201
|
Baska KM, Manandhar G, Feng D, Agca Y, Tengowski MW, Sutovsky M, Yi YJ, Sutovsky P. Mechanism of extracellular ubiquitination in the mammalian epididymis. J Cell Physiol 2008; 215:684-96. [PMID: 18064599 DOI: 10.1002/jcp.21349] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Posttranslational modification by ubiquitination marks defective or outlived intracellular proteins for proteolytic degradation by the 26S proteasome. The ATP-dependent, covalent ligation and formation of polyubiquitin chains on substrate proteins requires the presence and activity of a set of ubiquitin activating and conjugating enzymes. While protein ubiquitination typically occurs in the cell cytosol or nucleus, defective mammalian spermatozoa become ubiquitinated on their surface during post-testicular sperm maturation in the epididymis, suggesting an active molecular mechanism for sperm quality control. Consequently, we hypothesized that the bioactive constituents of ubiquitin-proteasome pathway were secreted in the mammalian epididymal fluid (EF) and capable of ubiquitinating extrinsic substrates. Western blotting indeed detected the presence of the ubiquitin-activating enzyme E1 and presumed E1-ubiquitin thiol-ester intermediates, ubiquitin-carrier enzyme E2 and presumed E2-ubiquitin thiol-ester intermediates and the ubiquitin C-terminal hydrolase PGP 9.5/UCHL1 in the isolated bovine EF. Thiol-ester assays utilizing recombinant ubiquitin-activating and ubiquitin-conjugating enzymes, biotinylated substrates, and isolated bovine EF confirmed the activity of the ubiquitin activating and conjugating enzymes within EF. Ubiquitinated proteins were found to be enriched in the defective bull sperm fraction and appropriate proteasomal deubiquitinating and proteolytic activities were measured in the isolated EF by specific fluorescent substrates. The apocrine secretion of cytosolic proteins was visualized in transgenic mice and rats expressing the enhanced green fluorescent protein (eGFP) under the direction of ubiquitin-C promoter. Accumulation of eGFP, ubiquitin and proteasomes was detected in the apical blebs, the apocrine secretion sites of the caput epididymal epithelia of both the rat and mouse epididymal epithelium, although region-specific differences exist. Secretion of eGFP and proteasomes continued during the prolonged culture of the isolated rat epididymal epithelial cells in vitro. This study provides evidence that the activity of the ubiquitin system is not limited to the intracellular environment, contributing to a greater understanding of the sperm maturation process during epididymal passage.
Collapse
Affiliation(s)
- Kathleen M Baska
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
202
|
The role of exosomes in the processing of proteins associated with neurodegenerative diseases. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:323-32. [DOI: 10.1007/s00249-007-0246-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/01/2007] [Accepted: 11/20/2007] [Indexed: 01/21/2023]
|
203
|
Expression and localization of PMCA4 in rat testis and epididymis. Histochem Cell Biol 2007; 129:331-43. [DOI: 10.1007/s00418-007-0362-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
|
204
|
Fernandez CDB, Porto EM, Arena AC, Kempinas WDG. Effects of altered epididymal sperm transit time on sperm quality. ACTA ACUST UNITED AC 2007; 31:427-37. [PMID: 17822422 DOI: 10.1111/j.1365-2605.2007.00788.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The epididymal sperm transit time seems to have an important role in the process of sperm maturation, and it seems that alterations to the transit can harm the process. The aim of the present work was to evaluate the influence of altered sperm transit time through the epididymis on sperm parameters and fertility of rats, as well as the role of testosterone in the alterations. Sprague-Dawley adult male rats were randomly assigned to four different groups and were treated for 12 days: (i) 10 microg/rat/day DES, to accelerate the transit; (ii) 6.25 mg/kg/day guanethidine sulphate, to delay the transit; (iii) same treatment as group 1, plus androgen supplementation; (iv) control animals received the vehicles. Guanethidine treatment delayed the sperm transit time through the epididymal cauda, provoking increased sperm reserves in this region. Animals exposed to DES showed an acceleration of sperm transit time in the epididymis, and consequently decreased sperm density in both epididymal regions, the caput-corpus and cauda, and diminished sperm motility. In both cases sperm production was not altered. Testosterone supplementation was able to restore the transit time to values close to normality, as they were higher than in the control rats. The same occurred in relation to sperm motility. Rats exposed to DES presented lower fertility after in utero artificial insemination using sperm collected from the proximal cauda epididymis. Therefore, it was concluded that the acceleration of rat sperm transit time appeared to harm normal sperm maturation, thus decreasing sperm quality and fertility capacity, in an androgen-dependent way.
Collapse
|
205
|
Sullivan R, Frenette G, Girouard J. Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian J Androl 2007; 9:483-91. [PMID: 17589785 DOI: 10.1111/j.1745-7262.2007.00281.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During epididymal transit, spermatozoa acquire new proteins. Some of these newly acquired proteins behave as integral membrane proteins, including glycosylphosphatidylinositol (GPI)-anchored proteins. This suggests that the secreted epididymal proteins are transferred to spermatozoa by an unusual mechanism. Within the epididymal lumen, spermatozoa interact with small membranous vesicles named epididymosomes. Many proteins are associated with epididymosomes and the protein composition of these vesicles varies along the excurrent duct and differs from soluble intraluminal proteins. Some epididymosome-associated proteins have been identified and their functions in sperm maturation hypothesized. These include P25b, a zona pellucida binding protein, macrophage migration inhibitory factor, enzymes of the polyol pathway, HE5/CD52, type 5 glutathione peroxidase, and SPAM1 or PH-20. The electrophoretic patterns of proteins associated to epididymosomes are complex and some of these proteins are transferred to defined surface domains of epididymal spermatozoa. Epididymosomes collected from different epididymal segments interact differently with spermatozoa. This protein transfer from epididymosomes to spermatozoa is time-dependent, temperature-dependent and pH-dependent, and is more efficient in the presence of zinc. Some proteins are segregated to lipid raft domains of epididymosomes and are selectively transferred to raft domains of the sperm plasma membrane. Some evidence is presented showing that epididymosomes are secreted in an apocrine manner by the epididymal epithelial cells. In conclusion, epididymosomes are small membranous vesicles secreted in an apocrine manner in the intraluminal compartment of the epididymis and play a major role in the acquisition of new proteins by the maturing spermatozoa.
Collapse
Affiliation(s)
- Robert Sullivan
- Centre de Recherche en Biologie de la Reproduction and Département d'Obstétrique-Gynécologie, Université Laval, Quebec, Canada.
| | | | | |
Collapse
|
206
|
Hyenne V, Harf JC, Latz M, Maro B, Wolfrum U, Simmler MC. Vezatin, a ubiquitous protein of adherens cell-cell junctions, is exclusively expressed in germ cells in mouse testis. Reproduction 2007; 133:563-74. [PMID: 17379651 DOI: 10.1530/rep-06-0271] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the male reproductive organs of mammals, the formation of spermatozoa takes place during two successive phases: differentiation (in the testis) and maturation (in the epididymis). The first phase, spermiogenesis, relies on a unique adherens junction, the apical ectoplasmic specialization linking the epithelial Sertoli cells to immature differentiating spermatids. Vezatin is a transmembrane protein associated with adherens junctions and the actin cytoskeleton in most epithelial cells. We report here the expression profile of vezatin during spermatogenesis. Vezatin is exclusively expressed in haploid germ cells. Immunocytochemical and ultrastructural analyses showed that vezatin intimately coincides, temporally and spatially, with acrosome formation. While vezatin is a transmembrane protein associated with adherens junctions in many epithelial cells, it is not seen at the ectoplasmic specializations, neither at the basal nor at the apical sites, in the seminiferous epithelium. In particular, vezatin does not colocalize with espin and myosin VIIa, two molecular markers of the ectoplasmic specialization. In differentiating spermatids, ultrastructural data indicate that vezatin localizes in the acrosome. In epididymal sperm, vezatin localizes also to the outer acrosomal membrane. Considering its developmental and molecular characteristics, vezatin may be involved in the assembly/stability of this spermatic membrane.
Collapse
Affiliation(s)
- Vincent Hyenne
- Biologie Cellulaire du Développement, UMR 7622, CNRS, Université Pierre et Marie Curie, 9 Quai St Bernard, 75252 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
207
|
Cornwall GA, von Horsten HH, Swartz D, Johnson S, Chau K, Whelly S. Extracellular quality control in the epididymis. Asian J Androl 2007; 9:500-7. [PMID: 17589787 DOI: 10.1111/j.1745-7262.2007.00309.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The epididymal lumen represents a unique extracellular environment because of the active sperm maturation process that takes place within its confines. Although much focus has been placed on the interaction of epididymal secretory proteins with spermatozoa in the lumen, very little is known regarding how the complex epididymal milieu as a whole is maintained, including mechanisms to prevent or control proteins that may not stay in their native folded state following secretion. Because some misfolded proteins can form cytotoxic aggregate structures known as amyloid, it is likely that control/surveillance mechanisms exist within the epididymis to protect against this process and allow sperm maturation to occur. To study protein aggregation and to identify extracellular quality control mechanisms in the epididymis, we used the cystatin family of cysteine protease inhibitors, including cystatin-related epididymal spermatogenic and cystatin C as molecular models because both proteins have inherent properties to aggregate and form amyloid. In this chapter, we present a brief summary of protein aggregation by the amyloid pathway based on what is known from other organ systems and describe quality control mechanisms that exist intracellularly to control protein misfolding and aggregation. We then present a summary of our studies of cystatin-related epididymal spermatogenic (CRES) oligomerization within the epididymal lumen, including studies suggesting that transglutaminase cross-linking may be one mechanism of extracellular quality control within the epididymis.
Collapse
Affiliation(s)
- Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | | | | | | | | | | |
Collapse
|
208
|
Junquera C, Colás C, Martínez-Ciriano C, Serrano P, Castiella T, Cebrian-Perez JA, Muiño-Blanco T. A new method for the treatment of sperm samples for ultrastructural study based on the use of animal tissues as biological containers. Microsc Res Tech 2007; 70:771-5. [PMID: 17576121 DOI: 10.1002/jemt.20466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The study of the ultrastructure of spematozoa by means of transmission electron microscopy often presents with problems of interpretation according to the method employed, depending on whether samples are either centrifuged previously to the fixation or immersed in viscous gels. The major problems of interpretation are: changes in the location of vesicles originated during the maturation process and modifications in the adsorption of seminal plasma proteins to the sperm membrane surface. The aim of our study is to communicate an original new method for the treatment of spermatozoa for ultrastructural study. Our method is based on the use of animal tissues as biological containers, inside which the spermatic suspensions are included. We developed this method using fresh sperm samples taken from mature Rasa aragonesa rams. As biological container, we used 2.5-cm long segments of the intestine of 1-week-old chickens (Gallus gallus) (diameter around 4 mm). To avoid any influence of digestive enzymes of the mucosa on the sperm surface, we put each intestine fragment inside out by means of microdissection forceps under bifocal optical microscope and cold light. One of the edges was tied with thin suture silk. The sperm suspension was injected in the optimal experimental condition and amount. Finally, the still open edge of the intestine segment was tied with silk in the same way as the other segment edge. By using this technique, we can perform a suitable morphological study at an ultrastructural level. In addition, the functional relationship of the ultrastructural components of the target cells is correctly preserved.
Collapse
Affiliation(s)
- Concepción Junquera
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|
209
|
Guo W, Qu F, Xia L, Guo Q, Ying X, Ding Z. Identification and characterization of ERp29 in rat spermatozoa during epididymal transit. Reproduction 2007; 133:575-84. [PMID: 17379652 DOI: 10.1530/rep-06-0301] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mammalian epididymis is able to create sequential changes in the composition of luminal fluid throughout its length, wherein spermatozoa undergo morphological, biochemical, and physiological modifications. Subsequently, spermatozoa acquire the ability for fertilization upon reaching the epididymal cauda. In this study, protein variations in Sprague–Dawley rat spermatozoa along the caput and caudal regions of epididymis were investigated by high-resolution two-dimensional gel electrophoresis (2DE) in combination with mass spectrometry. From total protein spots on the 2DE maps, 43 spots were shown to be significantly modified as sperm traverse the epididymis, and seven unambiguous proteins were identified from them. Finally, using indirect immunofluorescence, we demonstrated that localization of one of these seven proteins, the endoplasmic reticulum protein (ERp29) precursor, which was first reported in mammalian spermatozoa, was apparently up-regulated as the sperm underwent epididymal maturation and expressed mainly on caudal sperm. Western blot analysis also revealed that ERp29 precursor, from both whole spermatozoa and membrane proteins, increased significantly as the sperm underwent epididymal maturation. Furthermore, the results from immunofluorescence-stained epididymal frozen sections demonstrated that ERp29 was localized in cytoplasm of epididymal epithelia, and the fluorescence intensity was significantly higher in the caudal epididymis than in the caput. These clues indicated that the ERp29 precursor, perhaps related to secretory protein synthesis and absorbed by spermatozoa, may play a vital role in sperm maturation during the epididymal transit, particularly, in the sperm/organelle membrane.
Collapse
Affiliation(s)
- Wei Guo
- Shanghai Key Laboratory for Reproductive Medicine, Histology and Embryology, School of Medicine, Shanghai Jiao Tong University, No. 280, Chong Qing Rd. (South), Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
210
|
Junquera C, Colás C, Martínez-Ciriano C, Serrano P, Castiella T, Cebrian-Perez JA, Muiño-Blanco T. New method for the treatment of sperm samples for ultrastructural study based on the use of animal tissues as biological containers. Microsc Res Tech 2007; 70:657-62. [PMID: 17393473 DOI: 10.1002/jemt.20460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The study of the ultrastructure of spematozoa by means of transmission electron microscopy (TEM) often presents with problems of interpretation according to the method employed, depending on whether samples are either centrifuged previously to the fixation or immersed in viscous gels. The major problems of interpretation are changes in the location of vesicles originated during the maturation process and modifications in the adsorption of seminal plasma proteins to the sperm membrane surface. The aim of our study is to communicate an original new method for the treatment of spermatozoa for ultrastructural study. Our method is based on the use of animal tissues as biological containers, inside which the spermatic suspensions are included. We developed this method using fresh sperm samples taken from mature Rasa Aragonesa rams. As biological container, we used 2.5-cm long segments of the intestine of 1-week-old chickens (Gallus gallus) (diameter around 4 mm). In order to avoid any influence of digestive enzymes of the mucosa on the sperm surface, we put each intestine fragment inside out by means of microdissection forceps under a bifocal optical microscope and cold light. One of the edges was tied with thin suture silk. The sperm suspension was injected in the optimal experimental condition and amount. Finally, the still-open edge of the intestine segment was tied with silk in the same way as the other segment edge. By using this technique, we can perform a suitable morphological study at an ultrastructural level. In addition, the functional relationship of the ultrastructural components of the target cells is correctly preserved.
Collapse
Affiliation(s)
- Concepción Junquera
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Zaragoza, and Hospital Clínico Universitario Lozano-Blesa, Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|
211
|
Martini AC, Molina RI, Vincenti LM, Santillán ME, Stutz G, Ruiz RD, Fiol de Cuneo M. Neutral α-glucosidase activity in mouse: a marker of epididymal function? Reprod Fertil Dev 2007; 19:563-8. [PMID: 17524301 DOI: 10.1071/rd06070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 03/26/2007] [Indexed: 11/23/2022] Open
Abstract
Neutral α-glucosidase (NAG) activity is considered a functional epididymal marker in several species. Unlike the rat, no NAG activity has been detected in mice. The aims of the present study were to evaluate NAG secretory activity (the supernatant of the incubated tissue) in mouse epididymis and to determine whether it could be used as a functional epididymal marker. Epididymides (whole or in parts) were incubated in the presence or absence of testosterone (10−5 m) and secretory NAG activity was compared with known positive controls. Furthermore, we compared enzyme activity in epididymides from well-fed and undernourished mice (50% food restriction for 21 days), a model that alters the epididymal maturation processes. Spectrophotometric analysis revealed NAG activity in mouse epididymis (22.6 ± 3.7 mU g–1 tissue; n = 4), being higher in the caput. NAG activity was statistically higher in the caput than in the corpus and in the cauda. No significant differences existed between the caput NAG activity and complete epididymis NAG activity. In undernourished mice, we confirmed changes in epididymal maturation observed previously (i.e. increased number of immature spermatozoa and diminution of the sperm concentration). Concordantly, the epididymides of undernourished mice exhibited decreased enzyme secretory activity, which increased to values similar to those seen in controls following incubation in the presence of testosterone (22.5 ± 2.6, 12.5 ± 1.0 and 22.4 ± 3.7 mU g–1 tissue, n = 9 in control (n = 7), undernourished (n = 9) and undernourished + testosterone groups (n = 9), respectively). In conclusion, NAG activity was detected in mouse epididymis. Although the present study supports the possibility of using NAG as an epididymal marker, more studies are necessary to effectively prove that NAG activity can be used as an epididymal marker.
Collapse
Affiliation(s)
- Ana C Martini
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU, Córdoba, Argentina.
| | | | | | | | | | | | | |
Collapse
|
212
|
Frenette G, Girouard J, Sullivan R. Comparison Between Epididymosomes Collected in the Intraluminal Compartment of the Bovine Caput and Cauda Epididymidis1. Biol Reprod 2006; 75:885-90. [PMID: 16943362 DOI: 10.1095/biolreprod.106.054692] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During their transit along the epididymidis, mammalian spermatozoa acquire new proteins involved in the acquisition of male gamete fertilizing ability. We previously described membranous vesicles called epididymosomes, which are secreted in an apocrine manner by the epididymal epithelium. Some selected proteins associated with epididymosomes are transferred to spermatozoa during epididymal transit. The present study compared epididymosomes collected from caput epididymal fluid with vesicles from the cauda epididymidis in the bull. Two-dimensional gel electrophoresis revealed major differences in protein composition of epididymosomes isolated from the caput and cauda epididymidis. LC-QToF analysis of major protein spots as well as Western blot analysis confirmed the differences in proteins associated with these two populations of epididymosomes. Biotinylated proteins associated with caput and cauda epididymosomes also revealed differences. When incubated with caput epididymal spermatozoa, epididymosomes prepared from these two segments transferred different protein patterns. By contrast, cauda epididymosomes transferred the same pattern of proteins to spermatozoa from the caput and cauda epididymidis. Transfer of biotinylated proteins from cauda epididymosomes to caput spermatozoa decreased in a dose-dependent manner when biotinylated epididymosomes were diluted with unbiotinylated vesicles. Caput epididymosomes added in excess were unable to inhibit transfer of biotinylated proteins from cauda epididymosomes to caput spermatozoa. Following transfer of biotinylated proteins from cauda epididymosomes to caput spermatozoa, addition of unbiotinylated cauda epididymosomes was unable to displace already transferred biotinylated proteins. These results established that epididymosomes from caput and cauda epididymidis have different protein composition and interact differently with maturing spermatozoa.
Collapse
Affiliation(s)
- Gilles Frenette
- Centre de Recherche en Biologie de la Reproduction and Département d'Obstétrique-Gynécologie, Faculté de Médecine, Université Laval, Ste-Foy, Quebec, Canada G1V 4G2
| | | | | |
Collapse
|
213
|
Rejraji H, Sion B, Prensier G, Carreras M, Motta C, Frenoux JM, Vericel E, Grizard G, Vernet P, Drevet JR. Lipid Remodeling of Murine Epididymosomes and Spermatozoa During Epididymal Maturation1. Biol Reprod 2006; 74:1104-13. [PMID: 16510839 DOI: 10.1095/biolreprod.105.049304] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have isolated vesicular structures from mouse epididymal fluid, referred to as epididymosomes. Epididymosomes have a roughly spherical aspect and a bilayer membrane, and they are heterogeneous in size and content. They originate from the epididymal epithelium, notably from the caput region, and are emitted in the epididymal lumen by way of apocrine secretion. We characterized their membranous lipid profiles in caput and cauda epididymidal fluid samples and found that epididymosomes were particularly rich in sphingomyelin (SM) and arachidonic acid. The proportion of SM increased markedly during epididymal transit and represented half the total phospholipids in cauda epididymidal epididymosomes. The cholesterol:phospholipid ratio increased from 0.26 in the caput to 0.48 in the cauda epididymidis. Measures of epididymosomal membrane anisotropy revealed that epididymosomes became more rigid during epididymal transit, in agreement with their lipid composition. In addition, we have characterized the membrane lipid pattern of murine epididymal spermatozoa during their maturation. Here, we have shown that mouse epididymal spermatozoa were distinguished by high percentages of SM and polyunsaturated membranous fatty acids (PUFAs), principally represented by arachidonic, docosapentanoic, and docosahexanoic acids. Both SM and PUFA increased throughout the epididymal tract. In particular, we observed a threefold rise in the ratio of docosapentanoic acid. Epididymal spermatozoa had a constant cholesterol:phospholipid ratio (average, 0.30) during epididymal transit. These data suggest that in contrast with epididymosomes, spermatozoal membranes seem to become more fluid during epididymal maturation.
Collapse
Affiliation(s)
- Hanae Rejraji
- Laboratoire Epididyme et Maturation des Gamètes, Université Blaise Pascal, CNRS UMR 6547 GEEM, 63177 Aubière, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Eickhoff R, Jennemann G, Hoffbauer G, Schuring MP, Kaltner H, Sinowatz F, Gabius HJ, Seitz J. Immunohistochemical Detection of Macrophage Migration Inhibitory Factor in Fetal and Adult Bovine Epididymis: Release by the Apocrine Secretion Mode? Cells Tissues Organs 2006; 182:22-31. [PMID: 16651826 DOI: 10.1159/000091715] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2005] [Indexed: 01/01/2023] Open
Abstract
Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididymal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immunoelectron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens.
Collapse
Affiliation(s)
- R Eickhoff
- Department of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Johnstone RM. Exosomes biological significance: A concise review. Blood Cells Mol Dis 2006; 36:315-21. [PMID: 16487731 DOI: 10.1016/j.bcmd.2005.12.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 12/07/2005] [Indexed: 01/12/2023]
Abstract
Exosomes were initially thought to be a mechanism for removing unneeded membrane proteins from reticulocytes. Current studies have shown that the process of exosome formation extends to many mammalian cells. This concise review highlights the findings reported at a Workshop on Exosomes. Full knowledge of the contribution of exosomes to intercellular information transmission and the potential medical application of this knowledge will depend on the ingenuity of future investigators and their insight into biological processes.
Collapse
Affiliation(s)
- Rose M Johnstone
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6.
| |
Collapse
|
216
|
Britan A, Maffre V, Tone S, Drevet JR. Quantitative and spatial differences in the expression of tryptophan-metabolizing enzymes in mouse epididymis. Cell Tissue Res 2006; 324:301-10. [PMID: 16450123 DOI: 10.1007/s00441-005-0151-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 12/13/2005] [Indexed: 11/24/2022]
Abstract
Previous reports have suggested that indoleamine 2,3-dioxygenase (IDO) activity is particularly important in mouse epididymis tissue. We show here, using reverse transcription/polymerase chain reaction assays, Northern assays, Western blotting experiments, and immunohistochemistry that IDO is indeed highly expressed in mouse epididymis, and that IDO mRNA distribution and protein location are precisely regionalized within the organ and within sub-territories of the proximal part of the epididymal duct, the so-called caput epididymidis. Within the caput epididymidis, both the principal and the apical cells have been shown to express IDO. On the contrary, tryptophan dioxygenase (TDO), a sister enzyme of IDO, is weakly and uniformly expressed in mouse epididymis and, in contrast to IDO, is also expressed in testis. In the epididymis, TDO protein expression has been found in a totally different cell type in the smooth muscle layer surrounding the epididymal tubules. Finally, IDO is not secreted into the epididymal lumen, whereas the testis-expressed TDO is present on the head of spermatozoa retrieved from the cauda epididymidis. On the basis of the various functions that have been associated with IDO/TDO, we discuss the putative impacts of IDO/TDO expression on the physiology of mammalian epididymis and spermatozoa.
Collapse
Affiliation(s)
- Aurore Britan
- CNRS UMR 6547 GEEM, Université Blaise Pascal, 24 Avenue des Landais, 63177, Aubière, Cedex, France.
| | | | | | | |
Collapse
|