenous agonists of nAChRs are discussed in the context of non-classical interneuronal communication. The molecular mechanism that may underlie the many functions of ACh and its agonists is the regulation of intracellular calcium through nAChRs. The possible reorganization that may take place in the auditory system by the exposure to nicotine during critical developmental periods is also briefly considered.
Collapse
Affiliation(s)
- Barbara J Morley
- Boys Town National Research Hospital, Neurochemistry Laboratory, 555 North 30th Street, Omaha, NE 68131, USA.
| |
Collapse
|
216
|
Martínez-Rodríguez JE, Santamaria J. CSF markers in sleep neurobiology. Clin Chim Acta 2005; 362:12-25. [PMID: 15992787 DOI: 10.1016/j.cccn.2005.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 11/19/2022]
Abstract
The cerebrospinal fluid has been used in the study of normal and pathological conditions of the central nervous system for more than a century. CSF analysis has also been applied to the study of sleep and its disorders but methodological aspects have often limited the results. The discovery of the hypocretin system (also known as orexin system) and its involvement in the pathophysiology of narcolepsy has opened a new field in the diagnosis of hypersomnia by CSF analysis and has revived the interest on this subject in sleep medicine. Older and new lines of research involving CSF measurement of hypocretin and other neurotransmitters in sleep and its disorders are reviewed.
Collapse
Affiliation(s)
- Jose E Martínez-Rodríguez
- Neurology Service, Hospital Clínic de Barcelona and Institut d'Investigació Biomédica August Pi i Sunyer (IDIBAPS), C/Villarroel 170, Spain.
| | | |
Collapse
|
217
|
John CE, Budygin EA, Mateo Y, Jones SR. Neurochemical characterization of the release and uptake of dopamine in ventral tegmental area and serotonin in substantia nigra of the mouse. J Neurochem 2005; 96:267-82. [PMID: 16300629 DOI: 10.1111/j.1471-4159.2005.03557.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present report, fast-scan cyclic voltammetry was used to identify the monoamines that were released by electrical stimulation in mouse brain slices containing ventral tegmental area (VTA), substantia nigra (SN) -pars compacta (SNc) and -pars reticulata (SNr). We showed that voltammograms obtained in mouse VTA were consistent with detection of a catecholamine, while those in both subregions of the SN were consistent with detection of an indolamine, based on the reduction peak potentials. We used pharmacological blockade and genetic deletion of monoamine transporters to further confirm the identity of released monoamines in mouse midbrain and to assess the control of monoamines by their transporters in each brain region. Inhibition of dopamine and norepinephrine transporters by nomifensine (1 and 10 microm) decreased uptake rates in the VTA, but did not change uptake rates in either subregion of the SN. Serotonin transporter inhibition by fluoxetine (10 microm) decreased uptake rates in the SNc and SNr, but was without effect in the VTA. Selective inhibition of the norepinephrine transporter by desipramine (10 microm) had no effect in any brain region. Using dopamine transporter- and serotonin transporter-knockout mice, we found decreased uptake rates in VTA and SN subregions, respectively. Peak signals recorded in each midbrain region were pulse number dependent and exhibited limited frequency dependence. Thus, dopamine is predominately detected by voltammetry in mouse VTA, while serotonin is predominately detected in mouse SNc and SNr. Furthermore, active uptake occurs in these areas and can be altered only by specific uptake inhibitors, suggesting a lack of heterologous uptake. In addition, somatodendritic dopamine release in VTA was not mediated by monoamine transporters. This work offers an initial characterization of voltammetric signals in the midbrain of the mouse and provides insight into the regulation of monoamine neurotransmission in these areas.
Collapse
Affiliation(s)
- Carrie E John
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
218
|
Bjarkam CR, Sørensen JC, Geneser FA. Distribution and morphology of serotonin-immunoreactive axons in the retrohippocampal areas of the New Zealand white rabbit. ACTA ACUST UNITED AC 2005; 210:199-207. [PMID: 16170538 DOI: 10.1007/s00429-005-0004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2005] [Indexed: 12/19/2022]
Abstract
This study provides a detailed light microscopic description of the morphology and distribution of serotonin-immunoreactive axons in the paleocortical retrohippocampal areas, viz. the subiculum, presubiculum, parasubiculum and entorhinal area, and the adjoining neocortical perirhinal and retrosplenial cortices of the New Zealand white rabbit. Serotonergic axons could be segregated into three different fiber types named fine fibers, beaded fibers and stem-axons. Fine fibers were evenly distributed thin axons with small fusiform/granular varicosities. Beaded fibers were thin axons with large varicosities, predominantly located in the retrohippocampal supragranular layers, where they often formed pericellular arrays. Stem-axons were thick straight, nonvaricose axons seen in the white matter of psalterium dorsale, alveus and the plexiform layer. The paleocortical retrohippocampal areas had a dense supragranular innervation with numerous tortuous fine and beaded fibers, intermingled in conglomerates with conspicuous varicosities forming pericellular arrays. In contrast, the neocortical area 17 and the lateral part of the perirhinal cortex (area 36) were innervated by evenly distributed fine fibers with a moderate number of small varicosities and few ramifications, whereas, the retrosplenial cortex (areas 29e, 29ab and 29cd), and the medial part of the perirhinal cortex (area 35) displayed an intermediate innervation pattern, probably reflecting the transitional nature of these areas being located between the paleo- and the neocortex. The described dualistic innervation pattern may functionally enable the serotonergic system to exert a strong influence on the supragranular layers of the retrohippocampal areas and thus on the neural input entering these areas from the perirhinal and neighboring polymodal association neocortices, whereas the innervation pattern in the adjoining neocortical areas points towards a more diffuse and general modulation of neural activity herein.
Collapse
Affiliation(s)
- Carsten R Bjarkam
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
219
|
Abstract
Iodothyronine deiodinases (D1, D2, and D3) comprise a family of selenoproteins that are involved in the conversion of thyroxine (T(4)) to active triiodothyronine (T(3)), and also the inactivation of both thyroid hormones. The deiodinase enzymes are of critical importance for the normal development and function of the central nervous system. D1 is absent from the human brain, suggesting that D2 and D3 are the two main enzymes involved in the maintenance of thyroid hormone homeostasis in the central nervous system, D2 as the primary T(3)-producing enzyme, and D3 as the primary inactivating enzyme. While the coordinated action of D2 and D3 maintain constant T(3) levels in the cortex independently from the circulating thyroid hormone levels, the role of deiodinases in the hypothalamus may be more complex, as suggested by the regulation of D2 activity in the hypothalamus by infection, fasting and changes in photoperiod. Tanycytes, the primary source of D2 activity in the hypothalamus, integrate hormonal and probably neuronal signals, and under specific conditions, may influence neuroendocrine functions by altering local T(3) tissue concentrations. This function may be of particular importance in the regulation of the hypothalamic-pituitary-thyroid axis during fasting and infection, and in the regulation of appetite and reproductive function. Transient expression of D3 in the preoptic region during a critical time of development suggests a special role for this deiodinase in sexual differentiation of the brain.
Collapse
Affiliation(s)
- Ronald M Lechan
- Tupper Research Institute and Department of Medicine, Tufts-New England Medical Center, and Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
220
|
Färber K, Pannasch U, Kettenmann H. Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol Cell Neurosci 2005; 29:128-38. [PMID: 15866053 DOI: 10.1016/j.mcn.2005.01.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 01/06/2005] [Accepted: 01/12/2005] [Indexed: 11/26/2022] Open
Abstract
Microglial cells are the immune-competent elements of the brain. They not only express receptors for chemokines and cytokines but also for neurotransmitters such as GABA [Charles et al., Mol. Cell Neurosci. 24 (2003) 214], glutamate [Noda et al., J. Neurosci. 20 (2000) 251], and adrenaline [Mori et al., Neuropharmacology 43 (2002) 1026]. Here we report the functional expression of dopamine receptors in mouse and rat microglia, in culture and brain slices. Using the patch clamp technique as the functional assay we identified D1- and D2-like dopamine receptors using subtype-specific ligands. They triggered the inhibition of the constitutive potassium inward rectifier and activated potassium outward currents in a subpopulation of microglia. Chronic dopamine receptor stimulation enhanced migratory activity and attenuated the lipopolysaccharide (LPS)-induced nitric oxide (NO) release similar as by stimulation of adrenergic receptors. While, however, noradrenaline attenuated the LPS-induced release of TNF-alpha and IL-6, dopamine was ineffective in modulating this response. We conclude that microglia express dopamine receptors which are distinct in function from adrenergic receptors.
Collapse
MESH Headings
- Adrenergic Agonists/pharmacology
- Animals
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured
- Cytokines/metabolism
- Dopamine/pharmacology
- Lipopolysaccharides/pharmacology
- Membrane Potentials/drug effects
- Mice
- Mice, Inbred Strains
- Microglia/cytology
- Microglia/drug effects
- Microglia/physiology
- Nitric Oxide/metabolism
- Norepinephrine/pharmacology
- Organ Culture Techniques
- Patch-Clamp Techniques
- Potassium/metabolism
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha/physiology
- Receptors, Adrenergic, beta/physiology
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/physiology
- Sympathomimetics/pharmacology
Collapse
Affiliation(s)
- Katrin Färber
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | |
Collapse
|
221
|
De Seranno S, Estrella C, Loyens A, Cornea A, Ojeda SR, Beauvillain JC, Prevot V. Vascular endothelial cells promote acute plasticity in ependymoglial cells of the neuroendocrine brain. J Neurosci 2005; 24:10353-63. [PMID: 15548649 PMCID: PMC6730291 DOI: 10.1523/jneurosci.3228-04.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glial and endothelial cells interact throughout the brain to define specific functional domains. Whether endothelial cells convey signals to glia in the mature brain is unknown but is amenable to examination in circumventricular organs. Here we report that purified endothelial cells of one of these organs, the median eminence of the hypothalamus, induce acute actin cytoskeleton remodeling in isolated ependymoglial cells and show that this plasticity is mediated by nitric oxide (NO), a diffusible factor. We found that both soluble guanylyl cyclase and cyclooxygenase products are involved in this endothelial-mediated control of ependymoglia cytoarchitecture. We also demonstrate by electron microscopy that activation of endogenous NO release in the median eminence induces rapid structural changes, allowing a direct access of neurosecretory axons containing gonadotropin-releasing hormone (GnRH) (the neuropeptide controlling reproductive function) to the portal vasculature. Local in vivo inhibition of NO synthesis disrupts reproductive cyclicity, a process that requires a pulsatile, coordinated delivery of GnRH into the hypothalamic-adenohypophyseal portal system. Our results identify a previously unknown function for endothelial cells in inducing neuroglial plasticity and raise the intriguing possibility that endothelial cells throughout the brain may use a similar signaling mechanism to regulate glial-neuronal interactions.
Collapse
Affiliation(s)
- Sandrine De Seranno
- Institut National de la Santé et de la Recherche Médicale, Unité 422, 59045 Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
222
|
Gómez C, Briñón JG, Barbado MV, Weruaga E, Valero J, Alonso JR. Heterogeneous targeting of centrifugal inputs to the glomerular layer of the main olfactory bulb. J Chem Neuroanat 2005; 29:238-54. [PMID: 15927786 DOI: 10.1016/j.jchemneu.2005.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 01/29/2005] [Accepted: 01/29/2005] [Indexed: 11/26/2022]
Abstract
The centrifugal systems innervating the olfactory bulb are important elements in the functional regulation of the olfactory pathway. In this study, the selective innervation of specific glomeruli by serotonergic, noradrenergic and cholinergic centrifugal axons was analyzed. Thus, the morphology, distribution and density of positive axons were studied in the glomerular layer of the main olfactory bulb of the rat, using serotonin-, serotonin transporter- and dopamine-beta-hydroxylase-immunohistochemistry and acetylcholinesterase histochemistry in serial sections. Serotonin-, serotonin transporter-immunostaining and acetylcholinesterase-staining revealed a higher heterogeneity in the glomerular layer of the main olfactory bulb than previously reported. In this sense, four types of glomeruli could be identified according to their serotonergic innervation. The main distinctive feature of these four types of glomeruli was their serotonergic fibre density, although they also differed in their size, morphology and relative position throughout the rostro-caudal main olfactory bulb. In this sense, some specific regions of the glomerular layer were occupied by glomeruli with a particular morphology and a characteristic serotonergic innervation pattern that was consistent from animal to animal. Regarding the cholinergic system, we offer a new subclassification of glomeruli based on the distribution of cholinergic fibres in the glomerular structure. Finally, the serotonergic and cholinergic innervation patterns were compared in the glomerular layer. Sexual differences concerning the density of serotonergic fibres were observed in the atypical glomeruli (characterized by their strong cholinergic innervation). The present report provides new data on the heterogeneity of the centrifugal innervation of the glomerular layer that constitutes the morphological substrate supporting the existence of differential modulatory levels among the entire glomerular population.
Collapse
Affiliation(s)
- C Gómez
- Lab. Plasticidad neuronal y neurorreparación, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
223
|
Emerich DF, Skinner SJM, Borlongan CV, Vasconcellos AV, Thanos CG. The choroid plexus in the rise, fall and repair of the brain. Bioessays 2005; 27:262-74. [PMID: 15714561 DOI: 10.1002/bies.20193] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The choroid plexuses (CPs) are involved in the most-basic aspects of neural function including maintaining the extracellular milieu of the brain by actively modulating chemical exchange between the CSF and brain parenchyma, surveying the chemical and immunological status of the brain, detoxifying the brain, secreting a nutritive "cocktail" of polypeptides and participating in repair processes following trauma. This diversity of functions may mean that even modest changes in the CP can have far-reaching effects. Indeed, changes in the anatomy and physiology of the CP have been linked to aging and several CNS diseases. It is also possible that replacing diseased or transplanting healthy CP might be useful for treating acute and chronic brain diseases. This review focuses on the wide-ranging and under-appreciated functions of the CP, alterations of these functions in aging and neurodegeneration, and recent demonstrations of the therapeutic potential of transplanted CP for neural trauma.
Collapse
|
224
|
Young JK, Wu M, Manaye KF, Kc P, Allard JS, Mack SO, Haxhiu MA. Orexin stimulates breathing via medullary and spinal pathways. J Appl Physiol (1985) 2005; 98:1387-95. [PMID: 15557013 DOI: 10.1152/japplphysiol.00914.2004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A central neuronal network that regulates respiration may include hypothalamic neurons that produce orexin, a peptide that influences sleep and arousal. In these experiments, we investigated 1) projections of orexin-containing neurons to the pre-Bötzinger region of the rostral ventrolateral medulla that regulates rhythmic breathing and to phrenic motoneurons that innervate the diaphragm; 2) the presence of orexin A receptors in the pre-Bötzinger region and in phrenic motoneurons; and 3) physiological effects of orexin administered into the pre-Bötzinger region and phrenic nuclei at the C3–C4 levels. We found orexin-containing fibers within the pre-Bötzinger complex. However, only 0.5% of orexin-containing neurons projected to the pre-Bötzinger region, whereas 2.9% of orexin-containing neurons innervated the phrenic nucleus. Neurons of the pre-Bötzinger region and phrenic nucleus stained for orexin receptors, and activation of orexin receptors by microperfusion of orexin in either site produced a dose-dependent, significant ( P < 0.05) increase in diaphragm electromyographic activity. These data indicate that orexin regulates respiratory activity and may have a role in the pathophysiology of sleep-related respiratory disorders.
Collapse
Affiliation(s)
- John K Young
- Dept. of Anatomy, Howard Univ. College of Medicine, 520 W St., NW, Washington, DC 20059, USA.
| | | | | | | | | | | | | |
Collapse
|
225
|
Syková E. Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 2005; 129:861-76. [PMID: 15561404 DOI: 10.1016/j.neuroscience.2004.06.077] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
Extrasynaptic communication between neurons or neurons and glia is mediated by the diffusion of neuroactive substances in the volume of the extracellular space (ECS). The size and irregular geometry of the diffusion channels in the ECS substantially differ not only around individual cells but also in different CNS regions and thus affect and direct the movement of various neuroactive substances in the ECS. Diffusion in the CNS is therefore not only inhomogeneous, but often also anisotropic. The diffusion parameters in adult mammals (including humans), ECS volume fraction alpha (alpha=ECS volume/total tissue volume) and tortuosity lambda (lambda(2)=free/apparent diffusion coefficient), are typically 0.20-0.25 and 1.5-1.6, respectively, and as such hinder the diffusion of neuroactive substances and water. These diffusion parameters modulate neuronal signaling, neuron-glia communication and extrasynaptic "volume" transmission. A significant decrease in ECS volume fraction and an increase in diffusion barriers (tortuosity) occur during neuronal activity and pathological states. The changes are often related to cell swelling, cell loss, astrogliosis, the rearrangement of neuronal and astrocytic processes and changes in the extracellular matrix. They are also altered during physiological states such as development, lactation and aging. Plastic changes in ECS volume, tortuosity and anisotropy significantly affect neuron-glia communication, the spatial relation of glial processes toward synapses, glutamate or GABA "spillover" and synaptic crosstalk. The various changes in tissue diffusivity occurring during many pathological states are important for diagnosis, drug delivery and treatment.
Collapse
Affiliation(s)
- E Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague and Department of Neuroscience, Charles University, Second Medical Faculty, Vídenská 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
226
|
Torrealba F, Carrasco MA. A review on electron microscopy and neurotransmitter systems. ACTA ACUST UNITED AC 2005; 47:5-17. [PMID: 15572159 DOI: 10.1016/j.brainresrev.2004.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this article is to review the contributions of transmission electron microscopy studies to the understanding of brain circuits and neurotransmitter systems. Our views on the microstructure of connections between neurons have gradually changed, and now we recognize that the classical mental image we had on a chemical synapse is no longer applicable to every neuronal connection. We highlight studies that converge to point out that, while the most prevalent fast transmitters in the brain, glutamate and GABA, are stored in small, clear synaptic vesicles (SSV) and released at synapses, neuropeptides are exclusively stored in large dense core vesicles (LDCV) and released extrasynaptically. Amine transmitters are preferentially, but not exclusively, accumulated in LDCV and may be released at synaptic or extrasynaptic sites. We discuss evidence suggesting that axon terminals from pyramidal cortical neurons and dorsal thalamic neurons lack LDCV and therefore could not use neuropeptides as transmitters. This idea fits with the fast, high temporal resolution information processing that characterizes cortical and thalamic function.
Collapse
Affiliation(s)
- Fernando Torrealba
- Departamento de Ciencias Fisiológicas, Fac. Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | | |
Collapse
|
227
|
Mokrushin AA, Plekhanov AY. Heat-shock protein (HSP70) as a mediator of volume signal transmission in the olfactory cerebral cortex of rats. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2005; 401:81-4. [PMID: 16003863 DOI: 10.1007/s10630-005-0050-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- A A Mokrushin
- Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova 6, St. Petersburg, 199034, Russia
| | | |
Collapse
|
228
|
|
229
|
Chvátal A, Anderová M, Syková E. Analysis of K+ accumulation reveals privileged extracellular region in the vicinity of glial cells in situ. J Neurosci Res 2005; 78:668-82. [PMID: 15478195 DOI: 10.1002/jnr.20284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocytes and oligodendrocytes in rat and mouse spinal cord slices, characterized by passive membrane currents during de- and hyperpolarizing stimulation pulses, express a high resting K+ conductance. In contrast to the case for astrocytes, a depolarizing prepulse in oligodendrocytes produces a significant shift of reversal potential (Vrev) to positive values, arising from the larger accumulation of K+ in the vicinity of the oligodendrocyte membrane. As a result, oligodendrocytes express large tail currents (Itail) after a depolarizing prepulse due to the shift of K+ into the cell. In the present study, we used a mathematical model to calculate the volume of the extracellular space (ECS) in the vicinity of astrocytes and oligodendrocytes (ESVv), defined as the volume available for K+ accumulation during membrane depolarization. A mathematical analysis of membrane currents revealed no differences between glial cells from mouse (n = 59) or rat (n = 60) spinal cord slices. We found that the Vrev of a cell after a depolarizing pulse increases with increasing Itail, expressed as the ratio of the integral inward current (Qin) after the depolarizing pulse to the total integral outward current (Qout) during the pulse. In astrocytes with small Itail and Vrev ranging from -50 to -70 mV, the Qin was only 3-19% of Qout, whereas, in oligodendrocytes with large Itail and Vrev between -20 and 0 mV, Qin/Qout was 30-75%. On the other hand, ESVv decreased with increasing values of Vrev. In astrocytes, ESVv ranged from 2 to 50 microm3, and, in oligodendrocytes, it ranged from 0.1 to 2.0 microm3. Cell swelling evoked by the application of hypotonic solution shifted Vrev to more positive values by 17.2 +/- 1.8 mV and was accompanied by a decrease in ESVv of 3.6 +/- 1.3 microm3. Our mathematical analysis reveals a 10-100 times smaller region of the extracellular space available for K+ accumulation during cell depolarization in the vicinity of oligodendrocytes than in the vicinity of astrocytes. The presence of such privileged regions around cells in the CNS may affect the accumulation and diffusion of other neuroactive substances and alter communication between cells in the CNS.
Collapse
Affiliation(s)
- Alexandr Chvátal
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
230
|
Emerich DF, Vasconcellos AV, Elliott RB, Skinner SJM, Borlongan CV. The choroid plexus: function, pathology and therapeutic potential of its transplantation. Expert Opin Biol Ther 2005; 4:1191-201. [PMID: 15268655 DOI: 10.1517/14712598.4.8.1191] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The choroid plexus (CP) produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. However, the CP may have additional functions in the CNS beyond these traditional roles. Preclinical and clinical studies in ageing and neurodegeneration demonstrate anatomical and physiological changes in CP, suggesting roles in normal and pathological conditions and potentially endogenous repair processes following trauma. One of the broadest functions of the CP is establishing and maintaining the extracellular milieu throughout the brain and spinal cord, in part by secreting numerous growth factors into the CSF. The endogenous secretion of growth factors raises the possibility that transplantable CP might enable delivery of these molecules to the brain, while avoiding the conventional molecular and genetic alterations associated with modifying cells to secrete selected products. This review describes some of the anatomical and functional changes of CP in ageing and neurodegeneration, and recent demonstrations of the therapeutic potential of transplanted CP for neural trauma.
Collapse
|
231
|
Whalley BJ, Postlethwaite M, Constanti A. Further characterization of muscarinic agonist-induced epileptiform bursting activity in immature rat piriform cortex, in vitro. Neuroscience 2005; 134:549-66. [PMID: 15961237 DOI: 10.1016/j.neuroscience.2005.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 04/05/2005] [Accepted: 04/07/2005] [Indexed: 11/16/2022]
Abstract
The characteristics of muscarinic acetylcholine receptor agonist-induced epileptiform bursting seen in immature rat piriform cortex slices in vitro were further investigated using intracellular recording, with particular focus on its postnatal age-dependence (P+14-P+30), pharmacology, site(s) of origin and the likely contribution of the muscarinic acetylcholine receptor agonist-induced post-stimulus slow afterdepolarization and gap junction functionality toward its generation. The muscarinic agonist, oxotremorine-M (10 microM), induced rhythmic bursting only in immature piriform cortex slices; however, paroxysmal depolarizing shift amplitude, burst duration and burst incidence were inversely related to postnatal age. No significant age-dependent changes in neuronal membrane properties or postsynaptic muscarinic responsiveness accounted for this decline. Burst incidence was higher when recorded in anterior and posterior regions of the immature piriform cortex. In adult and immature neurones, oxotremorine-M effects were abolished by M1-, but not M2-muscarinic acetylcholine receptor-selective antagonists. Rostrocaudal lesions, between piriform cortex layers I and II, or layer III and endopiriform nucleus in adult or immature slices did not influence oxotremorine-M effects; however, the slow afterdepolarization in adult (but not immature) lesioned slices was abolished. Gap junction blockers (carbenoxolone or octanol) disrupted muscarinic bursting and diminished the slow afterdepolarization in immature slices, suggesting that gap junction connectivity was important for bursting. Our data show that neural networks within layers II-III function as primary oscillatory circuits for burst initiation in immature rat piriform cortex during persistent muscarinic receptor activation. Furthermore, we propose that muscarinic slow afterdepolarization induction and gap junction communication could contribute towards the increased epileptiform susceptibility of this brain area.
Collapse
Affiliation(s)
- B J Whalley
- Department of Pharmacology, The School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | | | | |
Collapse
|
232
|
Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J. The Choroid Plexus‐Cerebrospinal Fluid System: From Development to Aging. Curr Top Dev Biol 2005; 71:1-52. [PMID: 16344101 DOI: 10.1016/s0070-2153(05)71001-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The function of the cerebrospinal fluid (CSF) and the tissue that secretes it, the choroid plexus (CP), has traditionally been thought of as both providing physical protection to the brain through buoyancy and facilitating the removal of brain metabolites through the bulk drainage of CSF. More recent studies suggest, however, that the CP-CSF system plays a much more active role in the development, homeostasis, and repair of the central nervous system (CNS). The highly specialized choroidal tissue synthesizes trophic and angiogenic factors, chemorepellents, and carrier proteins, and is strategically positioned within the ventricular cavities to supply the CNS with these biologically active substances. Through polarized transport systems and receptor-mediated transcytosis across the choroidal epithelium, the CP, a part of the blood-CSF barrier (BCSFB), controls the entry of nutrients, such as amino acids and nucleosides, and peptide hormones, such as leptin and prolactin, from the periphery into the brain. The CP also plays an important role in the clearance of toxins and drugs. During CNS development, CP-derived growth factors, such as members of the transforming growth factor-beta superfamily and retinoic acid, play an important role in controlling the patterning of neuronal differentiation in various brain regions. In the adult CNS, the CP appears to be critically involved in neuronal repair processes and the restoration of the brain microenvironment after traumatic and ischemic brain injury. Furthermore, recent studies suggest that the CP acts as a nursery for neuronal and astrocytic progenitor cells. The advancement of our knowledge of the neuroprotective capabilities of the CP may therefore facilitate the development of novel therapies for ischemic stroke and traumatic brain injury. In the later stages of life, the CP-CSF axis shows a decline in all aspects of its function, including CSF secretion and protein synthesis, which may in themselves increase the risk for development of late-life diseases, such as normal pressure hydrocephalus and Alzheimer's disease. The understanding of the mechanisms that underlie the dysfunction of the CP-CSF system in the elderly may help discover the treatments needed to reverse the negative effects of aging that lead to global CNS failure.
Collapse
Affiliation(s)
- Zoran B Redzic
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD United Kingdom
| | | | | | | | | |
Collapse
|
233
|
Wickens J, Arbuthnott G. Chapter IV Structural and functional interactions in the striatum at the receptor level. HANDBOOK OF CHEMICAL NEUROANATOMY 2005. [DOI: 10.1016/s0924-8196(05)80008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
234
|
Brezina V, Horn CC, Weiss KR. Modeling neuromuscular modulation in Aplysia. III. Interaction of central motor commands and peripheral modulatory state for optimal behavior. J Neurophysiol 2004; 93:1523-56. [PMID: 15469963 DOI: 10.1152/jn.00475.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent work in computational neuroethology has emphasized that "the brain has a body": successful adaptive behavior is not simply commanded by the nervous system, but emerges from interactions of nervous system, body, and environment. Here we continue our study of these issues in the accessory radula closer (ARC) neuromuscular system of Aplysia. The ARC muscle participates in the animal's feeding behaviors, a set of cyclical, rhythmic behaviors driven by a central pattern generator (CPG). Patterned firing of the ARC muscle's two motor neurons, B15 and B16, releases not only ACh to elicit the muscle's contractions but also peptide neuromodulators that then shape the contractions through a complex network of actions on the muscle. These actions are dynamically complex: some are fast, but some are slow, so that they are temporally uncoupled from the motor neuron firing pattern in the current cycle. Under these circumstances, how can the nervous system, through just the narrow channel of the firing patterns of the motor neurons, control the contractions, movements, and behavior in the periphery? In two earlier papers, we developed a realistic mathematical model of the B15/B16-ARC neuromuscular system and its modulation. Here we use this model to study the functional performance of the system in a realistic behavioral task. We run the model with two kinds of inputs: a simple set of regular motor neuron firing patterns that allows us to examine the entire space of patterns, and the real firing patterns of B15 and B16 previously recorded in a 2 1/2-h-long meal of 749 cycles in an intact feeding animal. These real patterns are extremely irregular. Our main conclusions are the following. 1) The modulation in the periphery is necessary for superior functional performance. 2) The components of the modulatory network interact in nonlinear, context- and task-dependent combinations for best performance overall, although not necessarily in any particular cycle. 3) Both the fast and the slow dynamics of the modulatory state make important contributions. 4) The nervous system controls different components of the periphery to different degrees. To some extent the periphery operates semiautonomously. However, the structure of the peripheral modulatory network ensures robust performance under all circumstances, even with the irregular motor neuron firing patterns and even when the parameters of the functional task are randomly varied from cycle to cycle to simulate a variable feeding environment. In the variable environment, regular firing patterns, which are fine-tuned to one particular task, fail to provide robust performance. We propose that the CPG generates the irregular firing patterns, which nevertheless are guaranteed to give robust performance overall through the actions of the peripheral modulatory network, as part of a trial-and-error feeding strategy in a variable, uncertain environment.
Collapse
Affiliation(s)
- Vladimir Brezina
- Department of Physiology and Biophysics and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, Box 1218, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|
235
|
Paspalas CD, Goldman-Rakic PS. Microdomains for dopamine volume neurotransmission in primate prefrontal cortex. J Neurosci 2004; 24:5292-300. [PMID: 15190100 PMCID: PMC6729299 DOI: 10.1523/jneurosci.0195-04.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The explicit yet enigmatic involvement of dopamine in cortical physiology is in part volumetric (beyond the synapse), as is apparently the action of neuroleptics targeting dopamine receptors. The notion that nonsynaptic neuronal membranes would translate extracellular dopamine into receptor-specific spatiotemporal downstream signaling, similar to the chemical synapse, is intriguing. Here, we report that dopamine D5 (but not D1 or D2) receptors in the perisomatic plasma membrane of prefrontal cortical neurons form discrete and exclusively extrasynaptic microdomains with inositol 1,4,5-trisphosphate-gated calcium stores of subsurface cisterns and mitochondria. These findings introduce a novel dopaminoceptive substratum in the brain and a unique D5 receptor-specific signaling paradigm.
Collapse
Affiliation(s)
- Constantinos D Paspalas
- Yale University School of Medicine, Department of Neurobiology, Sterling Hall of Medicine B408, 333 Cedar Street, New Haven, CT 0651, USA.
| | | |
Collapse
|
236
|
Schell MJ. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2004; 359:943-64. [PMID: 15306409 PMCID: PMC1693380 DOI: 10.1098/rstb.2003.1399] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
237
|
Chen Y, Brunson KL, Adelmann G, Bender RA, Frotscher M, Baram TZ. Hippocampal corticotropin releasing hormone: pre- and postsynaptic location and release by stress. Neuroscience 2004; 126:533-40. [PMID: 15183503 PMCID: PMC2923444 DOI: 10.1016/j.neuroscience.2004.03.036] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2004] [Indexed: 10/26/2022]
Abstract
Neuropeptides modulate neuronal function in hippocampus, but the organization of hippocampal sites of peptide release and actions is not fully understood. The stress-associated neuropeptide corticotropin releasing hormone (CRH) is expressed in inhibitory interneurons of rodent hippocampus, yet physiological and pharmacological data indicate that it excites pyramidal cells. Here we aimed to delineate the structural elements underlying the actions of CRH, and determine whether stress influenced hippocampal principal cells also via actions of this endogenous peptide. In hippocampal pyramidal cell layers, CRH was located exclusively in a subset of GABAergic somata, axons and boutons, whereas the principal receptor mediating the peptide's actions, CRH receptor 1 (CRF1), resided mainly on dendritic spines of pyramidal cells. Acute 'psychological' stress led to activation of principal neurons that expressed CRH receptors, as measured by rapid phosphorylation of the transcription factor cyclic AMP responsive element binding protein. This neuronal activation was abolished by selectively blocking the CRF1 receptor, suggesting that stress-evoked endogenous CRH release was involved in the activation of hippocampal principal cells.
Collapse
Affiliation(s)
- Y. Chen
- Departments of Anatomy/Neurobiology and Pediatrics, ZOT 4475, University of California at Irvine, Irvine, CA 92697-4475, USA
| | - K. L. Brunson
- Departments of Anatomy/Neurobiology and Pediatrics, ZOT 4475, University of California at Irvine, Irvine, CA 92697-4475, USA
| | - G. Adelmann
- Institute of Anatomy, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - R. A. Bender
- Departments of Anatomy/Neurobiology and Pediatrics, ZOT 4475, University of California at Irvine, Irvine, CA 92697-4475, USA
| | - M. Frotscher
- Institute of Anatomy, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - T. Z. Baram
- Departments of Anatomy/Neurobiology and Pediatrics, ZOT 4475, University of California at Irvine, Irvine, CA 92697-4475, USA
- Corresponding author. Tel: +1-949-824-1131; fax: +1-949-824-1106. (T. Z. Baram)
| |
Collapse
|
238
|
Vizi ES, Kiss JP, Lendvai B. Nonsynaptic communication in the central nervous system. Neurochem Int 2004; 45:443-51. [PMID: 15186910 DOI: 10.1016/j.neuint.2003.11.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 11/10/2003] [Indexed: 11/22/2022]
Abstract
Classical synaptic functions are important and suitable to relatively fast and discretely localized processes, but the nonclassical receptorial functions may be providing revolutionary possibilities for dealing at the cellular level with many of the more interesting and seemingly intractable features of neural and cerebral activities. Although different forms of nonsynaptic communication (volume transmission) often appear in different studies, their importance to modulate and mediate various functions is still not completely recognized. To establish the existence and the importance of nonsynaptic communication in the nervous system, here we cite pieces of evidence for each step of the interneuronal communication in the nonsynaptic context including the release into the extracellular space (ECS) and the extrasynaptic receptors and transporters that mediate nonsynaptic functions. We are now faced with a multiplicity of chemical communication. The fact that transmitters can even be released from nonsynaptic varicosities without being coupled to frequency-coded neuronal activity and they are able to diffuse over large distances indicates that there is a complementary mechanism of interneuronal communication to classical synaptic transmission. Nonconventional mediators that are also important part of the nonsynaptic world will also be overviewed.
Collapse
Affiliation(s)
- E Sylvester Vizi
- Department of Pharmacology, Institute of Experimental Medicine; Hungarian Academy of Sciences, P.O. Box 67, H-1450 Budapest, Hungary.
| | | | | |
Collapse
|
239
|
Abstract
Orally administered levodopa, in combination with a decarboxylase inhibitor, is the gold standard therapy for Parkinson disease (PD). The problems in management of motor fluctuations in the advanced stages of the disorder are due to the close relationship between plasma levodopa levels and availability of dopamine at striatal receptor sites. The fluctuating levodopa concentrations are mainly explained by the fact that levodopa absorption only occurs in the proximal small intestine. The patient's motor function thus depends on gastric emptying, which is erratic and may even be delayed in PD. Oral therapy with sustained-release formulations and COMT inhibitors have not solved the problems satisfactorily. Therefore, infusions of levodopa by intravenous and enteral (duodenal/jejunal) routes of administration have been studied. In this review of the literature on clinically relevant levodopa infusion studies, it is shown that improvements regarding fluctuations in both plasma levodopa levels and motor performance have been repeatedly reported. The results acquired so far suggest that levodopa infusion is a safe and efficacious therapy. Recent drug delivery development and long-term studies have shown that infusion is a clinically feasible alternative to treat advanced PD.
Collapse
Affiliation(s)
- Dag Nyholm
- Department of Neuroscience, Neurology, Uppsala University Hospital, Sweden.
| | | |
Collapse
|
240
|
Abstract
Extrasynaptic transmission between neurons and communication between neurons and glia are mediated by the diffusion of neuroactive substances in the extracellular space (ECS)--volume transmission. Diffusion in the CNS is inhomogeneous and often not uniform in all directions (anisotropic). Ionic changes and amino acid release result in cellular (particularly glial) swelling, compensated for by ECS shrinkage and a decrease in the apparent diffusion coefficients of neuroactive substances or water (ADCW). The diffusion parameters of the CNS in adult mammals (including humans), ECS volume fraction alpha (alpha = ECS volume/total tissue volume; normally 0.20-0.25) and tortuosity lambda (lambda2 = D/ADC; normally 1.5-1.6), hinder the diffusion of neuroactive substances and water. A significant decrease in ECS volume and an increase in diffusion barriers (tortuosity) and anisoptropy have been observed during stimulation, lactation or learning deficits during aging, due to structural changes such as astrogliosis, the re-arrangement of astrocytic processes and a loss of extracellular matrix. Decreases in the apparent diffusion coefficient of tetramethylammonium (ADCTMA) and ADCW due to astrogliosis and increased proteoglycan expression were found in the brain after injury and in grafts of fetal tissue. Tenascin-R and tenascin C-deficient mice also showed significant changes in ADCTMA and ADCW, suggesting an important role for extracellular matrix molecules in ECS diffusion. Changes in ECS volume, tortuosity and anisotropy significantly affect neuron-glia communication, the spatial relation of glial processes towards synapses, the efficacy of glutamate or GABA 'spillover' and synaptic crosstalk, the migration of cells, the action of hormones and the toxic effects of neuroactive substances and can be important for diagnosis, drug delivery and new treatment strategies.
Collapse
Affiliation(s)
- Eva Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
241
|
Abstract
Hallucinogens (psychedelics) are psychoactive substances that powerfully alter perception, mood, and a host of cognitive processes. They are considered physiologically safe and do not produce dependence or addiction. Their origin predates written history, and they were employed by early cultures in a variety of sociocultural and ritual contexts. In the 1950s, after the virtually contemporaneous discovery of both serotonin (5-HT) and lysergic acid diethylamide (LSD-25), early brain research focused intensely on the possibility that LSD or other hallucinogens had a serotonergic basis of action and reinforced the idea that 5-HT was an important neurotransmitter in brain. These ideas were eventually proven, and today it is believed that hallucinogens stimulate 5-HT(2A) receptors, especially those expressed on neocortical pyramidal cells. Activation of 5-HT(2A) receptors also leads to increased cortical glutamate levels presumably by a presynaptic receptor-mediated release from thalamic afferents. These findings have led to comparisons of the effects of classical hallucinogens with certain aspects of acute psychosis and to a focus on thalamocortical interactions as key to understanding both the action of these substances and the neuroanatomical sites involved in altered states of consciousness (ASC). In vivo brain imaging in humans using [(18)F]fluorodeoxyglucose has shown that hallucinogens increase prefrontal cortical metabolism, and correlations have been developed between activity in specific brain areas and psychological elements of the ASC produced by hallucinogens. The 5-HT(2A) receptor clearly plays an essential role in cognitive processing, including working memory, and ligands for this receptor may be extremely useful tools for future cognitive neuroscience research. In addition, it appears entirely possible that utility may still emerge for the use of hallucinogens in treating alcoholism, substance abuse, and certain psychiatric disorders.
Collapse
Affiliation(s)
- David E Nichols
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, IN 47907-2091, USA.
| |
Collapse
|
242
|
Sarre S, Yuan H, Jonkers N, Van Hemelrijck A, Ebinger G, Michotte Y. In vivo characterization of somatodendritic dopamine release in the substantia nigra of 6-hydroxydopamine-lesioned rats. J Neurochem 2004; 90:29-39. [PMID: 15198664 DOI: 10.1111/j.1471-4159.2004.02471.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the effect of an injection of 6-hydroxydopamine (6-OHDA) into the rat medial forebrain bundle (MFB) on the degeneration and the function of the dopaminergic cell bodies in the substantia nigra (SN) 3 and 5 weeks after lesioning. After injection of 6-OHDA into the MFB a complete loss of dopamine content was apparent in the striatum 3 weeks after lesioning. In the SN the amount of tyrosine hydroxylase-immunoreactive dopamine cells decreased gradually, with a near-complete lesion (> 90%) obtained only after 5 weeks, indicating that neurodegeneration of the nigral cells was still ongoing when total dopamine denervation of the striatum had already been achieved. Baseline dialysate and extracellular dopamine levels in the SN, as determined by in vivo microdialysis, were not altered by the lesion. A combination of compensatory changes of the remaining neurones and dopamine originating from the ventral tegmental area may maintain extracellular dopamine at near-normal levels. In both intact and lesioned rats, the somatodendritic release was about 60% tetrodotoxin (TTX) dependent. Possibly two pools contribute to the basal dopamine levels in the SN: a fast sodium channel-dependent portion and a TTX-insensitive one originating from diffusion of dopamine. Amphetamine-evoked dopamine release and release after injection of the selective dopamine reuptake blocker GBR 12909 were attenuated after a near-complete denervation of the SN (5 weeks after lesioning). So, despite a 90% dopamine cell loss in the SN 5 weeks after an MFB lesion, extracellular dopamine levels in the SN are kept at near-normal levels. However, the response to a pharmacological challenge is severely disrupted.
Collapse
Affiliation(s)
- Sophie Sarre
- Department of Pharmaceutical Chemistry and Drug Analysis, Research group Experimental Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
243
|
Ahnert-Hilger G, Höltje M, Pahner I, Winter S, Brunk I. Regulation of vesicular neurotransmitter transporters. Rev Physiol Biochem Pharmacol 2004; 150:140-60. [PMID: 14517724 DOI: 10.1007/s10254-003-0020-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotransmitters are key molecules of neurotransmission. They are concentrated first in the cytosol and then in small synaptic vesicles of presynaptic terminals by the activity of specific neurotransmitter transporters of the plasma and the vesicular membrane, respectively. It has been shown that postsynaptic responses to single neurotransmitter packets vary over a wide range, which may be due to a regulation of vesicular neurotransmitter filling. Vesicular filling depends on the availability of transmitter molecules in the cytoplasm and the active transport into secretory vesicles relying on a proton gradient. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq, which regulate VMAT activities in brain and platelets, respectively, and may also be involved in the regulation of VGLUTs. It appears that the vesicular content activates the G protein, suggesting a signal transduction form the luminal site which might be mediated by a vesicular G-protein coupled receptor or, as an alternative, possibly by the transporter itself. These novel functions of G proteins in the control of transmitter storage may link regulation of the vesicular content to intracellular signal cascades.
Collapse
Affiliation(s)
- G Ahnert-Hilger
- Institut für Anatomie und Neurowissenschaftliches Zentrum der Charité, Humboldt-Universität zu Berlin, Philippstr. 12, 10115 Berlin, Germany.
| | | | | | | | | |
Collapse
|
244
|
Faingold CL. Emergent properties of CNS neuronal networks as targets for pharmacology: application to anticonvulsant drug action. Prog Neurobiol 2004; 72:55-85. [PMID: 15019176 DOI: 10.1016/j.pneurobio.2003.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 11/19/2003] [Indexed: 01/13/2023]
Abstract
CNS drugs may act by modifying the emergent properties of complex CNS neuronal networks. Emergent properties are network characteristics that are not predictably based on properties of individual member neurons. Neuronal membership within networks is controlled by several mechanisms, including burst firing, gap junctions, endogenous and exogenous neuroactive substances, extracellular ions, temperature, interneuron activity, astrocytic integration and external stimuli. The effects of many CNS drugs in vivo may critically involve actions on specific brain loci, but this selectivity may be absent when the same neurons are isolated from the network in vitro where emergent properties are lost. Audiogenic seizures (AGS) qualify as an emergent CNS property, since in AGS the acoustic stimulus evokes a non-linear output (motor convulsion), but the identical stimulus evokes minimal behavioral changes normally. The hierarchical neuronal network, subserving AGS in rodents is initiated in inferior colliculus (IC) and progresses to deep layers of superior colliculus (DLSC), pontine reticular formation (PRF) and periaqueductal gray (PAG) in genetic and ethanol withdrawal-induced AGS. In blocking AGS, certain anticonvulsants reduce IC neuronal firing, while other agents act primarily on neurons in other AGS network sites. However, the NMDA receptor channel blocker, MK-801, does not depress neuronal firing in any network site despite potently blocking AGS. Recent findings indicate that MK-801 actually enhances firing in substantia nigra reticulata (SNR) neurons in vivo but not in vitro. Thus, the MK-801-induced firing increases in SNR neurons observed in vivo may involve an indirect effect via disinhibition, involving an action on the emergent properties of this seizure network.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| |
Collapse
|
245
|
Moore CT, Wilson CG, Mayer CA, Acquah SS, Massari VJ, Haxhiu MA. A GABAergic inhibitory microcircuit controlling cholinergic outflow to the airways. J Appl Physiol (1985) 2004; 96:260-70. [PMID: 12972437 DOI: 10.1152/japplphysiol.00523.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA is the main inhibitory neurotransmitter that participates in the regulation of cholinergic outflow to the airways. We have tested the hypothesis that a monosynaptic GABAergic circuit modulates the output of airway-related vagal preganglionic neurons (AVPNs) in the rostral nucleus ambiguus by using a dual-labeling electron microscopic method combining immunocytochemistry for glutamic acid decarboxylase (GAD) with retrograde tracing from the trachea. We also determined the effects of blockade of GABAA receptors on airway smooth muscle tone. The results showed that retrogradely labeled AVPNs received a significant GAD-immunoreactive (GAD-IR) terminal input. Out of a pooled total of 3,161 synaptic contacts with retrogradely labeled somatic and dendritic profiles, 20.2% were GAD-IR. GAD-IR terminals formed significantly more axosomatic synapses than axodendritic synapses (P < 0.02). A dense population of GABAergic synaptic contacts on AVPNs provides a morphological basis for potent physiological effects of GABA on the excitability of AVPNs. GAD-IR terminals formed exclusively symmetric synaptic specializations. GAD-IR terminals were significantly larger (P < 0.05) in both length and width than unlabeled terminals synapsing on AVPNs. Therefore, the structural characteristics of certain nerve terminals may be closely correlated with their function. Pharmacological blockade of GABAA receptors within the rostral nucleus ambiguus increased activity of putative AVPNs and airway smooth muscle tone. We conclude that a tonically active monosynaptic GABAergic circuit utilizing symmetric synapses regulates the discharge of AVPNs.
Collapse
Affiliation(s)
- Constance T Moore
- Deparment of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | | | | | | | | | | |
Collapse
|
246
|
Popper P, Cristobal R, Wackym PA. Expression and distribution of μ opioid receptors in the inner ear of the rat. Neuroscience 2004; 129:225-33. [PMID: 15489044 DOI: 10.1016/j.neuroscience.2004.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
Opioid peptides have demonstrated modulatory effects on the vestibular afferent discharge and are putative vestibular efferent neuromodulators. The distribution of their receptors in the mammalian vestibular epithelia is not known. We used reverse transcriptase-polymerase chain reaction (RT-PCR), in situ hybridization, Western blots and immunohistochemistry to study the expression of mu opioid receptor (MOR) in the Scarpa's ganglia and cristae ampullares of rats. MOR transcript was only detected in the somata of the vestibular afferent neurons. MOR-like immunoreactivity was observed in the somata of vestibular afferents and in nerve terminals in the cristae ampullares epithelia both in the center and peripheral regions. Double labeling of cristae sections with the MOR1 antibody in combination with antibodies against calretinin (a marker for vestibular afferents terminating in calices) and peripherin (a marker for afferents terminating in boutons), respectively showed that MOR1 immunoreactivity was in calyx, dimorphic and bouton vestibular afferents. MOR immunoreactivity was not detected in vestibular efferent fibers identified with choline acetyltransferase immunohistochemistry. These results indicate that MOR may mediate effects of vestibular efferents on afferents.
Collapse
Affiliation(s)
- P Popper
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
247
|
Bosche B, Dohmen C, Graf R, Neveling M, Staub F, Kracht L, Sobesky J, Lehnhardt FG, Heiss WD. Extracellular Concentrations of Non–Transmitter Amino Acids in Peri-Infarct Tissue of Patients Predict Malignant Middle Cerebral Artery Infarction. Stroke 2003; 34:2908-13. [PMID: 14631090 DOI: 10.1161/01.str.0000100158.51986.eb] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Space-occupying brain edema is a life-threatening complication in patients with large middle cerebral artery (MCA) infarction. To determine predictors of this detrimental process, we investigated alterations of extracellular non–transmitter amino acid concentrations in peri-infarct tissue.
Methods—
Thirty-one patients with infarctions covering >50% of the MCA territory in early cranial CT scans were included in the study. Probes for microdialysis, intracranial pressure, and tissue oxygen pressure were placed into the noninfarcted ipsilateral frontal lobe. Positron emission tomography imaging was performed in 16 of these patients to measure cerebral blood flow in the tissue around the neuromonitoring probes.
Results—
Fourteen of the 31 patients developed a malignant MCA infarction, and 17 did not. The patients in the malignant group had significantly lower extracellular concentrations of non–transmitter amino acids than those in the benign group in the first 12 hours of neuromonitoring. At this time, CBF values determined in regions of interest around the probes by positron emission tomography and tissue oxygen pressure showed that the monitored tissues were not yet infarcted, and no differences in transmitter amino acids concentrations were found between the 2 groups. Furthermore, extracellular concentrations of non–transmitter amino acids were negatively correlated with size of infarction.
Conclusions—
We assume that reduction of non–transmitter amino acid concentrations reflects an expansion of the extracellular space by vasogenic edema formation in peri-infarct tissue of patients with malignant MCA infarction. Our findings facilitate early prediction of malignant edema formation and may help to increase knowledge of the pathophysiology of the peri-infarct zone of large MCA infarction.
Collapse
Affiliation(s)
- Bert Bosche
- Max Planck Institute for Neurological Research, Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Zahn R. The Octapeptide Repeats in Mammalian Prion Protein Constitute a pH-dependent Folding and Aggregation Site. J Mol Biol 2003; 334:477-88. [PMID: 14623188 DOI: 10.1016/j.jmb.2003.09.048] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Structural studies of mammalian prion protein at pH values between 4.5 and 5.5 established that the N-terminal 100 residue domain is flexibly disordered. Here, we show that at pH values between 6.5 and 7.8, i.e. the pH at the cell membrane, the octapeptide repeats in recombinant human prion protein hPrP(23-230) encompassing the highly conserved amino acid sequence PHGGGWGQ are structured. The nuclear magnetic resonance solution structure of the octapeptide repeats at pH 6.2 reveals a new structural motif that causes a reversible pH-dependent PrP oligomerization. Within the aggregation motif the segments HGGGW and GWGQ adopt a loop conformation and a beta-turn-like structure, respectively. Comparison with the crystal structure of HGGGW-Cu(2+) indicates that the binding of copper ions induces a conformational transition that presumably modulates PrP aggregation. The knowledge that the cellular prion protein is immobilized on the cell surface along with our results suggests a functional role of aggregation in endocytosis or homophilic cell adhesion.
Collapse
Affiliation(s)
- Ralph Zahn
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, CH-8093, Zürich, Switzerland.
| |
Collapse
|
249
|
Kitchigina VF, Kutyreva EV, Brazhnik ES. Modulation of theta rhythmicity in the medial septal neurons and the hippocampal electroencephalogram in the awake rabbit via actions at noradrenergic alpha2-receptors. Neuroscience 2003; 120:509-21. [PMID: 12890520 DOI: 10.1016/s0306-4522(03)00331-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The modulation of the firing discharge of medial septal neurons and of the hippocampal electroencephalogram (EEG) mediated by actions on alpha2-adrenoreceptors (ARs) was investigated in awake rabbits. Bilateral i.c.v. infusion of a relatively low dose (0.5 microg) of the alpha2-AR agonist clonidine produced a reduction in the theta rhythmicity of both medial septal neurons and the hippocampal EEG. In contrast, a high dose of clonidine (5 microg) increased the percentage and degree of rhythmicity of theta bursting medial septal neurons as well as the theta power of the hippocampal EEG. On the other hand, administration of alpha2-AR antagonist idazoxan produced the opposite dose-dependent effect. While a low dose of the antagonist (20 microg) produced an increase in both the theta rhythmicity of medial septal neurons and the theta power of the hippocampal EEG, a high dose (100 microg) caused a reduction of theta rhythmicity in both the medial septum and hippocampus. These results suggest that low doses of alpha2-ARs agents may act at autoreceptors regulating the synaptic release of noradrenaline, while high doses of alpha2-ARs drugs may have a predominant postsynaptic action. Similar results were observed after local injection of the alpha2-AR drugs into the medial septum suggesting that the effects induced by the i.c.v. infusion were primarily mediated at the medial septal level. We suggest that noradrenergic transmission via the postsynaptic alpha2-ARs produces fast and strong activation of the septohippocampal system in situations that require urgent selective attention to functionally significant information (alert, aware), whereas the action via the presynaptic alpha2-ARs allows a quick return of the activity to the initial level.
Collapse
Affiliation(s)
- V F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Puschino, Moscow District 142290, Russia.
| | | | | |
Collapse
|
250
|
Abstract
Modulation of fast neurotransmission by monoamines is critically involved in numerous physiological functions and pathological conditions. Plasma membrane monoamine transporters provide one of the most efficient mechanisms controlling functional extracellular monoamine concentrations. These transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET), which are expressed selectively on the corresponding neurons, are established targets of many psychostimulants, antidepressants, and neurotoxins. Recently, genetic animal models with targeted disruption of these transporters have become available. These mice have provided opportunities to investigate the functional importance of transporters in homeostatic control of monoaminergic transmission and to evaluate, in an in vivo model system, their roles in physiology and pathology. The use of these mice as test subjects has been helpful in resolving several important issues on specificity and mechanisms of action of certain pharmacological agents. In the present review, we summarize recent advances in understanding the physiology and pharmacology of monoamine transporters gained in mice with targeted genetic deletion of DAT, SERT, and NET.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Howard Hughes Medical Institute Laboratories, Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|