201
|
Kozlowska K, Spooner CJ, Palmer DM, Harris A, Korgaonkar MS, Scher S, Williams LM. "Motoring in idle": The default mode and somatomotor networks are overactive in children and adolescents with functional neurological symptoms. Neuroimage Clin 2018; 18:730-743. [PMID: 29876262 PMCID: PMC5987846 DOI: 10.1016/j.nicl.2018.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
Abstract
Objective Children and adolescents with functional neurological symptom disorder (FND) present with diverse neurological symptoms not explained by a disease process. Functional neurological symptoms have been conceptualized as somatoform dissociation, a disruption of the brain's intrinsic organization and reversion to a more primitive level of function. We used EEG to investigate neural function and functional brain organization in children/adolescents with FND. Method EEG was recorded in the resting eyes-open condition in 57 patients (aged 8.5-18 years) and 57 age- and sex-matched healthy controls. Using a topographical map, EEG power data were quantified for regions of interest that define the default mode network (DMN), salience network, and somatomotor network. Source localization was examined using low-resolution brain electromagnetic tomography (LORETA). The contributions of chronic pain and arousal as moderators of differences in EEG power were also examined. Results Children/adolescents with FND had excessive theta and delta power in electrode clusters corresponding to the DMN-both anteriorly (dorsomedial prefrontal cortex [dmFPC]) and posteriorly (posterior cingulate cortex [PCC], precuneus, and lateral parietal cortex)-and in the premotor/supplementary motor area (SMA) region. There was a trend toward increased theta and delta power in the salience network. LORETA showed activation across all three networks in all power bands and localized neural sources to the dorsal anterior cingulate cortex/dmPFC, mid cingulate cortex, PCC/precuneus, and SMA. Pain and arousal contributed to slow wave power increases in all three networks. Conclusions These findings suggest that children and adolescents with FND are characterized by overactivation of intrinsic resting brain networks involved in threat detection, energy regulation, and preparation for action.
Collapse
Affiliation(s)
- Kasia Kozlowska
- The Children's Hospital at Westmead, Psychological Medicine, Locked Bag 4001, Westmead, NSW 2145, Australia; The Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; The University of Sydney, Sydney, Australia.
| | | | - Donna M Palmer
- The Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; The University of Sydney, Sydney, Australia.
| | - Anthony Harris
- The Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; The University of Sydney, Sydney, Australia; Westmead Hospital Psychiatry Department, Darcy Rd, Westmead, NSW 2145, Australia.
| | - Mayuresh S Korgaonkar
- The Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; The University of Sydney, Sydney, Australia.
| | - Stephen Scher
- The University of Sydney, Sydney, Australia; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| | - Leanne M Williams
- Psychiatry and Behavioral Sciences, Stanford University, VA Palo Alto (Sierra-Pacific MIRECC) 401 Quarry Rd, United States.
| |
Collapse
|
202
|
Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018; 38:2505-2518. [PMID: 29431649 DOI: 10.1523/jneurosci.2179-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Glutamate transporter 1 (GLT1) is the main astrocytic transporter that shapes glutamatergic transmission in the brain. However, whether this transporter modulates sleep-wake regulatory neurons is unknown. Using quantitative immunohistochemical analysis, we assessed perisomatic GLT1 apposition with sleep-wake neurons in the male rat following 6 h sleep deprivation (SD) or following 6 h undisturbed conditions when animals were mostly asleep (Rest). We found that SD decreased perisomatic GLT1 apposition with wake-promoting orexin neurons in the lateral hypothalamus compared with Rest. Reduced GLT1 apposition was associated with tonic presynaptic inhibition of excitatory transmission to these neurons due to the activation of Group III metabotropic glutamate receptors, an effect mimicked by a GLT1 inhibitor in the Rest condition. In contrast, SD resulted in increased GLT1 apposition with sleep-promoting melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus. Functionally, this decreased the postsynaptic response of MCH neurons to high-frequency synaptic activation without changing presynaptic glutamate release. The changes in GLT1 apposition with orexin and MCH neurons were reversed after 3 h of sleep opportunity following 6 h SD. These SD effects were specific to orexin and MCH neurons, as no change in GLT1 apposition was seen in basal forebrain cholinergic or parvalbumin-positive GABA neurons. Thus, within a single hypothalamic area, GLT1 differentially regulates excitatory transmission to wake- and sleep-promoting neurons depending on sleep history. These processes may constitute novel astrocyte-mediated homeostatic mechanisms controlling sleep-wake behavior.SIGNIFICANCE STATEMENT Sleep-wake cycles are regulated by the alternate activation of sleep- and wake-promoting neurons. Whether and how astrocytes can regulate this reciprocal neuronal activity are unclear. Here we report that, within the lateral hypothalamus, where functionally opposite wake-promoting orexin neurons and sleep-promoting melanin-concentrating hormone neurons codistribute, the glutamate transporter GLT1, mainly present on astrocytes, distinctly modulates excitatory transmission in a cell-type-specific manner and according to sleep history. Specifically, GLT1 is reduced around the somata of orexin neurons while increased around melanin-concentrating hormone neurons following sleep deprivation, resulting in different forms of synaptic plasticity. Thus, astrocytes can fine-tune the excitability of functionally discrete neurons via glutamate transport, which may represent novel regulatory mechanisms for sleep.
Collapse
|
203
|
Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I. Crosslink between calcium and sodium signalling. Exp Physiol 2018; 103:157-169. [PMID: 29210126 PMCID: PMC6813793 DOI: 10.1113/ep086534] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? This paper overviews the links between Ca2+ and Na+ signalling in various types of cells. What advances does it highlight? This paper highlights the general importance of ionic signalling and overviews the molecular mechanisms linking Na+ and Ca2+ dynamics. In particular, the narrative focuses on the molecular physiology of plasmalemmal and mitochondrial Na+ -Ca2+ exchangers and plasmalemmal transient receptor potential channels. Functional consequences of Ca2+ and Na+ signalling for co-ordination of neuronal activity with astroglial homeostatic pathways fundamental for synaptic transmission are discussed. ABSTRACT Transmembrane ionic gradients, which are an indispensable feature of life, are used for generation of cytosolic ionic signals that regulate a host of cellular functions. Intracellular signalling mediated by Ca2+ and Na+ is tightly linked through several molecular pathways that generate Ca2+ and Na+ fluxes and are in turn regulated by both ions. Transient receptor potential (TRP) channels bridge endoplasmic reticulum Ca2+ release with generation of Na+ and Ca2+ currents. The plasmalemmal Na+ -Ca2+ exchanger (NCX) flickers between forward and reverse mode to co-ordinate the influx and efflux of both ions with membrane polarization and cytosolic ion concentrations. The mitochondrial calcium uniporter channel (MCU) and mitochondrial Na+ -Ca2+ exchanger (NCLX) mediate Ca2+ entry into and release from this organelle and couple cytosolic Ca2+ and Na+ fluctuations with cellular energetics. Cellular Ca2+ and Na+ signalling controls numerous functional responses and, in the CNS, provides for fast regulation of astroglial homeostatic cascades that are crucial for maintenance of synaptic transmission.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fabiana Perocchi
- Gene Center/Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Ramat-Aviv, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
204
|
Zorec R, Parpura V, Verkhratsky A. Astroglial vesicular network: evolutionary trends, physiology and pathophysiology. Acta Physiol (Oxf) 2018; 222. [PMID: 28665546 DOI: 10.1111/apha.12915] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 06/24/2017] [Indexed: 12/13/2022]
Abstract
Intracellular organelles, including secretory vesicles, emerged when eukaryotic cells evolved some 3 billion years ago. The primordial organelles that evolved in Archaea were similar to endolysosomes, which developed, arguably, for specific metabolic tasks, including uptake, metabolic processing, storage and disposal of molecules. In comparison with prokaryotes, cell volume of eukaryotes increased by several orders of magnitude and vesicle traffic emerged to allow for communication between distant intracellular locations. Lysosomes, first described in 1955, a prominent intermediate of endo- and exocytotic pathways, operate virtually in all eukaryotic cells including astroglia, the most heterogeneous type of homeostatic glia in the central nervous system. Astrocytes support neuronal network activity in particular through elaborated secretion, based on a complex intracellular vesicle network dynamics. Deranged homeostasis underlies disease and astroglial vesicle traffic contributes to the pathophysiology of neurodegenerative (Alzheimer's disease, Huntington's disease), neurodevelopmental diseases (intellectual deficiency, Rett's disease) and neuroinfectious (Zika virus) disorders. This review addresses astroglial cell-autonomous vesicular traffic network, as well as its into primary and secondary vesicular network defects in diseases, and considers this network as a target for developing new therapies for neurological conditions.
Collapse
Affiliation(s)
- R. Zorec
- Laboratory of Neuroendocrinology and Molecular Cell Physiology; Institute of Pathophysiology; University of Ljubljana; Ljubljana Slovenia
- Celica; BIOMEDICAL; Ljubljana Slovenia
| | - V. Parpura
- Department of Neurobiology; Civitan International Research Center and Center for Glial Biology in Medicine; Evelyn F. McKnight Brain Institute; Atomic Force Microscopy and Nanotechnology Laboratories; University of Alabama; Birmingham AL USA
| | - A. Verkhratsky
- Laboratory of Neuroendocrinology and Molecular Cell Physiology; Institute of Pathophysiology; University of Ljubljana; Ljubljana Slovenia
- Celica; BIOMEDICAL; Ljubljana Slovenia
- Faculty of Biology; Medicine and Health; The University of Manchester; Manchester UK
- Achucarro Center for Neuroscience; IKERBASQUE; Basque Foundation for Science; Bilbao Spain
- Department of Neurosciences; University of the Basque Country UPV/EHU and CIBERNED; Leioa Spain
| |
Collapse
|
205
|
Brain-state dependent astrocytic Ca 2+ signals are coupled to both positive and negative BOLD-fMRI signals. Proc Natl Acad Sci U S A 2018; 115:E1647-E1656. [PMID: 29382752 DOI: 10.1073/pnas.1711692115] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Astrocytic Ca2+-mediated gliovascular interactions regulate the neurovascular network in situ and in vivo. However, it is difficult to measure directly both the astrocytic activity and fMRI to relate the various forms of blood-oxygen-level-dependent (BOLD) signaling to brain states under normal and pathological conditions. In this study, fMRI and GCaMP-mediated Ca2+ optical fiber recordings revealed distinct evoked astrocytic Ca2+ signals that were coupled with positive BOLD signals and intrinsic astrocytic Ca2+ signals that were coupled with negative BOLD signals. Both evoked and intrinsic astrocytic calcium signal could occur concurrently or respectively during stimulation. The intrinsic astrocytic calcium signal can be detected globally in multiple cortical sites in contrast to the evoked astrocytic calcium signal only detected at the activated cortical region. Unlike propagating Ca2+ waves in spreading depolarization/depression, the intrinsic Ca2+ spikes occurred simultaneously in both hemispheres and were initiated upon the activation of the central thalamus and midbrain reticular formation. The occurrence of the intrinsic astrocytic calcium signal is strongly coincident with an increased EEG power level of the brain resting-state fluctuation. These results demonstrate highly correlated astrocytic Ca2+ spikes with bidirectional fMRI signals based on the thalamic regulation of cortical states, depicting a brain-state dependency of both astrocytic Ca2+ and BOLD fMRI signals.
Collapse
|
206
|
Role of Purinergic Receptor P2Y1 in Spatiotemporal Ca 2+ Dynamics in Astrocytes. J Neurosci 2018; 38:1383-1395. [PMID: 29305530 DOI: 10.1523/jneurosci.2625-17.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023] Open
Abstract
Fine processes of astrocytes enwrap synapses and are well positioned to sense neuronal information via synaptic transmission. In rodents, astrocyte processes sense synaptic transmission via Gq-protein coupled receptors (GqPCR), including the P2Y1 receptor (P2Y1R), to generate Ca2+ signals. Astrocytes display numerous spontaneous microdomain Ca2+ signals; however, it is not clear whether such signals are due to local synaptic transmission and/or in what timeframe astrocytes sense local synaptic transmission. To ask whether GqPCRs mediate microdomain Ca2+ signals, we engineered mice (both sexes) to specifically overexpress P2Y1Rs in astrocytes, and we visualized Ca2+ signals via a genetically encoded Ca2+ indicator, GCaMP6f, in astrocytes from adult mice. Astrocytes overexpressing P2Y1Rs showed significantly larger Ca2+ signals in response to exogenously applied ligand and to repetitive electrical stimulation of axons compared with controls. However, we found no evidence of increased microdomain Ca2+ signals. Instead, Ca2+ waves appeared and propagated to occupy areas that were up to 80-fold larger than microdomain Ca2+ signals. These Ca2+ waves accounted for only 2% of total Ca2+ events, but they were 1.9-fold larger and 2.9-fold longer in duration than microdomain Ca2+ signals at processes. Ca2+ waves did not require action potentials for their generation and occurred in a probenecid-sensitive manner, indicating that the endogenous ligand for P2Y1R is elevated independently of synaptic transmission. Our data suggest that spontaneous microdomain Ca2+ signals occur independently of P2Y1R activation and that astrocytes may not encode neuronal information in response to synaptic transmission at a point source of neurotransmitter release.SIGNIFICANCE STATEMENT Astrocytes are thought to enwrap synapses with their processes to receive neuronal information via Gq-protein coupled receptors (GqPCRs). Astrocyte processes display numerous microdomain Ca2+ signals that occur spontaneously. To determine whether GqPCRs play a role in microdomain Ca2+ signals and the timeframe in which astrocytes sense neuronal information, we engineered mice whose astrocytes specifically overexpress the P2Y1 receptor, a major GqPCR in astrocytes. We found that overexpression of P2Y1 receptors in astrocytes did not increase microdomain Ca2+ signals in astrocyte processes but caused Ca2+ wavelike signals. Our data indicate that spontaneous microdomain Ca2+ signals do not require activation of P2Y1 receptors.
Collapse
|
207
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
208
|
Astrocytes as a target of transcranial direct current stimulation (tDCS) to treat depression. Neurosci Res 2018; 126:15-21. [DOI: 10.1016/j.neures.2017.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/24/2022]
|
209
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1068] [Impact Index Per Article: 152.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
210
|
Papouin T, Dunphy J, Tolman M, Foley JC, Haydon PG. Astrocytic control of synaptic function. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0154. [PMID: 28093548 DOI: 10.1098/rstb.2016.0154] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2016] [Indexed: 12/19/2022] Open
Abstract
Astrocytes intimately interact with synapses, both morphologically and, as evidenced in the past 20 years, at the functional level. Ultrathin astrocytic processes contact and sometimes enwrap the synaptic elements, sense synaptic transmission and shape or alter the synaptic signal by releasing signalling molecules. Yet, the consequences of such interactions in terms of information processing in the brain remain very elusive. This is largely due to two major constraints: (i) the exquisitely complex, dynamic and ultrathin nature of distal astrocytic processes that renders their investigation highly challenging and (ii) our lack of understanding of how information is encoded by local and global fluctuations of intracellular calcium concentrations in astrocytes. Here, we will review the existing anatomical and functional evidence of local interactions between astrocytes and synapses, and how it underlies a role for astrocytes in the computation of synaptic information.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Thomas Papouin
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| | - Jaclyn Dunphy
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| | - Michaela Tolman
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| | - Jeannine C Foley
- Neurobiology Department, Harvard Medical School, Boston, MA 02115, USA
| | - Philip G Haydon
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
211
|
Lines J, Covelo A, Gómez R, Liu L, Araque A. Synapse-Specific Regulation Revealed at Single Synapses Is Concealed When Recording Multiple Synapses. Front Cell Neurosci 2017; 11:367. [PMID: 29218000 PMCID: PMC5703853 DOI: 10.3389/fncel.2017.00367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
Synaptic transmission and its activity-dependent modulation, known as synaptic plasticity, are fundamental processes in nervous system function. Neurons may receive thousands of synaptic contacts, but synaptic regulation may occur only at individual or discrete subsets of synapses, which may have important consequences on the spatial extension of the modulation of synaptic information. Moreover, while several electrophysiological methods are used to assess synaptic transmission at different levels of observation, i.e., through local field potential and individual whole-cell recordings, their experimental limitations to detect synapse-specific modulation is poorly defined. We have investigated how well-known synapse-specific short-term plasticity, where some synapses are regulated and others left unregulated, mediated by astrocytes and endocannabinoid (eCB) signaling can be assessed at different observational levels. Using hippocampal slices, we have combined local field potential and whole-cell recordings of CA3-CA1 synaptic activity evoked by Schaffer collateral stimulation of either multiple or single synapses through bulk or minimal stimulation, respectively, to test the ability to detect short-term synaptic changes induced by eCB signaling. We also developed a mathematical model assuming a bimodal distribution of regulated and unregulated synapses based on realistic experimental data to simulate physiological results and to predict the experimental requirements of the different recording methods to detect discrete changes in subsets of synapses. We show that eCB-induced depolarization-induced suppression of excitation (DSE) and astrocyte-mediated synaptic potentiation can be observed when monitoring single or few synapses, but are statistically concealed when recording the activity of a large number of synapses. These results indicate that the electrophysiological methodology is critical to properly assess synaptic changes occurring in subsets of synapses, and they suggest that relevant synapse-specific regulatory phenomena may be experimentally undetected but may have important implications in the spatial extension of synaptic plasticity phenomena.
Collapse
Affiliation(s)
- Justin Lines
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ana Covelo
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ricardo Gómez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Lan Liu
- Department of Statistics, University of Minnesota, Minneapolis, MN, United States
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
212
|
Abstract
Astrocytes are an abundant and evolutionarily conserved central nervous system cell type. Despite decades of evidence that astrocytes are integral to neural circuit function, it seems as though astrocytic and neuronal biology continue to advance in parallel to each other, to the detriment of both. Recent advances in molecular biology and optical imaging are being applied to astrocytes in new and exciting ways but without fully considering their unique biology. From this perspective, we explore the reasons that astrocytes remain enigmatic, arguing that their responses to neuronal and environmental cues shape form and function in dynamic ways. Here, we provide a roadmap for future experiments to explore the nature of astrocytes in situ.
Collapse
Affiliation(s)
- Kira E Poskanzer
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143; .,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California 94143
| | - Anna V Molofsky
- Weill Institute for Neurosciences, University of California, San Francisco, California 94143; .,Department of Psychiatry, University of California, San Francisco, California 94143
| |
Collapse
|
213
|
Cell Biology of Astrocyte-Synapse Interactions. Neuron 2017; 96:697-708. [PMID: 29096081 DOI: 10.1016/j.neuron.2017.09.056] [Citation(s) in RCA: 686] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022]
Abstract
Astrocytes, the most abundant glial cells in the mammalian brain, are critical regulators of brain development and physiology through dynamic and often bidirectional interactions with neuronal synapses. Despite the clear importance of astrocytes for the establishment and maintenance of proper synaptic connectivity, our understanding of their role in brain function is still in its infancy. We propose that this is at least in part due to large gaps in our knowledge of the cell biology of astrocytes and the mechanisms they use to interact with synapses. In this review, we summarize some of the seminal findings that yield important insight into the cellular and molecular basis of astrocyte-neuron communication, focusing on the role of astrocytes in the development and remodeling of synapses. Furthermore, we pose some pressing questions that need to be addressed to advance our mechanistic understanding of the role of astrocytes in regulating synaptic development.
Collapse
|
214
|
Jackson JG, Robinson MB. Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns. Glia 2017; 66:1213-1234. [PMID: 29098734 DOI: 10.1002/glia.23252] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Astrocytes are the major glial cell in the central nervous system. These polarized cells possess numerous processes that ensheath the vasculature and contact synapses. Astrocytes play important roles in synaptic signaling, neurotransmitter synthesis and recycling, control of nutrient uptake, and control of local blood flow. Many of these processes depend on local metabolism and/or energy utilization. While astrocytes respond to increases in neuronal activity and metabolic demand by upregulating glycolysis and glycogenolysis, astrocytes also possess significant capacity for oxidative (mitochondrial) metabolism. Mitochondria mediate energy supply and metabolism, cellular survival, ionic homeostasis, and proliferation. These organelles are dynamic structures undergoing extensive fission and fusion, directed movement along cytoskeletal tracts, and degradation. While many of the mechanisms underlying the dynamics of these organelles and their physiologic roles have been characterized in neurons and other cells, the roles that mitochondrial dynamics play in glial physiology is less well understood. Recent work from several laboratories has demonstrated that mitochondria are present within the fine processes of astrocytes, that their movement is regulated, and that they contribute to local Ca2+ signaling within the astrocyte. They likely play a role in local ATP production and metabolism, particularly that of glutamate. Here we will review these and other findings describing the mechanism by which mitochondrial dynamics are regulated in astrocytes, how mitochondrial dynamics might influence astrocyte and brain metabolism, and draw parallels to mitochondrial dynamics in neurons. Additionally, we present new analyses of the size, distribution, and dynamics of mitochondria in astrocytes performed using in vivo using 2-photon microscopy.
Collapse
Affiliation(s)
- Joshua G Jackson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.,Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.,Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
215
|
Verkhratsky A, Nedergaard M. The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0428. [PMID: 27377722 DOI: 10.1098/rstb.2015.0428] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/15/2022] Open
Abstract
Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic plasticity, learning and memory. In neuropathology, astrocytes may undergo reactive remodelling or degeneration; to a large extent, astroglial reactions define progression of the pathology and neurological outcome.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny, Novgorod 603022, Russia
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
216
|
Shen W, Nikolic L, Meunier C, Pfrieger F, Audinat E. An autocrine purinergic signaling controls astrocyte-induced neuronal excitation. Sci Rep 2017; 7:11280. [PMID: 28900295 PMCID: PMC5595839 DOI: 10.1038/s41598-017-11793-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/29/2017] [Indexed: 12/30/2022] Open
Abstract
Astrocyte-derived gliotransmitters glutamate and ATP modulate neuronal activity. It remains unclear, however, how astrocytes control the release and coordinate the actions of these gliotransmitters. Using transgenic expression of the light-sensitive channelrhodopsin 2 (ChR2) in astrocytes, we observed that photostimulation reliably increases action potential firing of hippocampal pyramidal neurons. This excitation relies primarily on a calcium-dependent glutamate release by astrocytes that activates neuronal extra-synaptic NMDA receptors. Remarkably, our results show that ChR2-induced Ca2+ increase and subsequent glutamate release are amplified by ATP/ADP-mediated autocrine activation of P2Y1 receptors on astrocytes. Thus, neuronal excitation is promoted by a synergistic action of glutamatergic and autocrine purinergic signaling in astrocytes. This new mechanism may be particularly relevant for pathological conditions in which ATP extracellular concentration is increased and acts as a major danger signal.
Collapse
Affiliation(s)
- Weida Shen
- Inserm U1128, Paris Descartes University, 75006, Paris, France
| | | | - Claire Meunier
- Inserm U1128, Paris Descartes University, 75006, Paris, France
| | - Frank Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 67084, Strasbourg, France
| | - Etienne Audinat
- Inserm U1128, Paris Descartes University, 75006, Paris, France.
| |
Collapse
|
217
|
Oberheim Bush NA, Nedergaard M. Do Evolutionary Changes in Astrocytes Contribute to the Computational Power of the Hominid Brain? Neurochem Res 2017; 42:2577-2587. [PMID: 28822066 DOI: 10.1007/s11064-017-2363-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/21/2017] [Indexed: 01/22/2023]
Abstract
It is now well accepted that astrocytes are essential in all major nervous system functions of the rodent brain, including neurotransmission, energy metabolism, modulation of blood flow, ion and water homeostasis, and, indeed, higher cognitive functions, although the contribution of astrocytes in cognition is still in early stages of study. Here we review the most current research findings on human astrocytes, including their structure, molecular characterization, and functional properties. We also highlight novel tools that have been established for translational approaches to the comparative study of astrocytes from humans and experimental animals. Understanding the differences in astrocytes is essential to elucidate the contribution of astrocytes to normal physiology, cognitive processing and diverse pathologies of the central nervous system.
Collapse
Affiliation(s)
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
218
|
Abstract
Amine neurotransmitters, such as noradrenaline, mediate arousal, attention, and reward in the CNS. New data suggest that, from flies to mammals, a major mechanism for amine transmitter action is to raise astrocyte [Ca2+]i and release gliotransmitters that modulate neuronal activity and behavior.
Collapse
Affiliation(s)
- Narges Bazargani
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
219
|
Ephaptic Coupling of Cortical Neurons: Possible Contribution of Astroglial Magnetic Fields? Neuroscience 2017; 370:37-45. [PMID: 28793233 DOI: 10.1016/j.neuroscience.2017.07.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/17/2017] [Accepted: 07/31/2017] [Indexed: 02/08/2023]
Abstract
The close anatomical and functional relationship between neuronal circuits and the astroglial network in the neocortex has been demonstrated at several organization levels supporting the idea that neuron-astroglial crosstalk can play a key role in information processing. In addition to chemical and electrical neurotransmission, other non-synaptic mechanisms called ephaptic interactions seem to be important to understand neuronal coupling and cognitive functions. Recent interest in this issue comes from the fact that extra-cranial electric and magnetic field stimulations have shown therapeutic actions in the clinical practice. The present paper reviews the current knowledge regarding the ephaptic effects in mammalian neocortex and proposes that astroglial bio-magnetic fields associated with Ca2+ transients could be implicated in the ephaptic coupling of neurons by a direct magnetic modulation of the intercellular local field potentials.
Collapse
|
220
|
Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors. Neural Plast 2017; 2017:9454275. [PMID: 28845311 PMCID: PMC5563405 DOI: 10.1155/2017/9454275] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/10/2017] [Indexed: 01/14/2023] Open
Abstract
Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS.
Collapse
|
221
|
Comparison of GCaMP3 and GCaMP6f for studying astrocyte Ca2+ dynamics in the awake mouse brain. PLoS One 2017; 12:e0181113. [PMID: 28742117 PMCID: PMC5524333 DOI: 10.1371/journal.pone.0181113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/25/2017] [Indexed: 12/16/2022] Open
Abstract
In recent years it has become increasingly clear that astrocytes play a much more active role in neural processes than the traditional view of them as supporting cells suggests. Although not electrically excitable, astrocytes exhibit diverse Ca2+ dynamics across spatial and temporal scales, more or less dependent on the animal's behavioral state. Ca2+ dynamics range from global elevations lasting multiple seconds encompassing the soma up to the finest processes, to short elevations restricted to so-called microdomains within fine processes. Investigations of astrocyte Ca2+ dynamics have particularly benefitted from the development of Genetically-Encoded Calcium Indicators (GECIs). GECI expression can be achieved non-invasively in a cell type-specific manner and it can be genetically targeted to subcellular domains. The GCaMP family, a group of GECIs derived from the green fluorescent protein, has experienced some of the fastest advancements during the past decade. As a consequence we are now facing the challenge of needing to compare published data obtained with different versions of GECIs. With the intention to provide some guidance, here we compared Ca2+ dynamics across scales in awake transgenic mice expressing either the well-established GCaMP3, or the increasingly popular GCaMP6f, specifically in astrocytes. We found that locomotion-induced global Ca2+ elevations in cortical astrocytes displayed only minor kinetic differences and their apparent dynamic ranges for Ca2+ sensing were not different. In contrast, Ca2+ waves in processes and microdomain Ca2+ transients were much more readily detectable with GCaMP6f. Our findings suggest that behavioral state-dependent global astrocyte Ca2+ responses can be studied with either GCaMP3 or GCaMP6f whereas the latter is more appropriate for studies of spatially restricted weak and fast Ca2+ dynamics.
Collapse
|
222
|
Abstract
Rapid advances in Ca2+ imaging techniques enable us to simultaneously monitor the activities of hundreds of astrocytes in the intact brain, thus providing a powerful tool for understanding the functions of both host and engrafted astrocytes in sensory processing in vivo. These techniques include both improved Ca2+ indicators and advanced optical recording methods. Astrocytes in multiple cortical and sub-cortical areas are able to respond to the corresponding sensory modalities. These sensory stimuli produce astrocytic Ca2+ responses through different cellular mechanisms. In addition, it has been suggested that astrocytic gene deficiencies in various sensory systems cause impairments in sensory circuits and cognition. Therefore, glial transplantation would be a potentially interesting approach for the cell-based therapy for glia-related disorders. There are multiple cell sources for glial transplantation, including neural stem cells, glial progenitors, and pluripotent stem cells. Both in vitro and in vivo studies have shown that engrafted astrocytes derived from these cell sources are capable of responding to sensory stimulation by elevating the intracellular Ca2+ concentration. These results indicate that engrafted astrocytes not only morphologically but also functionally integrate into the host neural network. Until now, many animal studies have proven that glial transplantation would be a good choice for treating multiple glial disorders. Together, these studies on the sensory responses of host and engrafted astrocytes have provided us a novel perspective in both neuron-glia circuit functions and future treatment strategies for glial disorders.
Collapse
Affiliation(s)
- Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
223
|
Kim SK, Nabekura J, Koizumi S. Astrocyte-mediated synapse remodeling in the pathological brain. Glia 2017; 65:1719-1727. [PMID: 28569048 DOI: 10.1002/glia.23169] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 01/02/2023]
Abstract
Astrocytes, a major type of glia, reciprocally influence synaptic transmission and connectivity, forming the "tripartite synapses". Astrocytic metabotropic glutamate receptor (mGluR)-mediated Ca2+ waves and release of gliotransmitters or synaptogenic molecules mediate this neuron-glia interaction in the developing brain, but this signaling has been challenged for adult brain. However, cumulative evidence has suggested that mature astrocytes exhibit re-awakening of such immature phenotype in the pathological adult brain. This phenotypic change in astrocytes in response to injury may induce neural circuit and synapse plasticity. In this review article, we summarize astrocyte-mediated synapse remodeling during physiological development, discuss re-emergence of immature astrocytic signaling in adult pathological brain, and finally highlight its contribution to significant modification of synaptic connections correlating with functional progress of brain pathology.
Collapse
Affiliation(s)
- Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Kanagawa, 240-0193, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, 102-0076, Japan
| | - Schuichi Koizumi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, 102-0076, Japan.,Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| |
Collapse
|
224
|
Papouin T, Dunphy JM, Tolman M, Dineley KT, Haydon PG. Septal Cholinergic Neuromodulation Tunes the Astrocyte-Dependent Gating of Hippocampal NMDA Receptors to Wakefulness. Neuron 2017; 94:840-854.e7. [PMID: 28479102 PMCID: PMC5484087 DOI: 10.1016/j.neuron.2017.04.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022]
Abstract
The activation of the N-methyl D-aspartate receptor (NMDAR) is controlled by a glutamate-binding site and a distinct, independently regulated, co-agonist-binding site. In most brain regions, the NMDAR co-agonist is the astrocyte-derived gliotransmitter D-serine. We found that D-serine levels oscillate in mouse hippocampus as a function of wakefulness, in vitro and in vivo. This causes a full saturation of the NMDAR co-agonist site in the dark (active) phase that dissipates to sub-saturating levels during the light (sleep) phase, and influences learning performance throughout the day. We demonstrate that hippocampal astrocytes sense the wakefulness-dependent activity of septal cholinergic fibers through the α7-nicotinic acetylcholine receptor (α7nAChR), whose activation drives D-serine release. We conclude that astrocytes tune the gating of synaptic NMDARs to the vigilance state and demonstrate that this is directly relevant to schizophrenia, a disorder characterized by NMDAR and cholinergic hypofunctions. Indeed, bypassing cholinergic activity with a clinically tested α7nAChR agonist successfully enhances NMDAR activation. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Thomas Papouin
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jaclyn M Dunphy
- Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Michaela Tolman
- Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Kelly T Dineley
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
225
|
Masgrau R, Guaza C, Ransohoff RM, Galea E. Should We Stop Saying 'Glia' and 'Neuroinflammation'? Trends Mol Med 2017; 23:486-500. [PMID: 28499701 DOI: 10.1016/j.molmed.2017.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
Central nervous system (CNS) therapeutics based on the theoretical framework of neuroinflammation have only barely succeeded. We argue that a problem may be the wrong use of the term 'neuroinflammation' as a distinct nosological entity when, based on recent evidence, it may not explain CNS disease pathology. Indeed, the terms 'neuroinflammation' and 'glia' could be obsolete. First, unbiased molecular profiling of CNS cell populations and individual cells reveals striking phenotypic heterogeneity in health and disease. Second, astrocytes, microglia, oligodendrocytes, and NG2 cells may contribute to higher-brain functions by performing actions beyond housekeeping. We propose that CNS diseases be viewed as failed circuits caused in part by disease-specific dysfunction of cells traditionally called 'glia', and hence, favor therapies promoting their functional recovery.
Collapse
Affiliation(s)
- Roser Masgrau
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Carmen Guaza
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, Agencia Estatal del Consejo Superior de Investigaciones Científicas, Madrid, España; Spanish Network of Multiple Sclerosis, RETICS, Instituto de Salud Carlos III, Madrid, España
| | | | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
226
|
Acosta C, Anderson HD, Anderson CM. Astrocyte dysfunction in Alzheimer disease. J Neurosci Res 2017; 95:2430-2447. [PMID: 28467650 DOI: 10.1002/jnr.24075] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+ . Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Crystal Acosta
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada
| | - Hope D Anderson
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada.,College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Christopher M Anderson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
227
|
Kanda T, Ohyama K, Muramoto H, Kitajima N, Sekiya H. Promising techniques to illuminate neuromodulatory control of the cerebral cortex in sleeping and waking states. Neurosci Res 2017; 118:92-103. [PMID: 28434992 DOI: 10.1016/j.neures.2017.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 01/31/2023]
Abstract
Sleep, a common event in daily life, has clear benefits for brain function, but what goes on in the brain when we sleep remains unclear. Sleep was long regarded as a silent state of the brain because the brain seemingly lacks interaction with the surroundings during sleep. Since the discovery of electrical activities in the brain at rest, electrophysiological methods have revealed novel concepts in sleep research. During sleep, the brain generates oscillatory activities that represent characteristic states of sleep. In addition to electrophysiology, opto/chemogenetics and two-photon Ca2+ imaging methods have clarified that the sleep/wake states organized by neuronal and glial ensembles in the cerebral cortex are transitioned by neuromodulators. Even with these methods, however, it is extremely difficult to elucidate how and when neuromodulators spread, accumulate, and disappear in the extracellular space of the cortex. Thus, real-time monitoring of neuromodulator dynamics at high spatiotemporal resolution is required for further understanding of sleep. Toward direct detection of neuromodulator behavior during sleep and wakefulness, in this review, we discuss developing imaging techniques based on the activation of G-protein-coupled receptors that allow for visualization of neuromodulator dynamics.
Collapse
Affiliation(s)
- Takeshi Kanda
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
| | - Kaoru Ohyama
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroki Muramoto
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Nami Kitajima
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroshi Sekiya
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
228
|
López-Hidalgo M, Kellner V, Schummers J. Astrocyte Calcium Responses to Sensory Input: Influence of Circuit Organization and Experimental Factors. Front Neural Circuits 2017; 11:16. [PMID: 28381991 PMCID: PMC5360724 DOI: 10.3389/fncir.2017.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Vered Kellner
- Max Planck Florida Institute for Neuroscience Jupiter, FL, USA
| | - James Schummers
- Max Planck Florida Institute for Neuroscience Jupiter, FL, USA
| |
Collapse
|
229
|
Zorec R, Parpura V, Vardjan N, Verkhratsky A. Astrocytic face of Alzheimer’s disease. Behav Brain Res 2017; 322:250-257. [DOI: 10.1016/j.bbr.2016.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/16/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
|
230
|
Kjaerby C, Rasmussen R, Andersen M, Nedergaard M. Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function? Neurochem Res 2017; 42:1810-1822. [PMID: 28210958 DOI: 10.1007/s11064-017-2195-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
Abstract
We continuously need to adapt to changing conditions within our surrounding environment, and our brain needs to quickly shift between resting and working activity states in order to allow appropriate behaviors. These global state shifts are intimately linked to the brain-wide release of the neuromodulators, noradrenaline and acetylcholine. Astrocytes have emerged as a new player participating in the regulation of brain activity, and have recently been implicated in brain state shifts. Astrocytes display global Ca2+ signaling in response to activation of the noradrenergic system, but whether astrocytic Ca2+ signaling is causative or correlative for shifts in brain state and neural activity patterns is not known. Here we review the current available literature on astrocytic Ca2+ signaling in awake animals in order to explore the role of astrocytic signaling in brain state shifts. Furthermore, we look at the development and availability of innovative new methodological tools that are opening up for new ways of visualizing and perturbing astrocyte activity in awake behaving animals. With these new tools at hand, the field of astrocyte research will likely be able to elucidate the causal and mechanistic roles of astrocytes in complex behaviors within a very near future.
Collapse
Affiliation(s)
- Celia Kjaerby
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Building 24.2, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Rune Rasmussen
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Building 24.2, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,Department of Biomedicine, The Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Mie Andersen
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Building 24.2, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Building 24.2, Blegdamsvej 3B, 2200, Copenhagen N, Denmark. .,Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
231
|
Astrocytic Pathological Calcium Homeostasis and Impaired Vesicle Trafficking in Neurodegeneration. Int J Mol Sci 2017; 18:ijms18020358. [PMID: 28208745 PMCID: PMC5343893 DOI: 10.3390/ijms18020358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 02/08/2023] Open
Abstract
Although the central nervous system (CNS) consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer’s disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer’s disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration.
Collapse
|
232
|
Foley J, Blutstein T, Lee S, Erneux C, Halassa MM, Haydon P. Astrocytic IP 3/Ca 2+ Signaling Modulates Theta Rhythm and REM Sleep. Front Neural Circuits 2017; 11:3. [PMID: 28167901 PMCID: PMC5253379 DOI: 10.3389/fncir.2017.00003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/09/2017] [Indexed: 12/27/2022] Open
Abstract
Rapid eye movement (REM) sleep onset is triggered by disinhibition of cholinergic neurons in the pons. During REM sleep, the brain exhibits prominent activity in the 5–8 Hz (theta) frequency range. How REM sleep onset and theta waves are regulated is poorly understood. Astrocytes, a non-neuronal cell type in the brain, respond to cholinergic signals by elevating their intracellular Ca2+ concentration. The goal of this study was to assess the sleep architecture of mice with attenuated IP3 mediated Ca2+ signaling in astrocytes. Vigilance states and cortical electroencephalograph power were measured in wild type mice and mice with attenuated IP3/Ca2+ signaling. Attenuating IP3/Ca2+ signaling specifically in astrocytes caused mice to spend more time in REM sleep and enter this state more frequently during their inactive phase. These mice also exhibited greater power in the theta frequency range. These data suggest a role for astrocytic IP3/Ca2+ signaling in modulating REM sleep and the associated physiological state of the cortex.
Collapse
Affiliation(s)
- Jeannine Foley
- Department of Neuroscience, Tufts University, Boston MA, USA
| | | | - SoYoung Lee
- Department of Neuroscience, Tufts University, Boston MA, USA
| | - Christophe Erneux
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles Brussels, Belgium
| | - Michael M Halassa
- Departments of Psychiatry, Neuroscience and Physiology, Neuroscience Institute, New York University, New York NY, USA
| | - Philip Haydon
- Department of Neuroscience, Tufts University, Boston MA, USA
| |
Collapse
|
233
|
Lalo U, Pankratov Y. Exploring the Ca 2+-dependent synaptic dynamics in vibro-dissociated cells. Cell Calcium 2017; 64:91-101. [PMID: 28143648 DOI: 10.1016/j.ceca.2017.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022]
Abstract
Dynamic alteration of the synaptic strength is one of the most important processes occurring in the nervous system. Combination of electrophysiology, confocal imaging and molecular biology led to significant advances in this research field. Yet, a progress in this area, in particular in studies of changes in the quantal behavior of central synapses and impact of glial cells on individual synapses, is hampered by technical difficulties of resolving small quantal synaptic currents. In this paper we will show how the technique of non-enzymatic vibro-dissociation, which enables to isolate living neurons avoiding artifacts of cell culture and preserving functional synapse, can be used to obtain a valuable information on fine details and mechanisms of synaptic plasticity. In particular, we will describe our recent results on Ca2+-dependent modulation of the postsynaptic AMPA and NMDA receptors in the individual synaptic boutons.
Collapse
Affiliation(s)
- Ulyana Lalo
- The University of Warwick, School of Life Sciences, Coventry, UK
| | - Yuriy Pankratov
- The University of Warwick, School of Life Sciences, Coventry, UK; School of Life Sciences, Immanuel Kant Baltic Federal University, 2 Universitetskaya str., Kaliningrad, Russia.
| |
Collapse
|
234
|
Shigetomi E, Koizumi S. Visualization of diversity of calcium signals in astrocytes. Nihon Yakurigaku Zasshi 2017; 148:75-80. [PMID: 27478045 DOI: 10.1254/fpj.148.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
235
|
Srinivasan R, Lu TY, Chai H, Xu J, Huang BS, Golshani P, Coppola G, Khakh BS. New Transgenic Mouse Lines for Selectively Targeting Astrocytes and Studying Calcium Signals in Astrocyte Processes In Situ and In Vivo. Neuron 2016; 92:1181-1195. [PMID: 27939582 PMCID: PMC5403514 DOI: 10.1016/j.neuron.2016.11.030] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/14/2016] [Accepted: 11/15/2016] [Indexed: 11/23/2022]
Abstract
Astrocytes exist throughout the nervous system and are proposed to affect neural circuits and behavior. However, studying astrocytes has proven difficult because of the lack of tools permitting astrocyte-selective genetic manipulations. Here, we report the generation of Aldh1l1-Cre/ERT2 transgenic mice to selectively target astrocytes in vivo. We characterized Aldh1l1-Cre/ERT2 mice using imaging, immunohistochemistry, AAV-FLEX-GFP microinjections, and crosses to RiboTag, Ai95, and new Cre-dependent membrane-tethered Lck-GCaMP6f knockin mice that we also generated. Two to three weeks after tamoxifen induction, Aldh1l1-Cre/ERT2 selectively targeted essentially all adult (P80) brain astrocytes with no detectable neuronal contamination, resulting in expression of cytosolic and Lck-GCaMP6f, and permitting subcellular astrocyte calcium imaging during startle responses in vivo. Crosses with RiboTag mice allowed sequencing of actively translated mRNAs and determination of the adult cortical astrocyte transcriptome. Thus, we provide well-characterized, easy-to-use resources with which to selectively study astrocytes in situ and in vivo in multiple experimental scenarios.
Collapse
Affiliation(s)
- Rahul Srinivasan
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Tsai-Yi Lu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Hua Chai
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Ji Xu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Ben S Huang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Integrative Center for Learning and Memory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
236
|
Nuriya M, Takeuchi M, Yasui M. Background norepinephrine primes astrocytic calcium responses to subsequent norepinephrine stimuli in the cerebral cortex. Biochem Biophys Res Commun 2016; 483:732-738. [PMID: 27965089 DOI: 10.1016/j.bbrc.2016.12.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 12/29/2022]
Abstract
Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This priming effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex.
Collapse
Affiliation(s)
- Mutsuo Nuriya
- Department of Pharmacology, School of Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan; Keio Advanced Research Center for Water Biology and Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan; Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, 240-8501, Japan.
| | - Miyabi Takeuchi
- Department of Pharmacology, School of Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan; Keio Advanced Research Center for Water Biology and Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
237
|
Neuromodulators signal through astrocytes to alter neural circuit activity and behaviour. Nature 2016; 539:428-432. [PMID: 27828941 PMCID: PMC5161596 DOI: 10.1038/nature20145] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 10/07/2016] [Indexed: 01/14/2023]
Abstract
Astrocytes associate with synapses throughout the brain and express receptors for neurotransmitters that can elevate intracellular calcium (Ca2+) 1-3. Astrocyte Ca2+ signaling has been proposed to modulate neural circuit activity 4, but pathways regulating these events are poorly defined and in vivo evidence linking changes in astrocyte Ca2+ to alterations in neurotransmission or behaviors is limited. Here we show Drosophila astrocytes exhibit activity-regulated Ca2+ signaling events in vivo. Tyramine (Tyr) and octopamine (Oct) released from Tdc2+ neurons signal directly to astrocytes to stimulate Ca2+ increases through the octopamine-tyramine receptor (Oct-TyrR) and the TRP channel Waterwitch (Wtrw), and astrocytes in turn modulate downstream dopaminergic (DA) neurons. Tyr or Oct application to live preparations silenced dopaminergic (DA) neurons and this inhibition required astrocytic Oct-TyrR and Wtrw. Increasing astrocyte Ca2+ signaling was sufficient to silence DA neuron activity, which was mediated by astrocyte endocytic function and adenosine receptors. Selective disruption of Oct-TyrR or Wtrw expression in astrocytes blocked astrocyte Ca2+ signaling and profoundly altered olfactory-driven chemotaxis behavior and touch-induced startle responses. Our work identifies Oct-TyrR and Wtrw as key components of the astrocyte Ca2+ signaling machinery, provides direct evidence that Oct- and Tyr-based neuromodulation can be mediated by astrocytes, and demonstrates that astrocytes are essential for multiple sensory-driven behaviors.
Collapse
|
238
|
Monai H, Hirase H. Astrocytic calcium activation in a mouse model of tDCS-Extended discussion. NEUROGENESIS 2016; 3:e1240055. [PMID: 27830161 PMCID: PMC5079391 DOI: 10.1080/23262133.2016.1240055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been reported to be effective for alleviation of neuropsychiatric and neurological conditions as well as enhancement of memory and cognition. Despite the positive effects of tDCS in humans, its mechanism of action remains poorly understood. Recently, we reported that astrocytes, a major glial cell type in the brain, show an increase in intracellular Ca2+ levels during tDCS in the cerebral cortex of the awake mouse. This tDCS-induced elevation in astrocytic Ca2+ has subsequently been demonstrated to be important for cortical plasticity. In this commentary article, we discuss possible interpretations and implications of our findings from the viewpoint of neuron-glia interactions.
Collapse
Affiliation(s)
- Hiromu Monai
- RIKEN Brain Science Institute , Wako, Saitama, Japan
| | - Hajime Hirase
- RIKEN Brain Science Institute, Wako, Saitama, Japan; Saitama University Brain Science Institute, Saitama, Japan
| |
Collapse
|
239
|
Zorec R, Parpura V, Verkhratsky A. Astroglial Vesicular Trafficking in Neurodegenerative Diseases. Neurochem Res 2016; 42:905-917. [DOI: 10.1007/s11064-016-2055-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
|
240
|
Jurič DM, Kržan M, Lipnik-Stangelj M. Histamine and astrocyte function. Pharmacol Res 2016; 111:774-783. [DOI: 10.1016/j.phrs.2016.07.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/11/2016] [Accepted: 07/24/2016] [Indexed: 12/31/2022]
|
241
|
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC, Salgado H. Locus Ceruleus Norepinephrine Release: A Central Regulator of CNS Spatio-Temporal Activation? Front Synaptic Neurosci 2016; 8:25. [PMID: 27616990 PMCID: PMC4999448 DOI: 10.3389/fnsyn.2016.00025] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
Norepinephrine (NE) is synthesized in the Locus Coeruleus (LC) of the brainstem, from where it is released by axonal varicosities throughout the brain via volume transmission. A wealth of data from clinics and from animal models indicates that this catecholamine coordinates the activity of the central nervous system (CNS) and of the whole organism by modulating cell function in a vast number of brain areas in a coordinated manner. The ubiquity of NE receptors, the daunting number of cerebral areas regulated by the catecholamine, as well as the variety of cellular effects and of their timescales have contributed so far to defeat the attempts to integrate central adrenergic function into a unitary and coherent framework. Since three main families of NE receptors are represented-in order of decreasing affinity for the catecholamine-by: α2 adrenoceptors (α2Rs, high affinity), α1 adrenoceptors (α1Rs, intermediate affinity), and β adrenoceptors (βRs, low affinity), on a pharmacological basis, and on the ground of recent studies on cellular and systemic central noradrenergic effects, we propose that an increase in LC tonic activity promotes the emergence of four global states covering the whole spectrum of brain activation: (1) sleep: virtual absence of NE, (2) quiet wake: activation of α2Rs, (3) active wake/physiological stress: activation of α2- and α1-Rs, (4) distress: activation of α2-, α1-, and β-Rs. We postulate that excess intensity and/or duration of states (3) and (4) may lead to maladaptive plasticity, causing-in turn-a variety of neuropsychiatric illnesses including depression, schizophrenic psychoses, anxiety disorders, and attention deficit. The interplay between tonic and phasic LC activity identified in the LC in relationship with behavioral response is of critical importance in defining the short- and long-term biological mechanisms associated with the basic states postulated for the CNS. While the model has the potential to explain a large number of experimental and clinical findings, a major challenge will be to adapt this hypothesis to integrate the role of other neurotransmitters released during stress in a centralized fashion, like serotonin, acetylcholine, and histamine, as well as those released in a non-centralized fashion, like purines and cytokines.
Collapse
Affiliation(s)
- Marco Atzori
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico; School for Behavior and Brain Sciences, University of Texas at DallasRichardson, TX, USA
| | - Roberto Cuevas-Olguin
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Eric Esquivel-Rendon
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | | | - Roberto C Salgado-Delgado
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Nadia Saderi
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Marcela Miranda-Morales
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Mario Treviño
- Laboratory of Cortical Plasticity and Learning, Universidad de Guadalajara Guadalajara, Mexico
| | - Juan C Pineda
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| | - Humberto Salgado
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| |
Collapse
|
242
|
Wei HS, Kang H, Rasheed IYD, Zhou S, Lou N, Gershteyn A, McConnell ED, Wang Y, Richardson KE, Palmer AF, Xu C, Wan J, Nedergaard M. Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation. Neuron 2016; 91:851-862. [PMID: 27499087 DOI: 10.1016/j.neuron.2016.07.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 05/11/2016] [Accepted: 06/26/2016] [Indexed: 01/23/2023]
Abstract
Energy production in the brain depends almost exclusively on oxidative metabolism. Neurons have small energy reserves and require a continuous supply of oxygen (O2). It is therefore not surprising that one of the hallmarks of normal brain function is the tight coupling between cerebral blood flow and neuronal activity. Since capillaries are embedded in the O2-consuming neuropil, we have here examined whether activity-dependent dips in O2 tension drive capillary hyperemia. In vivo analyses showed that transient dips in tissue O2 tension elicit capillary hyperemia. Ex vivo experiments revealed that red blood cells (RBCs) themselves act as O2 sensors that autonomously regulate their own deformability and thereby flow velocity through capillaries in response to physiological decreases in O2 tension. This observation has broad implications for understanding how local changes in blood flow are coupled to synaptic transmission.
Collapse
Affiliation(s)
- Helen Shinru Wei
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hongyi Kang
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Izad-Yar Daniel Rasheed
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sitong Zhou
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Nanhong Lou
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anna Gershteyn
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Evan Daniel McConnell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yixuan Wang
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA; School of Mechanical Engineering, University of Science and Technology, Beijing 100083, China
| | - Kristopher Emil Richardson
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Andre Francis Palmer
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chris Xu
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jiandi Wan
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
243
|
Khennouf L, Gesslein B, Lind BL, van den Maagdenberg AMJM, Lauritzen M. Activity-dependent calcium, oxygen, and vascular responses in a mouse model of familial hemiplegic migraine type 1. Ann Neurol 2016; 80:219-32. [PMID: 27314908 DOI: 10.1002/ana.24707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Familial hemiplegic migraine type 1 (FHM1) is a subtype of migraine with aura caused by a gain-of-function mutation in the pore-forming α1 subunit of CaV 2.1 (P/Q-type) calcium channels. However, the mechanisms underlying how the disease is brought about and the prolonged aura remain incompletely understood. METHODS In the anesthetized FHM1 mouse model in vivo, we used two-photon microscopy to measure calcium changes in neurons and astrocytes during somatosensory stimulations and cortical spreading depression (CSD), the putative mechanism of the migraine aura. We combined it with assessment of local field potentials by electrophysiological recordings, cerebral blood flow by laser Doppler flowmetry, and oxygen consumption with measurement of the oxygen tissue tension. RESULTS During spreading depression, the evoked increase in cytosolic Ca(2+) was larger and faster in FHM1 mice than wild-type (WT) mice. It was accompanied by larger increases in oxygen consumption in FHM1 mice, leading to tissue anoxia, but moderate hypoxia, in WT mice. In comparison, before CSD, Ca(2+) and hemodynamic responses to somatosensory stimulations were smaller in FHM1 mice than WT mice and almost abolished after CSD. The CSD-induced Ca(2+) changes were mitigated by the CaV 2.1 gating modifier, tert-butyl dihydroquinone. INTERPRETATION Our findings suggest that tissue anoxia might be a mechanism for prolonged aura in FHM1. Reduced Ca(2+) signals during normal network activity in FHM1 as compared to WT mice may explain impaired neurovascular responses in the mutant, and these alterations could contribute to brain frailty in FHM1 patients. Ann Neurol 2016;80:219-232.
Collapse
Affiliation(s)
- Lila Khennouf
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Bodil Gesslein
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Lykke Lind
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.,Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
244
|
Dienel GA, Cruz NF. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochem 2016; 138:14-52. [DOI: 10.1111/jnc.13630] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Gerald A. Dienel
- Department of Cell Biology and Physiology; University of New Mexico; Albuquerque; New Mexico USA
- Department of Neurology; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| | - Nancy F. Cruz
- Department of Neurology; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| |
Collapse
|
245
|
Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci 2016; 19:182-9. [PMID: 26814587 DOI: 10.1038/nn.4201] [Citation(s) in RCA: 629] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
Abstract
The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.
Collapse
Affiliation(s)
- Narges Bazargani
- Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| | - David Attwell
- Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| |
Collapse
|
246
|
Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 2016; 323:170-82. [DOI: 10.1016/j.neuroscience.2015.01.007] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/02/2015] [Accepted: 01/06/2015] [Indexed: 12/20/2022]
|
247
|
Imaging large-scale cellular activity in spinal cord of freely behaving mice. Nat Commun 2016; 7:11450. [PMID: 27121084 PMCID: PMC4853475 DOI: 10.1038/ncomms11450] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/29/2016] [Indexed: 12/30/2022] Open
Abstract
Sensory information from mechanoreceptors and nociceptors in the skin plays key roles in adaptive and protective motor behaviours. To date, very little is known about how this information is encoded by spinal cord cell types and their activity patterns, particularly under freely behaving conditions. To enable stable measurement of neuronal and glial cell activity in behaving mice, we have developed fluorescence imaging approaches based on two- and miniaturized one-photon microscopy. We show that distinct cutaneous stimuli activate overlapping ensembles of dorsal horn neurons, and that stimulus type and intensity is encoded at the single-cell level. In contrast, astrocytes show large-scale coordinated calcium responses to intense but not weak sensory inputs. Sensory-evoked activity is potently suppressed by anaesthesia. By revealing the cellular and computational logic of spinal cord networks under behaving conditions, our approach holds promise for better understanding of healthy and aberrant spinal cord processes. Imaging cellular activity in mouse spinal cord has been historically difficult. Here the authors develop cellular resolution fluorescence imaging approaches in the spinal cord of behaving mice, and report distinct activity patterns of neurons and astrocytes in response to different sensory inputs.
Collapse
|
248
|
Abstract
The role of astrocytes in neuronal function has received increasing recognition, but disagreement remains about their function at the circuit level. Here we use in vivo two-photon calcium imaging of neocortical astrocytes while monitoring the activity state of the local neuronal circuit electrophysiologically and optically. We find that astrocytic calcium activity precedes spontaneous circuit shifts to the slow-oscillation-dominated state, a neocortical rhythm characterized by synchronized neuronal firing and important for sleep and memory. Further, we show that optogenetic activation of astrocytes switches the local neuronal circuit to this slow-oscillation state. Finally, using two-photon imaging of extracellular glutamate, we find that astrocytic transients in glutamate co-occur with shifts to the synchronized state and that optogenetically activated astrocytes can generate these glutamate transients. We conclude that astrocytes can indeed trigger the low-frequency state of a cortical circuit by altering extracellular glutamate, and therefore play a causal role in the control of cortical synchronizations.
Collapse
|
249
|
Shigetomi E, Patel S, Khakh BS. Probing the Complexities of Astrocyte Calcium Signaling. Trends Cell Biol 2016; 26:300-312. [PMID: 26896246 PMCID: PMC4946798 DOI: 10.1016/j.tcb.2016.01.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/08/2023]
Abstract
Astrocytes are abundant glial cells that tile the entire central nervous system and mediate well-established functions for neurons, blood vessels, and other glia. These ubiquitous cells display intracellular Ca(2+) signals, which have been intensely studied for 25 years. Recently, the use of improved methods has unearthed the panoply of astrocyte Ca(2+) signals and a variable landscape of basal Ca(2+) levels. In vivo studies have started to reveal the settings under which astrocytes display behaviorally relevant Ca(2+) signaling. Studies in mice have emphasized how astrocyte Ca(2+) signaling is altered in distinct neurodegenerative diseases. Progress in the past few years, fueled by methodological advances, has thus reignited interest in astrocyte Ca(2+) signaling for brain function and dysfunction.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
250
|
Hu X, Yuan Y, Wang D, Su Z. Heterogeneous astrocytes: Active players in CNS. Brain Res Bull 2016; 125:1-18. [PMID: 27021168 DOI: 10.1016/j.brainresbull.2016.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/12/2022]
Abstract
Astrocytes, the predominant cell type that are broadly distributed in the brain and spinal cord, play key roles in maintaining homeostasis of the central nerve system (CNS) in physiological and pathological conditions. Increasing evidence indicates that astrocytes are a complex colony with heterogeneity on morphology, gene expression, function and many other aspects depending on their spatio-temporal distribution and activation level. In pathological conditions, astrocytes differentially respond to all kinds of insults, including injury and disease, and participate in the neuropathological process. Based on current studies, we here give an overview of the roles of heterogeneous astrocytes in CNS, especially in neuropathologies, which focuses on biological and functional diversity of astrocytes. We propose that a precise understanding of the heterogeneous astrocytes is critical to unlocking the secrets about pathogenesis and treatment of the mazy CNS.
Collapse
Affiliation(s)
- Xin Hu
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yimin Yuan
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Dan Wang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Zhida Su
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China.
| |
Collapse
|