201
|
An J, Kwon H, Kim E, Lee YM, Ko HJ, Park H, Choi IG, Kim S, Kim KH, Kim W, Choi W. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene. Environ Microbiol 2014; 17:656-69. [DOI: 10.1111/1462-2920.12489] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/16/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Jieun An
- Division of Life and Pharmaceutical Sciences; Ewha Womans University; Seoul 120-750 Korea
| | - Hyeji Kwon
- Division of Life and Pharmaceutical Sciences; Ewha Womans University; Seoul 120-750 Korea
| | - Eunjung Kim
- Department of Pharmacology, School of Medicine; Ajou University; Suwon 442-749 Korea
| | - Young Mi Lee
- Microbial Resources Research Center; Ewha Womans University; Seoul 120-750 Korea
| | - Hyeok Jin Ko
- School of Life Sciences and Biotechnology; Korea University; Seoul 136-713 Korea
| | - Hongjae Park
- School of Life Sciences and Biotechnology; Korea University; Seoul 136-713 Korea
| | - In-Geol Choi
- School of Life Sciences and Biotechnology; Korea University; Seoul 136-713 Korea
| | - Sooah Kim
- School of Life Sciences and Biotechnology; Korea University; Seoul 136-713 Korea
| | - Kyoung Heon Kim
- School of Life Sciences and Biotechnology; Korea University; Seoul 136-713 Korea
| | - Wankee Kim
- Department of Pharmacology, School of Medicine; Ajou University; Suwon 442-749 Korea
| | - Wonja Choi
- Division of Life and Pharmaceutical Sciences; Ewha Womans University; Seoul 120-750 Korea
- Microbial Resources Research Center; Ewha Womans University; Seoul 120-750 Korea
| |
Collapse
|
202
|
Biswas C, Zuo X, Chen SCA, Schibeci SD, Forwood JK, Jolliffe KA, Sorrell TC, Djordjevic JT. Functional disruption of yeast metacaspase, Mca1, leads to miltefosine resistance and inability to mediate miltefosine-induced apoptotic effects. Fungal Genet Biol 2014; 67:71-81. [PMID: 24731805 DOI: 10.1016/j.fgb.2014.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/27/2014] [Accepted: 04/06/2014] [Indexed: 01/11/2023]
Abstract
Miltefosine (MI) is a novel, potential antifungal agent with activity against some yeast and filamentous fungal pathogens. We previously demonstrated in the model yeast, Saccharomyces cerevisiae, that MI causes disruption of mitochondrial membrane potential and apoptosis-like cell death via interaction with the Cox9p sub-unit of cytochrome c oxidase (COX). To identify additional mechanisms of antifungal action, MI resistance was induced in S. cerevisiae by exposure to the mutagen, ethyl methanesulfonate, and gene mutation(s) responsible for resistance were investigated. An MI-resistant haploid strain (H-C101) was created. Resistance was retained in the diploid strain (D-C101) following mating, confirming dominant inheritance. Phenotypic assessment of individual D-C101 tetrads revealed that only one mutant gene contributed to the MI-resistance phenotype. To identify this gene, the genome of H-C101 was sequenced and 17 mutated genes, including metacaspase-encoding MCA1, were identified. The MCA1 mutation resulted in substitution of asparagine (N) with aspartic acid (D) at position 164 (MCA1(N164D)). MI resistance was found to be primarily due to MCA1(N164D), as single-copy episomal expression of MCA1(N164D), but not two other mutated genes (FAS1(T1417I) and BCK2(T104A)), resulted in MI resistance in the wild-type strain. Furthermore, an MCA1 deletion mutant (mca1Δ) was MI-resistant. MI treatment led to accumulation of reactive oxygen species (ROS) in MI-resistant (MCA1(N164D)-expressing and mca1Δ) strains and MI-susceptible (MCA1-expressing) strains, but failed to activate Mca1 in the MI-resistant strains, demonstrating that ROS accumulation does not contribute to the fungicidal effect of MI. In conclusion, functional disruption of Mca1, leads to MI resistance and inability to mediate MI-induced apoptotic effects. Mca1-mediated apoptosis is therefore a major mechanism of MI-induced antifungal action.
Collapse
Affiliation(s)
- Chayanika Biswas
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 2145, Australia
| | - Xiaoming Zuo
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 2145, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 2145, Australia; Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, NSW 2145, Australia
| | - Stephen D Schibeci
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, NSW 2145, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | | | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 2145, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, NSW 2006, Australia
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 2145, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
203
|
Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y. Dill (Anethum graveolens L.) seed essential oil induces Candida albicans apoptosis in a metacaspase-dependent manner. Fungal Biol 2014; 118:394-401. [DOI: 10.1016/j.funbio.2014.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 02/02/2023]
|
204
|
Yoboue ED, Mougeolle A, Kaiser L, Averet N, Rigoulet M, Devin A. The role of mitochondrial biogenesis and ROS in the control of energy supply in proliferating cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1093-8. [PMID: 24602596 DOI: 10.1016/j.bbabio.2014.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 01/27/2023]
Abstract
In yeast, there is a constant growth yield during proliferation on non-fermentable substrate where the ATP generated originates from oxidative phosphorylation. This constant growth yield is due to a tight adjustment between the growth rate and the cellular mitochondrial amount. We showed that this cellular mitochondrial amount is strictly controlled by mitochondrial biogenesis. Moreover, the Ras/cAMP pathway is the cellular signaling pathway involved in the regulation of mitochondrial biogenesis, with a direct relationship between the activity of this pathway and the cellular amount of mitochondria. The cAMP protein kinase Tpk3p is the catalytic subunit specifically involved in the regulation of mitochondrial biogenesis through regulation of the mitochondrial ROS production. An overflow of mitochondrial ROS decreases mitochondrial biogenesis through a decrease in the transcriptional co-activator Hap4p, which can be assimilated to mitochondria quality control. Moreover, the glutathione redox state is shown as being an intermediate in the regulation of mitochondrial biogenesis. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Edgar D Yoboue
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Alexis Mougeolle
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Laurent Kaiser
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Nicole Averet
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Michel Rigoulet
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Anne Devin
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France.
| |
Collapse
|
205
|
Sukhanova EI, Rogov AG, Severin FF, Zvyagilskaya RA. Phenoptosis in yeasts. BIOCHEMISTRY (MOSCOW) 2014; 77:761-75. [PMID: 22817540 DOI: 10.1134/s0006297912070097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current view on phenoptosis and apoptosis as genetic programs aimed at eliminating potentially dangerous organisms and cells, respectively, is given. Special emphasis is placed on apoptosis (phenoptosis) in yeasts: intracellular defects and a plethora of external stimuli inducing apoptosis in yeasts; distinctive morphological and biochemical hallmarks accompanying apoptosis in yeasts; pro- and antiapoptotic factors involved in yeast apoptosis signaling; consecutive stages of apoptosis from external stimulus to the cell death; a prominent role of mitochondria and other organelles in yeast apoptosis; possible pathways for release of apoptotic factors from the intermembrane mitochondrial space into the cytosol are described. Using some concrete examples, the obvious physiological importance and expediency of altruistic death of yeast cells is shown. Poorly known aspects of yeast apoptosis and prospects for yeast apoptosis study are defined.
Collapse
Affiliation(s)
- E I Sukhanova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | | | | | | |
Collapse
|
206
|
Jin C, Strich R, Cooper KF. Slt2p phosphorylation induces cyclin C nuclear-to-cytoplasmic translocation in response to oxidative stress. Mol Biol Cell 2014; 25:1396-407. [PMID: 24554767 PMCID: PMC3983003 DOI: 10.1091/mbc.e13-09-0550] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The conserved transcription factor cyclin C is both translocated to the cytoplasm and destroyed after oxidative stress. The signaling pathway that transmits the stress signal to cyclin C is complex and uses both the MAPK Slt2p and its pseudokinase homologue, Kdx1, via different mechanisms. The yeast C-type cyclin represses the transcription of genes required for the stress response and meiosis. To relieve this repression, cyclin C undergoes nuclear-to-cytoplasmic translocation in response to many stressors, including hydrogen peroxide, where it is destroyed by ubiquitin-mediated proteolysis. Before its destruction, cyclin C promotes stress-induced mitochondrial fission and programmed cell death, indicating that relocalization is an important cell fate regulator. Here we show that cyclin C cytoplasmic translocation requires the cell wall integrity (CWI) mitogen-activated protein kinase Slt2p, its pseudokinase paralogue, Kdx1p, and an associating transcription factor, Ask10p. Furthermore, Slt2p and Kdx1p regulate cyclin C stability through different but required mechanisms. Slt2p associates with, and directly phosphorylates, cyclin C at Ser-266. Eliminating or mimicking phosphorylation at this site restricts or enhances cyclin C cytoplasmic translocation and degradation, respectively. Conversely, Kdx1p does not bind cyclin C but instead coimmunoprecipitates with Ask10p, a transcription factor previously identified as a regulator of cyclin C destruction. These results reveal a complex regulatory circuitry involving both downstream effectors of the CWI mitogen-activated protein kinase signal transduction pathway to target the relocalization and consequent destruction of a single transcriptional repressor.
Collapse
Affiliation(s)
- Chunyan Jin
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084
| | | | | |
Collapse
|
207
|
Walter D, Matter A, Fahrenkrog B. Loss of histone H3 methylation at lysine 4 triggers apoptosis in Saccharomyces cerevisiae. PLoS Genet 2014; 10:e1004095. [PMID: 24497836 PMCID: PMC3907299 DOI: 10.1371/journal.pgen.1004095] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/25/2013] [Indexed: 11/29/2022] Open
Abstract
Monoubiquitination of histone H2B lysine 123 regulates methylation of histone H3 lysine 4 (H3K4) and 79 (H3K79) and the lack of H2B ubiquitination in Saccharomyces cerevisiae coincides with metacaspase-dependent apoptosis. Here, we discovered that loss of H3K4 methylation due to depletion of the methyltransferase Set1p (or the two COMPASS subunits Spp1p and Bre2p, respectively) leads to enhanced cell death during chronological aging and increased sensitivity to apoptosis induction. In contrast, loss of H3K79 methylation due to DOT1 disruption only slightly affects yeast survival. SET1 depleted cells accumulate DNA damage and co-disruption of Dot1p, the DNA damage adaptor protein Rad9p, the endonuclease Nuc1p, and the metacaspase Yca1p, respectively, impedes their early death. Furthermore, aged and dying wild-type cells lose H3K4 methylation, whereas depletion of the H3K4 demethylase Jhd2p improves survival, indicating that loss of H3K4 methylation is an important trigger for cell death in S. cerevisiae. Given the evolutionary conservation of H3K4 methylation this likely plays a role in apoptosis regulation in a wide range of organisms. Covalent histone modifications alter chromatin structure and DNA accessibility, which is playing important roles in a wide range of DNA-based processes, such as transcription regulation and DNA repair, but also cell division and apoptosis. Apoptosis is the most common form of programmed cell death and plays important roles in the development and cellular homeostasis of all metazoans. Deregulation of apoptosis contributes to the pathogenesis of multiple diseases including autoimmune, neoplastic and neurodegenerative disorders. The budding yeast Saccharomyces cerevisiae has progressively evolved as model to study the mechanisms of apoptotic regulation, and we study here the role of an evolutionary conserved trans-histone crosstalk, in particular histone methylation, in apoptotic signaling in yeast. We have identified a novel trigger for cell death in yeast and due to the strong evolutionary conservation our findings may apply to human cells and may be of importance for understanding the molecular mechanism underlying a specific subtype of acute leukemia.
Collapse
Affiliation(s)
- David Walter
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anja Matter
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Birthe Fahrenkrog
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Basel, Switzerland
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
- * E-mail:
| |
Collapse
|
208
|
Chin C, Donaghey F, Helming K, McCarthy M, Rogers S, Austriaco N. Deletion of AIF1 but not of YCA1/MCA1 protects Saccharomyces cerevisiae and Candida albicans cells from caspofungin-induced programmed cell death. MICROBIAL CELL 2014; 1:58-63. [PMID: 28357223 PMCID: PMC5348969 DOI: 10.15698/mic2014.01.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Caspofungin was the first member of a new class of antifungals called echinocandins to be approved by a drug regulatory authority. Like the other echinocandins, caspofungin blocks the synthesis of β(1,3)-D-glucan of the fungal cell wall by inhibiting the enzyme, β(1,3)-D-glucan synthase. Loss of β(1,3)-D-glucan leads to osmotic instability and cell death. However, the precise mechanism of cell death associated with the cytotoxicity of caspofungin was unclear. We now provide evidence that Saccharomyces cerevisiae cells cultured in media containing caspofungin manifest the classical hallmarks of programmed cell death (PCD) in yeast, including the generation of reactive oxygen species (ROS), the fragmentation of mitochondria, and the production of DNA strand breaks. Our data also suggests that deleting AIF1 but not YCA1/MCA1 protects S. cerevisiae and Candida albicans from caspofungin-induced cell death. This is not only the first time that AIF1 has been specifically tied to cell death in Candida but also the first time that caspofungin resistance has been linked to the cell death machinery in yeast.
Collapse
Affiliation(s)
- Christopher Chin
- Department of Biology, Providence College, Providence, RI 02918, U.S.A. ; Current address: University of Massachusetts School of Medicine, 55 Lake Ave. N., Worcester, MA 01655, U.S.A
| | - Faith Donaghey
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Katherine Helming
- Department of Biology, Providence College, Providence, RI 02918, U.S.A. ; Current address: Dana-Farber Cancer Institute, 44 Binney St., Boston, MA 02115, U.S.A
| | - Morgan McCarthy
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Stephen Rogers
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Nicanor Austriaco
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| |
Collapse
|
209
|
Mirisola MG, Braun RJ, Petranovic D. Approaches to study yeast cell aging and death. FEMS Yeast Res 2013; 14:109-18. [DOI: 10.1111/1567-1364.12112] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Ralf J. Braun
- Institut für Zellbiologie; Universität Bayreuth; Bayreuth Germany
| | - Dina Petranovic
- Department of Chemical and Biological Engineering, Systems and Synthetic Biology; Chalmers University of Technology; Göteborg Sweden
| |
Collapse
|
210
|
Timón-Gómez A, Proft M, Pascual-Ahuir A. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast. PLoS One 2013; 8:e79405. [PMID: 24244496 PMCID: PMC3828368 DOI: 10.1371/journal.pone.0079405] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022] Open
Abstract
Mpc proteins are highly conserved from yeast to humans and are necessary for the uptake of pyruvate at the inner mitochondrial membrane, which is used for leucine and valine biosynthesis and as a fuel for respiration. Our analysis of the yeast MPC gene family suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. Mpc2 and Mpc3 are highly similar but functionally different: Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. Accordingly, expression of the MPC3 gene is highly activated upon NaCl stress or during the transition from fermentation to respiration, both types of regulation depend on the Hog1 MAP kinase. Overexpression experiments show that gain of Mpc2 function leads to a severe respiration defect and ROS accumulation, while Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Our results identify the regulated mitochondrial pyruvate uptake as an important determinant of respiration rate and stress resistance.
Collapse
Affiliation(s)
- Alba Timón-Gómez
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Markus Proft
- Department of Mechanisms of Plant Stress Responses, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Valencia, Spain
- * E-mail: (APA); (MP)
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Valencia, Spain
- * E-mail: (APA); (MP)
| |
Collapse
|
211
|
Ayer A, Gourlay CW, Dawes IW. Cellular redox homeostasis, reactive oxygen species and replicative ageing inSaccharomyces cerevisiae. FEMS Yeast Res 2013; 14:60-72. [DOI: 10.1111/1567-1364.12114] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Anita Ayer
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney NSW Australia
- Victor Chang Cardiac Research Institute; Darlinghurst NSW Australia
| | | | - Ian W. Dawes
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney NSW Australia
| |
Collapse
|
212
|
Lin SJ, Austriaco N. Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Res 2013; 14:119-35. [PMID: 24205865 DOI: 10.1111/1567-1364.12113] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 12/22/2022] Open
Abstract
How do cells age and die? For the past 20 years, the budding yeast, Saccharomyces cerevisiae, has been used as a model organism to uncover the genes that regulate lifespan and cell death. More recently, investigators have begun to interrogate the other yeasts, the fission yeast, Schizosaccharomyces pombe, and the human fungal pathogen, Candida albicans, to determine if similar longevity and cell death pathways exist in these organisms. After summarizing the longevity and cell death phenotypes in S. cerevisiae, this mini-review surveys the progress made in the study of both aging and programed cell death (PCD) in the yeast models, with a focus on the biology of S. pombe and C. albicans. Particular emphasis is placed on the similarities and differences between the two types of aging, replicative aging, and chronological aging, and between the three types of cell death, intrinsic apoptosis, autophagic cell death, and regulated necrosis, found in these yeasts. The development of the additional microbial models for aging and PCD in the other yeasts may help further elucidate the mechanisms of longevity and cell death regulation in eukaryotes.
Collapse
Affiliation(s)
- Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | | |
Collapse
|
213
|
Yue Q, Zhou X, Leng Q, Zhang L, Cheng B, Zhang X. 7-ketocholesterol-induced caspase-mediated apoptosis in Saccharomyces cerevisiae. FEMS Yeast Res 2013; 13:796-803. [PMID: 24028627 DOI: 10.1111/1567-1364.12089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022] Open
Abstract
The cytotoxicity of cholesterol oxidation products has been documented in several mammalian cell lines. It can lead to a wide range of diseases. However, the molecular mechanisms underlying this toxicity in vivo are scarce. The objective of the present study was to assess the potential toxic effects of 7-ketocholesterol, an important cholesterol oxidation product, on Saccharomyces cerevisiae. Our data show for the first time that 7-ketocholesterol can induce dose-dependent cell death in S. cerevisiae. These results suggest that the death induced by this compound is apoptotic and accompanied by chromatin condensation, the production of ROS, and translocation of phosphatidylserine from the inner to the outer leaflet of the cytoplasmic membrane. We further showed that 7-ketocholesterol-induced cell death was partially rescued after pretreatment with caspase inhibitor (Z-VAD-fmk). In addition, caspase deletion resulted in promotion of cell viability. All these results strongly indicated that 7-ketocholesterol induces apoptosis in yeast cells through a caspase-dependent pathway.
Collapse
Affiliation(s)
- Qiulin Yue
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | | | | | | | | | | |
Collapse
|
214
|
Barbu EM, Shirazi F, McGrath DM, Albert N, Sidman RL, Pasqualini R, Arap W, Kontoyiannis DP. An antimicrobial peptidomimetic induces Mucorales cell death through mitochondria-mediated apoptosis. PLoS One 2013; 8:e76981. [PMID: 24098573 PMCID: PMC3789667 DOI: 10.1371/journal.pone.0076981] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
The incidence of mucormycosis has dramatically increased in immunocompromised patients. Moreover, the array of cellular targets whose inhibition results in fungal cell death is rather limited. Mitochondria have been mechanistically identified as central regulators of detoxification and virulence in fungi. Our group has previously designed and developed a proteolytically-resistant peptidomimetic motif D(KLAKLAK)2 with pleiotropic action ranging from targeted (i.e., ligand-directed) activity against cancer and obesity to non-targeted activity against antibiotic resistant gram-negative rods. Here we evaluated whether this non-targeted peptidomimetic motif is active against Mucorales. We show that D(KLAKLAK)2 has marked fungicidal action, inhibits germination, and reduces hyphal viability. We have also observed cellular changes characteristic of apoptosis in D(KLAKLAK)2-treated Mucorales cells. Moreover, the fungicidal activity was directly correlated with vacuolar injury, mitochondrial swelling and mitochondrial membrane depolarization, intracellular reactive oxygen species accumulation (ROS), and increased caspase-like enzymatic activity. Finally, these apoptotic features were prevented by the addition of the ROS scavenger N-acetyl-cysteine indicating mechanistic pathway specificity. Together, these findings indicate that D(KLAKLAK)2 makes Mucorales exquisitely susceptible via mitochondrial injury-induced apoptosis. This prototype may serve as a candidate drug for the development of translational applications against mucormycosis and perhaps other fungal infections.
Collapse
Affiliation(s)
- E. Magda Barbu
- David H. Koch Center, Department of Genitourinary Medical Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Infectious Diseases, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Fazal Shirazi
- Department of Infectious Diseases, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Danielle M. McGrath
- David H. Koch Center, Department of Genitourinary Medical Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Nathaniel Albert
- Department of Infectious Diseases, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Richard L. Sidman
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Renata Pasqualini
- David H. Koch Center, Department of Genitourinary Medical Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (DPK); (WA); (RP)
| | - Wadih Arap
- David H. Koch Center, Department of Genitourinary Medical Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (DPK); (WA); (RP)
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (DPK); (WA); (RP)
| |
Collapse
|
215
|
Farrugia G, Bannister WH, Vassallo N, Balzan R. Aspirin-induced apoptosis of yeast cells is associated with mitochondrial superoxide radical accumulation and NAD(P)H oxidation. FEMS Yeast Res 2013; 13:755-68. [PMID: 24028488 DOI: 10.1111/1567-1364.12075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 12/14/2022] Open
Abstract
In previous studies, we observed that aspirin, a promising cancer-preventive agent, induces apoptosis in mitochondrial manganese superoxide dismutase (MnSOD)-deficient Saccharomyces cerevisiae cells grown aerobically in ethanol medium. In this study, we show that aspirin-induced apoptosis is associated with a significant increase in mitochondrial and cytosolic O2 ·- and oxidation of mitochondrial NAD(P)H. A concomitant rise in the level of cytosolic CuZnSOD activity failed to compensate for mitochondrial MnSOD deficiency. However, an observed increase in activity of Escherichia coli FeSOD targeted to the mitochondrial matrix of the MnSOD-deficient yeast cells, markedly decreased aspirin-induced accumulation of mitochondrial O2 ·-, significantly increased the mitochondrial NAD(P)H level and rescued the apoptotic phenotype. Indeed, recombinant yeast cells expressing E. coli FeSOD behaved in a similar manner to the parent wild-type yeast cells with native mitochondrial MnSOD activity. Wild-type cells consistently showed a decrease in mitochondrial O2 ·- and an increase in mitochondrial NAD(P)H levels in the presence of aspirin in ethanol medium. In fact, in wild-type cells, our studies supported an antioxidant action of aspirin. Taken together, our results indicate that a pro-oxidant effect of aspirin occurring predominantly in cells with compromised mitochondrial redox balance may be enough to overcome antioxidant defences resulting in apoptosis, as observed in MnSOD-deficient yeast cells.
Collapse
Affiliation(s)
- Gianluca Farrugia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | | | | |
Collapse
|
216
|
Novel Regulatory Mechanisms of Pathogenicity and Virulence to Combat MDR in Candida albicans. Int J Microbiol 2013; 2013:240209. [PMID: 24163696 PMCID: PMC3791847 DOI: 10.1155/2013/240209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 01/19/2023] Open
Abstract
Continuous deployment of antifungals in treating infections caused by dimorphic opportunistic pathogen Candida albicans has led to the emergence of drug resistance resulting in cross-resistance to many unrelated drugs, a phenomenon termed multidrug resistance (MDR). Despite the current understanding of major factors which contribute to MDR mechanisms, there are many lines of evidence suggesting that it is a complex interplay of multiple factors which may be contributed by still unknown mechanisms. Coincidentally with the increased usage of antifungal drugs, the number of reports for antifungal drug resistance has also increased which further highlights the need for understanding novel molecular mechanisms which can be explored to combat MDR, namely, ROS, iron, hypoxia, lipids, morphogenesis, and transcriptional and signaling networks. Considering the worrying evolution of MDR and significance of C. albicans being the most prevalent human fungal pathogen, this review summarizes these new regulatory mechanisms which could be exploited to prevent MDR development in C. albicans as established from recent studies.
Collapse
|
217
|
Chin WC, Lin KH, Chang JJ, Huang CC. Improvement of n-butanol tolerance in Escherichia coli by membrane-targeted tilapia metallothionein. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:130. [PMID: 24020941 PMCID: PMC3848587 DOI: 10.1186/1754-6834-6-130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/04/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Though n-butanol has been proposed as a potential transportation biofuel, its toxicity often causes oxidative stress in the host microorganism and is considered one of the bottlenecks preventing its efficient mass production. RESULTS To relieve the oxidative stress in the host cell, metallothioneins (MTs), which are known as scavengers for reactive oxygen species (ROS), were engineered in E. coli hosts for both cytosolic and outer-membrane-targeted (osmoregulatory membrane protein OmpC fused) expression. Metallothioneins from human (HMT), mouse (MMT), and tilapia fish (TMT) were tested. The host strain expressing membrane-targeted TMT showed the greatest ability to reduce oxidative stresses induced by n-butanol, ethanol, furfural, hydroxymethylfurfural, and nickel. The same strain also allowed for an increased growth rate of recombinant E. coli under n-butanol stress. Further experiments indicated that the TMT-fused OmpC protein could not only function in ROS scavenging but also regulate either glycine betaine (GB) or glucose uptake via osmosis, and the dual functional fusion protein could contribute in an enhancement of the host microorganism's growth rate. CONCLUSIONS The abilities of scavenging intracellular or extracellular ROS by these engineering E. coli were examined, and TMT show the best ability among three MTs. Additionally, the membrane-targeted fusion protein, OmpC-TMT, improved host tolerance up to 1.5% n-butanol above that of TMT which is only 1%. These results presented indicate potential novel approaches for engineering stress tolerant microorganism strains.
Collapse
Affiliation(s)
- Wei-Chih Chin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Hsing Lin
- Vaccine Research and Development Center, National Institute of Infectious Disease and Vaccinology, NHRI, Miaoli, Taiwan
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, Taichung 402, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
218
|
Mostafavi-Pour Z, Khademi F, Zal F, Sardarian AR, Amini F. In Vitro Analysis of CsA-Induced Hepatotoxicity in HepG2 Cell Line: Oxidative Stress and α2 and β1 Integrin Subunits Expression. HEPATITIS MONTHLY 2013; 13:e11447. [PMID: 24082890 PMCID: PMC3785933 DOI: 10.5812/hepatmon.11447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/02/2013] [Accepted: 06/24/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cyclosporine A (CsA)-induced hepatotoxicity could be due to a reduction in α2β1 integrin expression that may either be from the direct effect of CsA itself or from reactive oxygen species (ROS) overproduction. OBJECTIVES In this study we aimed to identify the cellular mechanisms underlying CsA-induced hepatic injury by investigating the activation patterns of the antioxidant enzymes, using HepG2 as an in vitro model. MATERIALS AND METHODS HepG2 cells were cultured with different concentrations of CsA (0, 0.1, 1, 10 μg/ml) for 72 h. Effect of CsA on, 1) cellular integrity, 2) glutathione reductase (GR) and glutathione peroxidase (GPx) activity, 3) cellular levels of glutathione (GSH), 4) intracellular ROS, 5) ALT and AST activities, 6) urea production and 7) α2β1 integrin expression were assayed. RESULTS CsA treatment demonstrated a dose dependent increase in intracellular levels of ROS, GPx activity and decrease in GSH levels (P<0.05). GR activity was mildly attenuated in 1 and 10 µg/ml concentrations of CsA. Alanine aminotranferase (ALT) and aspartate aminotransferase (AST) levels increased in CsA treated cells, while urea synthesis was significantly decreased following treatment with higher concentrations of CsA (P<0.05). Significant down-regulation of β1integrin expression was observed in 1 and 10 µg/ml CsA treated cells while α2 integrin mRNA was significantly down-regulated in all CsA treated cells. CONCLUSIONS The observed reduction of α2β1 integrin expression following CsA treatment could be proposed as a possible pathway of CsA-induced hepatotoxicity. Further studies are required to elucidate whether this attenuated expression is due to the direct effect of CsA or caused by overproduction of ROS.
Collapse
Affiliation(s)
- Zohreh Mostafavi-Pour
- Biochemistry Department, Medical School, Shiraz University of Medicinal Sciences, Shiraz, IR Iran
- Recombinant Protein Laboratory, School of Advanced Medicinal Sciences and Technologies, Shiraz University of Medicinal Sciences, Shiraz, IR Iran
| | - Fatemeh Khademi
- Biochemistry Department, Medical School, Shiraz University of Medicinal Sciences, Shiraz, IR Iran
| | - Fatemeh Zal
- Reproductive Biology Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding author: Fatemeh Zal, Reproductive Biology Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, IR Iran. Tel: +98-7112303029, Fax: +98-7112303029, E-mail:
| | - Ahmad Reza Sardarian
- Student Research Committee, Department of Orthodontics, Dental School, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Fatemeh Amini
- Biochemistry Department, Medical School, Shiraz University of Medicinal Sciences, Shiraz, IR Iran
| |
Collapse
|
219
|
Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J Med Microbiol 2013; 62:1175-1183. [DOI: 10.1099/jmm.0.055467-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work studied the antifungal mechanism of dill seed essential oil (DSEO) against Candida albicans. Flow cytometric analysis and inhibition of ergosterol synthesis were performed to clarify the mechanism of action of DSEO on C. albicans. Upon treatment of cells with DSEO, propidium iodide penetrated C. albicans through a lesion in its plasma membrane. DSEO also significantly reduced the amount of ergosterol. These findings indicate that the plasma membrane of C. albicans was damaged by DSEO. The effect of DSEO on the functions of the mitochondria in C. albicans was also studied. We assayed the mitochondrial membrane potential (mtΔψ) using rhodamine 123 and determined the production of mitochondrial dysfunction-induced reactive oxygen species (ROS) via flow cytometry. The effects of the antioxidant l-cysteine (Cys) on DSEO-induced ROS production and the antifungal effect of DSEO on C. albicans were investigated. Exposure to DSEO increased mtΔψ. Dysfunctions in the mitochondria caused ROS accumulation in C. albicans. This increase in the level of ROS production and DSEO-induced decrease in cell viability were prevented by the addition of Cys, indicating that ROS are an important mediator of the antifungal action of DSEO. These findings indicate that the cytoplasmic membrane and mitochondria are the main anti-Candida targets of DSEO.
Collapse
Affiliation(s)
- Yuxin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Hong Zeng
- Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, 843300, Xinjiang, PR China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Jun Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Xiaoquan Ban
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Bingxin Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Youwei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| |
Collapse
|
220
|
The calcineurin pathway inhibitor tacrolimus enhances the in vitro activity of azoles against Mucorales via apoptosis. EUKARYOTIC CELL 2013; 12:1225-34. [PMID: 23851337 DOI: 10.1128/ec.00138-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The calcineurin pathway regulates antifungal drug resistance and the virulence of several major human-pathogenic fungi, including the recalcitrant Mucorales. We hypothesized that the fungistatic triazoles posaconazole (PCZ) and itraconazole (ICZ) become fungicidal in the setting of the calcineurin inhibitor tacrolimus (TCR) and that such an effect is mediated through apoptosis. Fungicidal activity and apoptosis were studied using standard microbiological techniques and hyphal metabolic and vital dye reduction assays at 37°C in RPMI 1640. Apoptosis was characterized by detecting intracellular Ca(2+), phosphatidylserine (PS) externalization, DNA fragmentation, plasma membrane integrity, chromatin condensation, reactive oxygen species (ROS) generation, caspase-like activity, ATP, and cytochrome c release. MICs for PCZ and ICZ alone were significantly higher (8 to 128 μg/ml) than those of PCZ or ICZ plus TCR (0.25 to 4 μg/ml) for Rhizopus oryzae, Cunninghamella bertholletiae, and Mucor circinelloides. Both PCZ and ICZ in combination with TCR became fungicidal, and their activity was mediated through increased apoptotic cell death of R. oryzae (10 to 50%), C. bertholletiae (5 to 50%), and M. circinelloides (5 to 55%) germlings, with morphological apoptotic changes characterized by externalization of PS, nuclear condensation, and DNA fragmentation. Moreover, activation of the caspase-like activity was correlated with cell death induced by TCR plus PCZ or ICZ. These changes correlated with elevated intracellular Ca(2+) and ROS levels and disturbance of mitochondrial potential. We found that PCZ or ICZ in combination with TCR renders Mucorales sensitive to triazoles via apoptotic death. These observations could serve as a new paradigm for the development of new therapeutic strategies.
Collapse
|
221
|
Shirazi F, Kontoyiannis DP. Mitochondrial respiratory pathways inhibition in Rhizopus oryzae potentiates activity of posaconazole and itraconazole via apoptosis. PLoS One 2013; 8:e63393. [PMID: 23696824 PMCID: PMC3656966 DOI: 10.1371/journal.pone.0063393] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
The incidence of mucormycosis has increased drastically in immunocompromised patients. Also the array of targets whose inhibition results in Mucorales death is limited. Recently, researchers identified mitochondria as important regulators of detoxification and virulence mechanisms in fungi. In this context, targeting the mitochondrial respiratory chain may provide a new platform for antifungal development. We hypothesized that targeting respiratory pathways potentiates triazoles activity via apoptosis. We found that simultaneous administration of antimycin A (AA) and benzohydroxamate (BHAM), inhibitors of classical and alternative mitochondrial pathways respectively, resulted in potent activity of posaconazole (PCZ) and itraconazole (ICZ) against Rhizopus oryzae. We observed cellular changes characteristic of apoptosis in R. oryzae cells treated with PCZ or ICZ in combination with AA and BHAM. The fungicidal activity of this combination against R. oryzae was correlated with intracellular reactive oxygen species accumulation (ROS), phosphatidylserine externalization, mitochondrial membrane depolarization, and increased caspase like activity. DNA fragmentation and condensation assays also revealed apoptosis of R. oryzae cells. These apoptotic features were prevented by the addition of the ROS scavenger N-acetyl-cysteine. Taken together, these findings suggest that the use of PCZ or ICZ in combination with AA and BHAM makes R. oryzae exquisitely sensitive to treatment with triazoles via apoptosis. This strategy may serve as a new model for the development of improved or novel antifungal agents.
Collapse
Affiliation(s)
- Fazal Shirazi
- Department of Infectious Diseases, Infection Control and Employee Health, Unit 402, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, Unit 402, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
222
|
The inhibitors of antioxidant cell enzymes induce permeability transition in yeast mitochondria. J Bioenerg Biomembr 2013; 45:491-504. [DOI: 10.1007/s10863-013-9511-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 11/26/2022]
|
223
|
Wu L, Yi H, Zhang H. Reactive oxygen species and Ca2+are involved in sodium arsenite-induced cell killing in yeast cells. FEMS Microbiol Lett 2013; 343:57-63. [DOI: 10.1111/1574-6968.12131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Huilan Yi
- School of Life Science; Shanxi University; Taiyuan; China
| | - Hufang Zhang
- College of Agriculture; Shanxi Agricultural University; Taigu; China
| |
Collapse
|
224
|
Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane. Appl Environ Microbiol 2013; 79:3590-600. [PMID: 23542628 DOI: 10.1128/aem.00463-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Monoterpenes can, upon hydrogenation, be used as light-fraction components of sustainable aviation fuels. Fermentative production of monoterpenes in engineered microorganisms, such as Saccharomyces cerevisiae, has gained attention as a potential route to deliver these next-generation fuels from renewable biomass. However, end product toxicity presents a formidable problem for microbial synthesis. Due to their hydrophobicity, monoterpene inhibition has long been attributed to membrane interference, but the molecular mechanism remains largely unsolved. In order to gain a better understanding of the mode of action, we analyzed the composition and structural integrity of the cell envelope as well as the transcriptional response of yeast cells treated with an inhibitory amount of d-limonene (107 mg/liter). We found no alterations in membrane fluidity, structural membrane integrity, or fatty acid composition after the solvent challenge. A 4-fold increase in the mean fluorescence intensity per cell (using calcofluor white stain) and increased sensitivity to cell wall-degrading enzymes demonstrated that limonene disrupts cell wall properties. Global transcript measurements confirmed the membrane integrity observations by showing no upregulation of ergosterol or fatty acid biosynthesis pathways, which are commonly overexpressed in yeast to reinforce membrane rigidity during ethanol exposure. Limonene shock did cause a compensatory response to cell wall damage through overexpression of several genes (ROM1, RLM1, PIR3, CTT1, YGP1, MLP1, PST1, and CWP1) involved with the cell wall integrity signaling pathway. This is the first report demonstrating that cell wall, rather than plasma membrane, deterioration is the main source of monoterpene inhibition. We show that limonene can alter the structure and function of the cell wall, which has a clear effect on cytokinesis.
Collapse
|
225
|
Belenky P, Camacho D, Collins JJ. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep 2013; 3:350-8. [PMID: 23416050 PMCID: PMC3656588 DOI: 10.1016/j.celrep.2012.12.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/28/2012] [Accepted: 12/18/2012] [Indexed: 11/21/2022] Open
Abstract
Amphotericin, miconazole, and ciclopirox are antifungal agents from three different drug classes that can effectively kill planktonic yeast, yet their complete fungicidal mechanisms are not fully understood. Here, we employ a systems biology approach to identify a common oxidative-damage cellular death pathway triggered by these representative fungicides in Candida albicans and Saccharomyces cerevisiae. This mechanism utilizes a signaling cascade involving the GTPases Ras1 and Ras2 and protein kinase A, and it culminates in death through the production of toxic reactive oxygen species in a tricarboxylic-acid-cycle- and respiratory-chain-dependent manner. We also show that the metabolome of C. albicans is altered by antifungal drug treatment, exhibiting a shift from fermentation to respiration, a jump in the AMP/ATP ratio, and elevated production of sugars; this coincides with elevated mitochondrial activity. Lastly, we demonstrate that DNA damage plays a critical role in antifungal-induced cellular death and that blocking DNA-repair mechanisms potentiates fungicidal activity.
Collapse
Affiliation(s)
- Peter Belenky
- Howard Hughes Medical Institute
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Center for BioDynamics Boston University, Boston, MA 02215, USA
| | - Diogo Camacho
- Howard Hughes Medical Institute
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Center for BioDynamics Boston University, Boston, MA 02215, USA
| | - James J. Collins
- Howard Hughes Medical Institute
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Center for BioDynamics Boston University, Boston, MA 02215, USA
- Boston University School of Medicine, Boston, MA 02118, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
226
|
Greetham D, Kritsiligkou P, Watkins RH, Carter Z, Parkin J, Grant CM. Oxidation of the yeast mitochondrial thioredoxin promotes cell death. Antioxid Redox Signal 2013; 18:376-85. [PMID: 22770501 PMCID: PMC3526897 DOI: 10.1089/ars.2012.4597] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Yeast, like other eukaryotes, contains a complete mitochondrial thioredoxin system comprising a thioredoxin (Trx3) and a thioredoxin reductase (Trr2). Mitochondria are a main source of reactive oxygen species (ROS) in eukaryotic organisms, and this study investigates the role of Trx3 in regulating cell death during oxidative stress conditions. RESULTS We have previously shown that the redox state of mitochondrial Trx3 is buffered by the glutathione redox couple such that oxidized mitochondrial Trx3 only accumulates in mutants simultaneously lacking Trr2 and a glutathione reductase (Glr1). We show here that the redox state of mitochondrial Trx3 is important for yeast growth and its oxidation in a glr1 trr2 mutant induces programmed cell death. Apoptosis is dependent on the Yca1 metacaspase, since loss of YCA1 abrogates cell death induced by oxidized Trx3. Our data also indicate a role for a mitochondrial 1-cysteine (Cys) peroxiredoxin (Prx1) in the oxidation of Trx3, since Trx3 does not become oxidized in glr1 trr2 mutants or in a wild-type strain exposed to hydrogen peroxide in the absence of PRX1. INNOVATION This study provides evidence that the redox state of a mitochondrial thioredoxin regulates yeast apoptosis in response to oxidative stress conditions. Moreover, the results identify a signaling pathway, where the thioredoxin system functions in both antioxidant defense and in controlling cell death. CONCLUSIONS Mitochondrial Prx1 functions as a redox signaling molecule that oxidizes Trx3 and promotes apoptosis. This would mean that under conditions where Prx1 cannot detoxify mitochondrial ROS, it induces cell death to remove the affected cells.
Collapse
Affiliation(s)
- Darren Greetham
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
227
|
Synergistic effects of amiodarone and fluconazole on Candida tropicalis resistant to fluconazole. Antimicrob Agents Chemother 2013; 57:1691-700. [PMID: 23357774 DOI: 10.1128/aac.00966-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There have recently been significant increases in the prevalence of systemic invasive fungal infections. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of cross-resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapies have become one of the most widely used and effective strategies to alleviate this problem. Amiodarone (AMD) is classically used for the treatment of atrial fibrillation and is the drug of choice for patients with arrhythmia. Recent studies have shown broad antifungal activity of the drug when administered in combination with fluconazole (FLC). In the present study, we induced resistance to fluconazole in six strains of Candida tropicalis and evaluated potential synergism between fluconazole and amiodarone. The evaluation of drug interaction was determined by calculating the fractional inhibitory concentration and by performing flow cytometry. We conclude that amiodarone, when administered in combination with fluconazole, exhibits activity against strains of C. tropicalis that are resistant to fluconazole, which most likely occurs via changes in the integrity of the yeast cell membrane and the generation of oxidative stress, mitochondrial dysfunction, and DNA damage that could lead to cell death by apoptosis.
Collapse
|
228
|
Li PL, Zhang Y. Cross talk between ceramide and redox signaling: implications for endothelial dysfunction and renal disease. Handb Exp Pharmacol 2013:171-97. [PMID: 23563657 DOI: 10.1007/978-3-7091-1511-4_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where transmembrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial-temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
229
|
Quek NCH, Matthews JH, Bloor SJ, Jones DA, Bircham PW, Heathcott RW, Atkinson PH. The novel equisetin-like compound, TA-289, causes aberrant mitochondrial morphology which is independent of the production of reactive oxygen species in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2013; 9:2125-33. [DOI: 10.1039/c3mb70056a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
230
|
Rego A, Costa M, Chaves SR, Matmati N, Pereira H, Sousa MJ, Moradas-Ferreira P, Hannun YA, Costa V, Côrte-Real M. Modulation of mitochondrial outer membrane permeabilization and apoptosis by ceramide metabolism. PLoS One 2012; 7:e48571. [PMID: 23226203 PMCID: PMC3511487 DOI: 10.1371/journal.pone.0048571] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/28/2012] [Indexed: 01/28/2023] Open
Abstract
The yeast Saccharomyces cerevisiae undergoes a mitochondrial-dependent programmed cell death in response to different stimuli, such as acetic acid, with features similar to those of mammalian apoptosis. However, the upstream signaling events in this process, including those leading to mitochondrial membrane permeabilization, are still poorly characterized. Changes in sphingolipid metabolism have been linked to modulation of apoptosis in both yeast and mammalian cells, and ceramides have been detected in mitochondria upon apoptotic stimuli. In this study, we aimed to characterize the contribution of enzymes involved in ceramide metabolism to apoptotic cell death induced by acetic acid. We show that isc1Δ and lag1Δ mutants, lacking inositol phosphosphingolipid phospholipase C and ceramide synthase, respectively, exhibited a higher resistance to acetic acid that was associated with lower levels of some phytoceramide species. Consistently, these mutant cells displayed lower levels of ROS production and reduced mitochondrial alterations, such as mitochondrial fragmentation and degradation, and decreased translocation of cytochrome c into the cytosol in response to acetic acid. These results suggest that ceramide production contributes to cell death induced by acetic acid, especially through hydrolysis of complex sphingolipids catalyzed by Isc1p and de novo synthesis catalyzed by Lag1p, and provide the first in vivo indication of its involvement in mitochondrial outer membrane permeabilization in yeast.
Collapse
Affiliation(s)
- António Rego
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Margarida Costa
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susana Rodrigues Chaves
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
| | - Nabil Matmati
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, New York, United States of America
| | - Helena Pereira
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
| | - Maria João Sousa
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
| | - Pedro Moradas-Ferreira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, New York, United States of America
| | - Vítor Costa
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- * E-mail: (VC); (MCR)
| | - Manuela Côrte-Real
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
- * E-mail: (VC); (MCR)
| |
Collapse
|
231
|
de Castro PA, Savoldi M, Bonatto D, Malavazi I, Goldman MHS, Berretta AA, Goldman GH. Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:194. [PMID: 23092287 PMCID: PMC3598864 DOI: 10.1186/1472-6882-12-194] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/17/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Propolis is a natural product of plant resins collected by honeybees (Apis mellifera) from various plant sources. Our previous studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis. Here, we extended our understanding of propolis-mediated cell death in the yeast Saccharomyces cerevisiae by applying systems biology tools to analyze the transcriptional profiling of cells exposed to propolis. METHODS We have used transcriptional profiling of S. cerevisiae exposed to propolis. We validated our findings by using real-time PCR of selected genes. Systems biology tools (physical protein-protein interaction [PPPI] network) were applied to analyse the propolis-induced transcriptional bevavior, aiming to identify which pathways are modulated by propolis in S. cerevisiae and potentially influencing cell death. RESULTS We were able to observe 1,339 genes modulated in at least one time point when compared to the reference time (propolis untreated samples) (t-test, p-value 0.01). Enrichment analysis performed by Gene Ontology (GO) Term finder tool showed enrichment for several biological categories among the genes up-regulated in the microarray hybridization such as transport and transmembrane transport and response to stress. Real-time RT-PCR analysis of selected genes showed by our microarray hybridization approach was capable of providing information about S. cerevisiae gene expression modulation with a considerably high level of confidence. Finally, a physical protein-protein (PPPI) network design and global topological analysis stressed the importance of these pathways in response of S. cerevisiae to propolis and were correlated with the transcriptional data obtained thorough the microarray analysis. CONCLUSIONS In summary, our data indicate that propolis is largely affecting several pathways in the eukaryotic cell. However, the most prominent pathways are related to oxidative stress, mitochondrial electron transport chain, vacuolar acidification, regulation of macroautophagy associated with protein target to vacuole, cellular response to starvation, and negative regulation of transcription from RNA polymerase II promoter. Our work emphasizes again the importance of S. cerevisiae as a model system to understand at molecular level the mechanism whereby propolis causes cell death in this organism at the concentration herein tested. Our study is the first one that investigates systematically by using functional genomics how propolis influences and modulates the mRNA abundance of an organism and may stimulate further work on the propolis-mediated cell death mechanisms in fungi.
Collapse
|
232
|
Kajiwara K, Muneoka T, Watanabe Y, Karashima T, Kitagaki H, Funato K. Perturbation of sphingolipid metabolism induces endoplasmic reticulum stress-mediated mitochondrial apoptosis in budding yeast. Mol Microbiol 2012; 86:1246-61. [PMID: 23062268 DOI: 10.1111/mmi.12056] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 12/26/2022]
Abstract
Sphingolipids are a class of membrane lipids conserved from yeast to mammals which determine whether a cell dies or survives. Perturbations in sphingolipid metabolism cause apoptotic cell death. Recent studies indicate that reduced sphingolipid levels trigger the cell death, but little is known about the mechanisms. In the budding yeast Saccharomyces cerevisiae, we show that reduction in complex sphingolipid levels causes loss of viability, most likely due to the induction of mitochondria-dependent apoptotic cell death pathway, accompanied by changes in mitochondrial and endoplasmic reticulum morphology and endoplasmic reticulum stress. Elevated cytosolic free calcium is required for the loss of viability. These results indicate that complex sphingolipids are essential for maintaining endoplasmic reticulum homeostasis and suggest that perturbation in complex sphingolipid levels activates an endoplasmic reticulum stress-mediated and calcium-dependent pathway to propagate apoptotic signals to the mitochondria.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Bioresource Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | | | | | | | | |
Collapse
|
233
|
Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms. Biochim Biophys Acta Gen Subj 2012; 1820:1463-8. [DOI: 10.1016/j.bbagen.2012.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/24/2012] [Accepted: 05/10/2012] [Indexed: 01/31/2023]
|
234
|
Husain A, Sato D, Jeelani G, Soga T, Nozaki T. Dramatic increase in glycerol biosynthesis upon oxidative stress in the anaerobic protozoan parasite Entamoeba histolytica. PLoS Negl Trop Dis 2012; 6:e1831. [PMID: 23029590 PMCID: PMC3459822 DOI: 10.1371/journal.pntd.0001831] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/10/2012] [Indexed: 12/20/2022] Open
Abstract
Entamoeba histolytica, a microaerophilic enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. Trophozoites of E. histolytica are exposed to a variety of reactive oxygen and nitrogen species during infection. Since E. histolytica lacks key components of canonical eukaryotic anti-oxidative defense systems, such as catalase and glutathione system, alternative not-yet-identified anti-oxidative defense strategies have been postulated to be operating in E. histolytica. In the present study, we investigated global metabolic responses in E. histolytica in response to H2O2- and paraquat-mediated oxidative stress by measuring charged metabolites on capillary electrophoresis and time-of-flight mass spectrometry. We found that oxidative stress caused drastic modulation of metabolites involved in glycolysis, chitin biosynthesis, and nucleotide and amino acid metabolism. Oxidative stress resulted in the inhibition of glycolysis as a result of inactivation of several key enzymes, leading to the redirection of metabolic flux towards glycerol production, chitin biosynthesis, and the non-oxidative branch of the pentose phosphate pathway. As a result of the repression of glycolysis as evidenced by the accumulation of glycolytic intermediates upstream of pyruvate, and reduced ethanol production, the levels of nucleoside triphosphates were decreased. We also showed for the first time the presence of functional glycerol biosynthetic pathway in E. histolytica as demonstrated by the increased production of glycerol 3-phosphate and glycerol upon oxidative stress. We proposed the significance of the glycerol biosynthetic pathway as a metabolic anti-oxidative defense system in E. histolytica. During the course of infection, trophozoites of E. histolytica need to cope with the oxidative stress in order to survive under the oxidative environment of its host. As a result of the absence of the key eukaryotic anti-oxidative defense system, it needs to employ novel defense strategies. Several studies such as transcriptomic profiling of trophozoites exposed to oxidative stress, and biochemical and functional analysis of individual proteins has been done in the past. Since, oxidative stress damages several metabolic enzymes, and modulate expression of many genes, it is important to analyze the detailed metabolomic response of E. histolytica upon oxidative stress to understand the role of metabolism in combating oxidative stress. In the present study, we demonstrated that oxidative stress causes glycolytic inhibition and redirection of metabolic flux towards glycerol production, chitin biosynthesis, and the non-oxidative branch of the pentose phosphate pathway.
Collapse
Affiliation(s)
- Afzal Husain
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
235
|
(+)-Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans. Biochimie 2012; 94:1784-93. [DOI: 10.1016/j.biochi.2012.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/07/2012] [Indexed: 12/16/2022]
|
236
|
Farrugia G, Balzan R. Oxidative stress and programmed cell death in yeast. Front Oncol 2012; 2:64. [PMID: 22737670 PMCID: PMC3380282 DOI: 10.3389/fonc.2012.00064] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/02/2012] [Indexed: 12/11/2022] Open
Abstract
Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.
Collapse
Affiliation(s)
- Gianluca Farrugia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| | - Rena Balzan
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| |
Collapse
|
237
|
Laluce C, Schenberg ACG, Gallardo JCM, Coradello LFC, Pombeiro-Sponchiado SR. Advances and Developments in Strategies to Improve Strains of Saccharomyces cerevisiae and Processes to Obtain the Lignocellulosic Ethanol−A Review. Appl Biochem Biotechnol 2012; 166:1908-26. [DOI: 10.1007/s12010-012-9619-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|
238
|
Yoboue ED, Augier E, Galinier A, Blancard C, Pinson B, Casteilla L, Rigoulet M, Devin A. cAMP-induced mitochondrial compartment biogenesis: role of glutathione redox state. J Biol Chem 2012; 287:14569-78. [PMID: 22396541 DOI: 10.1074/jbc.m111.302786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell fate and proliferation are tightly linked to the regulation of the mitochondrial energy metabolism. Hence, mitochondrial biogenesis regulation, a complex process that requires a tight coordination in the expression of the nuclear and mitochondrial genomes, has a major impact on cell fate and is of high importance. Here, we studied the molecular mechanisms involved in the regulation of mitochondrial biogenesis through a nutrient-sensing pathway, the Ras-cAMP pathway. Activation of this pathway induces a decrease in the cellular phosphate potential that alleviates the redox pressure on the mitochondrial respiratory chain. One of the cellular consequences of this modulation of cellular phosphate potential is an increase in the cellular glutathione redox state. The redox state of the glutathione disulfide-glutathione couple is a well known important indicator of the cellular redox environment, which is itself tightly linked to mitochondrial activity, mitochondria being the main cellular producer of reactive oxygen species. The master regulator of mitochondrial biogenesis in yeast (i.e. the transcriptional co-activator Hap4p) is positively regulated by the cellular glutathione redox state. Using a strain that is unable to modulate its glutathione redox state (Δglr1), we pinpoint a positive feedback loop between this redox state and the control of mitochondrial biogenesis. This is the first time that control of mitochondrial biogenesis through glutathione redox state has been shown.
Collapse
Affiliation(s)
- Edgar D Yoboue
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Cao S, Xu W, Zhang N, Wang Y, Luo Y, He X, Huang K. A mitochondria-dependent pathway mediates the apoptosis of GSE-induced yeast. PLoS One 2012; 7:e32943. [PMID: 22403727 PMCID: PMC3293924 DOI: 10.1371/journal.pone.0032943] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/02/2012] [Indexed: 12/16/2022] Open
Abstract
Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL) and 4,6'-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency.
Collapse
Affiliation(s)
- Sishuo Cao
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Wentao Xu
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, People's Republic of China
| | - Nan Zhang
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, People's Republic of China
| | - Yan Wang
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - YunBo Luo
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, People's Republic of China
| | - Xiaoyun He
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Kunlun Huang
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, People's Republic of China
| |
Collapse
|
240
|
Munoz AJ, Wanichthanarak K, Meza E, Petranovic D. Systems biology of yeast cell death. FEMS Yeast Res 2012; 12:249-65. [PMID: 22188402 DOI: 10.1111/j.1567-1364.2011.00781.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 11/29/2022] Open
Abstract
Programmed cell death (PCD) (including apoptosis) is an essential process, and many human diseases of high prevalence such as neurodegenerative diseases and cancer are associated with deregulations in the cell death pathways. Yeast Saccharomyces cerevisiae, a unicellular eukaryotic organism, shares with multicellular organisms (including humans) key components and regulators of the PCD machinery. In this article, we review the current state of knowledge about cell death networks, including the modeling approaches and experimental strategies commonly used to study yeast cell death. We argue that the systems biology approach will bring valuable contributions to our understanding of regulations and mechanisms of the complex cell death pathways.
Collapse
Affiliation(s)
- Ana Joyce Munoz
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | |
Collapse
|
241
|
Brudzynski K, Lannigan R. Mechanism of Honey Bacteriostatic Action Against MRSA and VRE Involves Hydroxyl Radicals Generated from Honey's Hydrogen Peroxide. Front Microbiol 2012; 3:36. [PMID: 22347223 PMCID: PMC3273858 DOI: 10.3389/fmicb.2012.00036] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/23/2012] [Indexed: 02/06/2023] Open
Abstract
It has been recently reported that honey hydrogen peroxide in conjunction with unknown honey components produced cytotoxic effects resulting in bacterial growth inhibition and DNA degradation. The objective of this study was twofold: (a) to investigate whether the coupling chemistry involving hydrogen peroxide is responsible for a generation of hydroxyl radicals and (b) whether (•)OH generation affects growth of multi-drug resistant clinical isolates. The susceptibility of five different strains of methicillin-resistant Staphylococcus aureus (MRSA) and four strains of vancomycin-resistant Enterococcus faecium (VRE) isolates from infected wounds to several honeys was evaluated using broth microdilution assay. Isolates were identified to genus and species and their susceptibility to antibiotics was confirmed using an automated system (Vitek(®), Biomérieux(®)). The presence of the mec(A) gene, nuc gene and van(A) and (B) genes were confirmed by polymerase chain reaction. Results showed that no clinical isolate was resistant to selected active honeys. The median difference in honeys MICs against these strains ranged between 12.5 and 6.25% v/v and was not different from the MIC against standard Escherichia coli and Bacillus subtilis. Generation of (•)OH during bacteria incubation with honeys was analyzed using 3'-(p-aminophenyl) fluorescein (APF) as the (•)OH trap. The (•)OH participation in growth inhibition was monitored directly by including APF in broth microdilution assay. The growth of MRSA and VRE was inhibited by (•)OH generation in a dose-dependent manner. Exposure of MRSA and VRE to honeys supplemented with Cu(II) augmented production of (•)OH by 30-fold and increased honey bacteriostatic potency from MIC(90) 6.25 to MIC(90)< 0.78% v/v. Pretreatment of honeys with catalase prior to their supplementation with Cu ions fully restored bacterial growth indicating that hydroxyl radicals were produced from H(2)O(2) via the Fenton-type reaction. In conclusion, we have demonstrated for the first time that bacteriostatic effect of honeys on MRSA and VRE was dose-dependently related to generation of (•)OH from honey H(2)O(2).
Collapse
Affiliation(s)
- Katrina Brudzynski
- API-Medicals, Brock UniversitySt. Catharines, ON, Canada
- Department of Biological Sciences, Brock UniversitySt. Catharines, ON, Canada
| | - Robert Lannigan
- Department of Clinical Microbiology, London Health Sciences CentreLondon, ON, Canada
| |
Collapse
|
242
|
Fedoseeva IV, Pjatricas DV, Varakina NN, Rusaleva TM, Stepanov AV, Rikhvanov EG, Borovskii GB, Voinikov VK. Effect of amiodarone on thermotolerance and Hsp104p synthesis in the yeast Saccharomyces cerevisiae. BIOCHEMISTRY (MOSCOW) 2012; 77:78-86. [DOI: 10.1134/s0006297912010099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
243
|
Adamo GM, Brocca S, Passolunghi S, Salvato B, Lotti M. Laboratory evolution of copper tolerant yeast strains. Microb Cell Fact 2012; 11:1. [PMID: 22214286 PMCID: PMC3276424 DOI: 10.1186/1475-2859-11-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 01/03/2012] [Indexed: 02/06/2023] Open
Abstract
Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper-binding proteome. However, copper elicits different physiological and molecular reactions in yeasts with different backgrounds.
Collapse
Affiliation(s)
- Giusy Manuela Adamo
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | |
Collapse
|
244
|
Molecular Mechanisms of Programmed Cell Death Induced by Acetic Acid in Saccharomyces cerevisiae. MICROBIOLOGY MONOGRAPHS 2012. [DOI: 10.1007/978-3-642-21467-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
245
|
Shi M, Chen L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ. Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology (Reading) 2012; 158:166-175. [DOI: 10.1099/mic.0.052670-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Mei Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Lei Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Xiao-Wei Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Tian Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Pei-Bao Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Cai-Yun Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Bai-Cheng Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| |
Collapse
|
246
|
Abstract
A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
Collapse
|
247
|
Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species. J Bioenerg Biomembr 2011; 43:323-31. [PMID: 21556887 DOI: 10.1007/s10863-011-9356-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O(2) consumption by activating different exquisitely controlled uncoupling pathways. Different yeast species possess one or more uncoupling systems that work through one of two possible mechanisms: i) Proton sinks and ii) Non-pumping redox enzymes. Proton sinks are exemplified by mitochondrial unspecific channels (MUC) and by uncoupling proteins (UCP). Saccharomyces. cerevisiae and Debaryomyces hansenii express highly regulated MUCs. Also, a UCP was described in Yarrowia lipolytica which promotes uncoupled O(2) consumption. Non-pumping alternative oxido-reductases may substitute for a pump, as in S. cerevisiae or may coexist with a complete set of pumps as in the branched respiratory chains from Y. lipolytica or D. hansenii. In addition, pumps may suffer intrinsic uncoupling (slipping). Promising models for study are unicellular parasites which can turn off their aerobic metabolism completely. The variety of energy dissipating systems in eukaryote species is probably designed to control ROS production in the different environments where each species lives.
Collapse
|
248
|
Enhancing functional expression of β-glucosidase in Pichia pastoris by co-expressing protein disulfide isomerase. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-011-0136-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
249
|
Stoica BA, Rusu M, Petreus T, Nechifor M. Manganese SOD mimics are effective against heat stress in a mutant fission yeast deficient in mitochondrial superoxide dismutase. Biol Trace Elem Res 2011; 144:1344-50. [PMID: 21484407 DOI: 10.1007/s12011-011-9035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/13/2011] [Indexed: 11/30/2022]
Abstract
UNLABELLED Previous studies revealed a close connection between heat shock and manganese-dependent superoxide dismutase (SOD2) in eukaryotes. This paper shows that SOD mimics based on manganese complexes caused an increase in thermotolerance for a mutant fission yeast deficient in mitochondrial superoxide dismutase. Manganese compounds used for tests are SOD mimics, from two different classes: salen manganese (EUK-8) and Mn porphyrin (Mn(III)TE-2-PyP(5+)). The tests were conducted using a Schizosaccharomyces pombe model, comparing the viability of two strains at chronic heat stress (37°C)--a wild type versus a strain with the mitochondrial superoxide dismutase gene deleted [SOD2(-)]. The presence of massive free radical species in S. pombe SOD2(-) was demonstrated using a luminol-enhanced chemiluminescence test derived from a menadione-mediated survival protocol. CONCLUSIONS Survival tests revealed that the SOD2-deleted S. pombe is about 100 times more sensitive to heat stress than the wild-type strain. This survival deficit can be corrected by EUK-8 and Mn(III)TE-2-PyP(5+) to almost the same degree but not by manganese chloride II (MnCl(2)). Using a simple spot assay for viability testing, this new model proved to be an easy alternative for the initial estimation of manganese SOD mimics efficiency.
Collapse
Affiliation(s)
- Bogdan Alexandru Stoica
- Department of Biochemistry, Gr. T. Popa University of Medicine and Pharmacy, Universitatii 16, Iasi, 700115, Romania.
| | | | | | | |
Collapse
|
250
|
Ruiz OH, Gonzalez A, Almeida AJ, Tamayo D, Garcia AM, Restrepo A, McEwen JG. Alternative oxidase mediates pathogen resistance in Paracoccidioides brasiliensis infection. PLoS Negl Trop Dis 2011; 5:e1353. [PMID: 22039556 PMCID: PMC3201906 DOI: 10.1371/journal.pntd.0001353] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 08/25/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Paracoccidioides brasiliensis is a human thermal dimorphic pathogenic fungus. Survival of P. brasiliensis inside the host depends on the adaptation of this fungal pathogen to different conditions, namely oxidative stress imposed by immune cells. AIMS AND METHODOLOGY In this study, we evaluated the role of alternative oxidase (AOX), an enzyme involved in the intracellular redox balancing, during host-P. brasiliensis interaction. We generated a mitotically stable P. brasiliensis AOX (PbAOX) antisense RNA (aRNA) strain with a 70% reduction in gene expression. We evaluated the relevance of PbAOX during interaction of conidia and yeast cells with IFN-γ activated alveolar macrophages and in a mouse model of infection. Additionally, we determined the fungal cell's viability and PbAOX in the presence of H₂O₂. RESULTS Interaction with IFN-γ activated alveolar macrophages induced higher levels of PbAOX gene expression in PbWt conidia than PbWt yeast cells. PbAOX-aRNA conidia and yeast cells had decreased viability after interaction with macrophages. Moreover, in a mouse model of infection, we showed that absence of wild-type levels of PbAOX in P. brasiliensis results in a reduced fungal burden in lungs at weeks 8 and 24 post-challenge and an increased survival rate. In the presence of H₂O₂, we observed that PbWt yeast cells increased PbAOX expression and presented a higher viability in comparison with PbAOX-aRNA yeast cells. CONCLUSIONS These data further support the hypothesis that PbAOX is important in the fungal defense against oxidative stress imposed by immune cells and is relevant in the virulence of P. brasiliensis.
Collapse
|