201
|
Paliwal S, Chaudhuri R, Agrawal A, Mohanty S. Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities. Stem Cell Res Ther 2018; 9:298. [PMID: 30409230 PMCID: PMC6225697 DOI: 10.1186/s13287-018-1012-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Recent studies have demonstrated mesenchymal stem cells (MSCs) as effective mitochondrial donors with therapeutic success in multiple experimental models of human disease. MSCs obtained from different tissue sources such as bone marrow (BM), adipose (AD), dental pulp (DP), and Wharton's jelly (WJ) are routinely used in clinical trials with no known study of their mitochondrial donor capacity. Here, we show for the first time that MSCs derived from different tissue sources have different mitochondrial donor properties and that this is correlated with their intrinsic respiratory states. METHODS MitoTracker®-labeled MSCs were co-cultured with Cell Trace-labeled U87-MG cells or rat cardiomyocytes. Mitochondrial transfer abilities of MSCs were assessed by using flow cytometry analysis and fluorescence imaging. Mitochondrial reactive oxygen species (mtROS) levels were analyzed by using MitoSOX red-based staining, and mitochondrial respiration parameters were analyzed by using a Seahorse XF Analyzer. RESULTS AD-MSCs and BM-MSCs displayed higher mitochondrial transfer than DP-MSCs and WJ-MSCs. Counterintuitively, DP-MSCs and WJ-MSCs were more effective in suppressing mtROS levels in stressed recipient cells than AD-MSCs or BM-MSCs. Interestingly, the oxygen consumption rates and intrinsic mitochondrial respiration parameters like ATP levels, basal and maximal respiration, and mitochondrial DNA copy number in donor MSCs showed a highly significant inverse correlation with their mitochondrial donation. CONCLUSIONS We find that there are intrinsic differences in the mitochondrial respiration, donation capacity, and therapeutic efficacy among MSCs of different tissue origin. MSCs with high mitochondrial respiration capacities are associated with lower mitochondrial transfer but more effective suppression of mtROS in stressed recipient cells. This is most compatible with a model where recipient cells optimally regulate mitochondrial transfer such that they take more mitochondria from MSCs with lower mitochondrial function. Furthermore, it appears to be advantageous to use MSCs such as DP-MSCs or WJ-MSCs with higher mitochondrial respiratory abilities that achieved better therapeutic effect with lower mitochondrial transfer in our study. This opens up a new direction in stem cell therapeutics.
Collapse
Affiliation(s)
- Swati Paliwal
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.,Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Rituparna Chaudhuri
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anurag Agrawal
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
| | - Sujata Mohanty
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
202
|
Svendsen AJ, Tan Q, Jakobsen MA, Thyagarajan B, Nygaard M, Christiansen L, Mengel-From J. White blood cell mitochondrial DNA copy number is decreased in rheumatoid arthritis and linked with risk factors. A twin study. J Autoimmun 2018; 96:142-146. [PMID: 30327147 DOI: 10.1016/j.jaut.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 01/10/2023]
Abstract
Low mitochondrial DNA copy number (mtDNA CN) has been associated with e.g. cancer, cardiovascular and autoimmune diseases. We aimed to study a potential association between mtDNA CN and rheumatoid arthritis (RA). The relative quantity of mitochondrial DNA compared to nuclear DNA was measured in peripheral white blood cells from 149 RA affected twin pairs and 1321 non-affected twin pairs. Multiple regression analysis including RA discordant twin pairs was performed in order to separate specific effects of RA and familial RA predisposition using non-RA affected twin pairs as reference group. In addition, we performed a twin pair level analysis including only RA discordant twin pairs evaluating the effect of cell type, auto antibodies and RA genetic risk factors. Both the RA twins and their non-affected co-twins had significantly lower mtDNA CN than non-affected twins (-28.7 and -23.1 mtDNA CN, respectively). Adjusting for cell count attenuated these differences (-23.1 mtDNA CN and -20.1 mtDNA CN respectively). Within RA discordant twin pairs PTPN22(T) positive RA twins had a significantly lower amount than their co-twins (-16.3 mtDNA CN). PTPN22(T) had no effect among twins from non-affected twin pairs. MtDNA CN is significantly lower in persons with established RA and in predisposed non-affected RA co-twins suggesting that mitochondrial variation may be involved in the RA disease pathways. Our results also suggest that the RA associated genetic risk factor, PTPN22(T), further decreases the mtDNA CN, but only in carriers with established RA.
Collapse
Affiliation(s)
- Anders J Svendsen
- Department of Internal Medicine, Odense University Hospital, Svendborg, Denmark; Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marianne A Jakobsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, USA
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Lene Christiansen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
203
|
Bai Y, Casas L, Scheers H, Janssen BG, Nemery B, Nawrot TS. Mitochondrial DNA content in blood and carbon load in airway macrophages. A panel study in elderly subjects. ENVIRONMENT INTERNATIONAL 2018; 119:47-53. [PMID: 29933237 DOI: 10.1016/j.envint.2018.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/20/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Mitochondria are sensitive to air pollutants due to their lack of repair capacity. Changes in mitochondrial DNA copy number (mtDNAcn) or content is a proxy of mitochondrial damage and has been associated with recent exposure to traffic-derived air pollutants, nitrogen dioxide (NO2) and black carbon (BC). Inhaled BC can be phagocytosed by airway macrophages (AMs), and its amount in AM reflects personal exposure to traffic-related air pollution. OBJECTIVES The present study investigated the relation between the internal marker AM BC and ambient NO2 concentration and examined the associations of mtDNAcn with NO2 and AM BC. METHODS A panel of 20 healthy retired participants (10 couples) living in Belgium underwent repeated assessments of health and air pollution exposure at 11 time points over one year. We increased exposure contrast temporarily by moving participants for 10 days to Milan, Italy (high exposure) and to Vindeln, Sweden (low exposure). Personal exposure to NO2 was measured during 5 consecutive days prior to each assessment time point. The amount of BC was assessed by image analysis in AMs retrieved from induced sputum collected at 7 time points. Blood mtDNAcn was determined by qPCR at each time point. Associations between AM BC and NO2, and of mtDNAcn with NO2 and AM BC were estimated using linear mixed effect models adjusted for covariates and potential confounders. RESULTS Mean concentrations of 5-day average NO2 were higher in Milan (64 μg/m3) and lower in Vindeln (4 μg/m3) than Belgium (26 μg/m3). Each 10 μg/m3 increment in NO2 exposure during the last 5 days was associated with 0.07 μm2 (95% CI: 0.001 to 0.012) increase in median area of AM BC. A 10 μg/m3 increase in NO2 was associated with 3.9% (95% CI: 2.2 to 5.5%) decrease in mtDNAcn. Consistently, each 1 μm2 increment in median area of AM BC was associated with 24.8% (95% CI: 6.8 to 39.3%) decrease in mtDNAcn. CONCLUSION In this quasi-experimental setting involving moving persons to places with high and low ambient air pollution, we found changes in AM BC according to ambient air pollution levels measured during the previous 5 days. Both higher ambient NO2 and the internal lung BC load, paralleled mitochondrial compromises as exemplified by lower mtDNA content.
Collapse
Affiliation(s)
- Yang Bai
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Lidia Casas
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Hans Scheers
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Benoit Nemery
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Tim S Nawrot
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
204
|
Widdrington JD, Gomez-Duran A, Pyle A, Ruchaud-Sparagano MH, Scott J, Baudouin SV, Rostron AJ, Lovat PE, Chinnery PF, Simpson AJ. Exposure of Monocytic Cells to Lipopolysaccharide Induces Coordinated Endotoxin Tolerance, Mitochondrial Biogenesis, Mitophagy, and Antioxidant Defenses. Front Immunol 2018; 9:2217. [PMID: 30319656 PMCID: PMC6170658 DOI: 10.3389/fimmu.2018.02217] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
In order to limit the adverse effects of excessive inflammation, anti-inflammatory responses are stimulated at an early stage of an infection, but during sepsis these can lead to deactivation of immune cells including monocytes. In addition, there is emerging evidence that the up-regulation of mitochondrial quality control mechanisms, including mitochondrial biogenesis and mitophagy, is important during the recovery from sepsis and inflammation. We aimed to describe the relationship between the compensatory immune and mitochondrial responses that are triggered following exposure to an inflammatory stimulus in human monocytic cells. Incubation with lipopolysaccharide resulted in a change in the immune phenotype of THP-1 cells consistent with the induction of endotoxin tolerance, similar to that seen in deactivated septic monocytes. After exposure to LPS there was also early evidence of oxidative stress, which resolved in association with the induction of antioxidant defenses and the stimulation of mitochondrial degradation through mitophagy. This was compensated by a parallel up-regulation of mitochondrial biogenesis that resulted in an overall increase in mitochondrial respiratory activity. These observations improve our understanding of the normal homeostatic responses that limit the adverse cellular effects of unregulated inflammation, and which may become ineffective when an infection causes sepsis.
Collapse
Affiliation(s)
- John D Widdrington
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Aurora Gomez-Duran
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Angela Pyle
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Jonathan Scott
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon V Baudouin
- Department of Anaesthesia, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Anthony J Rostron
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Penny E Lovat
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
205
|
Mitochondrial DNA copy number is associated with psychosis severity and anti-psychotic treatment. Sci Rep 2018; 8:12743. [PMID: 30143692 PMCID: PMC6109159 DOI: 10.1038/s41598-018-31122-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/08/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial pathology has been implicated in the pathogenesis of psychotic disorders. A few studies have proposed reduced leukocyte mitochondrial DNA (mtDNA) copy number in schizophrenia and bipolar disorder type I, compared to healthy controls. However, it is unknown if mtDNA copy number alteration is driven by psychosis, comorbidity or treatment. Whole blood mtDNA copy number was determined in 594 psychosis patients and corrected for platelet to leukocyte count ratio (mtDNAcnres). The dependence of mtDNAcnres on clinical profile, metabolic comorbidity and antipsychotic drug exposure was assessed. mtDNAcnres was reduced with age (β = −0.210, p < 0.001), use of clozapine (β = −0.110,p = 0.012) and risperidone (β = −0.109,p = 0.014), dependent on prescribed dosage (p = 0.006 and p = 0.026, respectively), and the proportion of life on treatment (p = 0.006). Clozapine (p = 0.0005) and risperidone (p = 0.0126) had a reducing effect on the mtDNA copy number also in stem cell-derived human neurons in vitro at therapeutic plasma levels. For patients not on these drugs, psychosis severity had an effect (β = −0.129, p = 0.017), similar to age (β = −0.159, p = 0.003) and LDL (β = −0.119, p = 0.029) on whole blood mtDNAcnres. Further research is required to determine if mtDNAcnres reflects any psychosis-intrinsic mitochondrial changes.
Collapse
|
206
|
Priliani L, Febinia CA, Kamal B, Shankar AH, Malik SG. Increased mitochondrial DNA copy number in maternal peripheral blood is associated with low birth weight in Lombok, Indonesia. Placenta 2018; 70:1-3. [PMID: 30316321 DOI: 10.1016/j.placenta.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022]
Abstract
Fetal development depends on maternal metabolic energy from mitochondria. We investigated the association of maternal mitochondrial function, represented by mitochondrial DNA copy number (mtDNA-CN) of venous blood, with child birth weight (BW) from 528 randomly selected mothers enrolled in the Supplementation with Multiple Micronutrients Intervention Trial (ISRCTN 34151616). Real-time quantitative PCR of archived blood specimens and regression analysis adjusting for other primary determinants of BW showed that loge mtDNA-CN was inversely associated with BW (β = -204.6, p < 0.001), particularly in the third trimester (β = -376.8, p<0.001). Maternal mtDNA-CN may be a marker for low BW and fetal growth restriction.
Collapse
Affiliation(s)
- L Priliani
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology and Higher Education, Jalan Diponegoro no. 69, Jakarta, 10430, Indonesia
| | - C A Febinia
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology and Higher Education, Jalan Diponegoro no. 69, Jakarta, 10430, Indonesia
| | - B Kamal
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology and Higher Education, Jalan Diponegoro no. 69, Jakarta, 10430, Indonesia; Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - A H Shankar
- Summit Institute of Development, Mataram, Nusa Tenggara Barat, Indonesia; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - S G Malik
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology and Higher Education, Jalan Diponegoro no. 69, Jakarta, 10430, Indonesia.
| |
Collapse
|
207
|
Ridout KK, Khan M, Ridout SJ. Adverse Childhood Experiences Run Deep: Toxic Early Life Stress, Telomeres, and Mitochondrial DNA Copy Number, the Biological Markers of Cumulative Stress. Bioessays 2018; 40:e1800077. [DOI: 10.1002/bies.201800077] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/20/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Kathryn K. Ridout
- Department of Psychiatry; Kaiser Permanente; San Jose CA 95123 USA
- Department of Psychiatry and Human Behavior; Alpert Medical School of Brown University; Providence RI 02906 USA
| | - Mariam Khan
- Oncology Clinical Trials Department; Kaiser Permanente; San Jose CA 95123 USA
| | - Samuel J. Ridout
- Department of Psychiatry; Kaiser Permanente; San Jose CA 95123 USA
| |
Collapse
|
208
|
Weikard R, Kuehn C. Different mitochondrial DNA copy number in liver and mammary gland of lactating cows with divergent genetic background for milk production. Mol Biol Rep 2018; 45:1209-1218. [PMID: 30051250 DOI: 10.1007/s11033-018-4273-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/18/2018] [Indexed: 01/05/2023]
Abstract
Adequate metabolic adaptation of key tissues playing an essential role for bioenergetic homeostasis and lactogenesis is critical in cows to adapt to changes in energy requirements and physiological processes during the lactation period. Mitochondria are recognized as central to meet energy needs and maintaining of metabolic homeostasis because mitochondrial DNA (mtDNA) is template for several polypeptides of the respiratory chain complexes essential for ATP generation. The quantity of mtDNA in a cell has been widely used as a surrogate marker for the capacity of cells for energy generation. In our study we analyzed the mtDNA copy number and the mRNA expression of important nuclear encoded genes controlling mitochondrial biogenesis in liver and mammary gland. We compared cows with a nuclear genome dairy × beef crossbred make-up to purebred German Holstein dairy cows. The study revealed tissue-specific variations of mtDNA copy number and expression levels of nuclear genes involved in mitochondrial biogenesis when comparing lactating cows with different genetic predisposition regarding milk performance. This may reflect nuclear genome-determined genetic differences between the cow groups in coping with metabolic demands and physiological changes during lactation. The results indicate that mitochondrial biogenesis processes in the liver and mammary gland appear to be impaired in high lactating dairy cows, which consequently, would point to a disturbed energy adaptation. The results provide a basis to further elucidate the adaptive and regulatory modulation of the mitochondrial biogenesis in response to lactation-associated metabolic challenges in lactating cows.
Collapse
Affiliation(s)
- Rosemarie Weikard
- Institute Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Christa Kuehn
- Institute Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| |
Collapse
|
209
|
Saha P, Gupta R, Sen T, Sen N. Activation of cyclin D1 affects mitochondrial mass following traumatic brain injury. Neurobiol Dis 2018; 118:108-116. [PMID: 30010002 DOI: 10.1016/j.nbd.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/11/2018] [Indexed: 01/24/2023] Open
Abstract
Cell cycle activation has been associated with varying types of neurological disorders including brain injury. Cyclin D1 is a critical modulator of cell cycle activation and upregulation of Cyclin D1 in neurons contributes to the pathology associated with traumatic brain injury (TBI). Mitochondrial mass is a critical factor to maintain the mitochondrial function, and it can be regulated by different signaling cascades and transcription factors including NRF1. However, the underlying mechanism of how TBI leads to impairment of mitochondrial mass following TBI remains obscure. Our results indicate that augmentation of CyclinD1 attenuates mitochondrial mass formation following TBI. To elucidate the molecular mechanism, we found that Cyclin D1 interacts with a transcription factor NRF1 in the nucleus and prevents NRF1's interaction with p300 in the pericontusional cortex following TBI. As a result, the acetylation level of NRF1 was decreased, and its transcriptional activity was attenuated. This event leads to a loss of mitochondrial mass in the pericontusional cortex following TBI. Intranasal delivery of Cyclin D1 RNAi immediately after TBI rescues transcriptional activation of NRF1 and recovers mitochondrial mass after TBI.
Collapse
Affiliation(s)
- Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh 15213, United States
| | - Rajaneesh Gupta
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh 15213, United States
| | - Tanusree Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh 15213, United States
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh 15213, United States.
| |
Collapse
|
210
|
Dong F, Jin X, Boettler MA, Sciulli H, Abu-Asab M, Del Greco C, Wang S, Hu YC, Campos MM, Jackson SN, Muller L, Woods AS, Combs CA, Zhang J, Nickerson ML, Kruth HS, Weiss JS, Kao WW. A Mouse Model of Schnyder Corneal Dystrophy with the N100S Point Mutation. Sci Rep 2018; 8:10219. [PMID: 29977031 PMCID: PMC6033878 DOI: 10.1038/s41598-018-28545-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/18/2018] [Indexed: 11/09/2022] Open
Abstract
Schnyder corneal dystrophy (SCD) is a rare autosomal dominant disease in humans, characterized by abnormal deposition of cholesterol and phospholipids in cornea caused by mutations in the UbiA prenyltransferase domain containing 1 (UBIAD1) gene. In this study, we generated a mouse line carrying Ubiad1 N100S point mutation using the CRISPR/Cas9 technique to investigate the pathogenesis of SCD. In vivo confocal microscopy revealed hyper-reflective dot-like deposits in the anterior cornea in heterozygotes and homozygotes. No significant change was found in corneal epithelial barrier function or wound healing. Electron microscopy revealed abnormal mitochondrial morphology in corneal epithelial, stromal, and endothelial cells. Mitochondrial DNA copy number assay showed 1.27 ± 0.07 fold change in homozygotes versus 0.98 ± 0.05 variation in wild type mice (P < 0.05). Lipidomic analysis indicated abnormal metabolism of glycerophosphoglycerols, a lipid class found in mitochondria. Four (34:1, 34:2, 36:2, and 44:8) of the 11 glycerophosphoglycerols species identified by mass spectrometry showed a significant increase in homozygous corneas compared with heterozygous and wild-type mouse corneas. Unexpectedly, we did not find a difference in the corneal cholesterol level between different genotypes by filipin staining or lipidomic analysis. The Ubiad1N100S mouse provides a promising animal model of SCD revealing that mitochondrial dysfunction is a prominent component of the disease. The different phenotype in human and mouse may due to difference in cholesterol metabolism between species.
Collapse
Affiliation(s)
- Fei Dong
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Xueting Jin
- Laboratory of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Harrison Sciulli
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Mones Abu-Asab
- Histopathology Facility, National Eye Institute, NIH, Bethesda, MD, USA
| | | | - Shurong Wang
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
- Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yueh-Chiang Hu
- Transgenic Animal and Genome Editing Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maria M Campos
- Histopathology Facility, National Eye Institute, NIH, Bethesda, MD, USA
| | - Shelley N Jackson
- Structural Biology Core, National Institute of Drug Abuse, NIH, Baltimore, MD, USA
| | - Ludovic Muller
- Structural Biology Core, National Institute of Drug Abuse, NIH, Baltimore, MD, USA
| | - Amina S Woods
- Structural Biology Core, National Institute of Drug Abuse, NIH, Baltimore, MD, USA
| | - Christian A Combs
- Light Microscopy Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jianhua Zhang
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Michael L Nickerson
- Laboratory of Translational Genomics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Howard S Kruth
- Laboratory of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jayne S Weiss
- Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University School of Medicine, Louisiana State University Eye Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Winston W Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
211
|
Jiménez-Morales S, Pérez-Amado CJ, Langley E, Hidalgo-Miranda A. Overview of mitochondrial germline variants and mutations in human disease: Focus on breast cancer (Review). Int J Oncol 2018; 53:923-936. [PMID: 30015870 DOI: 10.3892/ijo.2018.4468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/18/2018] [Indexed: 11/06/2022] Open
Abstract
High lactate production in cells during growth under oxygen-rich conditions (aerobic glycolysis) is a hallmark of tumor cells, indicating the role of mitochondrial function in tumorigenesis. In fact, enhanced mitochondrial biogenesis and impaired quality control are frequently observed in cancer cells. Mitochondrial DNA (mtDNA) encodes 13 subunits of oxidative phosphorylation (OXPHOS), is present in thousands of copies per cell, and has a very high mutation rate. Mutations in mtDNA and nuclear DNA (nDNA) genes encoding proteins that are important players in mitochondrial biogenesis and function are involved in oncogenic processes. A wide range of germline mtDNA polymorphisms, as well as tumor mtDNA somatic mutations have been identified in diverse cancer types. Approximately 72% of supposed tumor-specific somatic mtDNA mutations reported, have also been found as polymorphisms in the general population. The ATPase 6 and NADH dehydrogenase subunit genes of mtDNA are the most commonly mutated genes in breast cancer (BC). Furthermore, nuclear genes playing a role in mitochondrial biogenesis and function, such as peroxisome proliferators-activated receptor gamma coactivator-1 (PGC-1), fumarate hydratase (FH) and succinate dehydrogenase (SDH) are frequently mutated in cancer. In this review, we provide an overview of the mitochondrial germline variants and mutations in cancer, with particular focus on those found in BC.
Collapse
Affiliation(s)
- Silvia Jiménez-Morales
- Laboratory of Cancer Genomics, National Institute of Genomic Medicine, 14610 Mexico City, Mexico
| | - Carlos J Pérez-Amado
- Biochemistry Sciences Program, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Elizabeth Langley
- Department of Basic Research, National Cancer Institute, 14080 Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratory of Cancer Genomics, National Institute of Genomic Medicine, 14610 Mexico City, Mexico
| |
Collapse
|
212
|
Johnson JM, Ferrara PJ, Verkerke ARP, Coleman CB, Wentzler EJ, Neufer PD, Kew KA, de Castro Brás LE, Funai K. Targeted overexpression of catalase to mitochondria does not prevent cardioskeletal myopathy in Barth syndrome. J Mol Cell Cardiol 2018; 121:94-102. [PMID: 30008435 DOI: 10.1016/j.yjmcc.2018.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/20/2018] [Accepted: 07/01/2018] [Indexed: 12/25/2022]
Abstract
Barth Syndrome (BTHS) is an X-linked recessive disorder characterized by cardiomyopathy and muscle weakness. The underlying cause of BTHS is a mutation in the tafazzin (TAZ) gene, a key enzyme of cardiolipin biosynthesis. The lack of CL arising from loss of TAZ function results in destabilization of the electron transport system, promoting oxidative stress that is thought to contribute to development of cardioskeletal myopathy. Indeed, in vitro studies demonstrate that mitochondria-targeted antioxidants improve contractile capacity in TAZ-deficient cardiomyocytes. The purpose of the present study was to determine if resolving mitochondrial oxidative stress would be sufficient to prevent cardiomyopathy and skeletal myopathy in vivo using a mouse model of BTHS. To this end we crossed mice that overexpress catalase in the mitochondria (MCAT mice) with TAZ-deficient mice (TAZKD) to produce TAZKD mice that selectively overexpress catalase in the mitochondria (TAZKD+MCAT mice). TAZKD+MCAT mice exhibited decreased mitochondrial H2O2 emission and lipid peroxidation compared to TAZKD littermates, indicating decreased oxidative stress. Despite the improvements in oxidative stress, TAZKD+MCAT mice developed cardiomyopathy and mild muscle weakness similar to TAZKD littermates. These findings indicate that resolving oxidative stress is not sufficient to suppress cardioskeletal myopathy associated with BTHS.
Collapse
Affiliation(s)
- Jordan M Johnson
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Patrick J Ferrara
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Anthony R P Verkerke
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Chanel B Coleman
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Edward J Wentzler
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - P Darrell Neufer
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Kimberly A Kew
- Department of Chemistry, East Carolina University, Greenville, NC, USA
| | | | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA; Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
213
|
Lv J, Jiang S, Yang Z, Hu W, Wang Z, Li T, Yang Y. PGC-1α sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res Rev 2018; 44:8-21. [PMID: 29580918 DOI: 10.1016/j.arr.2018.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/30/2022]
Abstract
Recently, growing evidence has demonstrated that peroxisome proliferator activated receptor γ (PPARγ) coactivator-1α (PGC-1α) is a superior transcriptional regulator that acts via controlling the expression of anti-oxidant enzymes and uncoupling proteins and inducing mitochondrial biogenesis, which plays a beneficial part in the central nervous system (CNS). Given the significance of PGC-1α, we summarize the current literature on the molecular mechanisms and roles of PGC-1α in the CNS. Thus, in this review, we first briefly introduce the basic characteristics regarding PGC-1α. We then depict some of its important cerebral functions and discuss upstream modulators, partners, and downstream effectors of the PGC-1α signaling pathway. Finally, we highlight recent progress in research on the involvement of PGC-1α in certain major neurodegenerative disorders (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Collectively, the data presented here may be useful for supporting the future potential of PGC-1α as a therapeutic target.
Collapse
Affiliation(s)
- Jianjun Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University,169 Changle West Road, Xi'an 710032, China
| | - Zheng Wang
- Department of Cadio-Thoracic Surgery, Wuhan General Hospital of The People's Liberation Army, 627 Wuluo Road, Wuhan 430070, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
214
|
A Monochrome Multiplex Real-Time Quantitative PCR Assay for the Measurement of Mitochondrial DNA Content. J Mol Diagn 2018; 20:612-620. [PMID: 29936256 DOI: 10.1016/j.jmoldx.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/26/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA copies per cell (mtDNA content) can fluctuate with cellular aging, oxidative stress, and mitochondrial dysfunction, and has been investigated in cancer, diabetes, HIV, and metabolic disease. mtDNA content testing in both clinical and basic settings is expected to increase as research uncovers its biological relevance. Herein, we present a novel mtDNA content assay developed on monochrome multiplex real-time quantitative PCR (MMqPCR) principles. This assay offers a greater than twofold improvement on time effectiveness and cost-effectiveness over conventional (monoplex) qPCR, as well as improved reproducibility given the reduced effects of human pipetting errors. The new MMqPCR method was compared with the gold standard monoplex qPCR assay on DNA from a variety of sources, including human whole blood, skeletal muscle, and commercial cell lines. The MMqPCR assay is reproducible (n = 98, r = 0.99, P < 0.0001) and highly correlated to the monoplex qPCR assay (n = 160, r > 0.98, P < 0.0001). Intra-assay and interassay variabilities, as established independently by multiple operators, range between 4.3% and 7.9% and between 2.9% and 9.2%, respectively. This robust assay can quantify >82 pg of template DNA per reaction, with a minimum mtDNA/nuclear DNA ratio of 20, and is especially suitable for studies that require high throughput.
Collapse
|
215
|
Al-Kafaji G, Aljadaan A, Kamal A, Bakhiet M. Peripheral blood mitochondrial DNA copy number as a novel potential biomarker for diabetic nephropathy in type 2 diabetes patients. Exp Ther Med 2018; 16:1483-1492. [PMID: 30116398 DOI: 10.3892/etm.2018.6319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial DNA copy number (mtDNA-CN) is a surrogate measure of mitochondrial function and altered mtDNA-CN reflects the oxidant-induced cell damage. A previous study by our group demonstrated that a reduction in the renal mtDNA-CN is implicated in the pathogenesis of diabetic nephropathy (DN), a leading cause of end-stage renal disease in diabetic patients. In the present study, it was investigated whether the mtDNA-CN in the peripheral blood may be utilized as a biomarker for DN in type 2 diabetes (T2D) patients. The study included 50 non-diabetic and 100 diabetic subjects. The diabetic subjects were sub-divided based on their albumin-to-creatinine ratio (ACR) into T2D patients with normoalbuminuria (n=50), DN patients with microalbuminuria (n=29) and DN patients with macroalbuminuria (n=21). The mtDNA-CN was measured in the peripheral blood by real-time polymerase chain reaction analysis. Patients with DN had a lower mtDNA-CN than patients with T2D and healthy controls (P<0.05). A sub-group analysis with stratification by the ACR indicated that a decreased mtDNA-CN was associated with the severity and the presence of DN, as it was lower in DN patients with macroalbuminuria than in DN patients with microalbuminuria and T2D patients with normoalbuminuria (P<0.01). The area under the receiver operating characteristic curve (AUC) for mtDNA-CN was 0.916 (sensitivity, 86% and specificity, 74%) and 0.961 (sensitivity, 96% and specificity, 88%) for differentiating DN patients from T2D patients without DN and from healthy controls, respectively. Furthermore, the AUC of mtDNA-CN for differentiating DN patients with microalbuminuria from those with macroalbuminuria was 0.895 (sensitivity, 83% and specificity, 85%). Multivariate analysis revealed that the mtDNA-CN was significantly associated with the occurrence and progression of DN, even after adjustment for age, mean blood pressure, glycated haemoglobin A1c and total cholesterol (P<0.05). In patients with DN, a decreased mtDNA-CN was negatively correlated with albuminuria and conventional risk factors for DN, and was positively correlated with the estimated glomerular filtration rate. The present results therefore suggest the utilization of circulating mtDNA-CN as a novel biomarker for the early diagnosis of DN and indicate the significance of decreased mtDNA-CN as another independent risk factor for DN.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Kingdom of Bahrain
| | - Abdulah Aljadaan
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Kingdom of Bahrain
| | - Amer Kamal
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Kingdom of Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Kingdom of Bahrain
| |
Collapse
|
216
|
Yang X, Wang Y, Li Q, Zhong Y, Chen L, Du Y, He J, Liao L, Xiong K, Yi CX, Yan J. The Main Molecular Mechanisms Underlying Methamphetamine- Induced Neurotoxicity and Implications for Pharmacological Treatment. Front Mol Neurosci 2018; 11:186. [PMID: 29915529 PMCID: PMC5994595 DOI: 10.3389/fnmol.2018.00186] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/14/2018] [Indexed: 01/07/2023] Open
Abstract
Methamphetamine (METH) is a popular new-type psychostimulant drug with complicated neurotoxicity. In spite of mounting evidence on METH-induced damage of neural cell, the accurate mechanism of toxic effect of the drug on central nervous system (CNS) has not yet been completely deciphered. Besides, effective treatment strategies toward METH neurotoxicity remain scarce and more efficacious drugs are to be developed. In this review, we summarize cellular and molecular bases that might contribute to METH-elicited neurotoxicity, which mainly include oxidative stress, excitotoxicity, and neuroinflammation. We also discuss some drugs that protect neural cells suffering from METH-induced neurotoxic consequences. We hope more in-depth investigations of exact details that how METH produces toxicity in CNS could be carried out in future and the development of new drugs as natural compounds and immunotherapies, including clinic trials, are expected.
Collapse
Affiliation(s)
- Xue Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qiyan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yaxian Zhong
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Liangpei Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yajun Du
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jing He
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chun-xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
217
|
Wang L, Lv H, Ji P, Zhu X, Yuan H, Jin G, Dai J, Hu Z, Su Y, Ma H. Mitochondrial DNA copy number is associated with risk of head and neck squamous cell carcinoma in Chinese population. Cancer Med 2018; 7:2776-2782. [PMID: 29673117 PMCID: PMC6010846 DOI: 10.1002/cam4.1452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/23/2022] Open
Abstract
Mitochondria show the special role in cellular bioenergy and many essential physiological activities. Previous researches have suggested that variations of mitochondrial DNA copy number contribute to development of different types of carcinomas. However, the relationship of mtDNA copy number in peripheral blood leukocytes (PBLs) with the risk of head and neck squamous cell carcinoma (HNSCC) is still inconclusive. We investigated the association of mtDNA with HNSCC risk through a case-control study including 570 HNSCC cases and 597 cancer-free controls. mtDNA copy number in PBLs was measured by real-time qPCR. Logistic regression was performed to estimate the association between the mtDNA copy number in PBLs and HNSCC risk. A U-shaped relation between the mtDNA copy number and HNSCC risk was found. Compared with those in the second quartile group, the adjusted odds ratios (ORs) and 95% confidence interval (CI) for those in the first and the forth quartile groups were 1.95 (1.37-2.76) and 2.16 (1.53-3.04), respectively. Using restricted cubic spline analysis, we confirmed such a significant U-shaped relation. Furthermore, the U-shaped association remained significant in different subgroups stratified by age, gender, tobacco smoking, and alcohol consumption. Both extremely low and high mtDNA copy numbers had significant associations with the increased HNSCC risk.
Collapse
Affiliation(s)
- Lihua Wang
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Hong Lv
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Pei Ji
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Xun Zhu
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjing210029China
| | - Guangfu Jin
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center of Cancer MedicineNanjing Medical UniversityNanjing211166China
| | - Juncheng Dai
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center of Cancer MedicineNanjing Medical UniversityNanjing211166China
| | - Zhibin Hu
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center of Cancer MedicineNanjing Medical UniversityNanjing211166China
| | - Yuxiong Su
- Oral and Maxillofacial SurgeryFaculty of DentistryThe University of Hong KongHong Kong
| | - Hongxia Ma
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center of Cancer MedicineNanjing Medical UniversityNanjing211166China
| |
Collapse
|
218
|
Associations of blood mitochondrial DNA copy number with social-demographics and cancer risk: results from the Mano-A-Mano Mexican American Cohort. Oncotarget 2018; 9:25491-25502. [PMID: 29876003 PMCID: PMC5986640 DOI: 10.18632/oncotarget.25321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 11/25/2022] Open
Abstract
The relationship between blood mitochondrial DNA (mtDNA) copy number and subsequent cancer risk has been investigated previously. However, such association has never been examined in Mexican Americans. In the current study, we examined association between social-demographic factors and blood mtDNA copy number, as well as longitudinal relationship between cancer and mtDNA copy number, among 10,802 Mexican Americans in the Mano-A-Mano Mexican American Cohort. Overall, mtDNA copy number was statistically significantly higher among participants who developed cancer during the study period than among cancer-free controls (0.17 vs 0.13, P = 0.007). Among cancer-free control participants, mtDNA copy number significantly differed by social-demographic characteristics. However, there was a large degree of heterogeneity in these effects across the mtDNA copy number distribution. In the longitudinal analysis, we observed that higher mtDNA copy number was positively associated with increased risk of all cancer types (adjusted hazard ratio [HR], 1.13; 95% confidence interval [CI], 1.09–1.17). Participants with mtDNA copy number in the fourth (highest) quartile had a higher risk of all cancer (adjusted HR, 2.12; 95% CI, 1.65–2.73) than did participants in the first (lowest) quartile. In summary, our results in Mexican Americans support an association between increased mtDNA copy number and cancer risk. Our results also suggest that mtDNA copy number may be influenced by social and demographic factors.
Collapse
|
219
|
Hang D, Nan H, Kværner AS, De Vivo I, Chan AT, Hu Z, Shen H, Giovannucci E, Song M. Longitudinal associations of lifetime adiposity with leukocyte telomere length and mitochondrial DNA copy number. Eur J Epidemiol 2018; 33:485-495. [PMID: 29619669 PMCID: PMC8063494 DOI: 10.1007/s10654-018-0382-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Abstract
Adiposity may cause adverse health outcomes by increasing oxidative stress and systemic inflammation, which can be reflected by altered telomere length (TL) and mitochondrial DNA copy number (mtCN) in peripheral blood leukocytes. However, little is known about the influence of lifetime adiposity on TL and mtCN in later life. This study was performed to investigate the associations of lifetime adiposity with leukocyte TL and mtCN in 9613 participants from the Nurses' Health Study. A group-based trajectory modelling approach was used to create trajectories of body shape from age 5 through 60 years, and a genetic risk score (GRS) was created based on 97 known adiposity susceptibility variants. Associations of body shape trajectories and GRS with dichotomized TL and mtCN were assessed by logistic regression models. After adjustment for lifestyle and dietary factors, compared with the lean-stable group, the lean-marked increase group had higher odds of having below-median TL (OR = 1.18, 95% CI 1.04, 1.35; P = 0.01), and the medium-marked increase group had higher odds of having below-median mtCN (OR = 1.28, 95% CI 1.00, 1.64; P = 0.047). There was a suggestive trend toward lower mtCN across the GRS quartiles (P for trend = 0.07). In conclusion, telomere attrition may be accelerated by marked weight gain in middle life, whereas mtCN is likely to be reduced persistently by adiposity over the life course. The findings indicate the importance of lifetime weight management to preserve functional telomeres and mitochondria.
Collapse
Affiliation(s)
- Dong Hang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Room 371, Bldg. 2, 665 Huntington Avenue, Boston, MA, 02115, USA
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Ane Sørlie Kværner
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Room 371, Bldg. 2, 665 Huntington Avenue, Boston, MA, 02115, USA
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew Tan Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Room 906, 55 Fruit Street, Boston, MA, 02114, USA
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Edward Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Room 371, Bldg. 2, 665 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Room 371, Bldg. 2, 665 Huntington Avenue, Boston, MA, 02115, USA.
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Room 906, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
220
|
Hu L, Peng X, Qin L, Wang R, Fang Z, Lin Y, Xu S, Feng B, Wu D, Che L. Dietary nucleotides supplementation during the suckling period improves the antioxidative ability of neonates with intrauterine growth retardation when using a pig model. RSC Adv 2018; 8:16152-16160. [PMID: 35542194 PMCID: PMC9080267 DOI: 10.1039/c8ra00701b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/24/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the effect of dietary nucleotides supplementation on the antioxidant status of piglets affected by intrauterine growth retardation (IUGR). Fourteen pairs of normal birth weight (NBW) and IUGR piglets were fed either a control diet (CON) or a nucleotides supplementation diet (NT) from 7 d of age to 28 d postnatal. Blood, liver and jejunum samples were collected at the end of the study. The results showed that IUGR piglets had decreased (P < 0.05) concentrations of plasma total antioxidant capability (T-AOC) and total superoxide dismutase (T-SOD), gene expressions of hepatic cytoplasmic copper/zinc SOD (CuZnSOD) and PPARγ coactivator-1α (PGC-1α) and jejunal glutathione peroxidase (GPX) and extracellular superoxide dismutase (ESOD), accordingly, there was markedly higher (P < 0.05) plasma malondialdehyde (MDA) and hepatic and jejunal mitochondria DNA content in the IUGR piglets relative to NBW piglets. Regardless of body weight, dietary NT supplementation significantly increased (P < 0.05) plasma concentrations of T-AOC, T-SOD, CuZnSOD, GPX and the ratio of reduced glutathione to oxidized glutathione, hepatic T-SOD, GPX and mitochondria DNA content, while hepatic MDA concentration was markedly decreased (P < 0.05) 19.1% by NT diet. Furthermore, the gene expressions of hepatic glutathione reductase, CuZnSOD, nuclear erythroid 2-related factor 2, PGC-1α and nuclear respiratory factor-1 (NRF-1) and jejunal GPX, CuZnSOD, ESOD and NRF-1 were significantly increased (P < 0.05) by NT diet, whereas the gene expression of Kelch-like ECH-associated protein 1 were markedly decreased (P < 0.05) compared with that of piglets fed with CON diet. These results indicate that dietary NT supplementation prevents the effect of IUGR on oxidative status and mitochondria DNA damage through improving the non-enzymatic and enzymatic antioxidant capacities as well as mitochondria biogenesis of piglets. The aim of the present study was to investigate the effect of dietary nucleotides supplementation on the antioxidant status of piglets affected by intrauterine growth retardation (IUGR).![]()
Collapse
Affiliation(s)
- Liang Hu
- Institute of Animal Nutrition, Sichuan Agricultural University No. 211, Huimin Road, Wenjiang District Chengdu 611130 Sichuan People's Republic of China +86-835-2883166 +86-835-2882828.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Chengdu 611130 Sichuan People's Republic of China
| | - Xie Peng
- Institute of Animal Nutrition, Sichuan Agricultural University No. 211, Huimin Road, Wenjiang District Chengdu 611130 Sichuan People's Republic of China +86-835-2883166 +86-835-2882828.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Chengdu 611130 Sichuan People's Republic of China
| | - Linlin Qin
- Institute of Animal Nutrition, Sichuan Agricultural University No. 211, Huimin Road, Wenjiang District Chengdu 611130 Sichuan People's Republic of China +86-835-2883166 +86-835-2882828.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Chengdu 611130 Sichuan People's Republic of China
| | - Ru Wang
- Institute of Animal Nutrition, Sichuan Agricultural University No. 211, Huimin Road, Wenjiang District Chengdu 611130 Sichuan People's Republic of China +86-835-2883166 +86-835-2882828.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Chengdu 611130 Sichuan People's Republic of China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Sichuan Agricultural University No. 211, Huimin Road, Wenjiang District Chengdu 611130 Sichuan People's Republic of China +86-835-2883166 +86-835-2882828.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Chengdu 611130 Sichuan People's Republic of China
| | - Yan Lin
- Institute of Animal Nutrition, Sichuan Agricultural University No. 211, Huimin Road, Wenjiang District Chengdu 611130 Sichuan People's Republic of China +86-835-2883166 +86-835-2882828.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Chengdu 611130 Sichuan People's Republic of China
| | - Shengyu Xu
- Institute of Animal Nutrition, Sichuan Agricultural University No. 211, Huimin Road, Wenjiang District Chengdu 611130 Sichuan People's Republic of China +86-835-2883166 +86-835-2882828.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Chengdu 611130 Sichuan People's Republic of China
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University No. 211, Huimin Road, Wenjiang District Chengdu 611130 Sichuan People's Republic of China +86-835-2883166 +86-835-2882828.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Chengdu 611130 Sichuan People's Republic of China
| | - De Wu
- Institute of Animal Nutrition, Sichuan Agricultural University No. 211, Huimin Road, Wenjiang District Chengdu 611130 Sichuan People's Republic of China +86-835-2883166 +86-835-2882828.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Chengdu 611130 Sichuan People's Republic of China
| | - Lianqiang Che
- Institute of Animal Nutrition, Sichuan Agricultural University No. 211, Huimin Road, Wenjiang District Chengdu 611130 Sichuan People's Republic of China +86-835-2883166 +86-835-2882828.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education Chengdu 611130 Sichuan People's Republic of China
| |
Collapse
|
221
|
Shen YQ, Guerra-Librero A, Fernandez-Gil BI, Florido J, García-López S, Martinez-Ruiz L, Mendivil-Perez M, Soto-Mercado V, Acuña-Castroviejo D, Ortega-Arellano H, Carriel V, Diaz-Casado ME, Reiter RJ, Rusanova I, Nieto A, López LC, Escames G. Combination of melatonin and rapamycin for head and neck cancer therapy: Suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J Pineal Res 2018; 64. [PMID: 29247557 DOI: 10.1111/jpi.12461] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) clearly involves activation of the Akt mammalian target of rapamycin (mTOR) signalling pathway. However, the effectiveness of treatment with the mTOR inhibitor rapamycin is often limited by chemoresistance. Melatonin suppresses neoplastic growth via different mechanisms in a variety of tumours. In this study, we aimed to elucidate the effects of melatonin on rapamycin-induced HNSCC cell death and to identify potential cross-talk pathways. We analysed the dose-dependent effects of melatonin in rapamycin-treated HNSCC cell lines (Cal-27 and SCC-9). These cells were treated with 0.1, 0.5 or 1 mmol/L melatonin combined with 20 nM rapamycin. We further examined the potential synergistic effects of melatonin with rapamycin in Cal-27 xenograft mice. Relationships between inhibition of the mTOR pathway, reactive oxygen species (ROS), and apoptosis and mitophagy reportedly increased the cytotoxic effects of rapamycin in HNSCC. Our results demonstrated that combined treatment with rapamycin and melatonin blocked the negative feedback loop from the specific downstream effector of mTOR activation S6K1 to Akt signalling, which decreased cell viability, proliferation and clonogenic capacity. Interestingly, combined treatment with rapamycin and melatonin-induced changes in mitochondrial function, which were associated with increased ROS production, increasing apoptosis and mitophagy. This led to increase cell death and cellular differentiation. Our data further indicated that melatonin administration reduced rapamycin-associated toxicity to healthy cells. Overall, our findings suggested that melatonin could be used as an adjuvant agent with rapamycin, improving effectiveness while minimizing its side effects.
Collapse
Affiliation(s)
- Ying-Qiang Shen
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Ana Guerra-Librero
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Beatriz I Fernandez-Gil
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Javier Florido
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Sergio García-López
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Laura Martinez-Ruiz
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Miguel Mendivil-Perez
- Medical Research Institute, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Viviana Soto-Mercado
- Medical Research Institute, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- CIBERFES, Ibs.Granada, Hospital Campus de la Salud, Granada, Spain
| | - Hector Ortega-Arellano
- Medical Research Institute, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Victor Carriel
- Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
| | - María E Diaz-Casado
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| | - Iryna Rusanova
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
- CIBERFES, Ibs.Granada, Hospital Campus de la Salud, Granada, Spain
| | - Ana Nieto
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
| | - Luis C López
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- CIBERFES, Ibs.Granada, Hospital Campus de la Salud, Granada, Spain
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- CIBERFES, Ibs.Granada, Hospital Campus de la Salud, Granada, Spain
| |
Collapse
|
222
|
Xu Y, Lindh CH, Jönsson BAG, Broberg K, Albin M. Occupational exposure to asphalt mixture during road paving is related to increased mitochondria DNA copy number: a cross-sectional study. Environ Health 2018; 17:29. [PMID: 29587765 PMCID: PMC5870390 DOI: 10.1186/s12940-018-0375-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/20/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Asphalt workers are exposed to polyaromatic hydrocarbons (PAHs) from hot mix asphalt via both inhalation and dermal absorption. The use of crumb rubber modified (CRM) asphalt may result in higher exposure to PAHs and more adverse effects. Our aim is to assess occupational exposure to PAHs from conventional and CRM asphalt paving by measuring PAH metabolites in urine, and to investigate the effects on mitochondrial DNA copy number (mtDNAcn) and telomere length. METHODS We recruited 116 workers paving conventional asphalt, 51 workers paving CRM asphalt and 100 controls in Sweden, all males. A repeated-measures analysis included 31 workers paving both types of asphalt. Urine and blood samples were collected pre-working on Monday morning and post-working on Thursday afternoon after 4 days working. PAH metabolites: 1-hydroxypyrene (1-OH-PYR) and 2-hydroxyphenanthrene (2-OH-PH) were measured in urine by LC-MS/MS. Relative mtDNAcn and telomere length were measured by quantitative PCR. RESULTS Conventional and CRM asphalt workers showed higher 1-OH-PYR and 2-OH-PH than controls (p < 0.001 for all). Relative mtDNAcn were 0.21 units (p < 0.001) higher in conventional asphalt workers and 0.13 units (p = 0.010) higher in CRM asphalt workers compared to controls. Relative telomere length did not differ across occupational groups, but it was positively associated with increment of 2-OH-PH (β = 0.075, p = 0.037) in asphalt workers. The repeated-measures analysis showed no difference in either increment of 1-OH-PYP, or changes in effect biomarkers (mtDNAcn or telomere length) between paving with conventional and CRM asphalt. Increment of 2-OH-PH was smaller after paving with CRM asphalt. CONCLUSIONS Road asphalt paving in open areas resulted in PAHs exposure, as shown by elevation of PAH metabolites in urine. Asphalt workers may experience oxidative stress, evidenced by alternation in mtDNAcn; however the effects could not be fully explained by exposure to PAHs from the asphalt mixture.
Collapse
Affiliation(s)
- Yiyi Xu
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Scheelevägen 2, 223 63 Lund, Sweden
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Scheelevägen 2, 223 63 Lund, Sweden
| | - Bo A. G. Jönsson
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Scheelevägen 2, 223 63 Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Scheelevägen 2, 223 63 Lund, Sweden
- Unit of Metals & Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Scheelevägen 2, 223 63 Lund, Sweden
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
223
|
Chang YL, Chao AS, Peng HH, Chang SD, Su SY, Chen KJ, Wang TH. Effects of inter-twin vascular anastomoses of monochorionic twins with selective intrauterine growth restriction on the contents of placental mitochondria DNA. BMC Pregnancy Childbirth 2018; 18:74. [PMID: 29573746 PMCID: PMC5866522 DOI: 10.1186/s12884-018-1702-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/15/2018] [Indexed: 01/06/2023] Open
Abstract
Background Placental mitochondrial DNA (mtDNA) has been proposed to be an indicator for placental hypoxia. This study was designed to evaluate the effect of vascular anastomoses between monochorionic (MC) twins on placental mtDNA. Methods In this study, twin-twin transfusion syndrome (TTTS) treated with laser therapy and MC twins without TTTS (without laser therapy) resulting in two live babies were included in this study. The placental mtDNA fold changes (FC) between the small and large twins were analyzed using real-time quantitative PCR. TTTS twins with selective intrauterine growth restriction (sIUGR) are categorized as group 1, TTTS without sIUGR as group 2, MC twins without TTTS but with sIUGR as group 3, and MC twins without both TTTS and sIUGR as group 4. Results There were seven cases in group 1, eight in group 2, 26 in group 3, and 24 in group 4 cases. The placental mtDNA FC were significantly higher in group 1 (1.57 ± 0.9) compared to that of the group 3 (0.86 ± 0.6). Conclusion In MC twin pregnancies with sIUGR, the placental mtDNA FC between the small and large twins are different between cases with and without inter-twin anastomoses. These findings suggest that the inter-twin anastomoses in the MC twins with sIUGR may provide rescue perfusion from the appropriate-for-gestational-age twin to the sIUGR one. Electronic supplementary material The online version of this article (10.1186/s12884-018-1702-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yao-Lung Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, College of Medicine, Chang Gung University, No 5, Fu-Shin Road, Gwei-shan, Taoyuan, Taiwan
| | - An-Shine Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, College of Medicine, Chang Gung University, No 5, Fu-Shin Road, Gwei-shan, Taoyuan, Taiwan
| | - Hsiu-Huei Peng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, College of Medicine, Chang Gung University, No 5, Fu-Shin Road, Gwei-shan, Taoyuan, Taiwan
| | - Shuenn-Dyh Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, College of Medicine, Chang Gung University, No 5, Fu-Shin Road, Gwei-shan, Taoyuan, Taiwan
| | - Sheng-Yuan Su
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, College of Medicine, Chang Gung University, No 5, Fu-Shin Road, Gwei-shan, Taoyuan, Taiwan
| | - Kuan-Ju Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, College of Medicine, Chang Gung University, No 5, Fu-Shin Road, Gwei-shan, Taoyuan, Taiwan
| | - Tzu-Hao Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, College of Medicine, Chang Gung University, No 5, Fu-Shin Road, Gwei-shan, Taoyuan, Taiwan. .,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Genomic Medicine Research Core Laboratory (GMRCL), Chang Gung Memorial Hospital, Tao-Yuan, 333, Taiwan.
| |
Collapse
|
224
|
Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol 2018; 16:263-275. [PMID: 29549824 PMCID: PMC5854930 DOI: 10.1016/j.redox.2018.03.002] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Stroke is the leading cause of adult disability and mortality in most developing and developed countries. The current best practices for patients with acute ischemic stroke include intravenous tissue plasminogen activator and endovascular thrombectomy for large-vessel occlusion to improve clinical outcomes. However, only a limited portion of patients receive thrombolytic therapy or endovascular treatment because the therapeutic time window after ischemic stroke is narrow. To address the current shortage of stroke management approaches, it is critical to identify new potential therapeutic targets. The mitochondrion is an often overlooked target for the clinical treatment of stroke. Early studies of mitochondria focused on their bioenergetic role; however, these organelles are now known to be important in a wide range of cellular functions and signaling events. This review aims to summarize the current knowledge on the mitochondrial molecular mechanisms underlying cerebral ischemia and involved in reactive oxygen species generation and scavenging, electron transport chain dysfunction, apoptosis, mitochondrial dynamics and biogenesis, and inflammation. A better understanding of the roles of mitochondria in ischemia-related neuronal death and protection may provide a rationale for the development of innovative therapeutic regimens for ischemic stroke and other stroke syndromes. Review of current treatment of ischemic stroke indicates deficiency in the contemporary methods. Discuss the mitochondrial ROS-related signaling that affect neuronal fate after ischemic stroke. Mechanisms of mitochondrial dynamics and mitophagy could be pivotal for ischemic stroke. Inhibiting mitochondrion-induced inflammatory response is a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Jenq-Lin Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC
| | - Sujira Mukda
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Shang-Der Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC; College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan, ROC.
| |
Collapse
|
225
|
Jain A, Bakhshi S, Thakkar H, Gerards M, Singh A. Elevated mitochondrial DNA copy numbers in pediatric acute lymphoblastic leukemia: A potential biomarker for predicting inferior survival. Pediatr Blood Cancer 2018; 65. [PMID: 29134740 DOI: 10.1002/pbc.26874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Studies on mitochondrial DNA copy number reveal an increase or decrease in copy number that appears to be cancer specific, but data on acute lymphoblastic leukemia have been inconsistent regarding the significance of changes in mitochondrial DNA copies. The purpose of this pilot study was to analyze mitochondrial DNA copy number and mitochondrial DNA integrity. PROCEDURE Copy number and mitochondrial deletion ratios were estimated in the bone marrow of 51 patients and peripheral blood of 30 healthy controls using quantitative real-time PCR. The copy number values were correlated with prognostic markers in patients. RESULTS Significantly increased mitochondrial DNA copy number (P-value < 0.0001) and increased mitochondrial deletion ratios (P-value = 0.0018) were observed in patients compared with controls. The copy numbers were significantly decreased in patients after chemotherapy (P-value = 0.0232). Patients with higher copy numbers exhibited significantly inferior survival than patients with lower copy numbers (for event-free survival, P-value = 0.04 and overall survival, P-value = 0.1175). CONCLUSIONS Significant decreases in mitochondrial DNA copy number with therapy indicates that copy number could be evaluated as a potential marker for therapeutic efficacy and a higher mitochondrial DNA copy number could be a poor prognostic marker.
Collapse
Affiliation(s)
- Ayushi Jain
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, B.R. Ambedkar Institute Rotary Cancer Hospital, AIIMS, New Delhi, India
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mike Gerards
- Maastricht Centre for Systems Biology (MaCS-Bio), Maastricht University, Maastricht, The Netherlands
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
226
|
Wu S, Zhang A, Li S, Chatterjee S, Qi R, Segura‐Ibarra V, Ferrari M, Gupte A, Blanco E, Hamilton DJ. Polymer Functionalization of Isolated Mitochondria for Cellular Transplantation and Metabolic Phenotype Alteration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700530. [PMID: 29593955 PMCID: PMC5867055 DOI: 10.1002/advs.201700530] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Indexed: 05/31/2023]
Abstract
Aberrant mitochondrial energy transfer underlies prevalent chronic health conditions, including cancer, cardiovascular, and neurodegenerative diseases. Mitochondrial transplantation represents an innovative strategy aimed at restoring favorable metabolic phenotypes in cells with dysfunctional energy metabolism. While promising, significant barriers to in vivo translation of this approach abound, including limited cellular uptake and recognition of mitochondria as foreign. The objective is to functionalize isolated mitochondria with a biocompatible polymer to enhance cellular transplantation and eventual in vivo applications. Herein, it is demonstrated that grafting of a polymer conjugate composed of dextran with triphenylphosphonium onto isolated mitochondria protects the organelles and facilitates cellular internalization compared with uncoated mitochondria. Importantly, mitochondrial transplantation into cancer and cardiovascular cells has profound effects on respiration, mediating a shift toward improved oxidative phosphorylation, and reduced glycolysis. These findings represent the first demonstration of polymer functionalization of isolated mitochondria, highlighting a viable strategy for enabling clinical applications of mitochondrial transplantation.
Collapse
Affiliation(s)
- Suhong Wu
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Aijun Zhang
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Shumin Li
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Somik Chatterjee
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Ruogu Qi
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | | | - Mauro Ferrari
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineWeill Cornell MedicineNew YorkNY10065USA
| | - Anisha Gupte
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of PhysiologyWeill Cornell MedicineNew YorkNY10065USA
| | - Elvin Blanco
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Dale J. Hamilton
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineWeill Cornell MedicineNew YorkNY10065USA
- Division EndocrinologyDiabetes, and MetabolismDepartment of MedicineHouston Methodist HospitalHoustonTX77030USA
| |
Collapse
|
227
|
Chestkov IV, Jestkova EM, Ershova ES, Golimbet VG, Lezheiko TV, Kolesina NY, Dolgikh OA, Izhevskaya VL, Kostyuk GP, Kutsev SI, Veiko NN, Kostyuk SV. ROS-Induced DNA Damage Associates with Abundance of Mitochondrial DNA in White Blood Cells of the Untreated Schizophrenic Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8587475. [PMID: 29682166 PMCID: PMC5845523 DOI: 10.1155/2018/8587475] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/01/2017] [Accepted: 12/10/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study was (1) to examine the leukocyte mtDNA copy number (CN) in unmedicated (SZ (m-)) and medicated (SZ (m+)) male patients with paranoid schizophrenia (SZ) in comparison with the healthy male controls (HC) and (2) to compare the leukocyte mtDNA CN with the content of an oxidation marker 8-oxodG in lymphocytes of the SZ (m-) patients. METHODS We evaluated leukocyte mtDNA CN of 110 subjects with SZ in comparison with 60 male HC by the method qPCR (ratio mtDNA/nDNA (gene B2M) was detected). SZ patients were divided into two subgroups. The patients of the subgroups SZ (m+) (N = 55) were treated with standard antipsychotic medications in the hospital. The patients of the subgroup SZ (m-) (N = 55) were not treated before venous blood was sampled. To evaluate oxidative DNA damage, we quantified the levels of 8-oxodG in lymphocytes (flow cytometry) of SZ (m-) patients (N = 55) and HC (N = 30). RESULTS The leukocyte mtDNA CN showed no significant difference in SZ (m+) patients and HC. The mtDNA CN in the unmedicated subgroup SZ (m-) was significantly higher than that in the SZ (m+) subgroup or in HC group. The level of 8-oxodG in the subgroup SZ (m-) was significantly higher than that in HC group. CONCLUSION The leukocytes of the unmedicated SZ male patients with acute psychosis contain more mtDNA than the leukocytes of the male SZ patients treated with antipsychotic medications or the healthy controls. MtDNA content positively correlates with the level of 8-oxodG in the unmedicated SZ patients.
Collapse
Affiliation(s)
- I. V. Chestkov
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - E. M. Jestkova
- N. A. Alexeev Clinical Psychiatric Hospital №1 of Moscow Healthcare Department, Moscow 115447, Russia
| | - E. S. Ershova
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
- V. A. Negovsky Research Institute of General Reanimatology, Federal Clinical Research Center of Reanimatology and Rehabilitogy, Moscow 107031, Russia
| | | | | | | | - O. A. Dolgikh
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - V. L. Izhevskaya
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - G. P. Kostyuk
- N. A. Alexeev Clinical Psychiatric Hospital №1 of Moscow Healthcare Department, Moscow 115447, Russia
| | - S. I. Kutsev
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - N. N. Veiko
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
- V. A. Negovsky Research Institute of General Reanimatology, Federal Clinical Research Center of Reanimatology and Rehabilitogy, Moscow 107031, Russia
| | - S. V. Kostyuk
- Mental Health Research Center, Moscow 115522, Russia
| |
Collapse
|
228
|
Masuike Y, Tanaka K, Makino T, Yamasaki M, Miyazaki Y, Takahashi T, Kurokawa Y, Nakajima K, Mori M, Doki Y. Esophageal squamous cell carcinoma with low mitochondrial copy number has mesenchymal and stem-like characteristics, and contributes to poor prognosis. PLoS One 2018; 13:e0193159. [PMID: 29447301 PMCID: PMC5814088 DOI: 10.1371/journal.pone.0193159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022] Open
Abstract
Alterations in mitochondrial DNA (mtDNA) copy numbers in various human cancers have been studied, but any such changes in esophageal squamous cell carcinoma (ESCC) are not established. In the present study, we investigated the correlation of mtDNA copy number with clinicopathologic features, prognosis, and malignant potential of ESCC. MtDNA copy numbers of resected specimens from 80 patients treated with radical esophagectomy were measured by quantitative real-time PCR analyses. Human ESCC cells, TE8 and TE11, were cultured, and depletion of mtDNA content was induced by knockdown of mitochondrial transcription factor A expression or treatment with ethidium bromide. The mRNA and protein expression, proliferation, invasion, and cell cycle were investigated. The results showed that the mtDNA copy number of cancerous portions was 56.0 (37.4-234.5) percent that of non-cancerous parts and significantly lower (p<0.01). Low mtDNA copy number in resected cancerous tissues was significantly correlated with pathological depth of tumor invasion (p = 0.045) and pathological stage (p = 0.025). Patients with lower mtDNA copy number had significantly poorer 5-year overall survival compared to patients with higher levels (p<0.01). The mtDNA-depleted TE8 and TE11 cells had morphological changes and proliferated more slowly than control cells under normoxia but proliferated at almost the same rate under hypoxic conditions. In mtDNA-depleted cells, E-cadherin mRNA expression was decreased, and N-cadherin, vimentin, zeb-1, and cd44 mRNA expression was increased. Immunoblotting and flow cytometry analysis also showed downregulated E-cadherin and upregulated N-cadherin and CD44 protein in mtDNA-depleted cells. Moreover, mtDNA-depleted cells had enhanced invasion, migration, and sphere formation abilities, and the cell cycle arrest at G0/G1 phase was induced in these cells. These results suggested that mtDNA-depleted ESCC cells had mesenchymal characteristics, cancer stemness, and tolerance to hypoxia, which played important role in cancer progression. In conclusion, a low copy number of mtDNA is associated with tumor progression in ESCC.
Collapse
Affiliation(s)
- Yasunori Masuike
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
229
|
Delco ML, Bonnevie ED, Bonassar LJ, Fortier LA. Mitochondrial dysfunction is an acute response of articular chondrocytes to mechanical injury. J Orthop Res 2018; 36:739-750. [PMID: 28696002 PMCID: PMC5764818 DOI: 10.1002/jor.23651] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/23/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED Mitochondrial (MT) dysfunction is known to occur in chondrocytes isolated from end-stage osteoarthritis (OA) patients, but the role of MT dysfunction in the initiation and early pathogenesis of post-traumatic OA (PTOA) remains unclear. The objective of this study was to investigate chondrocyte MT function immediately following mechanical injury in cartilage, and to determine if the response to injury differed between a weight bearing region (medial femoral condyle; MFC) and a non-weight bearing region (distal patellofemoral groove; PFG) of the same joint. Cartilage was harvested from the MFC and PFG of 10 neonatal bovids, and subjected to injurious compression at varying magnitudes (5-17 MPa, 5-34 GPa/s) using a rapid single-impact model. Chondrocyte MT respiratory function, MT membrane polarity, chondrocyte viability, and cell membrane damage were assessed in situ. Cartilage impact resulted in MT depolarization and impaired MT respiratory function within 2 h of injury. Cartilage from a non-weight bearing region of the joint (PFG) was more sensitive to impact-induced MT dysfunction and chondrocyte death than cartilage from a weight-bearing surface (MFC). Our findings suggest that MT dysfunction is an acute response of chondrocytes to cartilage injury, and that MT may play a key mechanobiological role in the initiation and early pathogenesis of PTOA. CLINICAL SIGNIFICANCE Direct therapeutic targeting of MT function in the early post-injury time frame may provide a strategy to block perpetuation of tissue damage and prevent the development of PTOA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:739-750, 2018.
Collapse
Affiliation(s)
- Michelle L. Delco
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Edward D. Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
230
|
Mustafa SI, Schwarzacher T, Heslop-Harrison JS. Complete mitogenomes from Kurdistani sheep: abundant centromeric nuclear copies representing diverse ancestors. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 29:1180-1193. [DOI: 10.1080/24701394.2018.1431226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sarbast Ihsan Mustafa
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Department of Animal Production, University of Duhok, Duhok, Iraq
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | |
Collapse
|
231
|
Meng S, Wu S, Liang L, Liang G, Giovannucci E, De Vivo I, Nan H. Leukocyte mitochondrial DNA copy number, anthropometric indices, and weight change in US women. Oncotarget 2018; 7:60676-60686. [PMID: 27367031 PMCID: PMC5312411 DOI: 10.18632/oncotarget.10325] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/09/2016] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES To examine the association between leukocyte mitochondrial DNA copy number (mtCN) and different anthropometric indices as well as weight changes; and to compare mtCN and telomere length with respect to their associations with BMI and age. DESIGN Population based cohort study. SETTING Nurses' Health Study, an ongoing prospective cohort study of 121,700 nurses enrolled in 1976; in 1989-1990 a subset of 32,826 women provided blood samples. PARTICIPANTS 1,700 disease-free US women from case-control studies nested within the Nurses' Health Study with mtCN and telomere length measured who also have anthropometric measurements. MAIN OUTCOME MEASURE Relative mtCN and telomere lengths in peripheral blood leukocytes measured by quantitative real time polymerase chain reaction and various anthropometric measurements data from initial questionnaire. RESULTS Leukocyte mtCN was inversely associated with current weight (LS means Q1-Q4: 0.07, 0.04, 0.03, -0.17; P trend =0.002), waist size (LS means Q1-Q4: 0.06, 0.05, -0.04, -0.06; P trend = 0.04), BMI (LS means normal light, normal heavy, overweight, pre-obese, obese: 0.11, -0.01, -0.04, 0.04, -0.25; P trend<0.0001), and waist-hip ratio (WHR) (LS means Q1-Q4: 0.06, 0.08, -0.04, -0.06; P trend = 0.03). A one-unit decrease in mtCN z score was equivalent to approximately 3.5 pounds of weight gain for an adult of 5'10''. In addition, weight gain was bi-directionally and inversely associated with mtCN. Moreover, mtCN was strongly positively correlated with telomere length (LS means Q1-Q4: -0.02, 0.09, 0.11, 0.33; P trend <0.0001). MtCN was inversely associated with BMI even after adjusting for telomere length (P trend =0.003), while telomere length was not associated with BMI. On the other hand, telomere length was inversely associated with age after adjusting for mtCN (P trend =0.04), while mtCN was not associated with age. CONCLUSIONS Our results provide compelling evidence for a potential bi-directional temporal relationship between mitochondrial-mediated oxidative stress-defense mechanisms and weight change.
Collapse
Affiliation(s)
- Shasha Meng
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Shaowei Wu
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
232
|
Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Sci Rep 2018; 8:1531. [PMID: 29367754 PMCID: PMC5784148 DOI: 10.1038/s41598-018-19930-w] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/05/2018] [Indexed: 01/19/2023] Open
Abstract
Metabolic viability based high throughput assays like MTT and MTS are widely used in assessing the cell viability. However, alteration in both mitochondrial content and metabolism can influence the metabolic viability of cells and radiation is a potential mitochondrial biogenesis inducer. Therefore, we tested if MTT assay is a true measure of radiation induced cell death in widely used cell lines. Radiation induced cellular growth inhibition was performed by enumerating cell numbers and metabolic viability using MTT assay at 24 and 48 hours (hrs) after exposure. The extent of radiation induced reduction in cell number was found to be larger than the decrease in MTT reduction in all the cell lines tested. We demonstrated that radiation induces PGC-1α and TFAM to stimulate mitochondrial biogenesis leading to increased levels of SDH-A and enhanced metabolic viability. Radiation induced disturbance in calcium (Ca2+) homeostasis also plays a crucial role by making the mitochondria hyperactive. These findings suggest that radiation induces mitochondrial biogenesis and hyperactivation leading to increased metabolic viability and MTT reduction. Therefore, conclusions drawn on radiation induced growth inhibition based on metabolic viability assays are likely to be erroneous as it may not correlate with growth inhibition and/or loss of clonogenic survival.
Collapse
|
233
|
Atamna H, Tenore A, Lui F, Dhahbi JM. Organ reserve, excess metabolic capacity, and aging. Biogerontology 2018; 19:171-184. [PMID: 29335816 DOI: 10.1007/s10522-018-9746-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
Abstract
"Organ reserve" refers to the ability of an organ to successfully return to its original physiological state following repeated episodes of stress. Clinical evidence shows that organ reserve correlates with the ability of older adults to cope with an added workload or stress, suggesting a role in the process of aging. Although organ reserve is well documented clinically, it is not clearly defined at the molecular level. Interestingly, several metabolic pathways exhibit excess metabolic capacities (e.g., bioenergetics pathway, antioxidants system, plasticity). These pathways comprise molecular components that have an excess of quantity and/or activity than that required for basic physiological demand in vivo (e.g., mitochondrial complex IV or glycolytic enzymes). We propose that the excess in mtDNA copy number and tandem DNA repeats of telomeres are additional examples of intrinsically embedded structural components that could comprise excess capacity. These excess capacities may grant intermediary metabolism the ability to instantly cope with, or manage, added workload or stress. Therefore, excess metabolic capacities could be viewed as an innate mechanism of adaptability that substantiates organ reserve and contributes to the cellular defense systems. If metabolic excess capacities or organ reserves are impaired or exhausted, the ability of the cell to cope with stress is reduced. Under these circumstances cell senescence, transformation, or death occurs. In this review, we discuss excess metabolic and structural capacities as integrated metabolic pathways in relation to organ reserve and cellular aging.
Collapse
Affiliation(s)
- Hani Atamna
- School of Medicine, California University of Science and Medicine (CUSM), 217 E Club Center Dr. Suite A, San Bernardino, CA, 92408, USA.
- California Northstate University, College of Medicine, Elk Grove, CA, USA.
| | - Alfred Tenore
- School of Medicine, California University of Science and Medicine (CUSM), 217 E Club Center Dr. Suite A, San Bernardino, CA, 92408, USA
- California Northstate University, College of Medicine, Elk Grove, CA, USA
| | - Forshing Lui
- School of Medicine, California University of Science and Medicine (CUSM), 217 E Club Center Dr. Suite A, San Bernardino, CA, 92408, USA
- California Northstate University, College of Medicine, Elk Grove, CA, USA
| | - Joseph M Dhahbi
- School of Medicine, California University of Science and Medicine (CUSM), 217 E Club Center Dr. Suite A, San Bernardino, CA, 92408, USA
- California Northstate University, College of Medicine, Elk Grove, CA, USA
| |
Collapse
|
234
|
Weng X, Zhang X, Lu X, Wu J, Li S. Reduced mitochondrial response sensitivity is involved in the anti‑apoptotic effect of dexmedetomidine pretreatment in cardiomyocytes. Int J Mol Med 2018; 41:2328-2338. [PMID: 29328437 DOI: 10.3892/ijmm.2018.3384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 01/10/2018] [Indexed: 11/05/2022] Open
Abstract
Dexmedetomidine is a commonly used α2-adreno-ceptor agonist, which affects various organs, including providing beneficial effects on the heart. However, the mechanism underlying the cardiac benefit remains to be fully elucidated. In the present study, it was demonstrated that dexmedetomidine pretreatment on primary cultured rat cardiomyocytes protected against reactive oxygen species (ROS)‑induced apoptosis. In terms of the potential mechanism, it was demonstrated that dexmedetomidine inhibited mitochondrial biogenesis and mitochondrial respiratory complexes, but with increased coupling efficiency. However, dexmedetomidine upregulated mitochondrial membrane potential (Δψm) and resisted against the loss of Δψm induced by carbonilcyanide p‑triflouromethoxyphenylhydrazone. Due to the importance of mitochondria affecting ROS, the present study investigated the dexmedetomidine‑suppressed mitochondrial response to H2O2 stimulation, which was explained by suppressed ROS levels and the suppression of the increased oxygen consumption rate. Results demonstrated for the first time, to the best of our knowledge, a novel protective mechanism for dexmedetomidine on cardiomyocytes through the attenuated response of mitochondria towards H2O2, which had a protective effect against ROS‑induced apoptosis.
Collapse
Affiliation(s)
- Xiaojian Weng
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xiaodan Zhang
- Department of Intensive Care Unit, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xiaofei Lu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Jin Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Shitong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
235
|
Lee HT, Lin CS, Pan SC, Wu TH, Lee CS, Chang DM, Tsai CY, Wei YH. Alterations of oxygen consumption and extracellular acidification rates by glutamine in PBMCs of SLE patients. Mitochondrion 2018; 44:65-74. [PMID: 29337141 DOI: 10.1016/j.mito.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/31/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
We evaluated plasma glutamine levels and basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB) of peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematous (SLE) patients and healthy controls (HCs). Lower plasma glutamine levels correlated with higher SLE disease activity indexes (p=0.025). Incubated in DMEM containing 100mg/dL glucose, SLE-PBMCs displayed lower mOCRB (p=0.018) but similar ECARB (p=0.467) to those of HC-PBMCs, and their mOCRB got elevated (p<0.001) without altering ECARB (p=0.239) by supplementation with 2 or 4mM glutamine. We conclude that impaired mitochondrial respiration of SLE-PBMCs could be improved by glutamine under euglycemic condition.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Sung Lin
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Division of Thoracic Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Siao-Cian Pan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan
| | - Tsai-Hung Wu
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chyou-Shen Lee
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Deh-Ming Chang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Youh Tsai
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yau-Huei Wei
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan.
| |
Collapse
|
236
|
Kumar B, Bhat ZI, Bansal S, Saini S, Naseem A, Wahabi K, Burman A, Kumar GT, Saluja SS, Rizvi MMA. Association of mitochondrial copy number variation and T16189C polymorphism with colorectal cancer in North Indian population. Tumour Biol 2017; 39:1010428317740296. [PMID: 29182103 DOI: 10.1177/1010428317740296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Globally, colorectal cancer is the third most common type of cancer. Genetic instability leading to cancer development is one of the major causes for development of cancer. Alterations in mitochondrial genome, that is, mutations, single-nucleotide polymorphisms, and copy number variations are known to contribute in cancer development. The aim of our study was to investigate association of mitochondrial T16189C polymorphism and copy number variation with colorectal cancer in North Indian population. DNA isolated from peripheral blood of 126 colorectal cancer patients and 114 healthy North Indian subjects was analyzed for T16189C polymorphism and half of them for mitochondrial copy number variation. Genotyping was done using polymerase chain reaction-restriction fragment length polymorphism, and copy number variation was estimated using real-time polymerase chain reaction, numbers of mitochondrial copies and found to be significantly higher in colorectal cancer patients than healthy controls (88 (58-154), p = 0.001). In the regression analysis, increased mitochondrial copy number variation was associated with risk of colorectal cancer (odds ratio = 2.885, 95% confidence interval = 1.3-6.358). However, T16189C polymorphism was found to be significantly associated with the risk of rectal cancer (odds ratio = 5.213, p = 0.001) and non-significantly with colon cancer (odds ratio = 0.867, p = 0.791). Also, false-positive report probability analysis was done to validate the significant findings. Our results here indicate that mitochondrial copy number variation may be playing an important role in the development of colorectal cancer, and detection of mitochondrial copy number variation can be used as a biomarker for predicting the risk of colorectal cancer in North Indian subjects.
Collapse
Affiliation(s)
- Bhupender Kumar
- 1 Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Zafar Iqbal Bhat
- 2 Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Savita Bansal
- 1 Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Sunil Saini
- 3 School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Afreen Naseem
- 2 Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Khushnuma Wahabi
- 2 Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Archana Burman
- 1 Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Geeta Trilok Kumar
- 1 Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Sundeep Singh Saluja
- 4 Department of Gastrointestinal Surgery, Govind Ballabh Pant Hospital and Maulana Azad Medical College, New Delhi, India
| | - M Moshahid Alam Rizvi
- 2 Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
237
|
Lien LM, Chiou HY, Yeh HL, Chiu SY, Jeng JS, Lin HJ, Hu CJ, Hsieh FI, Wei YH. Significant Association Between Low Mitochondrial DNA Content in Peripheral Blood Leukocytes and Ischemic Stroke. J Am Heart Assoc 2017; 6:JAHA.117.006157. [PMID: 29151031 PMCID: PMC5721740 DOI: 10.1161/jaha.117.006157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Cumulative evidence has shown that low mitochondrial DNA (mtDNA) content is related to elevated oxidative stress and atherosclerosis, which play important roles in ischemic stroke. The objective of this study was to explore the association between mtDNA content in peripheral blood leukocytes and ischemic stroke. Methods and Results A total of 350 patients with first‐ever ischemic stroke and 350 healthy controls were recruited in this case‐control study. The mtDNA content in peripheral blood leukocytes was determined by quantitative real‐time polymerase chain reaction. The levels of oxidized glutathione, reduced glutathione, and 8‐hydroxy‐2′‐deoxyguanosine were measured by ELISA kits. Multivariate logistic regression models were used to analyze the relationship between mtDNA content in peripheral blood leukocytes and ischemic stroke. Our results show that mtDNA content of patients with ischemic stroke was notably lower compared with controls. A significant association was found between low mtDNA content and ischemic stroke. Furthermore, significant interactions were identified between low mtDNA and proven risk factors in patients with ischemic stroke. The levels of oxidized glutathione and 8‐hydroxy‐2′‐deoxyguanosine were significantly greater in patients with ischemic stroke compared with controls. Conclusions Our results demonstrate that low mtDNA content in peripheral blood leukocytes is associated with ischemic stroke. The relationship of low mtDNA content and ischemic stroke was particularly notable in individuals who had low mtDNA content combined with diabetes mellitus, metabolic syndrome, or cigarette smoking. Oxidative stress may be one of the contributory factors to decreased mtDNA content in patients with ischemic stroke.
Collapse
Affiliation(s)
- Li-Ming Lien
- Department of Neurology, Shin-Kong WHS Memorial Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yi Chiou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Hsu-Ling Yeh
- Department of Neurology, Shin-Kong WHS Memorial Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shang-Yen Chiu
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Jiann-Shing Jeng
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Juan Lin
- Department of Neurology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chaur-Jong Hu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Fang-I Hsieh
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan
| |
Collapse
|
238
|
DNM1L Variant Alters Baseline Mitochondrial Function and Response to Stress in a Patient with Severe Neurological Dysfunction. Biochem Genet 2017; 56:56-77. [PMID: 29110115 DOI: 10.1007/s10528-017-9829-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
Mitochondria play vital roles in brain development and neuronal activity, and mitochondrial dynamics (fission and fusion) maintain organelle function through the removal of damaged components. Dynamin-like protein-1 (DRP-1), encoded by DNM1L, is an evolutionarily conserved GTPase that mediates mitochondrial fission by surrounding the scission site in concentric ring-like structures via self-oligomerization, followed by GTPase-dependant constriction. Here, we describe the clinical characteristics and cellular phenotype of a patient with severe neurological dysfunction, possessing a homozygous DNM1L variant c.305C>T (p.T115M) in the GTPase domain. For comparative analysis, we also describe a previously identified heterozygous variant demonstrating a rapidly fatal neurocognitive phenotype (c.261dup/c.385:386del, p.W88M*9/E129K*6). Using patient-generated fibroblasts, we demonstrated both DNM1L variants undergo adverse alterations to mitochondrial structure and function, including impaired mitochondrial fission, reduced membrane potential, and lower oxidative capacity including an increased cellular level of reactive oxygen species (ROS) and dsDNA breaks. Mutation of DNM1L was also associated with impaired responses to oxidative stress, as treatment with hydrogen peroxide dramatically increased cellular ROS, with minimal exacerbation of already impaired mitochondrial function. Taken together, our observations indicate that homozygous p.T115M variant of DNM1L produces a neurological and neurodevelopmental phenotype, consistent with impaired mitochondrial architecture and function, through a diminished ability to oligomerize, which was most prevalent under oxidative stress.
Collapse
|
239
|
Kumar M, Srivastava S, Singh SA, Das AK, Das GC, Dhar B, Ghosh SK, Mondal R. Cell-free mitochondrial DNA copy number variation in head and neck squamous cell carcinoma: A study of non-invasive biomarker from Northeast India. Tumour Biol 2017; 39:1010428317736643. [PMID: 29072129 DOI: 10.1177/1010428317736643] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Head and neck squamous cell carcinoma is the most commonly diagnosed cancer worldwide. The lifestyle, food habits, and customary practices manifest the Northeast Indian population toward higher susceptibility to develop head and neck squamous cell carcinoma. Here, we have investigated the association of smoke and smokeless tobacco, and alcohol with copy number variation of cell-free mitochondrial DNA and cell-free nuclear DNA in cases and controls. Cell-free DNA from plasma was isolated from 50 head and neck squamous cell carcinoma cases and 50 controls with informed written consent using QIAamp Circulating Nucleic Acid Kit. Real-time polymerase chain reaction was done for copy number variation in cell-free mitochondrial DNA and cell-free nuclear DNA. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic application between the two study groups using clinicopathological parameters. The levels of cell-free nuclear DNA and cell-free mitochondrial DNA of cases in association with smoke and smokeless tobacco, alcohol with smoking (p < 0.05) were significantly higher (p < 0.01 and p < 0.001, respectively) than controls. Using receiver operating characteristic curve analysis between head and neck squamous cell carcinoma cases and controls, we distinguished cell-free mitochondrial DNA (cutoff: 19.84 raw Ct; sensitivity: 84%; specificity: 100%; p < 0.001) and cell-free nuclear DNA (cutoff: 463,282 genomic equivalent/mL; sensitivity: 53%; specificity: 87%; p < 0.001). The copy number variation in cases (cell-free nuclear DNA: 5451.66 genomic equivalent/mL and cell-free mitochondrial DNA: 29,103,476.15 genomic equivalent/mL) and controls (cell-free nuclear DNA: 1650.9 genomic equivalent/mL and cell-free mitochondrial DNA: 9,189,312.54 genomic equivalent/mL), respectively. Our result indicates that the cell-free mitochondrial DNA content is highly associated with smoke and smokeless tobacco, betel quid chewing, and alcohol which shows greater promises, holding the key characteristics of diagnostic biomarkers, that is, minimal invasiveness, high specificity, and sensitivity.
Collapse
Affiliation(s)
- Manish Kumar
- 1 Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Shilpee Srivastava
- 1 Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Seram Anil Singh
- 2 Department of Applied Biology, University of Science and Technology, Meghalaya, India
| | | | | | - Bishal Dhar
- 1 Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Sankar Kumar Ghosh
- 1 Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, India.,4 University of Kalyani, Kalyani, India
| | - Rosy Mondal
- 5 Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
240
|
Smith RL, Tan JME, Jonker MJ, Jongejan A, Buissink T, Veldhuijzen S, van Kampen AHC, Brul S, van der Spek H. Beyond the polymerase-γ theory: Production of ROS as a mode of NRTI-induced mitochondrial toxicity. PLoS One 2017; 12:e0187424. [PMID: 29095935 PMCID: PMC5667870 DOI: 10.1371/journal.pone.0187424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022] Open
Abstract
Use of some HIV-1 nucleoside reverse transcriptase inhibitors (NRTI) is associated with severe adverse events. However, the exact mechanisms behind their toxicity has not been fully understood. Mitochondrial dysfunction after chronic exposure to specific NRTIs has predominantly been assigned to mitochondrial polymerase-γ inhibition by NRTIs. However, an increasing amount of data suggests that this is not the sole mechanism. Many NRTI induced adverse events have been linked to the incurrence of oxidative stress, although the causality of events leading to reactive oxygen species (ROS) production and their role in toxicity is unclear. In this study we show that short-term effects of first generation NRTIs, which are rarely discussed in the literature, include inhibition of oxygen consumption, decreased ATP levels and increased ROS production. Collectively these events affect fitness and longevity of C. elegans through mitohormetic signalling events. Furthermore, we demonstrate that these effects can be normalized by addition of the anti-oxidant N-acetylcysteine (NAC), which suggests that ROS likely influence the onset and severity of adverse events upon drug exposure.
Collapse
Affiliation(s)
- Reuben L. Smith
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Amsterdam, The Netherlands
| | - Josephine M. E. Tan
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Amsterdam, The Netherlands
| | - Martijs J. Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Thomas Buissink
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Amsterdam, The Netherlands
| | - Steve Veldhuijzen
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Amsterdam, The Netherlands
| | - Antoine H. C. van Kampen
- Bioinformatics Laboratory, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center (AMC), Amsterdam, The Netherlands
- Biosystems data analysis, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Amsterdam, The Netherlands
| | - Hans van der Spek
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
241
|
Beirami E, Oryan S, Seyedhosseini Tamijani SM, Ahmadiani A, Dargahi L. Intranasal insulin treatment restores cognitive deficits and insulin signaling impairment induced by repeated methamphetamine exposure. J Cell Biochem 2017; 119:2345-2355. [PMID: 28884876 DOI: 10.1002/jcb.26398] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/30/2017] [Indexed: 01/03/2023]
Abstract
Long-term use of methamphetamine (MA) causes a broad range of cognitive deficits. Recently, it has been reported insulin signaling and mitochondrial biogenesis are involved in cognitive processes. This study aimed to examine whether MA induces cognitive deficits concomitant with insulin signaling impairment and mitochondrial dysfunctions and also intranasal (IN) insulin treatment can reverse cognitive deficits caused by MA. Rats were repeatedly treated with increasing doses of MA (1-10 mg/kg) twice a day for 10 days, and their cognitive functions were assessed using Y-maze, novel object recognition and passive avoidance tasks. The expression of components involved in insulin signaling (IR/IRS2/PI3K/Akt/GSK3β) and mitochondrial biogenesis (PGC-1α, NRF1, and TFAM) was measured in the hippocampus. Therapeutic effects of IN insulin delivery (0.5- IU/day, for 7 days after MA discontinuation) were also investigated in MA-treated animals. Our results showed that repeated MA exposure induced cognitive deficits, and led to insulin signaling impairment and mitochondrial dysfunction. Interestingly, IN insulin treatment reduced MA-induced cognitive impairments possibly through activating insulin signaling, particularly PI3K/Akt/GSK3β pathway, and mitochondrial biogenesis. Thus, insulin and insulin signaling pathway can be considered as useful targets for the treatment of abnormalities associated with MA abuse.
Collapse
Affiliation(s)
- Elmira Beirami
- Faculty of Biological Sciences, Department of Animal Biology, Kharazmi University, Tehran, Iran
| | - Shahrbanoo Oryan
- Faculty of Biological Sciences, Department of Animal Biology, Kharazmi University, Tehran, Iran
| | | | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
242
|
Kuang S, Liu G, Cao R, Zhang L, Yu Q, Sun C. Mansouramycin C kills cancer cells through reactive oxygen species production mediated by opening of mitochondrial permeability transition pore. Oncotarget 2017; 8:104057-104071. [PMID: 29262621 PMCID: PMC5732787 DOI: 10.18632/oncotarget.22004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer is one of the deadliest diseases in the world and the search for novel anticancer agents is urgently required. Marine-derived isoquinolinequinones have exhibited promising anticancer activities. However, the exact mechanisms of cytotoxic activities of these isoquinolinequinones are poorly characterized. In this study, we investigated the anticancer effects and molecular mechanisms of mansouramycin C (Mm C), a cytotoxic isoquinolinequinone isolated from a marine streptomycete. We demonstrated that Mm C preferentially killed cancer cells and the cytotoxic effects were mediated by reactive oxygen species (ROS) generation. Mass spectrometry based proteomic analysis of Mm C-treated A549 cells revealed that many ROS-related proteins were differentially expressed. Proteomic-profiling after Mm C treatment identified oxidative phosphorylation as the most significant changes in pathways. Analysis also revealed extensive defects in mitochondrial structure and function. Furthermore, we disclosed that Mm C-induced ROS generation was caused by opening of mitochondrial permeability transition pore. Notably, Mm C synergized with sorafenib to induce cell death in A549 cells. Hence, we propose that the marine-derived natural compound Mm C is a potent inducer of the mitochondrial permeability transition and a promising anticancer drug candidate. Moreover, molecular mechanisms of Mm C shed new light on the understanding of the cytotoxic mechanisms of marine-derived isoquinolinequiones.
Collapse
Affiliation(s)
- Shan Kuang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ge Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ruobing Cao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Yu
- Division of Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
243
|
Reddy TV, Govatati S, Deenadayal M, Shivaji S, Bhanoori M. Polymorphisms in the TFAM and PGC1-α genes and their association with polycystic ovary syndrome among South Indian women. Gene 2017; 641:129-136. [PMID: 29030253 DOI: 10.1016/j.gene.2017.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/13/2017] [Accepted: 10/06/2017] [Indexed: 01/15/2023]
Abstract
We investigated the link between polymorphisms in genes involved in mitochondrial biogenesis, mitochondrial transcription factor A (TFAM) and Peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α) and further studied the role of these genes on the pathophysiology of polycystic ovary syndrome (PCOS). This case-control study was carried out in 118 PCOS cases and 110 controls. In the present study we genotyped three polymorphisms of PGC1-α gene (rs8192678-Gly482Ser, rs13131226 and rs2970856) and polymorphism of TFAM gene (rs1937-+35G/C) by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. In addition, to better understand genetic contributions to the pathophysiology of PCOS, mtDNA copy number (MCN) was quantified using a qRT-PCR assay in the subjects. The results revealed that the distribution of genotypes and allele frequency of the PGC-1α Gly482Ser polymorphism in PCOS patients was statistically significant from those of the control group respectively (OR-2.488; 95% CI-1.0673 to 5.7998; P=0.047), (OR-1.6091; 95% CI-1.0955 to 2.3634; P=0.015) indicating that the presence of 'A' allele might confer risk to PCOS. Patients with the 'AA' genotype showed significantly lower levels of MCN compared with patients with other genotypes. In addition, patients carrying CT genotype of PGC1-α rs2970856 demonstrated significantly higher levels of LH (P=0.030) than TT and CC genotypes. In conclusion, our study indicates that carriers of the PGC-1α rs8192678 'Ser' allele have increased risk of developing PCOS.
Collapse
Affiliation(s)
- Tumu Venkat Reddy
- Department of Biochemistry, Osmania University, Hyderabad 500 007, India
| | - Suresh Govatati
- Department of Biochemistry, Osmania University, Hyderabad 500 007, India
| | - Mamata Deenadayal
- Infertility Institute and Research Centre (IIRC), Secunderabad, India.
| | - Sisinthy Shivaji
- Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500 007, India.
| | - Manjula Bhanoori
- Department of Biochemistry, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
244
|
Zhang P, Lehmann BD, Samuels DC, Zhao S, Zhao YY, Shyr Y, Guo Y. Estimating relative mitochondrial DNA copy number using high throughput sequencing data. Genomics 2017; 109:457-462. [PMID: 28734953 DOI: 10.1016/j.ygeno.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 02/05/2023]
Abstract
We hypothesize that the relative mitochondria copy number (MTCN) can be estimated by comparing the abundance of mitochondrial DNA to nuclear DNA reads using high throughput sequencing data. To test this hypothesis, we examined relative MTCN across 13 breast cancer cell lines using the RT-PCR based NovaQUANT Human Mitochondrial to Nuclear DNA Ratio Kit as the gold standard. Six distinct computational approaches were used to estimate the relative MTCN in order to compare to the RT-PCR measurements. The results demonstrate that relative MTCN correlates well with the RT-PCR measurements using exome sequencing data, but not RNA-seq data. Through analysis of copy number variants (CNVs) in The Cancer Genome Atlas, we show that the two nuclear genes used in the NovaQUANT assay to represent the nuclear genome often experience CNVs in tumor cells, questioning the accuracy of this gold-standard method when it is applied to tumor cells.
Collapse
Affiliation(s)
- Pan Zhang
- Center for Quantitative Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian D Lehmann
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Shilin Zhao
- Center for Quantitative Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA
| | - Yan Guo
- Center for Quantitative Sciences, Vanderbilt University, Nashville, TN 37232, USA; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
245
|
Complete mitochondrial genome of Porzana fusca and Porzana pusilla and phylogenetic relationship of 16 Rallidae species. Genetica 2017; 145:559-573. [DOI: 10.1007/s10709-017-9982-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022]
|
246
|
Vriens A, Nawrot TS, Baeyens W, Den Hond E, Bruckers L, Covaci A, Croes K, De Craemer S, Govarts E, Lambrechts N, Loots I, Nelen V, Peusens M, De Henauw S, Schoeters G, Plusquin M. Neonatal exposure to environmental pollutants and placental mitochondrial DNA content: A multi-pollutant approach. ENVIRONMENT INTERNATIONAL 2017; 106:60-68. [PMID: 28600986 DOI: 10.1016/j.envint.2017.05.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Placental mitochondrial DNA (mtDNA) content can be indicative of oxidative damage to the placenta during fetal development and is responsive to external stressors. In utero exposure to environmental pollutants that may influence placental mtDNA needs further exploration. OBJECTIVES We evaluated if placental mtDNA content is altered by environmental pollution in newborns and identified pollutants independently associated to alterations in placental mtDNA content. METHODS mtDNA content was measured in placental tissue of 233 newborns. Four perfluoroalkyl compounds and nine organochlorine compounds were quantified in cord blood plasma samples and six toxic metals in whole cord blood. We first applied a LASSO (least absolute shrinkage and selection operator) penalized regression model to identify independent associations between environmental pollutants and placental mtDNA content, without penalization of several covariates. Then adjusted estimates were obtained using an ordinary least squares (OLS) regression model evaluating the pollutants' association with placental mtDNA content, adjusted for several covariates. RESULTS Based on LASSO penalized regression, oxychlordane, p,p'-dichlorodiphenyldichloroethylene, β-hexachlorocyclohexane, perfluorononanoic acid, arsenic, cadmium and thallium were identified to be independently associated with placental mtDNA content. The OLS model showed a higher placental mtDNA content of 2.71% (95% CI: 0.3 to 5.2%; p=0.03) and 1.41% (0.1 to 2.8%, p=0.04) for a 25% concentration increase of respectively cord blood β-hexachlorocyclohexane and arsenic. For a 25% concentration increase of cord blood thallium, a 4.88% lower placental mtDNA content (95% CI: -9.1 to -0.5%, p=0.03) was observed. CONCLUSION In a multi-pollutant approach, low fetal exposure levels of environmental organic and inorganic pollutants might compromise placental mitochondrial function as exemplified in this study by alterations in mtDNA content.
Collapse
Affiliation(s)
- Annette Vriens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; School of Public Health, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Kim Croes
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sam De Craemer
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Govarts
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Nathalie Lambrechts
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Ilse Loots
- Faculty of Social Sciences and IMDO-Institute, University of Antwerp, Antwerp, Belgium
| | - Vera Nelen
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - Martien Peusens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Stefaan De Henauw
- Department of Public Health, Ghent University, Ghent, Belgium; Department of Food Safety and Food Quality, Ghent University, Ghent, Belgium
| | - Greet Schoeters
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
247
|
Winckelmans E, Nawrot TS, Tsamou M, Den Hond E, Baeyens W, Kleinjans J, Lefebvre W, Van Larebeke N, Peusens M, Plusquin M, Reynders H, Schoeters G, Vanpoucke C, de Kok TM, Vrijens K. Transcriptome-wide analyses indicate mitochondrial responses to particulate air pollution exposure. Environ Health 2017; 16:87. [PMID: 28821289 PMCID: PMC5563023 DOI: 10.1186/s12940-017-0292-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Due to their lack of repair capacity mitochondria are critical targets for environmental toxicants. We studied genes and pathways reflecting mitochondrial responses to short- and medium-term PM10 exposure. METHODS Whole genome gene expression was measured in peripheral blood of 98 adults (49% women). We performed linear regression analyses stratified by sex and adjusted for individual and temporal characteristics to investigate alterations in gene expression induced by short-term (week before blood sampling) and medium-term (month before blood sampling) PM10 exposure. Overrepresentation analyses (ConsensusPathDB) were performed to identify enriched mitochondrial associated pathways and gene ontology sets. Thirteen Human MitoCarta genes were measured by means of quantitative real-time polymerase chain reaction (qPCR) along with mitochondrial DNA (mtDNA) content in an independent validation cohort (n = 169, 55.6% women). RESULTS Overrepresentation analyses revealed significant pathways (p-value <0.05) related to mitochondrial genome maintenance and apoptosis for short-term exposure and to the electron transport chain (ETC) for medium-term exposure in women. For men, medium-term PM10 exposure was associated with the Tri Carbonic Acid cycle. In an independent study population, we validated several ETC genes, including UQCRH and COX7C (q-value <0.05), and some genes crucial for the maintenance of the mitochondrial genome, including LONP1 (q-value: 0.07) and POLG (q-value: 0.04) in women. CONCLUSIONS In this exploratory study, we identified mitochondrial genes and pathways associated with particulate air pollution indicating upregulation of energy producing pathways as a potential mechanism to compensate for PM-induced mitochondrial damage.
Collapse
Affiliation(s)
- Ellen Winckelmans
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
- Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Maria Tsamou
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
| | | | - Willy Baeyens
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | | | - Nicolas Van Larebeke
- Department of Radiotherapy and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Martien Peusens
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
| | - Hans Reynders
- Environment, Nature and Energy Department, Flemish Government, Brussels, Belgium
| | - Greet Schoeters
- Flemish Institute for Technological Research, Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Institute of Public Health, Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium
| |
Collapse
|
248
|
Abstract
The kidney requires a large number of mitochondria to remove waste from the blood and regulate fluid and electrolyte balance. Mitochondria provide the energy to drive these important functions and can adapt to different metabolic conditions through a number of signalling pathways (for example, mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) pathways) that activate the transcriptional co-activator peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α), and by balancing mitochondrial dynamics and energetics to maintain mitochondrial homeostasis. Mitochondrial dysfunction leads to a decrease in ATP production, alterations in cellular functions and structure, and the loss of renal function. Persistent mitochondrial dysfunction has a role in the early stages and progression of renal diseases, such as acute kidney injury (AKI) and diabetic nephropathy, as it disrupts mitochondrial homeostasis and thus normal kidney function. Improving mitochondrial homeostasis and function has the potential to restore renal function, and administering compounds that stimulate mitochondrial biogenesis can restore mitochondrial and renal function in mouse models of AKI and diabetes mellitus. Furthermore, inhibiting the fission protein dynamin 1-like protein (DRP1) might ameliorate ischaemic renal injury by blocking mitochondrial fission.
Collapse
|
249
|
Clemente DBP, Casas M, Janssen BG, Lertxundi A, Santa-Marina L, Iñiguez C, Llop S, Sunyer J, Guxens M, Nawrot TS, Vrijheid M. Prenatal ambient air pollution exposure, infant growth and placental mitochondrial DNA content in the INMA birth cohort. ENVIRONMENTAL RESEARCH 2017; 157:96-102. [PMID: 28535425 DOI: 10.1016/j.envres.2017.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND The association between prenatal air pollution exposure and postnatal growth has hardly been explored. Mitochondrial DNA (mtDNA), as a marker of oxidative stress, and growth at birth can play an intermediate role in this association. OBJECTIVE In a subset of the Spanish birth cohort INMA we assessed first whether prenatal nitrogen dioxide (NO2) exposure is associated with infant growth. Secondly, we evaluated whether growth at birth (length and weight) could play a mediating role in this association. Finally, the mediation role of placental mitochondrial DNA content in this association was assessed. METHODS In 336 INMA children, relative placental mtDNA content was measured. Land-use regression models were used to estimate prenatal NO2 exposure. Infant growth (height and weight) was assessed at birth, at 6 months of age, and at 1 year of age. We used multiple linear regression models and performed mediation analyses. The proportion of mediation was calculated as the ratio of indirect effect to total effect. RESULTS Prenatal NO2 exposure was inversely associated with all infant growth parameters. A 10µg/m³ increment in prenatal NO2 exposure during trimester 1 of pregnancy was significantly inversely associated with height at 6 months of age (-6.6%; 95%CI: -11.4, -1.9) and weight at 1 year of age (-4.2%; 95%CI: -8.3, -0.1). These associations were mediated by birth length (31.7%; 95%CI: 34.5, 14.3) and weight (53.7%; 95%CI: 65.3, -0.3), respectively. Furthermore, 5.5% (95%CI: 10.0, -0.2) of the association between trimester 1 NO2 exposure and length at 6 months of age could be mediated by placental mtDNA content. CONCLUSIONS Our results suggest that impaired fetal growth caused by prenatal air pollution exposure can lead to impaired infant growth during the first year of life. Furthermore, molecular adaptations in placental mtDNA are associated with postnatal consequences of air pollution induced alterations in growth.
Collapse
Affiliation(s)
- Diana B P Clemente
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Universitat Pompeu Fabra, Barcelona, Spain; CIBER de Epidemiologia y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain.
| | - Maribel Casas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER de Epidemiologia y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Bram G Janssen
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Aitana Lertxundi
- Universidad del País Vasco UPV-EUH, Spain; Health Research Institute, Biodonostia, San Sebastián, Spain
| | - Loreto Santa-Marina
- CIBER de Epidemiologia y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain; Health Research Institute, Biodonostia, San Sebastián, Spain; Public Health Division of Gipuzkoa, Basque Government, Spain
| | - Carmen Iñiguez
- CIBER de Epidemiologia y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; University of Valencia, Valencia, Spain
| | - Sabrina Llop
- CIBER de Epidemiologia y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain; University of Valencia, Valencia, Spain
| | - Jordi Sunyer
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER de Epidemiologia y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Mònica Guxens
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER de Epidemiologia y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Tim S Nawrot
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health & Primary Care, Unit Environment & Health, Leuven University, Leuven, Belgium
| | - Martine Vrijheid
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER de Epidemiologia y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
250
|
Association of mitochondrial DNA in peripheral blood with depression, anxiety and stress- and adjustment disorders in primary health care patients. Eur Neuropsychopharmacol 2017. [PMID: 28647451 DOI: 10.1016/j.euroneuro.2017.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondrial dysfunction may result in a variety of diseases. The objectives here were to examine possible differences in mtDNA copy number between healthy controls and patients with depression, anxiety or stress- and adjustment disorders; the association between mtDNA copy number and disease severity at baseline; and the association between mtDNA copy number and response after an 8-week treatment (mindfulness, cognitive based therapy). A total of 179 patients in primary health care (age 20-64 years) with depression, anxiety and stress- and adjustment disorders, and 320 healthy controls (aged 19-70 years) were included in the study. Relative mtDNA copy number was measured using quantitative real-time PCR on peripheral blood samples. We found that the mean mtDNA copy number was significantly higher in patients compared to controls (84.9 vs 75.9, p<0.0001) at baseline. The difference in mtDNA copy number between patients and controls remained significant after controlling for age and sex (ß=8.13, p<0.0001; linear regression analysis). The mtDNA copy number was significantly associated with Patient Health Questionnaire (PHQ-9) scores (β=0.57, p=0.02) at baseline. After treatment, the change in mtDNA copy number was significantly associated with the treatment response, i.e., change in Hospital Anxiety and Depression Scale (HADS-D) and PHQ-9 scores (ß=1.00, p=0.03 and ß=0.65, p=0.04, respectively), after controlling for baseline scores, age, sex, BMI, smoking status, alcohol drinking and medication. Our findings show that mtDNA copy number is associated with symptoms of depression, anxiety and stress- and adjustment disorders and treatment response in these disorders.
Collapse
|