201
|
Popli P, Chadchan SB, Dias M, Deng X, Gunderson SJ, Jimenez P, Yalamanchili H, Kommagani R. SF3B1-dependent alternative splicing is critical for maintaining endometrial homeostasis and the establishment of pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541590. [PMID: 37292891 PMCID: PMC10245700 DOI: 10.1101/2023.05.20.541590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The remarkable potential of human endometrium to undergo spontaneous remodeling is shaped by controlled spatiotemporal gene expression patterns. Although hormone-driven transcription shown to govern these patterns, the post-transcriptional processing of these mRNA transcripts, including the mRNA splicing in the endometrium is not studied yet. Here, we report that the splicing factor, SF3B1 is central in driving alternative splicing (AS) events that are vital for physiological responses of the endometrium. We show that loss of SF3B1 splicing activity impairs stromal cell decidualization as well as embryo implantation. Transcriptomic analysis revealed that SF3B1 depletion decidualizing stromal cells led to differential mRNA splicing. Specifically, a significant upregulation in mutually exclusive AS events (MXEs) with SF3B1 loss resulted in the generation of aberrant transcripts. Further, we found that some of these candidate genes phenocopy SF3B1 function in decidualization. Importantly, we identify progesterone as a potential upstream regulator of SF3B1-mediated functions in endometrium possibly via maintaining its persistently high levels, in coordination with deubiquitinating enzymes. Collectively, our data suggest that SF3B1-driven alternative splicing plays a critical role in mediating the endometrial-specific transcriptional paradigms. Thus, the identification of novel mRNA variants associated with successful pregnancy establishment may help to develop new strategies to diagnose or prevent early pregnancy loss.
Collapse
|
202
|
Ding S, Dong X, Song X. Tumor educated platelet: the novel BioSource for cancer detection. Cancer Cell Int 2023; 23:91. [PMID: 37170255 PMCID: PMC10176761 DOI: 10.1186/s12935-023-02927-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023] Open
Abstract
Platelets, involved in the whole process of tumorigenesis and development, constantly absorb and enrich tumor-specific substances in the circulation during their life span, thus called "Tumor Educated Platelets" (TEPs). The alterations of platelet mRNA profiles have been identified as tumor markers due to the regulatory mechanism of post-transcriptional splicing. Small nuclear RNAs (SnRNAs), the important spliceosome components in platelets, dominate platelet RNA splicing and regulate the splicing intensity of pre-mRNA. Endogenous variation at the snRNA levels leads to widespread differences in alternative splicing, thereby driving the development and progression of neoplastic diseases. This review systematically expounds the bidirectional tumor-platelets interactions, especially the tumor induced alternative splicing in TEP, and further explores whether molecules related to alternative splicing such as snRNAs can serve as novel biomarkers for cancer diagnostics.
Collapse
Affiliation(s)
- Shanshan Ding
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xiaohan Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
203
|
Yan L, Sun Y, Guo J, Jia R. PD-L1 Exon 3 Is a Hidden Switch of Its Expression and Function in Oral Cancer Cells. Int J Mol Sci 2023; 24:ijms24098193. [PMID: 37175900 PMCID: PMC10178889 DOI: 10.3390/ijms24098193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The interaction between programmed cell death 1 ligand 1 (PD-L1) and programmed cell death protein 1 (PD-1) protects tumor cells from immune surveillance. PD-L1 exon 3 is a potential alternative exon and encodes an Ig variable (IgV) domain. Here, we found that a lack of exon 3 leads to the significant loss of cellular membrane locations and the dramatically reduced protein expression of PD-L1, indicating that PD-L1 exon 3 is essential for its protein expression and translocation to the cell membrane. Notably, oral cancer cells show almost no exon 3 skipping to ensure the expression of the full-length, functional PD-L1 protein. We discovered two key exonic splicing enhancers (ESEs) for exon 3 inclusion. Two efficient antisense oligonucleotides (ASOs) were identified to block these two ESEs, which can significantly trigger exon 3 skipping and decrease the production of full-length, functional PD-L1 on the surface of cancer cells. Treatment of oral cancer cells with these ASOs significantly enhanced immune cells' suppression of cancer cell proliferation. Surprisingly, these two ASOs also significantly inhibited cell growth and induced cell pyroptosis in oral cancer cells. Altogether, the results of our study demonstrate the pivotal roles of exon 3 in PD-L1 expression and provide a novel anti-PD-L1 method.
Collapse
Affiliation(s)
- Lingyan Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yanan Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
204
|
Gallego-Paez LM, Edwards WJS, Chanduri M, Guo Y, Koorman T, Lee CY, Grexa N, Derksen P, Yan J, Schwartz MA, Mauer J, Goult BT. TLN1 contains a cancer-associated cassette exon that alters talin-1 mechanosensitivity. J Cell Biol 2023; 222:213923. [PMID: 36880935 PMCID: PMC9997659 DOI: 10.1083/jcb.202209010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/08/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Talin-1 is the core mechanosensitive adapter protein linking integrins to the cytoskeleton. The TLN1 gene is comprised of 57 exons that encode the 2,541 amino acid TLN1 protein. TLN1 was previously considered to be expressed as a single isoform. However, through differential pre-mRNA splicing analysis, we discovered a cancer-enriched, non-annotated 51-nucleotide exon in TLN1 between exons 17 and 18, which we refer to as exon 17b. TLN1 is comprised of an N-terminal FERM domain, linked to 13 force-dependent switch domains, R1-R13. Inclusion of exon 17b introduces an in-frame insertion of 17 amino acids immediately after Gln665 in the region between R1 and R2 which lowers the force required to open the R1-R2 switches potentially altering downstream mechanotransduction. Biochemical analysis of this isoform revealed enhanced vinculin binding, and cells expressing this variant show altered adhesion dynamics and motility. Finally, we showed that the TGF-β/SMAD3 signaling pathway regulates this isoform switch. Future studies will need to consider the balance of these two TLN1 isoforms.
Collapse
Affiliation(s)
| | | | - Manasa Chanduri
- Departments of Internal Medicine (Cardiology) and Yale Cardiovascular Research Center , New Haven, CT, USA
| | - Yanyu Guo
- Mechanobiology Institute, National University of Singapore , Singapore, Singapore
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht , Utrecht, Netherlands
| | | | - Nina Grexa
- Biomed X Institute (GmbH) , Heidelberg, Germany
| | - Patrick Derksen
- Department of Pathology, University Medical Center Utrecht , Utrecht, Netherlands
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore , Singapore, Singapore.,Department of Physics, National University of Singapore , Singapore, Singapore
| | - Martin A Schwartz
- Departments of Internal Medicine (Cardiology) and Yale Cardiovascular Research Center , New Haven, CT, USA.,Departments of Cell Biology and Biomedical Engineering, Yale School of Medicine , New Haven, CT, USA
| | - Jan Mauer
- Biomed X Institute (GmbH) , Heidelberg, Germany.,Department of Immunology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
205
|
van Tienhoven R, Kracht MJL, van der Slik AR, Thomaidou S, Wolters AHG, Giepmans BNG, Riojas JPR, Nelson MS, Carlotti F, de Koning EJP, Hoeben RC, Zaldumbide A, Roep BO. Presence of immunogenic alternatively spliced insulin gene product in human pancreatic delta cells. Diabetologia 2023; 66:884-896. [PMID: 36884057 PMCID: PMC10036285 DOI: 10.1007/s00125-023-05882-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/23/2022] [Indexed: 03/09/2023]
Abstract
AIMS/HYPOTHESIS Transcriptome analyses revealed insulin-gene-derived transcripts in non-beta endocrine islet cells. We studied alternative splicing of human INS mRNA in pancreatic islets. METHODS Alternative splicing of insulin pre-mRNA was determined by PCR analysis performed on human islet RNA and single-cell RNA-seq analysis. Antisera were generated to detect insulin variants in human pancreatic tissue using immunohistochemistry, electron microscopy and single-cell western blot to confirm the expression of insulin variants. Cytotoxic T lymphocyte (CTL) activation was determined by MIP-1β release. RESULTS We identified an alternatively spliced INS product. This variant encodes the complete insulin signal peptide and B chain and an alternative C-terminus that largely overlaps with a previously identified defective ribosomal product of INS. Immunohistochemical analysis revealed that the translation product of this INS-derived splice transcript was detectable in somatostatin-producing delta cells but not in beta cells; this was confirmed by light and electron microscopy. Expression of this alternatively spliced INS product activated preproinsulin-specific CTLs in vitro. The exclusive presence of this alternatively spliced INS product in delta cells may be explained by its clearance from beta cells by insulin-degrading enzyme capturing its insulin B chain fragment and a lack of insulin-degrading enzyme expression in delta cells. CONCLUSIONS/INTERPRETATION Our data demonstrate that delta cells can express an INS product derived from alternative splicing, containing both the diabetogenic insulin signal peptide and B chain, in their secretory granules. We propose that this alternative INS product may play a role in islet autoimmunity and pathology, as well as endocrine or paracrine function or islet development and endocrine destiny, and transdifferentiation between endocrine cells. INS promoter activity is not confined to beta cells and should be used with care when assigning beta cell identity and selectivity. DATA AVAILABILITY The full EM dataset is available via www.nanotomy.org (for review: http://www.nanotomy.org/OA/Tienhoven2021SUB/6126-368/ ). Single-cell RNA-seq data was made available by Segerstolpe et al [13] and can be found at https://sandberglab.se/pancreas . The RNA and protein sequence of INS-splice was uploaded to GenBank (BankIt2546444 INS-splice OM489474).
Collapse
Affiliation(s)
- René van Tienhoven
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Maria J L Kracht
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arno R van der Slik
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Michael S Nelson
- Light Microscopy Core, City of Hope National Medical Center, Duarte, CA, USA
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart O Roep
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
206
|
Oreper D, Klaeger S, Jhunjhunwala S, Delamarre L. The peptide woods are lovely, dark and deep: Hunting for novel cancer antigens. Semin Immunol 2023; 67:101758. [PMID: 37027981 DOI: 10.1016/j.smim.2023.101758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
Harnessing the patient's immune system to control a tumor is a proven avenue for cancer therapy. T cell therapies as well as therapeutic vaccines, which target specific antigens of interest, are being explored as treatments in conjunction with immune checkpoint blockade. For these therapies, selecting the best suited antigens is crucial. Most of the focus has thus far been on neoantigens that arise from tumor-specific somatic mutations. Although there is clear evidence that T-cell responses against mutated neoantigens are protective, the large majority of these mutations are not immunogenic. In addition, most somatic mutations are unique to each individual patient and their targeting requires the development of individualized approaches. Therefore, novel antigen types are needed to broaden the scope of such treatments. We review high throughput approaches for discovering novel tumor antigens and some of the key challenges associated with their detection, and discuss considerations when selecting tumor antigens to target in the clinic.
Collapse
Affiliation(s)
- Daniel Oreper
- Genentech, 1 DNA way, South San Francisco, 94080 CA, USA.
| | - Susan Klaeger
- Genentech, 1 DNA way, South San Francisco, 94080 CA, USA.
| | | | | |
Collapse
|
207
|
Di Matteo A, Belloni E, Pradella D, Chiaravalli AM, Pini GM, Bugatti M, Alfieri R, Barzan C, Franganillo Tena E, Bione S, Terenzani E, Sessa F, Wyatt CDR, Vermi W, Ghigna C. Alternative Splicing Changes Promoted by NOVA2 Upregulation in Endothelial Cells and Relevance for Gastric Cancer. Int J Mol Sci 2023; 24:ijms24098102. [PMID: 37175811 PMCID: PMC10178952 DOI: 10.3390/ijms24098102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Giacomo Maria Pini
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Chiara Barzan
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Istituto Universitario di Studi Superiori (IUSS), Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Elena Franganillo Tena
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Terenzani
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Fausto Sessa
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Surgery, Università degli Studi dell'Insubria, 21100 Varese, Italy
| | - Christopher D R Wyatt
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| |
Collapse
|
208
|
Abstract
Our defenses against infection rely on the ability of the immune system to distinguish invading pathogens from self. This task is exceptionally challenging, if not seemingly impossible, in the case of retroviruses that have integrated almost seamlessly into the host. This review examines the limits of innate and adaptive immune responses elicited by endogenous retroviruses and other retroelements, the targets of immune recognition, and the consequences for host health and disease. Contrary to theoretical expectation, endogenous retroelements retain substantial immunogenicity, which manifests most profoundly when their epigenetic repression is compromised, contributing to autoinflammatory and autoimmune disease and age-related inflammation. Nevertheless, recent evidence suggests that regulated immune reactivity to endogenous retroelements is integral to immune system development and function, underpinning cancer immunosurveillance, resistance to infection, and responses to the microbiota. Elucidation of the interaction points with endogenous retroelements will therefore deepen our understanding of immune system function and contribution to disease.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom;
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
209
|
Liu M, Zhang S, Zhou H, Hu X, Li J, Fu B, Wei M, Huang H, Wu H. The interplay between non-coding RNAs and alternative splicing: from regulatory mechanism to therapeutic implications in cancer. Theranostics 2023; 13:2616-2631. [PMID: 37215575 PMCID: PMC10196821 DOI: 10.7150/thno.83920] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Alternative splicing (AS) is a common and conserved process in eukaryotic gene regulation. It occurs in approximately 95% of multi-exon genes, greatly enriching the complexity and diversity of mRNAs and proteins. Recent studies have found that in addition to coding RNAs, non-coding RNAs (ncRNAs) are also inextricably linked with AS. Multiple different types of ncRNAs are generated by AS of precursor long non-coding (pre-lncRNAs) or precursor messenger RNAs (pre-mRNAs). Furthermore, ncRNAs, as a novel class of regulators, can participate in AS regulation by interacting with the cis-acting elements or trans-acting factors. Several studies have implicated abnormal expression of ncRNAs and ncRNA-related AS events in the initiation, progression, and therapy resistance in various types of cancers. Therefore, owing to their roles in mediating drug resistance, ncRNAs, AS-related factors and AS-related novel antigens may serve as promising therapeutic targets in cancer treatment. In this review, we summarize the interaction between ncRNAs and AS processes, emphasizing their great influences on cancer, especially on chemoresistance, and highlighting their potential values in clinical treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Subo Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Heng Zhou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Jianing Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, Liaoning, P. R. China
| | - Huilin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| |
Collapse
|
210
|
Wen B, Zhang B. PepQuery2 democratizes public MS proteomics data for rapid peptide searching. Nat Commun 2023; 14:2213. [PMID: 37072382 PMCID: PMC10113256 DOI: 10.1038/s41467-023-37462-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023] Open
Abstract
We present PepQuery2, which leverages a new tandem mass spectrometry (MS/MS) data indexing approach to enable ultrafast, targeted identification of novel and known peptides in any local or publicly available MS proteomics datasets. The stand-alone version of PepQuery2 allows directly searching more than one billion indexed MS/MS spectra in the PepQueryDB or any public datasets from PRIDE, MassIVE, iProX, or jPOSTrepo, whereas the web version enables users to search datasets in PepQueryDB with a user-friendly interface. We demonstrate the utilities of PepQuery2 in a wide range of applications including detecting proteomic evidence for genomically predicted novel peptides, validating novel and known peptides identified using spectrum-centric database searching, prioritizing tumor-specific antigens, identifying missing proteins, and selecting proteotypic peptides for targeted proteomics experiments. By putting public MS proteomics data directly into the hands of scientists, PepQuery2 opens many new ways to transform these data into useful information for the broad research community.
Collapse
Affiliation(s)
- Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
211
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
212
|
Song S, Zhang W, Li Q, Wang Z, Su Q, Zhang X, Li B, Zhuang W. Dysregulation of alternative splicing contributes to multiple myeloma pathogenesis. Br J Cancer 2023; 128:1086-1094. [PMID: 36593359 PMCID: PMC10006196 DOI: 10.1038/s41416-022-02124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Dysregulation of alternative splicing (AS) triggers many tumours, understanding the roles of splicing events during tumorigenesis would open new avenues for therapies and prognosis in multiple myeloma (MM). METHODS Molecular, genetic, bioinformatic and statistic approaches are used to determine the mechanism of the candidate splicing factor (SF) in myeloma cell lines, myeloma xenograft models and MM patient samples. RESULTS GSEA reveals a significant difference in the expression pattern of the alternative splicing pathway genes, notably enriched in MM patients. Upregulation of the splicing factor SRSF1 is observed in the progression of plasma cell dyscrasias and predicts MM patients' poor prognosis. The c-indices of the Cox model indicated that SRSF1 improved the prognostic stratification of MM patients. Moreover, SRSF1 knockdown exerts a broad anti-myeloma activity in vitro and in vivo. The upregulation of SRSF1 is caused by the transcription factor YY1, which also functions as an oncogene in myeloma cells. Through RNA-Seq, we systematically verify that SRSF1 promotes the tumorigenesis of myeloma cells by switching AS events. CONCLUSION Our results emphasise the importance of AS for promoting tumorigenesis of MM. The candidate SF might be considered as a valuable therapeutic target and a potential prognostic biomarker for MM.
Collapse
Affiliation(s)
- Sha Song
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Weimin Zhang
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Li
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiming Wang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qi Su
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xinyun Zhang
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingzong Li
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
213
|
Park J, Park J, Chung YJ. Alternative splicing: a new breakthrough for understanding tumorigenesis and potential clinical applications. Genes Genomics 2023; 45:393-400. [PMID: 36656436 DOI: 10.1007/s13258-023-01365-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Alternative splicing (AS) is a post-transcriptional process that produces transcript variants, thus leading to transcriptome complexity. Recently, the scope of AS studies has been greatly expanded toward clinical applications owing to the abundance of RNA sequencing data. OBJECTIVE This review consists of two parts. We first summarize bioinformatic resources that are useful for large-scale cancer-related AS studies. We then highlight the research efforts to utilize AS events for predicting clinical outcomes and planning therapeutic strategies. RESULTS Computational approaches to interrogate AS events have been reviewed under three categories: (1) databases to provide functional and clinical annotation of AS events, (2) analytical tools to identify cancer-associated AS event, and (3) methods to identify splicing-related DNA variants and splicing-derived neoantigens. We also present the recent progress in exploring the clinical utility of AS under four categories: (1) identification of AS events for cancer prognosis, (2) utilization of AS events in molecular classification of various cancers, (3) regulatory mechanisms of AS underlying drug resistance, and (4) potential use of AS in cancer therapy. CONCLUSION This review will be helpful for understanding the biological implications of AS in cancer and facilitate the development of AS markers for cancer prognosis and treatment. We anticipate that future studies will lead to the application of genome-wide AS profiles in cancer precision medicine.
Collapse
Affiliation(s)
- Jiyeon Park
- Precision Medicine Research Center, Seoul, Republic of Korea
- Integrated Research Center for Genome Polymorphism,, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, Seoul, Republic of Korea
| | - Joonhyuck Park
- Department of Biomedicine & Health Sciences, Graduate School, Seoul, Republic of Korea.
- 4Department of Medical Life science, Seoul, Republic of Korea.
- Department of Medical Life science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea.
| | - Yeun-Jun Chung
- Precision Medicine Research Center, Seoul, Republic of Korea.
- Integrated Research Center for Genome Polymorphism,, Seoul, Republic of Korea.
- Department of Biomedicine & Health Sciences, Graduate School, Seoul, Republic of Korea.
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea.
| |
Collapse
|
214
|
Abstract
Alternative splicing (AS) of mRNAs is an essential regulatory mechanism in eukaryotic gene expression. AS misregulation, caused by either dysregulation or mutation of splicing factors, has been shown to be involved in cancer development and progression, making splicing factors suitable targets for cancer therapy. In recent years, various types of pharmacological modulators, such as small molecules and oligonucleotides, targeting distinct components of the splicing machinery, have been under development to treat multiple disorders. Although these approaches have promise, targeting the core spliceosome components disrupts the early stages of spliceosome assembly and can lead to nonspecific and toxic effects. New research directions have been focused on targeting specific splicing factors for a more precise effect. In this Perspective, we will highlight several approaches for targeting splicing factors and their functions and suggest ways to improve their specificity.
Collapse
Affiliation(s)
- Ariel Bashari
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| |
Collapse
|
215
|
Shah NM, Jang HJ, Liang Y, Maeng JH, Tzeng SC, Wu A, Basri NL, Qu X, Fan C, Li A, Katz B, Li D, Xing X, Evans BS, Wang T. Pan-cancer analysis identifies tumor-specific antigens derived from transposable elements. Nat Genet 2023; 55:631-639. [PMID: 36973455 DOI: 10.1038/s41588-023-01349-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
Cryptic promoters within transposable elements (TEs) can be transcriptionally reactivated in tumors to create new TE-chimeric transcripts, which can produce immunogenic antigens. We performed a comprehensive screen for these TE exaptation events in 33 TCGA tumor types, 30 GTEx adult tissues and 675 cancer cell lines, and identified 1,068 TE-exapted candidates with the potential to generate shared tumor-specific TE-chimeric antigens (TS-TEAs). Whole-lysate and HLA-pulldown mass spectrometry data confirmed that TS-TEAs are presented on the surface of cancer cells. In addition, we highlight tumor-specific membrane proteins transcribed from TE promoters that constitute aberrant epitopes on the extracellular surface of cancer cells. Altogether, we showcase the high pan-cancer prevalence of TS-TEAs and atypical membrane proteins that could potentially be therapeutically exploited and targeted.
Collapse
Affiliation(s)
- Nakul M Shah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - H Josh Jang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Yonghao Liang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ju Heon Maeng
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Angela Wu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Noah L Basri
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuan Qu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Changxu Fan
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Katz
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
216
|
Varabyou A, Erdogdu B, Salzberg SL, Pertea M. Investigating Open Reading Frames in Known and Novel Transcripts using ORFanage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533704. [PMID: 36993373 PMCID: PMC10055401 DOI: 10.1101/2023.03.23.533704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
ORFanage is a system designed to assign open reading frames (ORFs) to both known and novel gene transcripts while maximizing similarity to annotated proteins. The primary intended use of ORFanage is the identification of ORFs in the assembled results of RNA sequencing (RNA-seq) experiments, a capability that most transcriptome assembly methods do not have. Our experiments demonstrate how ORFanage can be used to find novel protein variants in RNA-seq datasets, and to improve the annotations of ORFs in tens of thousands of transcript models in the RefSeq and GENCODE human annotation databases. Through its implementation of a highly accurate and efficient pseudo-alignment algorithm, ORFanage is substantially faster than other ORF annotation methods, enabling its application to very large datasets. When used to analyze transcriptome assemblies, ORFanage can aid in the separation of signal from transcriptional noise and the identification of likely functional transcript variants, ultimately advancing our understanding of biology and medicine.
Collapse
Affiliation(s)
- Ales Varabyou
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Beril Erdogdu
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Steven L Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
217
|
Cotto KC, Feng YY, Ramu A, Richters M, Freshour SL, Skidmore ZL, Xia H, McMichael JF, Kunisaki J, Campbell KM, Chen THP, Rozycki EB, Adkins D, Devarakonda S, Sankararaman S, Lin Y, Chapman WC, Maher CA, Arora V, Dunn GP, Uppaluri R, Govindan R, Griffith OL, Griffith M. Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer. Nat Commun 2023; 14:1589. [PMID: 36949070 PMCID: PMC10033906 DOI: 10.1038/s41467-023-37266-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Somatic mutations within non-coding regions and even exons may have unidentified regulatory consequences that are often overlooked in analysis workflows. Here we present RegTools ( www.regtools.org ), a computationally efficient, free, and open-source software package designed to integrate somatic variants from genomic data with splice junctions from bulk or single cell transcriptomic data to identify variants that may cause aberrant splicing. We apply RegTools to over 9000 tumor samples with both tumor DNA and RNA sequence data. RegTools discovers 235,778 events where a splice-associated variant significantly increases the splicing of a particular junction, across 158,200 unique variants and 131,212 unique junctions. To characterize these somatic variants and their associated splice isoforms, we annotate them with the Variant Effect Predictor, SpliceAI, and Genotype-Tissue Expression junction counts and compare our results to other tools that integrate genomic and transcriptomic data. While many events are corroborated by the aforementioned tools, the flexibility of RegTools also allows us to identify splice-associated variants in known cancer drivers, such as TP53, CDKN2A, and B2M, and other genes.
Collapse
Affiliation(s)
- Kelsy C Cotto
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Yang-Yang Feng
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Avinash Ramu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan Richters
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharon L Freshour
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachary L Skidmore
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Huiming Xia
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua F McMichael
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Kunisaki
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie M Campbell
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy Hung-Po Chen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily B Rozycki
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Douglas Adkins
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Siddhartha Devarakonda
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sumithra Sankararaman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiing Lin
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - William C Chapman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Maher
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivek Arora
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Mass General Hospital, Boston, MA, USA
- Center for Brain Tumor Immunology and Immunotherapy, Mass General Hospital, Boston, MA, USA
| | - Ravindra Uppaluri
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Obi L Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
218
|
Fackenthal JD. Alternative mRNA Splicing and Promising Therapies in Cancer. Biomolecules 2023; 13:biom13030561. [PMID: 36979496 PMCID: PMC10046298 DOI: 10.3390/biom13030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer is among the leading causes of mortality worldwide. While considerable attention has been given to genetic and epigenetic sources of cancer-specific cellular activities, the role of alternative mRNA splicing has only recently received attention as a major contributor to cancer initiation and progression. The distribution of alternate mRNA splicing variants in cancer cells is different from their non-cancer counterparts, and cancer cells are more sensitive than non-cancer cells to drugs that target components of the splicing regulatory network. While many of the alternatively spliced mRNAs in cancer cells may represent "noise" from splicing dysregulation, certain recurring splicing variants have been shown to contribute to tumor progression. Some pathogenic splicing disruption events result from mutations in cis-acting splicing regulatory sequences in disease-associated genes, while others may result from shifts in balance among naturally occurring alternate splicing variants among mRNAs that participate in cell cycle progression and the regulation of apoptosis. This review provides examples of cancer-related alternate splicing events resulting from each step of mRNA processing and the promising therapies that may be used to address them.
Collapse
Affiliation(s)
- James D Fackenthal
- Department of Biological Sciences, College of Science and Health, Benedictine University, Lisle, IL 60532, USA
| |
Collapse
|
219
|
Ahn R, Cui Y, White FM. Antigen discovery for the development of cancer immunotherapy. Semin Immunol 2023; 66:101733. [PMID: 36841147 DOI: 10.1016/j.smim.2023.101733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Central to successful cancer immunotherapy is effective T cell antitumor immunity. Multiple targeted immunotherapies engineered to invigorate T cell-driven antitumor immunity rely on identifying the repertoire of T cell antigens expressed on the tumor cell surface. Mass spectrometry-based survey of such antigens ("immunopeptidomics") combined with other omics platforms and computational algorithms has been instrumental in identifying and quantifying tumor-derived T cell antigens. In this review, we discuss the types of tumor antigens that have emerged for targeted cancer immunotherapy and the immunopeptidomics methods that are central in MHC peptide identification and quantification. We provide an overview of the strength and limitations of mass spectrometry-driven approaches and how they have been integrated with other technologies to discover targetable T cell antigens for cancer immunotherapy. We highlight some of the emerging cancer immunotherapies that successfully capitalized on immunopeptidomics, their challenges, and mass spectrometry-based strategies that can support their development.
Collapse
Affiliation(s)
- Ryuhjin Ahn
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yufei Cui
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Forest M White
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
220
|
Achour C, Bhattarai DP, Groza P, Román ÁC, Aguilo F. METTL3 regulates breast cancer-associated alternative splicing switches. Oncogene 2023; 42:911-925. [PMID: 36725888 PMCID: PMC10020087 DOI: 10.1038/s41388-023-02602-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Alternative splicing (AS) enables differential inclusion of exons from a given transcript, thereby contributing to the transcriptome and proteome diversity. Aberrant AS patterns play major roles in the development of different pathologies, including breast cancer. N6-methyladenosine (m6A), the most abundant internal modification of eukaryotic mRNA, influences tumor progression and metastasis of breast cancer, and it has been recently linked to AS regulation. Here, we identify a specific AS signature associated with breast tumorigenesis in vitro. We characterize for the first time the role of METTL3 in modulating breast cancer-associated AS programs, expanding the role of the m6A-methyltransferase in tumorigenesis. Specifically, we find that both m6A deposition in splice site boundaries and in splicing and transcription factor transcripts, such as MYC, direct AS switches of specific breast cancer-associated transcripts. Finally, we show that five of the AS events validated in vitro are associated with a poor overall survival rate for patients with breast cancer, suggesting the use of these AS events as a novel potential prognostic biomarker.
Collapse
Affiliation(s)
- Cyrinne Achour
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Devi Prasad Bhattarai
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Paula Groza
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Ángel-Carlos Román
- Department of Molecular Biology and Genetics, University of Extremadura, 06071, Badajoz, Spain.
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
221
|
Abstract
Dysregulated RNA splicing is a molecular feature that characterizes almost all tumour types. Cancer-associated splicing alterations arise from both recurrent mutations and altered expression of trans-acting factors governing splicing catalysis and regulation. Cancer-associated splicing dysregulation can promote tumorigenesis via diverse mechanisms, contributing to increased cell proliferation, decreased apoptosis, enhanced migration and metastatic potential, resistance to chemotherapy and evasion of immune surveillance. Recent studies have identified specific cancer-associated isoforms that play critical roles in cancer cell transformation and growth and demonstrated the therapeutic benefits of correcting or otherwise antagonizing such cancer-associated mRNA isoforms. Clinical-grade small molecules that modulate or inhibit RNA splicing have similarly been developed as promising anticancer therapeutics. Here, we review splicing alterations characteristic of cancer cell transcriptomes, dysregulated splicing's contributions to tumour initiation and progression, and existing and emerging approaches for targeting splicing for cancer therapy. Finally, we discuss the outstanding questions and challenges that must be addressed to translate these findings into the clinic.
Collapse
Affiliation(s)
- Robert K Bradley
- Computational Biology Program, Public Health Sciences Division and Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
222
|
Liu M, Han Z, Zhi Y, Ruan Y, Cao G, Wang G, Xu X, Mu J, Kang J, Dai F, Wen X, Zhang Q, Li F. Long-read sequencing reveals oncogenic mechanism of HPV-human fusion transcripts in cervical cancer. Transl Res 2023; 253:80-94. [PMID: 36223881 DOI: 10.1016/j.trsl.2022.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Integration of high-risk human papillomavirus (HPV) into the host genome is a crucial event for the development of cervical cancer, however, the underlying mechanism of HPV integration-driven carcinogenesis remains unknown. Here, we performed long-read RNA sequencing on 12 high-grade squamous intraepithelial lesions (HSIL) and cervical cancer patients, including 3 pairs of cervical cancer and corresponding para-cancerous tissue samples to investigate the full-length landscape of cross-species genome integrations. In addition to massive unannotated isoforms, transcriptional regulatory events, and gene chimerism, more importantly, we found that HPV-human fusion events were prevalent in HPV-associated cervical cancers. Combined with the genome data, we revealed the existence of a universal transcription pattern in these fusion events, whereby structurally similar fusion transcripts were generated by specific splicing in E6 and a canonical splicing donor site in E1 linking to various human splicing acceptors. Highly expressed HPV-human fusion transcripts, eg, HPV16 E6*I-E7-E1SD880-human gene, were the key driver of cervical carcinogenesis, which could trigger overexpression of E6*I and E7, and destroy the transcription of tumor suppressor genes CMAHP, TP63 and P3H2. Finally, evidence from in vitro and in vivo experiments demonstrates that the novel read-through fusion gene mRNA, E1-CMAHP (E1C, formed by the integration of HPV58 E1 with CMAHP), existed in the fusion transcript can promote malignant transformation of cervical epithelial cells via regulating downstream oncogenes to participate in various biological processes. Taken together, we reveal a previously unknown mechanism of HPV integration-driven carcinogenesis and provide a novel target for the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Min Liu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhi
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yetian Ruan
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangxu Cao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinxin Xu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fangping Dai
- Genome-decoding Biomedical Technology Co., Ltd, Nantong, China
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA
| | - Qingfeng Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, China.
| | - Fang Li
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
223
|
Huang K, Wu S, Yang X, Wang T, Liu X, Zhou X, Huang L. CAFuncAPA: a knowledgebase for systematic functional annotations of APA events in human cancers. NAR Cancer 2023; 5:zcad004. [PMID: 36694725 PMCID: PMC9869079 DOI: 10.1093/narcan/zcad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Alternative polyadenylation (APA) is a widespread posttranscriptional regulation process. APA generates diverse mRNA isoforms with different 3' UTR lengths, affecting mRNA expression, miRNA binding regulation and alternative splicing events. Previous studies have demonstrated the important roles of APA in tumorigenesis and cancer progression through diverse aspects. Thus, a comprehensive functional landscape of diverse APA events would aid in a better understanding of the underlying mechanisms related to APA in human cancers. Here, we built CAFuncAPA (https://relab.xidian.edu.cn/CAFuncAPA/) to systematically annotate the functions of 15478 APA events in human pan-cancers. Specifically, we first identified APA events associated with cancer survival and tumor progression. We annotated the potential downstream effects of APA on genes/isoforms expression, regulation of miRNAs, RNA binding proteins (RBPs) and alternative splicing events. Moreover, we also identified up-regulators of APA events, including the effects of genetic variants on poly(A) sites and RBPs, as well as the effect of methylation phenotypes on APA events. These findings suggested that CAFuncAPA can be a helpful resource for a better understanding of APA regulators and potential functions in cancer biology.
Collapse
Affiliation(s)
- Kexin Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
- West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Sijia Wu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Xiaotong Yang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Tiangang Wang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Xi Liu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
224
|
Zheng R, Dunlap M, Lyu J, Gonzalez-Figueroa C, Bobkov G, Harvey SE, Chan TW, Quinones-Valdez G, Choudhury M, Vuong A, Flynn RA, Chang HY, Xiao X, Cheng C. LINE-associated cryptic splicing induces dsRNA-mediated interferon response and tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529804. [PMID: 36865202 PMCID: PMC9980139 DOI: 10.1101/2023.02.23.529804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
RNA splicing plays a critical role in post-transcriptional gene regulation. Exponential expansion of intron length poses a challenge for accurate splicing. Little is known about how cells prevent inadvertent and often deleterious expression of intronic elements due to cryptic splicing. In this study, we identify hnRNPM as an essential RNA binding protein that suppresses cryptic splicing through binding to deep introns, preserving transcriptome integrity. Long interspersed nuclear elements (LINEs) harbor large amounts of pseudo splice sites in introns. hnRNPM preferentially binds at intronic LINEs and represses LINE-containing pseudo splice site usage for cryptic splicing. Remarkably, a subgroup of the cryptic exons can form long dsRNAs through base-pairing of inverted Alu transposable elements scattered in between LINEs and trigger interferon immune response, a well-known antiviral defense mechanism. Notably, these interferon-associated pathways are found to be upregulated in hnRNPM-deficient tumors, which also exhibit elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity. Targeting hnRNPM in tumors may be used to trigger an inflammatory immune response thereby boosting cancer surveillance.
Collapse
|
225
|
Ha S, Wang BD. Molecular Insight into Drug Resistance Mechanism Conferred by Aberrant PIK3CD Splice Variant in African American Prostate Cancer. Cancers (Basel) 2023; 15:1337. [PMID: 36831678 PMCID: PMC9954641 DOI: 10.3390/cancers15041337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Targeting PI3Kδ has emerged as a promising therapy for hematologic and non-hematologic malignancies. Previously, we identified an oncogenic splice variant, PIK3CD-S, conferring Idelalisib resistance in African American (AA) prostate cancer (PCa). In the current study, we employed a comprehensive analysis combining molecular biology, biochemistry, histology, in silico simulation, and in vitro functional assays to investigate the PIK3CD-S expression profiles in PCa samples and to elucidate the drug resistance mechanism mediated by PI3Kδ-S (encoded by PIK3CD-S). The immunohistochemistry, RT-PCR, and Western blot assays first confirmed that PI3Kδ-S is highly expressed in AA PCa. Compared with PCa expressing the full-length PI3Kδ-L, PCa expressing PI3Kδ-S exhibits enhanced drug resistance properties, including a higher cell viability, more antiapoptotic and invasive capacities, and constitutively activated PI3K/AKT signaling, in the presence of PI3Kδ/PI3K inhibitors (Idelalisib, Seletalisib, Wortmannin, and Dactolisib). Molecular docking, ATP-competitive assays, and PI3 kinase assays have further indicated a drastically reduced affinity of PI3Kδ inhibitors with PI3Kδ-S vs. PI3Kδ-L, attributed to the lack of core binding residues in the PI3Kδ-S catalytic domain. Additionally, SRSF2 has been identified as a critical splicing factor mediating exon 20 skipping in PIK3CD pre-mRNA. The inhibition of the SRSF2 activity by SRPIN340 successfully sensitizes AA PCa cells to PI3Kδ inhibitors, suggesting a novel therapeutic option for Idelalisib-resistant tumors.
Collapse
Affiliation(s)
- Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
226
|
Merlotti A, Sadacca B, Arribas YA, Ngoma M, Burbage M, Goudot C, Houy A, Rocañín-Arjó A, Lalanne A, Seguin-Givelet A, Lefevre M, Heurtebise-Chrétien S, Baudon B, Oliveira G, Loew D, Carrascal M, Wu CJ, Lantz O, Stern MH, Girard N, Waterfall JJ, Amigorena S. Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Sci Immunol 2023; 8:eabm6359. [PMID: 36735774 DOI: 10.1126/sciimmunol.abm6359] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Although most characterized tumor antigens are encoded by canonical transcripts (such as differentiation or tumor-testis antigens) or mutations (both driver and passenger mutations), recent results have shown that noncanonical transcripts including long noncoding RNAs and transposable elements (TEs) can also encode tumor-specific neo-antigens. Here, we investigate the presentation and immunogenicity of tumor antigens derived from noncanonical mRNA splicing events between coding exons and TEs. Comparing human non-small cell lung cancer (NSCLC) and diverse healthy tissues, we identified a subset of splicing junctions that is both tumor specific and shared across patients. We used HLA-I peptidomics to identify peptides encoded by tumor-specific junctions in primary NSCLC samples and lung tumor cell lines. Recurrent junction-encoded peptides were immunogenic in vitro, and CD8+ T cells specific for junction-encoded epitopes were present in tumors and tumor-draining lymph nodes from patients with NSCLC. We conclude that noncanonical splicing junctions between exons and TEs represent a source of recurrent, immunogenic tumor-specific antigens in patients with NSCLC.
Collapse
Affiliation(s)
- Antonela Merlotti
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Benjamin Sadacca
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
- INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Yago A Arribas
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Mercia Ngoma
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Marianne Burbage
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Christel Goudot
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Alexandre Houy
- INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France
| | - Ares Rocañín-Arjó
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Ana Lalanne
- Institut Curie, Laboratory of Clinical immunology, 75005 Paris, France
- Institut Curie, CIC-BT1428, 75005 Paris, France
| | - Agathe Seguin-Givelet
- Thoracic Surgery Department, Curie-Montsouris Thorax Institute - Institut Mutualiste Montsouris, Paris, France
- Paris 13 University, Sorbonne Paris Cité, Faculty of Medicine SMBH, Bobigny, France
| | - Marine Lefevre
- Department of Pathology, Institute Mutualiste Montsouris, Paris, France
| | | | - Blandine Baudon
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Paris cedex 05, France
| | - Montserrat Carrascal
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona-CSIC, IDIBAPS, Roselló 161, 6a planta, 08036 Barcelona, Spain
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Olivier Lantz
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
- Institut Curie, Laboratory of Clinical immunology, 75005 Paris, France
- Institut Curie, CIC-BT1428, 75005 Paris, France
| | - Marc-Henri Stern
- INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France
| | - Nicolas Girard
- Thoracic Surgery Department, Curie-Montsouris Thorax Institute - Institut Mutualiste Montsouris, Paris, France
| | - Joshua J Waterfall
- INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Sebastian Amigorena
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| |
Collapse
|
227
|
The Pattern of RNA Editing Changes in Pleural Mesothelioma upon Epithelial-Mesenchymal Transition. Int J Mol Sci 2023; 24:ijms24032874. [PMID: 36769192 PMCID: PMC9917482 DOI: 10.3390/ijms24032874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Pleural mesothelioma (PM) is a cancer where epithelioid, biphasic and sarcomatoid histotypes are observed. Sarcomatoid PM is characterized by mesenchymal features. Multi-omics have been used to characterize the epithelial-to-mesenchymal (EMT) phenotype at the molecular level. We contribute to this effort by including the analysis of RNA editing. We extracted samples with the highest vs. lowest Epithelial score from two PM cohorts and observed increased RNA editing in introns and decreased RNA editing in 3'UTR upon EMT. The same was observed in primary PM primary cultures stratified by transcriptomics analysis into two groups, one of them enriched with mesenchymal features. Our data demonstrate that, as has been observed in other cancer types, RNA editing associates to EMT phenotype in PM.
Collapse
|
228
|
Ivanova OM, Anufrieva KS, Kazakova AN, Malyants IK, Shnaider PV, Lukina MM, Shender VO. Non-canonical functions of spliceosome components in cancer progression. Cell Death Dis 2023; 14:77. [PMID: 36732501 PMCID: PMC9895063 DOI: 10.1038/s41419-022-05470-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Dysregulation of pre-mRNA splicing is a common hallmark of cancer cells and it is associated with altered expression, localization, and mutations of the components of the splicing machinery. In the last few years, it has been elucidated that spliceosome components can also influence cellular processes in a splicing-independent manner. Here, we analyze open source data to understand the effect of the knockdown of splicing factors in human cells on the expression and splicing of genes relevant to cell proliferation, migration, cell cycle regulation, DNA repair, and cell death. We supplement this information with a comprehensive literature review of non-canonical functions of splicing factors linked to cancer progression. We also specifically discuss the involvement of splicing factors in intercellular communication and known autoregulatory mechanisms in restoring their levels in cells. Finally, we discuss strategies to target components of the spliceosome machinery that are promising for anticancer therapy. Altogether, this review greatly expands understanding of the role of spliceosome proteins in cancer progression.
Collapse
Affiliation(s)
- Olga M Ivanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Institute for Regenerative Medicine, Sechenov University, Moscow, 119991, Russian Federation.
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Anastasia N Kazakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Russian Federation
| | - Irina K Malyants
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Drugs, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Maria M Lukina
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Victoria O Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation.
| |
Collapse
|
229
|
Shen Y, Li X, Wang D, Zhang L, Li X, Su L, Fan X, Yang X. COL3A1: Potential prognostic predictor for head and neck cancer based on immune-microenvironment alternative splicing. Cancer Med 2023; 12:4882-4894. [PMID: 36039012 PMCID: PMC9972170 DOI: 10.1002/cam4.5170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 11/07/2022] Open
Abstract
We aimed to identify a novel prognostic biomarker for head and neck squamous cell carcinoma (HNSCC) based on tumor immunology-related alternative splicing (AS). Data for 502 HNSCC and 44 normal samples were obtained from the TCGA database and used to establish an AS-related risk model through univariate, least absolute shrinkage, and selection operator Cox regression analyses. Fresh HNSCC and normal oral tissues were surgically obtained from 44 HNSCC patients. Western blotting and quantitative reverse transcription-PCR were used to assess gene expression levels. Kaplan-Meier was performed to evaluate patients' overall survival (OS) rate. The CIBERSORT algorithm, single-sample gene set enrichment analysis, and immune checkpoint analyses were performed to compare immune activities between subgroups. The risk model was established using 10 pivotal AS events first. Collagen Type III Alpha 1 Chain (COL3A1) were screened based on |log2FC| ≥ 1 and FDR < 0.05 criteria. COL3A1 expression levels in HNSCC tissues were elevated relative to normal tissues (p < 0.001). Moreover, COL3A1 was a reliable biomarker for HNSCC patients' prognostic prediction in both cohorts (p < 0.001, p = 0.0085, respectively). COL3A1 protein (p = 0.0054) and mRNA (p < 0.0001) levels were correlated with HNSCC differentiation. Furthermore, the T stage was correlated with COL3A1 expression (p = 0.043), and COL3A1 expression was an independent prognostic predictor for HNSCC patients (p = 0.006). Compared with the risk model, COL3A1 was better at evaluating immune cell infiltrations, immune activities, and immune checkpoint gene expressions of HNSCC lesions.
Collapse
Affiliation(s)
- Yuchen Shen
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Centre for Oral DiseasesShanghaiChina
| | - Xinyu Li
- Department of Neurosurgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Deming Wang
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Centre for Oral DiseasesShanghaiChina
| | - Liming Zhang
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Centre for Oral DiseasesShanghaiChina
| | - Xiao Li
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Centre for Oral DiseasesShanghaiChina
| | - Lixin Su
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Centre for Oral DiseasesShanghaiChina
| | - Xindong Fan
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Centre for Oral DiseasesShanghaiChina
| | - Xitao Yang
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Centre for Oral DiseasesShanghaiChina
| |
Collapse
|
230
|
Che Y, Bai M, Lu K, Fu L. Splicing factor SRSF3 promotes the progression of cervical cancer through regulating DDX5. Mol Carcinog 2023; 62:210-223. [PMID: 36282044 DOI: 10.1002/mc.23477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023]
Abstract
Aberrant alternative splicing (AS) profoundly affects tumorigenesis and cancer progression. Serine/arginine-rich splicing factor 3 (SRSF3) regulates the AS of precursor mRNAs and acts as a proto-oncogene in many tumors, but its function and potential mechanisms in cervical cancer remain unclear. Here, we found that SRSF3 was highly expressed in cervical cancer tissues and that SRSF3 expression was correlated with prognosis after analyses of the The Cancer Genome Atlas and GEO databases. Furthermore, knockdown of SRSF3 reduced the proliferation, migration, and invasion abilities of HeLa cells, while overexpression of SRSF3 promoted proliferation, migration, and invasion of CaSki cells. Further studies showed that SRSF3 mediated the variable splicing of exon 12 of the transcriptional cofactor DEAD-box helicase 5 (DDX5). Specifically, overexpression of SRSF3 promoted the production of the pro-oncogenic spliceosome DDX5-L and repressed the production of the repressive spliceosome DDX5-S. Ultimately, both SRSF3 and DDX5-L were able to upregulate oncogenic AKT expression, while DDX5-S downregulated AKT expression. In conclusion, we found that SRSF3 increased the production of DDX5-L and decreased the production of DDX5-S by regulating the variable splicing of DDX5. This, in turn promoted the proliferation, migration, and invasion of cervical cancer by upregulating the expression level of AKT. These results reveal the oncogenic role of SRSF3 in cervical cancer and emphasize the importance of the SRSF3-DDX5-AKT axis in tumorigenesis. SRSF3 and DDX5 are new potential biomarkers and therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Yingying Che
- School of Basic Medicine, Qingdao University, Qingdao, China.,Weihai Ocean Vocational College, Weihai, China
| | - Mixue Bai
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
231
|
Weber R, Ghoshdastider U, Spies D, Duré C, Valdivia-Francia F, Forny M, Ormiston M, Renz PF, Taborsky D, Yigit M, Bernasconi M, Yamahachi H, Sendoel A. Monitoring the 5'UTR landscape reveals isoform switches to drive translational efficiencies in cancer. Oncogene 2023; 42:638-650. [PMID: 36550360 PMCID: PMC9957725 DOI: 10.1038/s41388-022-02578-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Transcriptional and translational control are key determinants of gene expression, however, to what extent these two processes can be collectively coordinated is still poorly understood. Here, we use Nanopore long-read sequencing and cap analysis of gene expression (CAGE-seq) to document the landscape of 5' and 3' untranslated region (UTR) isoforms and transcription start sites of epidermal stem cells, wild-type keratinocytes and squamous cell carcinomas. Focusing on squamous cell carcinomas, we show that a small cohort of genes with alternative 5'UTR isoforms exhibit overall increased translational efficiencies and are enriched in ribosomal proteins and splicing factors. By combining polysome fractionations and CAGE-seq, we further characterize two of these UTR isoform genes with identical coding sequences and demonstrate that the underlying transcription start site heterogeneity frequently results in 5' terminal oligopyrimidine (TOP) and pyrimidine-rich translational element (PRTE) motif switches to drive mTORC1-dependent translation of the mRNA. Genome-wide, we show that highly translated squamous cell carcinoma transcripts switch towards increased use of 5'TOP and PRTE motifs, have generally shorter 5'UTRs and expose decreased RNA secondary structures. Notably, we found that the two 5'TOP motif-containing, but not the TOP-less, RPL21 transcript isoforms strongly correlated with overall survival in human head and neck squamous cell carcinoma patients. Our findings warrant isoform-specific analyses in human cancer datasets and suggest that switching between 5'UTR isoforms is an elegant and simple way to alter protein synthesis rates, set their sensitivity to the mTORC1-dependent nutrient-sensing pathway and direct the translational potential of an mRNA by the precise 5'UTR sequence.
Collapse
Affiliation(s)
- Ramona Weber
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Umesh Ghoshdastider
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Daniel Spies
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Clara Duré
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Fabiola Valdivia-Francia
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Merima Forny
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Mark Ormiston
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Peter F Renz
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - David Taborsky
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Merve Yigit
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Martino Bernasconi
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Homare Yamahachi
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland
| | - Ataman Sendoel
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952, Schlieren-Zurich, Switzerland.
| |
Collapse
|
232
|
Hong D, Jeong S. 3'UTR Diversity: Expanding Repertoire of RNA Alterations in Human mRNAs. Mol Cells 2023; 46:48-56. [PMID: 36697237 PMCID: PMC9880603 DOI: 10.14348/molcells.2023.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/27/2023] Open
Abstract
Genomic information stored in the DNA is transcribed to the mRNA and translated to proteins. The 3' untranslated regions (3'UTRs) of the mRNA serve pivotal roles in posttranscriptional gene expression, regulating mRNA stability, translation, and localization. Similar to DNA mutations producing aberrant proteins, RNA alterations expand the transcriptome landscape and change the cellular proteome. Recent global analyses reveal that many genes express various forms of altered RNAs, including 3'UTR length variants. Alternative polyadenylation and alternative splicing are involved in diversifying 3'UTRs, which could act as a hidden layer of eukaryotic gene expression control. In this review, we summarize the functions and regulations of 3'UTRs and elaborate on the generation and functional consequences of 3'UTR diversity. Given that dynamic 3'UTR length control contributes to phenotypic complexity, dysregulated 3'UTR diversity might be relevant to disease development, including cancers. Thus, 3'UTR diversity in cancer could open exciting new research areas and provide avenues for novel cancer theragnostics.
Collapse
Affiliation(s)
- Dawon Hong
- Laboratory of RNA Cell Biology, Department of Bioconvergence Engineering, Dankook University Graduate School, Yongin 16892, Korea
| | - Sunjoo Jeong
- Laboratory of RNA Cell Biology, Department of Bioconvergence Engineering, Dankook University Graduate School, Yongin 16892, Korea
| |
Collapse
|
233
|
Yao X, Zhou H, Duan C, Wu X, Li B, Liu H, Zhang Y. Comprehensive characteristics of pathological subtypes in testicular germ cell tumor: Gene expression, mutation and alternative splicing. Front Immunol 2023; 13:1096494. [PMID: 36713456 PMCID: PMC9883017 DOI: 10.3389/fimmu.2022.1096494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Background Testicular germ cell tumor (TGCT) is the most common tumor in young men, but molecular signatures, especially the alternative splicing (AS) between its subtypes have not yet been explored. Methods To investigate the differences between TGCT subtypes, we comprehensively analyzed the data of gene expression, alternative splicing (AS), and somatic mutation in TGCT patients from the TCGA database. The gene ontology (GO) enrichment analyses were used to explore the function of differentially expressed genes and spliced genes respectively, and Spearman correlation analysis was performed to explore the correlation between differential genes and AS events. In addition, the possible patterns in which AS regulates gene expression were elaborated by the ensemble database transcript atlas. And, we identified important transcription factors that regulate gene expression and AS and functionally validated them in TGCT cell lines. Results We found significant differences between expression and AS in embryonal carcinoma and seminoma, while mixed cell tumors were in between. GO enrichment analyses revealed that both differentially expressed and spliced genes were enriched in transcriptional regulatory pathways, and obvious correlation between expression and AS events was determined. By analyzing the transcript map and the sites where splicing occurs, we have demonstrated that AS regulates gene expression in a variety of ways. We further identified two pivot AS-related molecules (SOX2 and HDAC9) involved in AS regulation, which were validated in embryonal carcinoma and seminoma cell lines. Differences in somatic mutations between subtypes are also of concern, with our results suggesting that mutations in some genes (B3GNT8, CAPN7, FAT4, GRK1, TACC2, and TRAM1L1) occur only in embryonal carcinoma, while mutations in KIT, KARS, and NRAS are observed only in seminoma. Conclusions In conclusion, our analysis revealed the differences in gene expression, AS and somatic mutation among TGCT subtypes, providing a molecular basis for clinical diagnosis and precise therapy of TGCT patients.
Collapse
Affiliation(s)
- Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Stanford Bio-X, Stanford University, Stanford, CA, United States
| | - Yangjun Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Yangjun Zhang,
| |
Collapse
|
234
|
Weng Y, Qian H, Hong L, Zhao S, Deng X, Shen B. Identification of EMT-related alternative splicing event of TMC7 to promote invasion and migration of pancreatic cancer. Front Immunol 2023; 13:1089008. [PMID: 36713450 PMCID: PMC9878378 DOI: 10.3389/fimmu.2022.1089008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Epithelial-to-mesenchymal transition (EMT) is tightly associated with the invasion and metastasis of pancreatic cancer with rapid progression and poor prognosis. Notably, gene alternative splicing (AS) event plays a critical role in regulating the progression of pancreatic cancer. Therefore, this study aims to identify the EMT-related AS event in pancreatic cancer. Methods The EMT-related gene sets, transcriptomes, and matched clinical data were obtained from the MSigDB, The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. Key gene AS events associated with liver metastasis were identified by prognostic analysis, gene set variation analysis (GSVA), and correlation analysis in pancreatic cancer. The cell line and organoid model was constructed to evaluate these key gene AS events in regulating pancreatic cancer in vitro. Furthermore, we established an EMT-related gene set consisting of 13 genes by prognostic analysis, the role of which was validated in two other databases. Finally, the human pancreatic cancer tissue and organoid model was used to evaluate the correlation between the enrichment of this gene set and liver metastasis. Results Prognostic analysis and correlation analysis revealed that eight AS events were closely associated with the prognosis of pancreatic cancer. Furthermore, the expression of TMC7 and CHECK1 AS events was increased in the metastatic lesions of the human tissue and organoid model. Additionally, the knockdown of exon 17 of TMC7 significantly inhibited the proliferation, invasion, and migration of pancreatic cancer cells in 2D and 3D cell experiments. Finally, the expression of exon 17 of TMC17 exhibited a significant correlation with the poor prognosis in pancreatic ductal adenocarcinoma (PDAC). Conclusion The AS events of TMC7 and CHECK1 were associated with liver metastasis in pancreatic cancer. Moreover, exon 17 of TMC7 could be a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Yuanchi Weng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Qian
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Hong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shulin Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xiaxing Deng, ; Baiyong Shen,
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xiaxing Deng, ; Baiyong Shen,
| |
Collapse
|
235
|
Lybaert L, Lefever S, Fant B, Smits E, De Geest B, Breckpot K, Dirix L, Feldman SA, van Criekinge W, Thielemans K, van der Burg SH, Ott PA, Bogaert C. Challenges in neoantigen-directed therapeutics. Cancer Cell 2023; 41:15-40. [PMID: 36368320 DOI: 10.1016/j.ccell.2022.10.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
A fundamental prerequisite for the efficacy of cancer immunotherapy is the presence of functional, antigen-specific T cells within the tumor. Neoantigen-directed therapy is a promising strategy that aims at targeting the host's immune response against tumor-specific antigens, thereby eradicating cancer cells. Initial forays have been made in clinical environments utilizing vaccines and adoptive cell therapy; however, many challenges lie ahead. We provide an in-depth overview of the current state of the field with an emphasis on in silico neoantigen discovery and the clinical aspects that need to be addressed to unlock the full potential of this therapy.
Collapse
Affiliation(s)
| | | | | | - Evelien Smits
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium
| | - Bruno De Geest
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc Dirix
- Translational Cancer Research Unit, Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Wim van Criekinge
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sjoerd H van der Burg
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
236
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 360] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
237
|
Endogenous retroelements as alarms for disruptions to cellular homeostasis. Trends Cancer 2023; 9:55-68. [PMID: 36216729 DOI: 10.1016/j.trecan.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Endogenous retroelements are DNA sequences which can duplicate and move to new locations in the genome. Actively moving endogenous retroelements can be disruptive to the host, and their expression is therefore often repressed. Interestingly, drugs that disrupt the repression of endogenous retroelements show promise for treating cancer. Expressed endogenous retroelements can activate innate immune receptors that activate the antiviral response, potentially leading to the death of cancer cells. We discuss disruptions to cellular processes which can lead to activation of the antiviral state from endogenous retroelements, and present the 'fire alarm hypothesis', where we argue that endogenous retroelements act as alarms for disruptions to these cellular processes. Furthermore, we discuss the properties of endogenous retroelements which make them suitable as alarms.
Collapse
|
238
|
Sharma P, Aaroe A, Liang J, Puduvalli VK. Tumor microenvironment in glioblastoma: Current and emerging concepts. Neurooncol Adv 2023; 5:vdad009. [PMID: 36968288 PMCID: PMC10034917 DOI: 10.1093/noajnl/vdad009] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Glioblastoma (GBM) tumor microenvironment (TME) is a highly heterogeneous and complex system, which in addition to cancer cells, consists of various resident brain and immune cells as well as cells in transit through the tumor such as marrow-derived immune cells. The TME is a dynamic environment which is heavily influenced by alterations in cellular composition, cell-to-cell contact and cellular metabolic products as well as other chemical factors, such as pH and oxygen levels. Emerging evidence suggests that GBM cells appear to reprogram their the TME, and hijack microenvironmental elements to facilitate rapid proliferation, invasion, migration, and survival thus generating treatment resistance. GBM cells interact with their microenvironment directly through cell-to-cell by interaction mediated by cell-surface molecules, or indirectly through apocrine or paracrine signaling via cytokines, growth factors, and extracellular vehicles. The recent discovery of neuron-glioma interfaces and neurotransmitter-based interactions has uncovered novel mechanisms that favor tumor cell survival and growth. Here, we review the known and emerging evidence related to the communication between GBM cells and various components of its TME, discuss models for studying the TME and outline current studies targeting components of the TME for therapeutic purposes.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ashley Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiyong Liang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
239
|
Chen X, Feng J, Zhang Y, Liu J, Zhang L, Zeng P, Wen L, Wang X, Zhang Y. MYBL2 alternative splicing-related genetic variants reduce the risk of triple-negative breast cancer in the Chinese population. Front Genet 2023; 14:1150976. [PMID: 37144133 PMCID: PMC10151490 DOI: 10.3389/fgene.2023.1150976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, and studies have found an association between the Myb proto-oncogene like 2 (MYBL2) gene and TNBC development; however, the specific mechanisms underlying development remain unknown. Recent studies have reported the association of alternative splicing (AS) with cancer, providing new approaches to elucidate the carcinogenesis mechanism. This study aimed to identify MYBL2 AS-related genetic variants that influence the risk of developing TNBC, providing new ideas for probing the mechanism of TNBC and novel biomarkers for TNBC prevention. Methods: We conducted a case-control study of 217 patients with TNBC and 401 cancer-free controls. The CancerSplicingQTL database and HSF software were used to screen for MYBL2 AS-related genetic variants. The association of sample genotypes with the risk of TNBC development and with clinicopathological features was analysed via unconditional logistic regression. Combining multiple platforms, the candidate sites were subjected to biological function analysis. Results: Two AS-associated SNPs, rs285170 and rs405660, were identified using bioinformatics analysis. Logistic regression analysis showed that both rs285170 (OR = 0.541; 95% CI = 0.343-0.852; p = 0.008) and rs405660 (OR = 0.642; 95% CI = 0.469-0.879; p = 0.006) exhibited protective effects against TNBC under the additive model. Stratification analysis showed that these two SNPs had more significant protective effects in the Chinese population aged ≧50 years. Additionally, we found that rs405660 was associated with the risk of lymph node metastasis (OR = 0.396, 95% CI = 0.209-0.750, p = 0.005) in TNBC. Functional analysis revealed that both rs285170 and rs405660 are associated with splicing of exon 3 and that the exon 3-deleted spliceosome does not increase breast cancer risk. Conclusion: We found for the first time that MYBL2 AS-related genetic variants are associated with reduced TNBC susceptibility in the Chinese population, especially in women aged ≧50 years.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jin Feng
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuan Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jiarui Liu
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Lijia Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Pu Zeng
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Langbo Wen
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Xin Wang, ; Yi Zhang,
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- *Correspondence: Xin Wang, ; Yi Zhang,
| |
Collapse
|
240
|
Xia J, Li S, Ren B, Zhang P. Circular RNAs as a potential source of neoepitopes in cancer. Front Oncol 2023; 13:1098523. [PMID: 37124497 PMCID: PMC10130363 DOI: 10.3389/fonc.2023.1098523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Neoepitopes have attracted much attention as targets for immunotherapy against cancer. Therefore, efficient neoepitope screening technology is an essential step in the development of personalized vaccines. Circular RNAs (circRNAs) are generated by back-splicing and have a single-stranded continuous circular structure. So far, various circRNAs have been poorly characterized, though new evidence suggests that a few translated circRNAs may play a role in cancer. In the present study, circRNA was used as a source of neoepitope, a novel strategy as circRNA-derived neoepitopes have never been previously explored. The present study reports CIRC_neo (circRNA-derived neoepitope prediction pipeline), which is a comprehensive and automated bioinformatic pipeline for the prediction of circRNA-derived neoepitopes from RNA sequencing data. The computational prediction from sequencing data requires complex computational workflows to identify circRNAs, derive the resulting peptides, infer the types of human leukocyte antigens (HLA I and HLA II) in patients, and predict the neoepitopes binding to these antigens. The present study proposes a novel source of neoepitopes. The study focused on cancer-specific circRNAs, which have greatly expanded the source pool for neoepitope discovery. The statistical analysis of different features of circRNA-derived neoepitopes revealed that circRNAs could produce long proteins or truncated proteins. Because the peptides were completely foreign to the human body, they could be highly immunogenic. Importantly, circRNA-derived neoepitopes capable of binding to HLA were discovered. In the current study, circRNAs were systematically analyzed, revealing potential targets and novel research clues for cancer diagnosis, treatment, and prospective personalized vaccine research.
Collapse
Affiliation(s)
- Jiaqi Xia
- *Correspondence: Jiaqi Xia, ; Pengxia Zhang,
| | | | | | | |
Collapse
|
241
|
Chen X, Yang C, Wang W, He X, Sun H, Lyu W, Zou K, Fang S, Dai Z, Dong H. Exploration of prognostic genes and risk signature in breast cancer patients based on RNA binding proteins associated with ferroptosis. Front Genet 2023; 14:1025163. [PMID: 36911389 PMCID: PMC9998954 DOI: 10.3389/fgene.2023.1025163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/23/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Breast cancer (BRCA) is a life-threatening malignancy in women with an unsatisfactory prognosis. The purpose of this study was to explore the prognostic biomarkers and a risk signature based on ferroptosis-related RNA-binding proteins (FR-RBPs). Methods: FR-RBPs were identified using Spearman correlation analysis. Differentially expressed genes (DEGs) were identified by the "limma" R package. The univariate Cox and multivariate Cox analyses were executed to determine the prognostic genes. The risk signature was constructed and verified with the training set, testing set, and validation set. Mutation analysis, immune checkpoint expression analysis in high- and low-risk groups, and correlation between risk signature and chemotherapeutic agents were conducted using the "maftools" package, "ggplot2" package, and the CellMiner database respectively. The Human Protein Atlas (HPA) database was employed to confirm protein expression trends of prognostic genes in BRCA and normal tissues. The expression of prognostic genes in cell lines was verified by Real-time quantitative polymerase chain reaction (RT-qPCR). Kaplan-meier (KM) plotter database analysis was applied to predict the correlation between the expression levels of signature genes and survival statuses. Results: Five prognostic genes (GSPT2, RNASE1, TIPARP, TSEN54, and SAMD4A) to construct an FR-RBPs-related risk signature were identified and the risk signature was validated by the International Cancer Genome Consortium (ICGC) cohort. Univariate and multivariate Cox regression analysis demonstrated the risk score was a robust independent prognostic factor in overall survival prediction. The Tumor Mutational Burden (TMB) analysis implied that the high- and low-risk groups responded differently to immunotherapy. Drug sensitivity analysis suggested that the risk signature may serve as a chemosensitivity predictor. The results of GSEA suggested that five prognostic genes might be related to DNA replication and the immune-related pathways. RT-qPCR results demonstrated that the expression trends of prognostic genes in cell lines were consistent with the results from public databases. KM plotter database analysis suggested that high expression levels of GSPT2, RNASE1, and SAMD4A contributed to poor prognoses. Conclusion: In conclusion, this study identified the FR-RBPs-related prognostic genes and developed an FR-RBPs-related risk signature for the prognosis of BRCA, which will be of great significance in developing new therapeutic targets and prognostic molecular biomarkers for BRCA.
Collapse
Affiliation(s)
- Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Changcheng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xionghui He
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenzhi Lyu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shuo Fang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong SAR, China.,Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
242
|
Li CX, Wang JS, Wang WN, Xu DK, Zhou YT, Sun FZ, Li YQ, Guo FZ, Ma JL, Zhang XY, Chang MJ, Xu BH, Ma F, Qian HL. Expression dynamics of periodic transcripts during cancer cell cycle progression and their correlation with anticancer drug sensitivity. Mil Med Res 2022; 9:71. [PMID: 36529792 PMCID: PMC9762028 DOI: 10.1186/s40779-022-00432-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The cell cycle is at the center of cellular activities and is orchestrated by complex regulatory mechanisms, among which transcriptional regulation is one of the most important components. Alternative splicing dramatically expands the regulatory network by producing transcript isoforms of genes to exquisitely control the cell cycle. However, the patterns of transcript isoform expression in the cell cycle are unclear. Therapies targeting cell cycle checkpoints are commonly used as anticancer therapies, but none of them have been designed or evaluated at the alternative splicing transcript level. The utility of these transcripts as markers of cell cycle-related drug sensitivity is still unknown, and studies on the expression patterns of cell cycle-targeting drug-related transcripts are also rare. METHODS To explore alternative splicing patterns during cell cycle progression, we performed sequential transcriptomic assays following cell cycle synchronization in colon cancer HCT116 and breast cancer MDA-MB-231 cell lines, using flow cytometry and reference cell cycle transcripts to confirm the cell cycle phases of samples, and we developed a new algorithm to describe the periodic patterns of transcripts fluctuating during the cell cycle. Genomics of Drug Sensitivity in Cancer (GDSC) drug sensitivity datasets and Cancer Cell Line Encyclopedia (CCLE) transcript datasets were used to assess the correlation of genes and their transcript isoforms with drug sensitivity. We identified transcripts associated with typical drugs targeting cell cycle by determining correlation coefficients. Cytotoxicity assays were used to confirm the effect of ENST00000257904 against cyclin dependent kinase 4/6 (CDK4/6) inhibitors. Finally, alternative splicing transcripts associated with mitotic (M) phase arrest were analyzed using an RNA synthesis inhibition assay and transcriptome analysis. RESULTS We established high-resolution transcriptome datasets of synchronized cell cycle samples from colon cancer HCT116 and breast cancer MDA-MB-231 cells. The results of the cell cycle assessment showed that 43,326, 41,578 and 29,244 transcripts were found to be periodically expressed in HeLa, HCT116 and MDA-MB-231 cells, respectively, among which 1280 transcripts showed this expression pattern in all three cancer cell lines. Drug sensitivity assessments showed that a large number of these transcripts displayed a higher correlation with drug sensitivity than their corresponding genes. Cell cycle-related drug screening showed that the level of the CDK4 transcript ENST00000547281 was more significantly associated with the resistance of cells to CDK4/6 inhibitors than the level of the CDK4 reference transcript ENST00000257904. The transcriptional inhibition assay following M phase arrest further confirmed the M-phase-specific expression of the splicing transcripts. Combined with the cell cycle-related drug screening, the results also showed that a set of periodic transcripts, for example, ENST00000314392 (a dolichyl-phosphate mannosyltransferase polypeptide 2 isoform transcript), was more associated with drug sensitivity than the levels of their corresponding gene transcripts. CONCLUSIONS In summary, we identified a panel of cell cycle-related periodic transcripts and found that the levels of transcripts of drug target genes showed different values for predicting drug sensitivity, providing novel insights into alternative splicing-related drug development and evaluation.
Collapse
Affiliation(s)
- Chun-Xiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jin-Song Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen-Na Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dong-Kui Xu
- Department of VIP, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan-Tong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fang-Zhou Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi-Qun Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Feng-Zhu Guo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia-Lu Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue-Yan Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Meng-Jiao Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bing-He Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Fei Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
243
|
Tian B, Bian Y, Bian DJ, Gao Y, Zhang X, Zhou SW, Zhang YH, Pang YN, Li ZS, Wang LW. Knowledge mapping of alternative splicing of cancer from 2012 to 2021: A bibliometric analysis. Front Oncol 2022; 12:1068805. [PMID: 36591484 PMCID: PMC9795218 DOI: 10.3389/fonc.2022.1068805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background As a processing method of RNA precursors, alternative splicing (AS) is critical to normal cellular activities. Aberrant AS events are associated with cancer development and can be promising targets to treat cancer. However, no detailed and unbiased study describes the current state of AS of cancer research. We aim to measure and recognize the current state and trends of AS cancer research in this study. Methods The Web of Science Core Collection was used to acquire the articles. Utilizing three bibliometric tools (CiteSpace, VOSviewer, R-bibliometrix), we were able to measure and recognize the influence and collaboration data of individual articles, journals, and co-citations. Analysis of co-occurrence and burst information helped us identify the trending research areas related to AS of cancer. Results From 2012 to 2021, the total number of papers on AS of cancer published in 766 academic journals was 3,507, authored by 20,406 researchers in 405 institutions from 80 countries/regions. Research involving AS of cancer genes was primarily conducted in the United States and China; simultaneously, the Chinese Academy of Sciences, Fudan University, and National Cancer Institute were the institutions with strong research capabilities. Scorilas Andreas is the scholar with the most publications, while the most co-citations were generated by Wang, Eric T. Plos One published the most papers on AS of cancer, while J Biol Chem was the most co-cited academic journal in this field. The results of keyword co-occurrence analysis can be divided into three types: molecular (P53, CD44, androgen receptor, srsf3, esrp1), pathological process (apoptosis, EMT, metastasis, angiogenesis, proliferation), and disease (breast cancer, colorectal cancer, prostate cancer, hepatocellular carcinoma, gastric cancer). Conclusion Research on AS of cancer has been increasing in intensity over the past decade. Current AS of cancer studies focused on the hallmarks of AS in cancer and AS signatures including diagnostic and therapeutic targets. Among them, the current trends are splicing factors regulating epithelial-mesenchymal transition and other hallmarks, aberrant splicing events in tumors, and further mechanisms. These might give researchers interested in this field a forward-looking perspective and inform further research.
Collapse
Affiliation(s)
- Bo Tian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Bian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - De-Jian Bian
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xun Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Si-Wei Zhou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan-Hui Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ya-Nan Pang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China,*Correspondence: Ya-Nan Pang, ; Zhao-Shen Li, ; Luo-Wei Wang,
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Ya-Nan Pang, ; Zhao-Shen Li, ; Luo-Wei Wang,
| | - Luo-Wei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Ya-Nan Pang, ; Zhao-Shen Li, ; Luo-Wei Wang,
| |
Collapse
|
244
|
Singh A, Rajeevan A, Gopalan V, Agrawal P, Day CP, Hannenhalli S. Broad misappropriation of developmental splicing profile by cancer in multiple organs. Nat Commun 2022; 13:7664. [PMID: 36509773 PMCID: PMC9744839 DOI: 10.1038/s41467-022-35322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Oncogenesis mimics key aspects of embryonic development. However, the underlying mechanisms are incompletely understood. Here, we demonstrate that the splicing events specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. Such events are associated with key oncogenic processes and predict proliferation rates in cancer cell lines as well as patient survival. Such events preferentially target nitrosylation and transmembrane-region domains, whose coordinated splicing in multiple genes respectively affect intracellular transport and N-linked glycosylation. We infer critical splicing factors potentially regulating embryonic splicing events and show that such factors are potential oncogenic drivers and are upregulated specifically in malignant cells. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of critical splicing factors in brain and liver. Our study provides a comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest anti-cancer targets including splicing events, and their upstream splicing and transcriptional regulators.
Collapse
Affiliation(s)
- Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Arati Rajeevan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
245
|
Jürgens L, Wethmar K. The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology. Cancers (Basel) 2022; 14:6031. [PMID: 36551517 PMCID: PMC9776223 DOI: 10.3390/cancers14246031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Recent technological advances have facilitated the detection of numerous non-canonical human peptides derived from regulatory regions of mRNAs, long non-coding RNAs, and other cryptic transcripts. In this review, we first give an overview of the classification of these novel peptides and summarize recent improvements in their annotation and detection by ribosome profiling, mass spectrometry, and individual experimental analysis. A large fraction of the novel peptides originates from translation at upstream open reading frames (uORFs) that are located within the transcript leader sequence of regular mRNA. In humans, uORF-encoded peptides (uPeptides) have been detected in both healthy and malignantly transformed cells and emerge as important regulators in cellular and immunological pathways. In the second part of the review, we focus on various functional implications of uPeptides. As uPeptides frequently act at the transition of translational regulation and individual peptide function, we describe the mechanistic modes of translational regulation through ribosome stalling, the involvement in cellular programs through protein interaction and complex formation, and their role within the human leukocyte antigen (HLA)-associated immunopeptidome as HLA uLigands. We delineate how malignant transformation may lead to the formation of novel uORFs, uPeptides, or HLA uLigands and explain their potential implication in tumor biology. Ultimately, we speculate on a potential use of uPeptides as peptide drugs and discuss how uPeptides and HLA uLigands may facilitate translational inhibition of oncogenic protein messages and immunotherapeutic approaches in cancer therapy.
Collapse
Affiliation(s)
| | - Klaus Wethmar
- University Hospital Münster, Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, 48149 Münster, Germany
| |
Collapse
|
246
|
Shah S, Al-Omari A, Cook KW, Paston SJ, Durrant LG, Brentville VA. What do cancer-specific T cells 'see'? DISCOVERY IMMUNOLOGY 2022; 2:kyac011. [PMID: 38567060 PMCID: PMC10917189 DOI: 10.1093/discim/kyac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 04/04/2024]
Abstract
Complex cellular interactions between the immune system and cancer can impact tumour development, growth, and progression. T cells play a key role in these interactions; however, the challenge for T cells is to recognize tumour antigens whilst minimizing cross-reactivity with antigens associated with healthy tissue. Some tumour cells, including those associated with viral infections, have clear, tumour-specific antigens that can be targeted by T cells. A high mutational burden can lead to increased numbers of mutational neoantigens that allow very specific immune responses to be generated but also allow escape variants to develop. Other cancer indications and those with low mutational burden are less easily distinguished from normal tissue. Recent studies have suggested that cancer-associated alterations in tumour cell biology including changes in post-translational modification (PTM) patterns may also lead to novel antigens that can be directly recognized by T cells. The PTM-derived antigens provide tumour-specific T-cell responses that both escape central tolerance and avoid the necessity for individualized therapies. PTM-specific CD4 T-cell responses have shown tumour therapy in murine models and highlight the importance of CD4 T cells as well as CD8 T cells in reversing the immunosuppressive tumour microenvironment. Understanding which cancer-specific antigens can be recognized by T cells and the way that immune tolerance and the tumour microenvironment shape immune responses to cancer is vital for the future development of cancer therapies.
Collapse
Affiliation(s)
- Sabaria Shah
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Abdullah Al-Omari
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Katherine W Cook
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Samantha J Paston
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Victoria A Brentville
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| |
Collapse
|
247
|
AS-CMC: a pan-cancer database of alternative splicing for molecular classification of cancer. Sci Rep 2022; 12:21074. [PMID: 36473963 PMCID: PMC9726986 DOI: 10.1038/s41598-022-25584-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing (AS) is a post-transcriptional regulation that leads to the complexity of the transcriptome. Despite the growing importance of AS in cancer research, the role of AS has not been systematically studied, especially in understanding cancer molecular classification. Herein, we analyzed the molecular subtype-specific regulation of AS using The Cancer Genome Atlas data and constructed a web-based database, named Alternative Splicing for Cancer Molecular Classification (AS-CMC). Our system harbors three analysis modules for exploring subtype-specific AS events, evaluating their phenotype association, and performing pan-cancer comparison. The number of subtype-specific AS events was found to be diverse across cancer types, and some differentially regulated AS events were recurrently found in multiple cancer types. We analyzed a subtype-specific AS in exon 11 of mitogen-activated protein kinase kinase 7 (MAP3K7) as an example of a pan-cancer AS biomarker. This AS marker showed significant association with the survival of patients with stomach adenocarcinoma. Our analysis revealed AS as an important determinant for cancer molecular classification. AS-CMC is the first web-based resource that provides a comprehensive tool to explore the biological implications of AS events, facilitating the discovery of novel AS biomarkers.
Collapse
|
248
|
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer. Cancers (Basel) 2022; 14:cancers14235967. [PMID: 36497448 PMCID: PMC9739414 DOI: 10.3390/cancers14235967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing.
Collapse
|
249
|
Deng Y, Xiao M, Wan AH, Li J, Sun L, Liang H, Wang QP, Yin S, Bu X, Wan G. RNA and RNA Derivatives: Light and Dark Sides in Cancer Immunotherapy. Antioxid Redox Signal 2022; 37:1266-1290. [PMID: 35369726 DOI: 10.1089/ars.2022.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Immunotherapy, which utilizes the patient's immune system to fight tumor cells, has been approved for the treatment of some types of advanced cancer. Recent Advances: The complexity and diversity of tumor immunity are responsible for the varying response rates toward current immunotherapy strategies and highlight the importance of exploring regulators in tumor immunotherapy. Several genetic factors have proved to be critical regulators of tumor immunotherapy. RNAs, including messenger RNAs and non-coding RNAs, play vital and diverse roles in tumorigenesis, metastasis, drug resistance, and immunotherapy response. RNA modifications, including N6-methyladenosine methylation, are involved in tumor immunity. Critical Issues: A critical issue is the lack of summary of the regulatory RNA molecules and their derivatives in mediating immune activities in human cancers that could provide potential applications for tumor immunotherapeutic strategy. Future Directions: This review summarizes the dual roles (the light and dark sides) of RNA and its derivatives in tumor immunotherapy and discusses the development of RNA-based therapies as novel immunotherapeutic strategies for cancer treatment. Antioxid. Redox Signal. 37, 1266-1290.
Collapse
Affiliation(s)
- Yuan Deng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Min Xiao
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Arabella H Wan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiarui Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lei Sun
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Heng Liang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Sheng Yin
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xianzhang Bu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
250
|
Matsushima S, Ajiro M, Iida K, Chamoto K, Honjo T, Hagiwara M. Chemical induction of splice-neoantigens attenuates tumor growth in a preclinical model of colorectal cancer. Sci Transl Med 2022; 14:eabn6056. [PMID: 36449604 DOI: 10.1126/scitranslmed.abn6056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Neoantigen production is a determinant of cancer immunotherapy. However, the expansion of neoantigen abundance for cancer therapeutics is technically challenging. Here, we report that the synthetic compound RECTAS can induce the production of splice-neoantigens that could be used to boost antitumor immune responses. RECTAS suppressed tumor growth in a CD8+ T cell- and tumor major histocompatibility complex class I-dependent manner and enhanced immune checkpoint blockade efficacy. Subsequent transcriptome analysis and validation for immunogenicity identified six splice-neoantigen candidates whose expression was induced by RECTAS treatment. Vaccination of the identified neoepitopes elicited T cell responses capable of killing cancer cells in vitro, in addition to suppression of tumor growth in vivo upon sensitization with RECTAS. Collectively, these results provide support for the further development of splice variant-inducing treatments for cancer immunotherapy.
Collapse
Affiliation(s)
- Shingo Matsushima
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Pharmacology Research Laboratories, Watarase Research Center, Kyorin Pharmaceutical Co. Ltd, Tochigi 329-0114, Japan
| | - Masahiko Ajiro
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kei Iida
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.,Faculty of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|