201
|
Wang B, Wang XP. Does Ceruloplasmin Defend Against Neurodegenerative Diseases? Curr Neuropharmacol 2019; 17:539-549. [PMID: 29737252 PMCID: PMC6712297 DOI: 10.2174/1570159x16666180508113025] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 04/10/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
Ceruloplasmin (CP) is the major copper transport protein in plasma, mainly produced by the liver. Glyco-sylphosphatidylinositol-linked CP (GPI-CP) is the predominant form expressed in astrocytes of the brain. A growing body of evidence has demonstrated that CP is an essential protein in the body with multiple functions such as regulating the home-ostasis of copper and iron ions, ferroxidase activity, oxidizing organic amines, and preventing the formation of free radicals. In addition, as an acute-phase protein, CP is induced during inflammation and infection. The fact that patients with genetic disorder aceruloplasminemia do not suffer from tissue copper deficiency, but rather from disruptions in iron metabolism shows essential roles of CP in iron metabolism rather than copper. Furthermore, abnormal metabolism of metal ions and ox-idative stress are found in other neurodegenerative diseases, such as Wilson’s disease, Alzheimer’s disease and Parkinson’s disease. Brain iron accumulation and decreased activity of CP have been shown to be associated with neurodegeneration. We hypothesize that CP may play a protective role in neurodegenerative diseases. However, whether iron accumulation is a cause or a result of neurodegeneration remains unclear. Further research on molecular mechanisms is required before a con-sensus can be reached regarding a neuroprotective role for CP in neurodegeneration. This review article summarizes
the main physiological functions of CP and the current knowledge of its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bo Wang
- Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China.,Department of Neurology Baoshan Branch, Shanghai General Hospital, Shanghai, 200940, China
| | - Xiao-Ping Wang
- Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China.,Department of Neurology, Shanghai Tong- Ren Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
202
|
Chronic iron exposure and c-Myc/H-ras-mediated transformation in fallopian tube cells alter the expression of EVI1, amplified at 3q26.2 in ovarian cancer. Oncogenesis 2019; 8:46. [PMID: 31434871 PMCID: PMC6704182 DOI: 10.1038/s41389-019-0154-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
Mechanisms underlying the pathogenesis of high-grade serous epithelial ovarian cancers (HGSOC) are not yet well defined although key precursor cells have been identified (including fimbriated fallopian tube epithelium, FTSECs). Since iron is elevated in endometriotic cysts and the pelvic cavity, it is suggested that this source of redox-active iron may contribute to ovarian cancer pathogenesis. Specifically, sources of nontransferrin-bound iron (NTBI) within the pelvic cavity could arise from ovulation, retrograde menstruation, follicular fluid, or iron overload conditions (i.e., hemochromatosis). Herein, we investigated the cellular response of p53-inactivated and telomerase-expressing (immortalized) FTSECs (Pax8+/FoxJ1−) to NTBI (presented as ferric ammonium citrate (FAC), supplemented in media for >2 months) in order to assess its ability to promote the transition to a tumor-like phenotype; this cellular response was compared with immortalized FTSECs transformed with H-RasV12A and c-MycT58A. Both approaches resulted in increased cell numbers and expression of the oncogenic transcriptional regulator, ecotropic virus integration site 1 (EVI1, a gene most frequently amplified at 3q26.2 in HGSOC, represented by multiple variants), along with other oncogenic gene products. In contrast to the transformed cells, FAC-exposed FTSECs elicited elevated migratory capacity (and epithelial–mesenchymal transition mRNA profile) along with increased expression of DNA damage response proteins (i.e., FANCD2) and hTERT mRNA relative to controls. Interestingly, in FAC-exposed FTSECs, EVI1 siRNA attenuated hTERT mRNA expression, whereas siRNAs targeting β-catenin and BMI1 (both elevated with chronic iron exposure) reduced Myc and Cyclin D1 proteins. Collectively, our novel findings provide strong foundational evidence for potential iron-induced initiation events, including EVI1 alterations, in the pathogenesis of HGSOC, warranting further in depth investigations. Thus, these findings will substantially advance our understanding of the contribution of iron enriched within the pelvic cavity, which may identify patients at risk of developing this deadly disease.
Collapse
|
203
|
Yanatori I, Richardson DR, Toyokuni S, Kishi F. How iron is handled in the course of heme catabolism: Integration of heme oxygenase with intracellular iron transport mechanisms mediated by poly (rC)-binding protein-2. Arch Biochem Biophys 2019; 672:108071. [PMID: 31421070 DOI: 10.1016/j.abb.2019.108071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
Abstract
Heme and iron are essential to almost all forms of life. The strict maintenance of heme and iron homeostasis is essential to prevent cellular toxicity and the existence of systemic and intracellular regulation is fundamental. Cytosolic heme can be catabolized and detoxified by heme oxygenases (HOs). Interestingly, free heme detoxification through HOs results in the production of free ferrous iron, which can be potentially hazardous for cells. Recently, the intracellular iron chaperone, poly (rC)-binding protein 2 (PCBP2), has been identified, which can be involved in accepting iron after heme catabolism as well as intracellular iron transport. In fact, HO1, NADPH-cytochrome P450 reductase, and PCBP2 form a functional unit that integrates the catabolism of heme with the binding and transport of iron by PCBP2. In this review, we provide an overview of our understanding of the iron chaperones and discuss the mechanism how iron chaperones bind iron released during the process of heme degradation.
Collapse
Affiliation(s)
- Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan
| | - Des R Richardson
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan; Department of Pathology and Bosch Institute, University of Sydney, Camperdown, Sydney, New South Wales, 2006, Australia
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan
| | - Fumio Kishi
- Kenjinkai Healthcare Corporation, 530 Asa, Sanyo-Onoda Yamaguchi, 757-0001, Japan.
| |
Collapse
|
204
|
Xu S. Iron and Atherosclerosis: The Link Revisited. Trends Mol Med 2019; 25:659-661. [DOI: 10.1016/j.molmed.2019.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
|
205
|
Wu X, Wang Y, Jia R, Fang F, Liu Y, Cui W. Computational and biological investigation of the soybean lecithin-gallic acid complex for ameliorating alcoholic liver disease in mice with iron overload. Food Funct 2019; 10:5203-5214. [PMID: 31380553 DOI: 10.1039/c9fo01022j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Alcoholic liver disease (ALD) is associated with significant morbidity and mortality globally. In this study, the soybean lecithin-gallic acid complex was synthesized, and its physicochemical properties were evaluated, which confirmed the complex formation. Compared with the free state of the drug, gallic acid exhibited significantly different physicochemical properties after it was complexed with soybean lecithin. To clarify the binding mode between two monomers, computational investigation was performed. From the computational data, we deduced the structure of the compound and predicted that it has a high affinity for human phosphatidylcholine transfer protein and exhibits strong pharmacological activities in vivo. The complex not only effectively ameliorated liver fibrosis, lipid peroxidation, and oxidative stress, but also reduced liver iron overload in a mouse ALD model induced by alcohol (p < 0.05). Additionally, it regulated iron metabolism by inhibiting TfR1 expression (p < 0.05) and promoting hepcidin expression (p < 0.05). These results suggest that the soybean lecithin-gallic acid complex ameliorates hepatic damage and iron overload induced by alcohol and exert hepatoprotective effects.
Collapse
Affiliation(s)
- Xiangqun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, P. R. China.
| | | | | | | | | | | |
Collapse
|
206
|
Reichert CO, de Macedo CG, Levy D, Sini BC, Monteiro AM, Gidlund M, Maselli LMF, Gualandro SFM, Bydlowski SP. Paraoxonases (PON) 1, 2, and 3 Polymorphisms and PON-1 Activities in Patients with Sickle Cell Disease. Antioxidants (Basel) 2019; 8:E252. [PMID: 31366068 PMCID: PMC6720480 DOI: 10.3390/antiox8080252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Oxidative stress, chronic inflammation, vasoocclusion, and free iron are all features present in sickle cell disease. Paraoxonases (PON) are a family (PON-1, PON-2, PON-3) of antioxidant enzymes with anti-inflammatory action. Here, for the first time, we described PON-1 activities and PON-1, PON-2, PON-3 polymorphisms in patients with sickle cell disease, homozygous for HbSS, compared with healthy controls. (2) Methods: The groups were matched for age and gender. PON-1 activities (arylesterase and paraoxonase) were determined by enzymatic hydrolysis of phenylcetate and paraoxon, respectively. Polymorphisms were determined by Restriction Fragment Length Polymorphism- Polymerase Chain Reaction (RFLP-PCR). (3) Results: Plasma cholesterol and fractions, ApoA1 and ApoB levels were all decreased in sickle cell disease patients, while anti-oxidized low-density lipoprotein (LDL) antibodies and C-reactive protein were increased. Serum arylesterase activity was lower in sickle cell disease patients when compared with healthy controls. In patients, paraoxonase activity was higher in those with PON-1 RR Q192R polymorphism. In these patients, the increase of serum iron and ferritin levels and transferrin saturation were less pronounced than those observed in patients with QQ or QR polymorphism. No differences were observed with PON-1 L55M, and PON-2 and PON-3 polymorphisms. Multivariate regression analysis showed that transferrin and ferritin concentrations correlated with arylesterase and paraoxonase activities. (4) Conclusions: Both transferrin and ferritin were the main predictors of decreased arylesterase and paraoxonase activities in patients with sickle cell disease. LDL oxidation increased, and RR PON-1 Q192R polymorphism is likely to be a protective factor against oxidative damage in these patients.
Collapse
Affiliation(s)
- Cadiele Oliana Reichert
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil
| | - Carolina Garcia de Macedo
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil
| | - Débora Levy
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil
| | - Bruno Carnevale Sini
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil
| | - Andréia Moreira Monteiro
- Department of Immunology, Institute of Biomedical Sciences, Universidade de Sao Paulo, 05508-000 Sao Paulo, Brazil
| | - Magnus Gidlund
- Department of Immunology, Institute of Biomedical Sciences, Universidade de Sao Paulo, 05508-000 Sao Paulo, Brazil
| | - Luciana Morganti Ferreira Maselli
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil
| | | | - Sérgio Paulo Bydlowski
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil.
- Center of Innovation and Translational Medicine (CIMTRA), Department of Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, 05360-130 Sao Paulo, Brazil.
- Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
207
|
Kshirsagar AV, Li X. Long-Term Risks of Intravenous Iron in End-Stage Renal Disease Patients. Adv Chronic Kidney Dis 2019; 26:292-297. [PMID: 31477259 DOI: 10.1053/j.ackd.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
Abstract
Patients with end-stage renal disease on dialysis commonly receive intravenous iron to treat anemia along with erythropoiesis-stimulating agents. While studies of intravenous iron have demonstrated efficacy in raising hemoglobin, the quantity of administered intravenous iron has raised concerns about iron overload leading to long-term toxicities. The goal of this review is to understand recent trends in intravenous iron use, potential mechanisms of iron toxicity, and to evaluate the available evidence in the literature for potential long-term cardiovascular and infectious complications. We include findings from the recently published landmark clinical trial of intravenous iron for patients receiving hemodialysis to contextualize treatment recommendations.
Collapse
|
208
|
Simão M, Gavaia PJ, Camacho A, Porto G, Pinto IJ, Ea HK, Cancela ML. Intracellular iron uptake is favored in Hfe-KO mouse primary chondrocytes mimicking an osteoarthritis-related phenotype. Biofactors 2019; 45:583-597. [PMID: 31132316 DOI: 10.1002/biof.1520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
HFE-hemochromatosis is a disease characterized by a systemic iron overload phenotype mainly associated with mutations in the HFE protein (HFE) gene. Osteoarthritis (OA) has been reported as one of the most prevalent complications in HFE-hemochromatosis patients, but the mechanisms associated with its onset and progression remain incompletely understood. In this study, we have characterized the response to high iron concentrations of a primary culture of articular chondrocytes isolated from newborn Hfe-KO mice and compared the results with that of a similar experiment developed in cells from C57BL/6 wild-type (wt) mice. Our data provide evidence that both wt- and Hfe-KO-derived chondrocytes, when exposed to 50 μM iron, develop characteristics of an OA-related phenotype, such as an increased expression of metalloproteases, a decreased extracellular matrix production, and a lower expression level of aggrecan. In addition, Hfe-KO cells also showed an increased expression of iron metabolism markers and MMP3, indicating an increased susceptibility to intracellular iron accumulation and higher levels of chondrocyte catabolism. Accordingly, upon treatment with 50 μM iron, these chondrocytes were found to preferentially differentiate toward hypertrophy with increased expression of collagen I and transferrin and downregulation of SRY (sex-determining region Y)-box containing gene 9 (Sox9). In conclusion, high iron exposure can compromise chondrocyte metabolism, which, when simultaneously affected by an Hfe loss of function, appears to be more susceptible to the establishment of an OA-related phenotype.
Collapse
Affiliation(s)
- Márcio Simão
- PhD Program Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - António Camacho
- Department of Orthopedics, Hospital de Cascais, Alcabideche, Portugal
| | - Graça Porto
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Hematology Service, Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - I Jorge Pinto
- Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Hang-Korng Ea
- Inserm U1132/BIOSCAR, Université Paris 7 Denis Diderot, Paris, France
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
- Algarve Biomedical Centre (ABC) and Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| |
Collapse
|
209
|
Engle‐Stone R, Vosti SA, Luo H, Kagin J, Tarini A, Adams KP, French C, Brown KH. Weighing the risks of high intakes of selected micronutrients compared with the risks of deficiencies. Ann N Y Acad Sci 2019; 1446:81-101. [PMID: 31168822 PMCID: PMC6618252 DOI: 10.1111/nyas.14128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
Abstract
Several intervention strategies are available to reduce micronutrient deficiencies, but uncoordinated implementation of multiple interventions may result in excessive intakes. We reviewed relevant data collection instruments and available information on excessive intakes for selected micronutrients and considered possible approaches for weighing competing risks of intake above tolerable upper intake levels (ULs) versus insufficient intakes at the population level. In general, population-based surveys in low- and middle-income countries suggest that dietary intakes greater than the UL are uncommon, but simulations indicate that fortification and supplementation programs could lead to high intakes under certain scenarios. The risk of excessive intakes can be reduced by considering baseline information on dietary intakes and voluntary supplement use and continuously monitoring program coverage. We describe a framework for comparing risks of micronutrient deficiency and excess, recognizing that critical information for judging these risks is often unavailable. We recommend (1) assessing total dietary intakes and nutritional status; (2) incorporating rapid screening tools for routine monitoring and surveillance; (3) addressing critical research needs, including evaluations of the current ULs, improving biomarkers of excess, and developing methods for predicting and comparing risks and benefits; and (4) ensuring that relevant information is used in decision-making processes.
Collapse
Affiliation(s)
| | - Stephen A. Vosti
- Department of Agricultural and Resource EconomicsUniversity of CaliforniaDavisCalifornia
| | - Hanqi Luo
- Department of NutritionUniversity of CaliforniaDavisCalifornia
| | | | | | | | - Caitlin French
- Department of NutritionUniversity of CaliforniaDavisCalifornia
| | | |
Collapse
|
210
|
Czaja AJ. Letter: high ferritin to haemoglobin ratio is related to early mortality in patients with alcoholic hepatitis - author's reply. Aliment Pharmacol Ther 2019; 49:1457-1458. [PMID: 31074897 DOI: 10.1111/apt.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
211
|
Mangan A, Le Roux CW, Miller NG, Docherty NG. Iron and Vitamin D/Calcium Deficiency after Gastric Bypass: Mechanisms Involved and Strategies to Improve Oral Supplement Disposition. Curr Drug Metab 2019; 20:244-252. [DOI: 10.2174/1389200219666181026160242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
Abstract
Background:Nutritional deficiencies are common following Roux-en-Y Gastric Bypass (RYGB). Aetiology is diverse; including non-compliance, altered diet, unresolved preoperative deficiency and differential degrees of post-operative malabsorption occurring as function of length of bypassed intestine. Iron and calcium/vitamin D deficiency occur in up to 50% of patients following RYGB. Currently, treatment strategies recommend the prescription of oral supplements for those who become deficient. Meanwhile, debate exists regarding the absorption capacity of these post-operatively and their efficacy in treating deficiency.Objective:To examine the disposition of oral iron and calcium/vitamin D supplementation following RYGB. Methods: A literature review was carried out using PubMed and Embase. Data from the key interventional studies investigating iron and calcium/vitamin D oral supplement absorption and efficacy following RYGB was summarized.Results:Absorption of both iron and vitamin D/calcium is adversely affected following RYGB. Distribution and metabolism may be altered by the predominance of paracellular absorption pathways which promote unregulated influx into the circulatory system. Overall, studies indicate that current supplementation strategies are efficacious to a degree in treating deficiency following RYGB, generally restoration of optimal status is not achieved.Conclusion:Oral supplement disposition is altered following RYGB. As a result, patients are required to take regimens of oral supplementation indefinitely. The dosage which confers optimum health benefit while avoiding potential toxicity and tolerability issues remains unknown. Novel preparations with improved disposition could help limit the extent of post-RYGB nutritional deficiencies.
Collapse
Affiliation(s)
- Aisling Mangan
- Diabetes Complications Research Center, Conway Institute, University College Dublin, Dublin, Ireland
| | - Carel W. Le Roux
- Diabetes Complications Research Center, Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Neil G. Docherty
- Diabetes Complications Research Center, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
212
|
Asif S, Begemann M, Raza S. Polycythemia in Patients With Hereditary Hemochromatosis: Real or Myth? J Clin Med Res 2019; 11:422-427. [PMID: 31143309 PMCID: PMC6522237 DOI: 10.14740/jocmr3816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022] Open
Abstract
Background Hereditary hemochromatosis (HH) is an autosomal recessive disorder affecting iron metabolism, resulting in iron accumulation in tissue parenchymal cells. Missense mutations result in homozygosity or heterozygosity for substitutions in the HFE gene, with the most common being C282Y and H63D. Methods With an aim to evaluate an association between polycythemia and HH, retrospective chart review was performed for 152 patients with known HFE mutations. Parameters reviewed included individual HFE genotypes, gender distribution, hemoglobin (Hgb) and hematocrit (Hct) levels, median ferritin levels and whether or not phlebotomy was required. Results Of 152 patients, 96 (63.2%) were men and 56 (36.8%) were women. Median Hgb and Hct were noted to be higher in men compared to women irrespective of HFE status. Mean age was 60.5 years (range 22 - 93 years). Regarding HFE mutation, 44 (28.9%) patients were C282Y/C282Y, 10 (6.6%) were H63D/H63D and 27 (17.8%) had one copy of each mutation. One patient in the study group was H63D/S65C. Median Hgb and Hct were noted to be 15.5 g/dL and 44.9% respectively in C282Y/C282Y subjects, 16.0 g/dL and 47% in H63D/H63D subjects, 15.8 g/dL and 46% in C282Y/H63D subjects, 16g/dL and 47% in those with single C282Y mutation and 16.6g/dL and 48% in those with single H63D mutation. A total of 67.1% subjects received phlebotomy. A total of 21.7% patients in this cohort were active tobacco users and only 8.6% had an established pulmonary diagnosis, including obstructive sleep apnea (OSA) and chronic obstructive pulmonary disease (COPD). Elevated Hgb levels were noted despite absence of an established reason for secondary polycythemia. Anemia was not encountered despite concurrent medical conditions that would usually be associated with anemia, including gastrointestinal bleeding or end-stage renal disease (ESRD). Conclusions Elevated Hgb and Hct levels in HH may be secondary to increased iron uptake by erythroid cell precursors in the bone marrow, in setting of increased availability of both transferrin-bound as well as non-transferrin-bound iron (NTBI). Additional studies need to be pursued to explore the association between HFE mutations and secondary polycythemia.
Collapse
Affiliation(s)
- Samia Asif
- Saint Luke's Cancer Institute, Kansas City, MO 64111, USA.,University of Missouri, Kansas City, MO 64111, USA
| | - Madeline Begemann
- Saint Luke's Cancer Institute, Kansas City, MO 64111, USA.,University of Missouri, Kansas City, MO 64111, USA
| | - Shahzad Raza
- Saint Luke's Cancer Institute, Kansas City, MO 64111, USA.,University of Missouri, Kansas City, MO 64111, USA
| |
Collapse
|
213
|
Spivak I, Arora J, Meinzer C, Durkalski-Mauldin V, Lee WM, Trautwein C, Fontana RJ, Strnad P. Low Serum Hepcidin Is Associated With Reduced Short-Term Survival in Adults With Acute Liver Failure. Hepatology 2019; 69:2136-2149. [PMID: 30582749 DOI: 10.1002/hep.30486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
The liver has an important role in iron homeostasis through the synthesis of the serum transporter transferrin and the iron hormone hepcidin. The aim of this study was to analyze parameters of iron metabolism in a multicenter cohort of adult patients with acute liver failure (ALF) and in an acetaminophen (APAP)-induced ALF mouse model. A representative subset of 121 adults with ALF (including 66 APAP-related patients) had baseline serum samples tested for ferritin, transferrin, iron, and hepcidin. Outcomes at 3 weeks after enrollment were categorized as spontaneous survivor (SS) versus death/transplantation (NSS). Mice were assessed before (controls) and 4 and 18 hours after injection of 300 mg/kg APAP. Patients with ALF as well as APAP-treated mice displayed increased ferritin and diminished serum hepcidin and hepcidin/ferritin ratio. SS had lower iron (29.1% vs. 34.5 µmol/L; P < 0.05) and transferrin saturation (60.9% vs. 79.1%; P < 0.01), but higher hepcidin levels (8.2 vs. 2.7 ng/mL; P < 0.001) and hepcidin/ferritin ratio (0.0047 vs. 0.0009; P < 0.001) than NSS. In a multivariate analysis, a log-transformed hepcidin-containing model displayed similar prognostic power as the established Acute Liver Failure Study Group index (C-statistic 0.87 vs. 0.85) and was better than Model for End-Stage Liver Disease score (C-statistic 0.76). In mice, hepcidin levels inversely correlated with the surrogate of liver injury. Conclusion: Our findings demonstrate that several serum iron parameters significantly associate with 3-week outcomes in adults with ALF. Among them, hepcidin decreases early during experimental APAP-induced ALF, is an independent predictor and might be a useful component of future prognostic scores.
Collapse
Affiliation(s)
- Igor Spivak
- Medical Clinic III, University Hospital Aachen, Aachen, Germany
| | - Jyoti Arora
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Caitlyn Meinzer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | | | - William M Lee
- UT Southwestern Medical Center at Dallas, Dallas, TX
| | | | | | - Pavel Strnad
- Medical Clinic III, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
214
|
Dziuba N, Hardy J, Lindahl PA. Low-molecular-mass iron in healthy blood plasma is not predominately ferric citrate. Metallomics 2019; 10:802-817. [PMID: 29808889 DOI: 10.1039/c8mt00055g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Blood contains a poorly characterized pool of labile iron called non-transferrin-bound iron (NTBI). In patients with iron-overload diseases such as hemochromatosis, NTBI accumulates in the liver, heart, and other organs. This material is probably nonproteinaceous and low molecular mass (LMM). However, the number, concentration, mass, and chemical composition of NTBI species remain unknown despite decades of effort. Here, solutions of plasma from humans, pigs, horses, and mice were passed through a 10 kDa cutoff membrane, affording flow-through solutions (FTSs) containing ∼1 μM iron. The FTSs were subjected to size-exclusion liquid chromatography at pH 8.5, 6.5, and 4.5. Iron was detected by an online inductively-coupled-plasma mass spectrometer. LC-ICP-MS chromatograms of the FTSs exhibited 2-6 iron-containing species with apparent masses between 400 and 2500 Da. Their approximate concentrations in plasma were 10-8-10-7 M. Not every FTS sample contained every LMM iron species, indicating individual variations. The most reproducible iron species had apparent masses of 400 and 500 Da. Chromatograms of the FTSs from established hemochromatosis patients exhibited no significant differences relative to controls. The peak positions and intensities depended on column pH. Some FTS iron adsorbed onto the column, especially at higher pH. Column-adsorbing-iron coordinated apo-transferrin whereas the more tightly coordinated iron species did not. Ferric citrate standards exhibited LMM iron peaks that were similar to but not the same as those obtained in FTSs. The results indicate that the LMM iron species in healthy blood plasma is not primarily ferric citrate; however, this may be one of many contributing complexes.
Collapse
Affiliation(s)
- Nathaniel Dziuba
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
215
|
Haschka D, Petzer V, Kocher F, Tschurtschenthaler C, Schaefer B, Seifert M, Sopper S, Sonnweber T, Feistritzer C, Arvedson TL, Zoller H, Stauder R, Theurl I, Weiss G, Tymoszuk P. Classical and intermediate monocytes scavenge non-transferrin-bound iron and damaged erythrocytes. JCI Insight 2019; 4:98867. [PMID: 30996139 PMCID: PMC6538345 DOI: 10.1172/jci.insight.98867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Myelomonocytic cells are critically involved in iron turnover as aged RBC recyclers. Human monocytes are divided in 3 subpopulations of classical, intermediate, and nonclassical cells, differing in inflammatory and migratory phenotype. Their functions in iron homeostasis are, however, unclear. Here, we asked whether the functional diversity of monocyte subsets translates into differences in handling physiological and pathological iron species. By microarray data analysis and flow cytometry we identified a set of iron-related genes and proteins upregulated in classical and, in part, intermediate monocytes. These included the iron exporter ferroportin (FPN1), ferritin, transferrin receptor, putative transporters of non-transferrin-bound iron (NTBI), and receptors for damaged erythrocytes. Consequently, classical monocytes displayed superior scavenging capabilities of potentially toxic NTBI, which were augmented by blocking iron export via hepcidin. The same subset and, to a lesser extent, the intermediate population, efficiently cleared damaged erythrocytes in vitro and mediated erythrophagocytosis in vivo in healthy volunteers and patients having received blood transfusions. To summarize, our data underline the physiologically important function of the classical and intermediate subset in clearing NTBI and damaged RBCs. As such, these cells may play a nonnegligible role in iron homeostasis and limit iron toxicity in iron overload conditions. Human classical and intermediate monocytes mediate clearance of non-transferrin-bound iron and erythrophagocytosis.
Collapse
Affiliation(s)
| | | | | | | | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | - Tara L Arvedson
- Department of Oncology, Amgen Inc., Thousand Oaks, California, USA
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
216
|
Shoja Z, Chenari M, Jafarpour A, Jalilvand S. Role of iron in cancer development by viruses. Rev Med Virol 2019; 29:e2045. [PMID: 30994254 DOI: 10.1002/rmv.2045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
Increased levels of iron in body are attributed to higher cancer risk. Given the fact that 16% of all human cancers are caused by viral infections, iron is suggested to play an important role in carcinogenesis particularly those induced by viral infections. The present study provides an updated summary of the literature and the plausible mechanisms of iron involvement in cancer development by viruses. Our understanding about the interplay between viral infections and iron in different settings particularly cancer development is yet to be improved as it may shed a new light in development of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Maryam Chenari
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Jafarpour
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
217
|
Grammer TB, Scharnagl H, Dressel A, Kleber ME, Silbernagel G, Pilz S, Tomaschitz A, Koenig W, Mueller-Myhsok B, März W, Strnad P. Iron Metabolism, Hepcidin, and Mortality (the Ludwigshafen Risk and Cardiovascular Health Study). Clin Chem 2019; 65:849-861. [PMID: 30917972 DOI: 10.1373/clinchem.2018.297242] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Anemia has been shown to be a risk factor for coronary artery disease (CAD) and mortality, whereas the role of iron metabolism remains controversial. METHODS We analyzed iron metabolism and its associations with cardiovascular death and total mortality in patients undergoing coronary angiography with a median follow-up of 9.9 years. Hemoglobin and iron status were determined in 1480 patients with stable CAD and in 682 individuals in whom significant CAD had been excluded by angiography. RESULTS Multivariate-adjusted hazard ratios (HRs) for total mortality in the lowest quartiles of iron, transferrin saturation, ferritin, soluble transferrin receptor (sTfR), and hemoglobin were 1.22 (95% CI, 0.96-1.60), 1.23 (95% CI, 0.97-1.56), 1.27 (95% CI, 1.02-1.58), 1.26 (95% CI, 0.97-1.65), and 0.99 (95% CI, 0.79-1.24), respectively, compared to the second or third quartile, which served as reference (1.00) because of a J-shaped association. The corresponding HRs for total mortality in the highest quartiles were 1.44 (95% CI, 1.10-1.87), 1.37 (95% CI, 1.05-1.77), 1.17 (95% CI, 0.92-1.50), 1.76 (95% CI, 1.39-2.22), and 0.83 (95% CI, 0.63-1.09). HRs for cardiovascular death were similar. For hepcidin, the adjusted HRs for total mortality and cardiovascular deaths were 0.62 (95% CI, 0.49-0.78) and 0.70 (95% CI, 0.52-0.90) in the highest quartile compared to the lowest one. CONCLUSIONS In stable patients undergoing angiography, serum iron, transferrin saturation, sTfR, and ferritin had J-shaped associations and hemoglobin only a marginal association with cardiovascular and total mortality. Hepcidin was continuously and inversely related to mortality.
Collapse
Affiliation(s)
- Tanja B Grammer
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany; .,Department of Internal Medicine V (Nephrology, Hypertensiology, Endocrinology, Diabetolgy, and Rheumatology), Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Alexander Dressel
- DACH Society for the Prevention of Cardiovascular Diseases, Hamburg, Germany
| | - Marcus E Kleber
- Department of Internal Medicine V (Nephrology, Hypertensiology, Endocrinology, Diabetolgy, and Rheumatology), Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Günther Silbernagel
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Department of Cardiology, Charité Berlin, Berlin Institute of Health and German Research Centre for Cardiovascular Research, Berlin, Germany
| | - Stefan Pilz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Bertram Mueller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Winfried März
- Department of Internal Medicine V (Nephrology, Hypertensiology, Endocrinology, Diabetolgy, and Rheumatology), Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,Synlab Academy, Synlab Holding Deutschland GmbH, Augsburg and Mannheim, Germany
| | - Pavel Strnad
- Department of Internal Medicine III and IZKF, University Hospital Aaachen, Aachen, Germany
| |
Collapse
|
218
|
Abstract
Iron overload cardiomyopathy (IOC) is a major cause of death in patients with diseases associated with chronic anemia such as thalassemia or sickle cell disease after chronic blood transfusions. Associated with iron overload conditions, there is excess free iron that enters cardiomyocytes through both L- and T-type calcium channels thereby resulting in increased reactive oxygen species being generated via Haber-Weiss and Fenton reactions. It is thought that an increase in reactive oxygen species contributes to high morbidity and mortality rates. Recent studies have, however, suggested that it is iron overload in mitochondria that contributes to cellular oxidative stress, mitochondrial damage, cardiac arrhythmias, as well as the development of cardiomyopathy. Iron chelators, antioxidants, and/or calcium channel blockers have been demonstrated to prevent and ameliorate cardiac dysfunction in animal models as well as in patients suffering from cardiac iron overload. Hence, either a mono-therapy or combination therapies with any of the aforementioned agents may serve as a novel treatment in iron-overload patients in the near future. In the present article, we review the mechanisms of cytosolic and/or mitochondrial iron load in the heart which may contribute synergistically or independently to the development of iron-associated cardiomyopathy. We also review available as well as potential future novel treatments.
Collapse
|
219
|
Caillon H, Peterlin P, Chevallier P, Guillaume T, Lebourgeois A, Garnier A, Ropert-Bouchet M, Dejoie T. Eltrombopag induces major non-toxic hypersiderraemia. Br J Haematol 2019; 186:365-366. [PMID: 30873599 DOI: 10.1111/bjh.15863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hélène Caillon
- Department of Biochemistry, Nantes University Hospital, Nantes, France
| | - Pierre Peterlin
- Clinic of Haematology, Nantes University Hospital, Nantes, France
| | | | | | | | - Alice Garnier
- Clinic of Haematology, Nantes University Hospital, Nantes, France
| | | | - Thomas Dejoie
- Department of Biochemistry, Nantes University Hospital, Nantes, France
| |
Collapse
|
220
|
Mourad N, Michel RP, Marcus VA. Pathology of Gastrointestinal and Liver Complications of Hematopoietic Stem Cell Transplantation. Arch Pathol Lab Med 2019; 143:1131-1143. [PMID: 30838881 DOI: 10.5858/arpa.2018-0282-ra] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT.— Despite advances in therapeutic and preventive measures, hematopoietic stem cell transplant recipients remain at risk for a variety of gastrointestinal and liver complications. OBJECTIVE.— To detail the pathologic features of the various gastrointestinal and liver complications occurring after hematopoietic stem cell transplantation in relation to their clinical context. The specific complications covered include graft-versus-host disease, mycophenolate mofetil-induced injury, timeline of infections, neutropenic enterocolitis, gastrointestinal thrombotic microangiopathy, sinusoidal obstruction syndrome, hepatic iron overload, and the controversy around cord colitis syndrome. DATA SOURCES.— The content of this article is based on pertinent peer-reviewed articles in PubMed, relevant textbooks, and on the authors' personal experiences. CONCLUSIONS.— The final histopathologic diagnosis requires the integration of clinical and histologic findings and the exclusion of other competing causes of injury. Review of the clinical data, including the original disease pretransplant, the type of transplant, the timing of the gastrointestinal and/or liver manifestations, the timing of the biopsy after transplant, the presence of graft-versus-host disease in other organs and sites, the list of drug regimens, and the clinical and laboratory evidence of infection, is the key to reaching the proper histologic diagnosis.
Collapse
Affiliation(s)
- Nathalie Mourad
- Faculté de médecine, département de biologie moléculaire, de biochimie médicale et de pathologie, Université Laval, Hôpital du Saint-Sacrement - CHU de Québec, Québec, Québec, Canada (Dr Mourad); the Department of Pathology, McGill University and McGill University Health Center, Montreal, Quebec, Canada (Drs Michel and Marcus)
| | - René P Michel
- Faculté de médecine, département de biologie moléculaire, de biochimie médicale et de pathologie, Université Laval, Hôpital du Saint-Sacrement - CHU de Québec, Québec, Québec, Canada (Dr Mourad); the Department of Pathology, McGill University and McGill University Health Center, Montreal, Quebec, Canada (Drs Michel and Marcus)
| | - Victoria A Marcus
- Faculté de médecine, département de biologie moléculaire, de biochimie médicale et de pathologie, Université Laval, Hôpital du Saint-Sacrement - CHU de Québec, Québec, Québec, Canada (Dr Mourad); the Department of Pathology, McGill University and McGill University Health Center, Montreal, Quebec, Canada (Drs Michel and Marcus)
| |
Collapse
|
221
|
Shyam M, Dev A, Sinha BN, Jayaprakash V. Scaffold Based Search on the Desferithiocin Archetype. Mini Rev Med Chem 2019; 19:1564-1576. [PMID: 30827237 DOI: 10.2174/1389557519666190301151151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/17/2018] [Accepted: 01/21/2019] [Indexed: 01/19/2023]
Abstract
Iron overload disorder and diseases where iron mismanagement plays a crucial role require orally available iron chelators with favourable pharmacokinetic and toxicity profile. Desferrithiocin (DFT), a tridentate and orally available iron chelator has a favourable pharmacokinetic profile but its use has been clinically restricted due to its nephrotoxic potential. The chemical architecture of the DFT has been naturally well optimized for better iron chelation and iron clearance from human biological system. Equally they are also responsible for its toxicity. Hence, subsequent research has been devoted to develop a non-nephrotoxic analogue of DFT without losing its iron clearance ability. The review has been designed to classify the compounds reported till date and to discuss the structure activity relationship with reference to modifications attempted at different positions over pyridine and thiazoline ring of DFT. Compounds are clustered under two major classes: (i) Pyridine analogues and (ii) phenyl analogue and further each class has been further subdivided based on the presence or absence and the number of hydroxy functional groups present over pyridine or phenyl ring of the DFT analogues. Finally a summary and few insights into the development of newer analogues are provided.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
222
|
Czaja AJ. Review article: iron disturbances in chronic liver diseases other than haemochromatosis - pathogenic, prognostic, and therapeutic implications. Aliment Pharmacol Ther 2019; 49:681-701. [PMID: 30761559 DOI: 10.1111/apt.15173] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disturbances in iron regulation have been described in diverse chronic liver diseases other than hereditary haemochromatosis, and iron toxicity may worsen liver injury and outcome. AIMS To describe manifestations and consequences of iron dysregulation in chronic liver diseases apart from hereditary haemochromatosis and to encourage investigations that clarify pathogenic mechanisms, define risk thresholds for iron toxicity, and direct management METHODS: English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. RESULTS Hyperferritinemia is present in 4%-65% of patients with non-alcoholic fatty liver disease, autoimmune hepatitis, chronic viral hepatitis, or alcoholic liver disease, and hepatic iron content is increased in 11%-52%. Heterozygosity for the C282Y mutation is present in 17%-48%, but this has not uniformly distinguished patients with adverse outcomes. An inappropriately low serum hepcidin level has characterised most chronic liver diseases with the exception of non-alcoholic fatty liver disease, and the finding has been associated mainly with suppression of transcriptional activity of the hepcidin gene. Iron overload has been associated with oxidative stress, advanced fibrosis and decreased survival, and promising therapies beyond phlebotomy and oral iron chelation have included hepcidin agonists. CONCLUSIONS Iron dysregulation is common in chronic liver diseases other than hereditary haemochromatosis, and has been associated with liver toxicity and poor prognosis. Further evaluation of iron overload as a co-morbid factor should identify the key pathogenic disturbances, establish the risk threshold for iron toxicity, and promote molecular interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
223
|
Abstract
Most cells in the body acquire iron via receptor-mediated endocytosis of transferrin, the circulating iron transport protein. When cellular iron levels are sufficient, the uptake of transferrin decreases to limit further iron assimilation and prevent excessive iron accumulation. In iron overload conditions, such as hereditary hemochromatosis and thalassemia major, unregulated iron entry into the plasma overwhelms the carrying capacity of transferrin, resulting in non-transferrin-bound iron (NTBI), a redox-active, potentially toxic form of iron. Plasma NTBI is rapidly cleared from the circulation primarily by the liver and other organs (e.g., pancreas, heart, and pituitary) where it contributes significantly to tissue iron overload and related pathology. While NTBI is usually not detectable in the plasma of healthy individuals, it does appear to be a normal constituent of brain interstitial fluid and therefore likely serves as an important source of iron for most cell types in the CNS. A growing body of literature indicates that NTBI uptake is mediated by non-transferrin-bound iron transporters such as ZIP14, L-type and T-type calcium channels, DMT1, ZIP8, and TRPC6. This review provides an overview of NTBI uptake by various tissues and cells and summarizes the evidence for and against the roles of individual transporters in this process.
Collapse
Affiliation(s)
- Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
224
|
Ibragimova MI, Chushnikov AY, Cherepnev GV, Yu Petukhov V. Comparison of EPR Fe3+-Transferrin Versus Approved Clinical Chemistry Test for Serum Iron Measurements in Professional Ice Hockey Players and Nonathletic Controls. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-018-0587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
225
|
Sangkhae V, Nemeth E. Placental iron transport: The mechanism and regulatory circuits. Free Radic Biol Med 2019; 133:254-261. [PMID: 29981833 PMCID: PMC7059975 DOI: 10.1016/j.freeradbiomed.2018.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
As the interface between the fetal and maternal circulation, the placenta facilitates both nutrient and waste exchange for the developing fetus. Iron is essential for healthy pregnancy, and transport of iron across the placenta is required for fetal growth and development. Perturbation of this transfer can lead to adverse pregnancy outcomes. Despite its importance, our understanding of how a large amount of iron is transported across placental membranes, how this process is regulated, and which iron transporter proteins function in different placental cells remains rudimentary. Mechanistic studies in mouse models, including placenta-specific deletion or overexpression of iron-related proteins will be essential to make progress. This review summarizes our current understanding about iron transport across the syncytiotrophoblast under physiological conditions and identifies areas for further investigation.
Collapse
Affiliation(s)
- Veena Sangkhae
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 LeConte Ave, CHS 37-131, Los Angeles, CA 90095, USA.
| | - Elizabeta Nemeth
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 LeConte Ave, CHS 37-131, Los Angeles, CA 90095, USA.
| |
Collapse
|
226
|
Abstract
Erythropoiesis is the predominant consumer of iron in humans and other vertebrates. By decreasing the transcription of the gene encoding the iron-regulatory hormone hepcidin, erythropoietic activity stimulates iron absorption, as well as the release of iron from recycling macrophages and from stores in hepatocytes. The main erythroid regulator of hepcidin is erythroferrone (ERFE), synthesized and secreted by erythroblasts in the marrow and extramedullary sites. The production of ERFE is induced by erythropoietin (EPO) and is also proportional to the total number of responsive erythroblasts. ERFE acts on hepatocytes to suppress the production of hepcidin, through an as yet unknown mechanism that involves the bone morphogenetic protein pathway. By suppressing hepcidin, ERFE facilitates iron delivery during stress erythropoiesis but also contributes to iron overload in anemias with ineffective erythropoiesis. Although most of these mechanisms have been defined in mouse models, studies to date indicate that the pathophysiology of ERFE is similar in humans. ERFE antagonists and mimics may prove useful for the prevention and treatment of iron disorders.
Collapse
Affiliation(s)
- Tomas Ganz
- Departments of Medicine and Pathology, David Geffen School of Medicine, UCLA, Los Angeles, USA.
| |
Collapse
|
227
|
Pietropaoli AP, Henrichs KF, Cholette JM, Spinelli SL, Phipps RP, Refaai MA, Blumberg N. Total plasma heme concentration increases after red blood cell transfusion and predicts mortality in critically ill medical patients. Transfusion 2019; 59:2007-2015. [PMID: 30811035 DOI: 10.1111/trf.15218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Relationships between red blood cell (RBC) transfusion, circulating cell-free heme, and clinical outcomes in critically ill transfusion recipients are incompletely understood. The goal of this study was to determine whether total plasma heme increases after RBC transfusion and predicts mortality in critically ill patients. STUDY DESIGN AND METHODS This was a prospective cohort study of 111 consecutive medical intensive care patients requiring RBC transfusion. Cell-free heme was measured in RBC units before transfusion and in the patients' plasma before and after transfusion. RESULTS Total plasma heme levels increased in response to transfusion, from a median (interquartile range [IQR]) of 35 (26-76) μmol/L to 47 (35-73) μmol/L (p < 0.001). Posttransfusion total plasma heme was higher in nonsurvivors (54 [35-136] μmol/L) versus survivors (44 [31-65] μmol/L, p = 0.03). Posttransfusion total plasma heme predicted hospital mortality (odds ratio [95% confidence interval] per quartile increase in posttransfusion plasma heme, 1.76 [1.17-2.66]; p = 0.007). Posttransfusion total plasma heme was not correlated with RBC unit storage duration and weakly correlated with RBC unit cell-free heme concentration. CONCLUSIONS Total plasma heme concentration increases in critically ill patients after RBC transfusion and is independently associated with mortality. This transfusion-associated increase in total plasma heme is not fully explained by RBC unit storage age or cell-free heme content. Additional studies are warranted to define mechanisms of transfusion-related plasma heme accumulation and test prevention strategies.
Collapse
Affiliation(s)
- Anthony P Pietropaoli
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of Rochester Medical Center, Rochester, New York
| | - Kelly F Henrichs
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jill M Cholette
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Richard P Phipps
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of Rochester Medical Center, Rochester, New York.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York
| | - Majed A Refaai
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
228
|
Iron uptake by ZIP8 and ZIP14 in human proximal tubular epithelial cells. Biometals 2019; 32:211-226. [PMID: 30806852 PMCID: PMC6437295 DOI: 10.1007/s10534-019-00183-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
In patients with iron overload disorders, increasing number of reports of renal dysfunction and renal iron deposition support an association between increased iron exposure and renal injury. In systemic iron overload, elevated circulating levels of transferrin-bound (TBI) and non-transferrin-bound iron (NTBI) are filtered to the renal proximal tubules, where they may cause injury. However, the mechanisms of tubular iron handling remain elusive. To unravel molecular renal proximal tubular NTBI and TBI handling, human conditionally immortalized proximal tubular epithelial cells (ciPTECs) were incubated with 55Fe as NTBI and fluorescently labeled holo-transferrin as TBI. Ferrous iron importers ZIP8 and ZIP14 were localized in the ciPTEC plasma membrane. Whereas silencing of either ZIP8 or ZIP14 alone did not affect 55Fe uptake, combined silencing significantly reduced 55Fe uptake compared to control (p < 0.05). Furthermore, transferrin receptor 1 (TfR1) and ZIP14, but not ZIP8, colocalized with early endosome antigen 1 (EEA1). TfR1 and ZIP14 also colocalized with uptake of fluorescently labeled transferrin. Furthermore, ZIP14 silencing decreased 55Fe uptake after 55Fe-Transferrin exposure (p < 0.05), suggesting ZIP14 could be involved in early endosomal transport of TBI-derived iron into the cytosol. Our data suggest that human proximal tubular epithelial cells take up TBI and NTBI, where ZIP8 and ZIP14 are both involved in NTBI uptake, but ZIP14, not ZIP8, mediates TBI-derived iron uptake. This knowledge provides more insights in the mechanisms of renal iron handling and suggests that ZIP8 and ZIP14 could be potential targets for limiting renal iron reabsorption and enhancing urinary iron excretion in systemic iron overload disorders.
Collapse
|
229
|
Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, Pirroni S, Avanzini MA, Basso-Ricci L, Hernandez RJ, Zecca M, Marktel S, Ciceri F, Aiuti A, Ferrari G, Bernardo ME. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest 2019; 129:1566-1580. [PMID: 30830876 PMCID: PMC6436882 DOI: 10.1172/jci123191] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND. The human bone marrow (BM) niche contains a population of mesenchymal stromal cells (MSCs) that provide physical support and regulate hematopoietic stem cell (HSC) homeostasis. β-Thalassemia (BT) is a hereditary disorder characterized by altered hemoglobin beta-chain synthesis amenable to allogeneic HSC transplantation and HSC gene therapy. Iron overload (IO) is a common complication in BT patients affecting several organs. However, data on the BM stromal compartment are scarce. METHODS. MSCs were isolated and characterized from BM aspirates of healthy donors (HDs) and BT patients. The state of IO was assessed and correlated with the presence of primitive MSCs in vitro and in vivo. Hematopoietic supportive capacity of MSCs was evaluated by transwell migration assay and 2D coculture of MSCs with human CD34+ HSCs. In vivo, the ability of MSCs to facilitate HSC engraftment was tested in a xenogenic transplant model, whereas the capacity to sustain human hematopoiesis was evaluated in humanized ossicle models. RESULTS. We report that, despite iron chelation, BT BM contains high levels of iron and ferritin, indicative of iron accumulation in the BM niche. We found a pauperization of the most primitive MSC pool caused by increased ROS production in vitro which impaired MSC stemness properties. We confirmed a reduced frequency of primitive MSCs in vivo in BT patients. We also discovered a weakened antioxidative response and diminished expression of BM niche–associated genes in BT-MSCs. This caused a functional impairment in MSC hematopoietic supportive capacity in vitro and in cotransplantation models. In addition, BT-MSCs failed to form a proper BM niche in humanized ossicle models. CONCLUSION. Our results suggest an impairment in the mesenchymal compartment of BT BM niche and highlight the need for novel strategies to target the niche to reduce IO and oxidative stress before transplantation. FUNDING. This work was supported by the SR-TIGET Core grant from Fondazione Telethon and by Ricerca Corrente.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), and
| | - Valeria Rossella
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), and
| | - Annamaria Aprile
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), and
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Rivis
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), and
| | | | - Stefania Pirroni
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), and
| | | | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), and
| | | | - Marco Zecca
- Oncoematologia Pediatrica, Fondazione IRCCS Policlinico "San Matteo", Pavia, Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), and.,Vita-Salute San Raffaele University, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), and.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), and.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
230
|
Neu HM, Alexishin SA, Brandis JEP, Williams AMC, Li W, Sun D, Zheng N, Jiang W, Zimrin A, Fink JC, Polli JE, Kane MA, Michel SLJ. Snapshots of Iron Speciation: Tracking the Fate of Iron Nanoparticle Drugs via a Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometric Approach. Mol Pharm 2019; 16:1272-1281. [PMID: 30676753 DOI: 10.1021/acs.molpharmaceut.8b01215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanomedicines are nanoparticle-based therapeutic or diagnostic agents designed for targeted delivery or enhanced stability. Nanotechnology has been successfully employed to develop various drug formulations with improved pharmacokinetic characteristics, and current research efforts are focused on the development of new innovator and generic nanomedicines. Nanomedicines, which are often denoted as complex or nonbiological complex drugs, have inherently different physicochemical and pharmacokinetic properties than conventional small molecule drugs. The tools necessary to fully evaluate nanomedicines in clinical settings are limited, which can hamper their development. One of the most successful families of nanomedicines are iron-carbohydrate nanoparticles, which are administered intravenously (IV) to treat iron-deficiency anemia. In the U.S., the FDA has approved six distinct iron-carbohydrate nanoparticles but only one generic version (sodium ferric gluconate for Ferrlecit). There is significant interest in approving additional generic iron-carbohydrate drugs; however, the lack of a direct method to monitor the fate of the iron nanoparticles in clinical samples has impeded this approval. Herein we report a novel liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS) method that allows for the direct quantification of the iron-carbohydrate drugs in clinical samples, while simultaneously measuring the speciation of the iron released from the nanoparticles in biological samples. To our knowledge, this is the first time that iron nanoparticles have been observed in clinical samples, opening the door for direct pharmacokinetic studies of this family of drugs. This method has potential applications not only for iron-nanoparticle drugs but also for any nanomedicine with an inorganic component.
Collapse
Affiliation(s)
- Heather M Neu
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Sergei A Alexishin
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Joel E P Brandis
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Anne M C Williams
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Wenjing Li
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Dajun Sun
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , Maryland 20993 , United States
| | - Nan Zheng
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , Maryland 20993 , United States
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , Maryland 20993 , United States
| | - Ann Zimrin
- Oncology Program , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Jeffrey C Fink
- Department of Medicine , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - James E Polli
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Maureen A Kane
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
231
|
Effect of procyanidin on dietary iron absorption in hereditary hemochromatosis and in dysmetabolic iron overload syndrome: A crossover double-blind randomized controlled trial. Clin Nutr 2019; 39:97-103. [PMID: 30792142 DOI: 10.1016/j.clnu.2019.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Type I hereditary hemochromatosis (HH) and dysmetabolic iron overload syndrome (DIOS) are the two most prevalent iron overload diseases. Although many food components, particularly polyphenols, reduce iron bioavailability, there is no clinically validated nutritional strategy to reduce food-iron absorption in patients with these diseases. We aimed to determine whether supplementation with 100 mg of procyanidins during a meal reduces dietary iron absorption in patients with HH or DIOS. METHODS 20 HH and 20 DIOS patients were enrolled in a double-blind three-period crossover randomized study. Basal serum iron level was measured following an overnight fast. Each patient consumed a standardized test iron-rich meal containing 43 mg of iron with two capsules of placebo or procyanidin supplementation. Each period was separated by a 3-day wash-out period. The primary objective was a reduction of dietary iron absorption, assessed by a reduction of serum-iron area under the curve (AUC) corrected for baseline serum iron. RESULTS All patients completed the study. The meal and the procyanidin supplements were well tolerated. In both HH and DIOS patients, the iron-rich meal induced a significant increase of serum iron compared with baseline at 120, 180, 240 min, from 8 to 9.1% (p = 0.002, 0.001 and 0.003, respectively) in DIOS and from 15.8 to 25.7% (p < 0.001) in HH. Iron absorption was 3.5-fold higher in HH than in DIOS (p < 0.001). Procyanidin supplementation did not significantly modify iron absorption in DIOS (AUC of added iron 332.87 ± 649.55 vs 312.61 ± 678.61 μmol.h/L, p = 0.916) or in HH (1168.62 ± 652.87 vs 1148.54 μmol.h/L ± 1290.05, p = 0.917). CONCLUSIONS An iron-rich test meal led to a marked increase in iron absorption in HH but a mild increase in DIOS. Procyanidin supplementation does not significantly reduce dietary iron absorption in either disease. CLINICAL TRIAL REGISTRY: clinicaltrials.gov (NCT03453918).
Collapse
|
232
|
Neurodegeneration with Brain Iron Accumulation Disorders: Valuable Models Aimed at Understanding the Pathogenesis of Iron Deposition. Pharmaceuticals (Basel) 2019; 12:ph12010027. [PMID: 30744104 PMCID: PMC6469182 DOI: 10.3390/ph12010027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a set of neurodegenerative disorders, which includes very rare monogenetic diseases. They are heterogeneous in regard to the onset and the clinical symptoms, while the have in common a specific brain iron deposition in the region of the basal ganglia that can be visualized by radiological and histopathological examinations. Nowadays, 15 genes have been identified as causative for NBIA, of which only two code for iron-proteins, while all the other causative genes codify for proteins not involved in iron management. Thus, how iron participates to the pathogenetic mechanism of most NBIA remains unclear, essentially for the lack of experimental models that fully recapitulate the human phenotype. In this review we reported the recent data on new models of these disorders aimed at highlight the still scarce knowledge of the pathogenesis of iron deposition.
Collapse
|
233
|
Abstract
Hepcidin is central to regulation of iron metabolism. Its effect on a cellular level involves binding ferroportin, the main iron export protein, resulting in its internalization and degradation and leading to iron sequestration within ferroportin-expressing cells. Aberrantly increased hepcidin leads to systemic iron deficiency and/or iron restricted erythropoiesis. Furthermore, insufficiently elevated hepcidin occurs in multiple diseases associated with iron overload. Abnormal iron metabolism as a consequence of hepcidin dysregulation is an underlying factor resulting in pathophysiology of multiple diseases and several agents aimed at manipulating this pathway have been designed, with some already in clinical trials. In this chapter, we present an overview of and rationale for exploring the development of hepcidin agonists and antagonists in various clinical scenarios.
Collapse
Affiliation(s)
- Yelena Z Ginzburg
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
234
|
Steele SL, Kroeun H, Karakochuk CD. The Effect of Daily Iron Supplementation with 60 mg Ferrous Sulfate for 12 Weeks on Non-Transferrin Bound Iron Concentrations in Women with a High Prevalence of Hemoglobinopathies. J Clin Med 2019; 8:jcm8020180. [PMID: 30717475 PMCID: PMC6406400 DOI: 10.3390/jcm8020180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/27/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023] Open
Abstract
There is a lack of evidence for the safety of untargeted daily iron supplementation in women, especially in countries such as Cambodia, where both anemia and hemoglobinopathies are common. Our aim was to assess serum non-transferrin bound iron (NTBI), a toxic biochemical that accumulates in blood when too much iron is absorbed, in Cambodian women who received daily iron supplements in accordance with the 2016 global World Health Organization (WHO) guidelines. We used fasting venous blood samples that were collected in a 2015 supplementation trial among predominantly anemic Cambodian women (18⁻45 years). Serum NTBI was measured with use of the FeROS™ eLPI assay (Aferrix Ltd., Tel-Aviv, Israel) in randomly selected sub-groups of women who received 60 mg daily elemental iron as ferrous sulfate (n = 50) or a placebo (n = 50) for 12 weeks. Overall, n = 17/100 (17%) of women had an elevated serum NTBI concentration (≥0.1 μmol/L) at 12 weeks; n = 9 in the Fe group and n = 8 in the placebo group. Elevated serum NTBI concentration was not associated with age, iron supplementation, transferrin saturation or severe hemoglobinopathies (p > 0.05). In this population of women with a high prevalence of hemoglobinopathies, we found that daily iron supplementation was not associated with elevated serum NTBI concentrations at 12 weeks, as compared to placebo.
Collapse
Affiliation(s)
- Shannon L Steele
- Food, Nutrition and Health, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada.
| | - Hou Kroeun
- Helen Keller International, Phnom Penh, Cambodia.
| | - Crystal D Karakochuk
- Food, Nutrition and Health, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
235
|
Abstract
Iron deficiency remains the largest nutritional deficiency worldwide and the main cause of anaemia. Severe iron deficiency leads to anaemia known as iron deficiency anaemia (IDA), which affects a total of 1·24 billion people, the majority of whom are children and women from resource-poor countries. In sub-Saharan Africa, iron deficiency is frequently exacerbated by concomitant parasitic and bacterial infections and contributes to over 120 000 maternal deaths a year, while it irreparably limits the cognitive development of children and leads to poor outcomes in pregnancy.Currently available iron compounds are cheap and readily available, but constitute a non-physiological approach to providing iron that leads to significant side effects. Consequently, iron deficiency and IDA remain without an effective treatment, particularly in populations with high burden of infectious diseases. So far, despite considerable investment in the past 25 years in nutrition interventions with iron supplementation and fortification, we have been unable to significantly decrease the burden of this disease in resource-poor countries.If we are to eliminate this condition in the future, it is imperative to look beyond the strategies used until now and we should make an effort to combine community engagement and social science approaches to optimise supplementation and fortification programmes.
Collapse
Affiliation(s)
- Isabella Stelle
- Institute of Liver and Digestive Health, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Anastasia Z Kalea
- Institute of Liver and Digestive Health, Division of Medicine, University College London, London WC1E 6BT, UK
- Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK
| | - Dora I A Pereira
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| |
Collapse
|
236
|
Parmar JH, Mendes P. A computational model to understand mouse iron physiology and disease. PLoS Comput Biol 2019; 15:e1006680. [PMID: 30608934 PMCID: PMC6334977 DOI: 10.1371/journal.pcbi.1006680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/16/2019] [Accepted: 11/29/2018] [Indexed: 12/16/2022] Open
Abstract
It is well known that iron is an essential element for life but is toxic when in excess or in certain forms. Accordingly there are many diseases that result directly from either lack or excess of iron. Yet many molecular and physiological aspects of iron regulation have only been discovered recently and others are still elusive. There is still no good quantitative and dynamic description of iron absorption, distribution, storage and mobilization that agrees with the wide array of phenotypes presented in several iron-related diseases. The present work addresses this issue by developing a mathematical model of iron distribution in mice calibrated with ferrokinetic data and subsequently validated against data from mouse models of iron disorders, such as hemochromatosis, β-thalassemia, atransferrinemia and anemia of inflammation. To adequately fit the ferrokinetic data required inclusion of the following mechanisms: a) transferrin-mediated iron delivery to tissues, b) induction of hepcidin by transferrin-bound iron, c) ferroportin-dependent iron export regulated by hepcidin, d) erythropoietin regulation of erythropoiesis, and e) liver uptake of NTBI. The utility of the model to simulate disease interventions was demonstrated by using it to investigate the outcome of different schedules of transferrin treatment in β-thalassemia. Iron is an essential nutrient in almost all life forms. In humans and animals iron is used for respiration and for transporting oxygen inside red blood cells. But in excess iron can be toxic and therefore the body regulates its distribution and absortion through the action of hormones, which is not yet completely understood. Here we created a computational model of the regulation of iron distribution in the body of a mouse based on experimental data. The model can accurately simulate many iron diseases such as anemia, hemochromatosis, and thalassemia. This computational model is helpful to understand the basis of these diseases and plan therapies to address them.
Collapse
Affiliation(s)
- Jignesh H. Parmar
- Center for Quantitative Medicine and Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Pedro Mendes
- Center for Quantitative Medicine and Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
237
|
Iron Pathophysiology in Neurodegeneration with Brain Iron Accumulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:153-177. [DOI: 10.1007/978-981-13-9589-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
238
|
Abstract
MRI is a key tool in the current management of patients with thalassemia. Given its capability of assessing iron overload in different organs noninvasively and without contrast, it has significant advantages over other metrics, including serum ferritin. Liver iron concentration can be measured either with relaxometry methods T2*/T2 or signal intensity ratio techniques. Myocardial iron can be assessed in the same examination through T2* imaging. In this review, we focus on showing how MRI evaluates iron in both organs and the clinical applications as well as practical approaches to using this tool by clinicians taking care of patients with thalassemia.
Collapse
|
239
|
Xie L, Peng Y, Huang K, Wu Y, Wang S. Predictive value of iron parameters in neurocritically ill patients. Brain Behav 2018; 8:e01163. [PMID: 30451393 PMCID: PMC6305919 DOI: 10.1002/brb3.1163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/22/2018] [Accepted: 10/21/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Iron, an essential mineral for human body, has the potential to cause toxicity at high levels. Previous studies have shown inconsistent predictive value of iron parameters in critically ill patients. Thus, we aimed to evaluate the performance of iron parameters in outcome prediction of neurocritically ill patients. METHODS Retrospective data were collected from patients admitted to the neurocritical care unit (NCU) of a tertiary teaching hospital between August 2016 and January 2017. The iron parameters were obtained at NCU admission. Primary endpoints were short-term (30-day) mortality and long-term (6-month) poor outcome, with the latter defined as modified Rankin Scale of 4-6. The predictive value of variables was determined with univariate and multivariate logistic analysis. A further subanalysis was conducted in patients stratified by the level of estimated glomerular filtration rate (eGFR). RESULTS Of 103 eligible patients, the etiology included stroke (58.2%, N = 60), central nervous system infection (13.6%, N = 14), and other neurologic disorders (28.2%, N = 29). The correlation analysis showed that the increase in ferritin, as well as the reduction in transferrin and total iron-binding capacity, had strong correlation with C-reactive protein, procalcitonin, duration of NCU stay, Acute Physiology and Chronic Health Evaluation II score, and Sequential Organ Failure Assessment score. In a further subanalysis of 75 patients with eGFR ≥ 60 ml/min/1.73 m2 , twelve (16.0%) patients died within 30 days and 39 (52.0%) patients achieved good follow-up outcome data. In the multivariate logistic regression analysis, we identified baseline ferritin level as an independent predictor of short-term mortality (OR: 1.002; 95% CI: 1.000-1.003; p = 0.008) and long-term functional outcome (OR: 1.002; 95% CI: 1.000-1.004; p = 0.031). CONCLUSIONS Serum ferritin level at admission could be used as an independent predictor of short-term mortality and long-term functional outcome in neurocritically ill patients with eGFR ≥ 60 ml/min/1.73 m2 .
Collapse
Affiliation(s)
- Ling Xie
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengnan Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
240
|
Gonul Baltaci N, Guler C, Ceylan H, Kalin SN, Adem S, Kocpinar EF, Erdogan O, Budak H. In vitro and in vivo effects of iron on the expression and activity of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase in rat spleen. J Biochem Mol Toxicol 2018; 33:e22229. [PMID: 30506659 DOI: 10.1002/jbt.22229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
Abstract
Iron is an indispensable element for vital activities in almost all living organisms. It is also a cofactor for many proteins, enzymes, and other essential complex biochemical processes. Therefore, iron trafficking is firmly regulated by Hepcidin (Hamp), which is regarded as the marker for iron accumulation. The disruption of iron homeostasis leads to oxidative stress that causes various human diseases, but this mechanism is still unclear. The aim of this study is to provide a better in vivo and in vitro understanding of how long-term iron overload affects the gene expression and activities of some antioxidant enzymes, such as glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) in the spleen. The findings of this study show that iron overload reduces the gene expression of G6pd, 6pgd, and Gr, but its actual effect was on the protein level.
Collapse
Affiliation(s)
- Nurdan Gonul Baltaci
- Science Faculty, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Caglar Guler
- Faculty of Science, Department of Chemistry, Cankiri Karatekin University, Cankiri, Turkey
| | - Hamid Ceylan
- Science Faculty, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Seyda Nur Kalin
- Science Faculty, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Sevki Adem
- Faculty of Science, Department of Chemistry, Cankiri Karatekin University, Cankiri, Turkey
| | - Enver Fehim Kocpinar
- Science Faculty, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
- Department of Medical Services and Techniques, Vocational School, Mus Alparslan University, Mus, Turkey
| | - Orhan Erdogan
- Science Faculty, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| |
Collapse
|
241
|
Gaur K, Vázquez-Salgado A, Duran-Camacho G, Dominguez-Martinez I, Benjamín-Rivera J, Fernández-Vega L, Carmona Sarabia L, Cruz García A, Pérez-Deliz F, Méndez Román J, Vega-Cartagena M, Loza-Rosas S, Rodriguez Acevedo X, Tinoco A. Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. INORGANICS 2018. [DOI: https://doi.org/10.3390/inorganics6040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Collapse
|
242
|
Gaur K, Vázquez-Salgado AM, Duran-Camacho G, Dominguez-Martinez I, Benjamín-Rivera JA, Fernández-Vega L, Sarabia LC, García AC, Pérez-Deliz F, Méndez Román JA, Vega-Cartagena M, Loza-Rosas SA, Acevedo XR, Tinoco AD. Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. INORGANICS 2018; 6:126. [PMID: 33912613 PMCID: PMC8078164 DOI: 10.3390/inorganics6040126] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Collapse
Affiliation(s)
- Kavita Gaur
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Geraldo Duran-Camacho
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Josué A Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lauren Fernández-Vega
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lesly Carmona Sarabia
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Angelys Cruz García
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Felipe Pérez-Deliz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - José A Méndez Román
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Melissa Vega-Cartagena
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Sergio A Loza-Rosas
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Arthur D Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| |
Collapse
|
243
|
Sherman HG, Jovanovic C, Stolnik S, Baronian K, Downard AJ, Rawson FJ. New Perspectives on Iron Uptake in Eukaryotes. Front Mol Biosci 2018; 5:97. [PMID: 30510932 PMCID: PMC6254016 DOI: 10.3389/fmolb.2018.00097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
All eukaryotic organisms require iron to function. Malfunctions within iron homeostasis have a range of physiological consequences, and can lead to the development of pathological conditions that can result in an excess of non-transferrin bound iron (NTBI). Despite extensive understanding of iron homeostasis, the links between the “macroscopic” transport of iron across biological barriers (cellular membranes) and the chemistry of redox changes that drive these processes still needs elucidating. This review draws conclusions from the current literature, and describes some of the underlying biophysical and biochemical processes that occur in iron homeostasis. By first taking a broad view of iron uptake within the gut and subsequent delivery to tissues, in addition to describing the transferrin and non-transferrin mediated components of these processes, we provide a base of knowledge from which we further explore NTBI uptake. We provide concise up-to-date information of the transplasma electron transport systems (tPMETSs) involved within NTBI uptake, and highlight how these systems are not only involved within NTBI uptake for detoxification but also may play a role within the reduction of metabolic stress through regeneration of intracellular NAD(P)H/NAD(P)+ levels. Furthermore, we illuminate the thermodynamics that governs iron transport, namely the redox potential cascade and electrochemical behavior of key components of the electron transport systems that facilitate the movement of electrons across the plasma membrane to the extracellular compartment. We also take account of kinetic changes that occur to transport iron into the cell, namely membrane dipole change and their consequent effects within membrane structure that act to facilitate transport of ions.
Collapse
Affiliation(s)
- Harry G Sherman
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | | | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Kim Baronian
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alison J Downard
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
244
|
Abstract
Dietary iron absorption and systemic iron traffic are tightly controlled by hepcidin, a liver-derived peptide hormone. Hepcidin inhibits iron entry into plasma by binding to and inactivating the iron exporter ferroportin in target cells, such as duodenal enterocytes and tissue macrophages. Hepcidin is induced in response to increased body iron stores to inhibit further iron absorption and prevent iron overload. The mechanism involves the BMP/SMAD signaling pathway, which triggers transcriptional hepcidin induction. Inactivating mutations in components of this pathway cause hepcidin deficiency, which allows inappropriately increased iron absorption and efflux into the bloodstream. This leads to hereditary hemochromatosis (HH), a genetically heterogenous autosomal recessive disorder of iron metabolism characterized by gradual buildup of unshielded non-transferrin bound iron (NTBI) in plasma and excessive iron deposition in tissue parenchymal cells. The predominant HH form is linked to mutations in the HFE gene and constitutes the most frequent genetic disorder in Caucasians. Other, more severe and rare variants are caused by inactivating mutations in HJV (hemojuvelin), HAMP (hepcidin) or TFR2 (transferrin receptor 2). Mutations in SLC40A1 (ferroportin) that cause hepcidin resistance recapitulate the biochemical phenotype of HH. However, ferroportin-related hemochromatosis is transmitted in an autosomal dominant manner. Loss-of-function ferroportin mutations lead to ferroportin disease, characterized by iron overload in macrophages and low transferrin saturation. Aceruloplasminemia and atransferrinemia are further inherited disorders of iron overload caused by deficiency in ceruloplasmin or transferrin, the plasma ferroxidase and iron carrier, respectively.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
245
|
Links Between Iron and Lipids: Implications in Some Major Human Diseases. Pharmaceuticals (Basel) 2018; 11:ph11040113. [PMID: 30360386 PMCID: PMC6315991 DOI: 10.3390/ph11040113] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Maintenance of iron homeostasis is critical to cellular health as both its excess and insufficiency are detrimental. Likewise, lipids, which are essential components of cellular membranes and signaling mediators, must also be tightly regulated to hinder disease progression. Recent research, using a myriad of model organisms, as well as data from clinical studies, has revealed links between these two metabolic pathways, but the mechanisms behind these interactions and the role these have in the progression of human diseases remains unclear. In this review, we summarize literature describing cross-talk between iron and lipid pathways, including alterations in cholesterol, sphingolipid, and lipid droplet metabolism in response to changes in iron levels. We discuss human diseases correlating with both iron and lipid alterations, including neurodegenerative disorders, and the available evidence regarding the potential mechanisms underlying how iron may promote disease pathogenesis. Finally, we review research regarding iron reduction techniques and their therapeutic potential in treating patients with these debilitating conditions. We propose that iron-mediated alterations in lipid metabolic pathways are involved in the progression of these diseases, but further research is direly needed to elucidate the mechanisms involved.
Collapse
|
246
|
Boyer E, Le Gall-David S, Martin B, Fong SB, Loréal O, Deugnier Y, Bonnaure-Mallet M, Meuric V. Increased transferrin saturation is associated with subgingival microbiota dysbiosis and severe periodontitis in genetic haemochromatosis. Sci Rep 2018; 8:15532. [PMID: 30341355 PMCID: PMC6195524 DOI: 10.1038/s41598-018-33813-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/25/2018] [Indexed: 02/08/2023] Open
Abstract
Genetic haemochromatosis (GH) is responsible for iron overload. Increased transferrin saturation (TSAT) has been associated with severe periodontitis, which is a chronic inflammatory disease affecting tissues surrounding the teeth and is related to dysbiosis of the subgingival microbiota. Because iron is essential for bacterial pathogens, alterations in iron homeostasis can drive dysbiosis. To unravel the relationships between serum iron biomarkers and the subgingival microbiota, we analysed samples from 66 GH patients. The co-occurrence analysis of the microbiota showed very different patterns according to TSAT. Healthy and periopathogenic bacterial clusters were found to compete in patients with normal TSAT (≤45%). However, significant correlations were found between TSAT and the proportions of Porphyromonas and Treponema, which are two genera that contain well-known periopathogenic species. In patients with high TSAT, the bacterial clusters exhibited no mutual exclusion. Increased iron bioavailability worsened periodontitis and promoted periopathogenic bacteria, such as Treponema. The radical changes in host-bacteria relationships and bacterial co-occurrence patterns according to the TSAT level also suggested a shift in the bacterial iron supply from transferrin to NTBI when TSAT exceeded 45%. Taken together, these results indicate that iron bioavailability in biological fluids is part of the equilibrium between the host and its microbiota.
Collapse
Affiliation(s)
- Emile Boyer
- Univ Rennes, INSERM, INRA, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), Rennes, F-35000, France.
- CHU de Rennes, Service d'Odontologie, Rennes, 35033, France.
| | - Sandrine Le Gall-David
- Univ Rennes, INSERM, INRA, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), Rennes, F-35000, France
| | - Bénédicte Martin
- Univ Rennes, INSERM, INRA, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), Rennes, F-35000, France
| | - Shao Bing Fong
- Univ Rennes, INSERM, INRA, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), Rennes, F-35000, France
| | - Olivier Loréal
- Univ Rennes, INSERM, INRA, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), Rennes, F-35000, France
| | - Yves Deugnier
- CHU de Rennes, Service des Maladies du Foie, Rennes, 35033, France
- CIC 1414, Inserm, Rennes, 35033, France
| | - Martine Bonnaure-Mallet
- Univ Rennes, INSERM, INRA, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), Rennes, F-35000, France
- CHU de Rennes, Service d'Odontologie, Rennes, 35033, France
| | - Vincent Meuric
- Univ Rennes, INSERM, INRA, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), Rennes, F-35000, France
- CHU de Rennes, Service d'Odontologie, Rennes, 35033, France
| |
Collapse
|
247
|
Abstract
There are several options available for intravenous application of iron supplements, but they all have a similar structure:—an iron core surrounded by a carbohydrate coating. These nanoparticles require processing by the reticuloendothelial system to release iron, which is subsequently picked up by the iron-binding protein transferrin and distributed throughout the body, with most of the iron supplied to the bone marrow. This process risks exposing cells and tissues to free iron, which is potentially toxic due to its high redox activity. A new parenteral iron formation, ferric pyrophosphate citrate (FPC), has a novel structure that differs from conventional intravenous iron formulations, consisting of an iron atom complexed to one pyrophosphate and two citrate anions. In this study, we show that FPC can directly transfer iron to apo-transferrin. Kinetic analyses reveal that FPC donates iron to apo-transferrin with fast binding kinetics. In addition, the crystal structure of transferrin bound to FPC shows that FPC can donate iron to both iron-binding sites found within the transferrin structure. Examination of the iron-binding sites demonstrates that the iron atoms in both sites are fully encapsulated, forming bonds with amino acid side chains in the protein as well as pyrophosphate and carbonate anions. Taken together, these data demonstrate that, unlike intravenous iron formulations, FPC can directly and rapidly donate iron to transferrin in a manner that does not expose cells and tissues to the damaging effects of free, redox-active iron.
Collapse
|
248
|
van Raaij S, Masereeuw R, Swinkels D, van Swelm R. Inhibition of Nrf2 alters cell stress induced by chronic iron exposure in human proximal tubular epithelial cells. Toxicol Lett 2018; 295:179-186. [DOI: 10.1016/j.toxlet.2018.06.1218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 01/19/2023]
|
249
|
Nosrati R, Dehghani S, Karimi B, Yousefi M, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosens Bioelectron 2018; 117:1-14. [DOI: 10.1016/j.bios.2018.05.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
|
250
|
Xia JJ, Wang F, Jiang XN, Jiang TT, Shen LJ, Liu Y, You DL, Ding Y, Ju XF, Wang L, Wu X, Hu SY. Serum iron levels are an independent predictor of in-hospital mortality of critically ill patients: a retrospective, single-institution study. J Int Med Res 2018; 47:66-75. [PMID: 30179058 PMCID: PMC6384462 DOI: 10.1177/0300060518795528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective This study aimed to examine the relationship between serum iron levels and in-hospital mortality in critically ill patients. Methods We retrospectively studied 250 critically ill patients who received treatment at the intensive care unit between June 2015 and May 2017. Blood chemistry and hepatic and renal function were measured. Kaplan–Meier survival curves were plotted according to serum iron levels. Correlations between serum iron levels and other variables were analyzed. Results A total of 165 (66.0%) patients had abnormally low serum iron levels (<10.6 μmol/L). Patients who died during hospitalization had markedly higher Acute Physiology and Chronic Health Evaluation II scores and significantly lower serum iron levels compared with those who survived. Cumulative survival was significantly lower in patients with low serum iron levels than in those with normal serum iron levels in subgroup analysis of older patients (n = 192). Multivariate regression analysis showed that, after adjusting for relevant factors, low serum iron levels remained an independent risk for in-hospital mortality (odds ratio 2.014; 95% confidence interval 1.089, 3.725). Conclusions Low serum iron levels are present in a significant proportion of critically ill patients and are associated with higher in-hospital mortality, particularly in older patients.
Collapse
Affiliation(s)
- Jian-Jun Xia
- 1 Emergency Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Fei Wang
- 2 Department of Critical Care Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiao-Nan Jiang
- 3 Jiading Town Community Healthcare Center of Jiading District, Shanghai, China
| | - Ting-Ting Jiang
- 2 Department of Critical Care Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Li-Juan Shen
- 4 Department of Clinical Laboratory, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yue Liu
- 1 Emergency Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Da-Li You
- 2 Department of Critical Care Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yong Ding
- 3 Jiading Town Community Healthcare Center of Jiading District, Shanghai, China
| | - Xue-Feng Ju
- 1 Emergency Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Li Wang
- 1 Emergency Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiao Wu
- 1 Emergency Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Shan-You Hu
- 2 Department of Critical Care Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|