201
|
Stubbs BJ, Koutnik AP, Volek JS, Newman JC. From bedside to battlefield: intersection of ketone body mechanisms in geroscience with military resilience. GeroScience 2020; 43:1071-1081. [PMID: 33006708 PMCID: PMC8190215 DOI: 10.1007/s11357-020-00277-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Ketone bodies are endogenous metabolites that are linked to multiple mechanisms of aging and resilience. They are produced by the body when glucose availability is low, including during fasting and dietary carbohydrate restriction, but also can be consumed as exogenous ketone compounds. Along with supplying energy to peripheral tissues such as brain, heart, and skeletal muscle, they increasingly are understood to have drug-like protein binding activities that regulate inflammation, epigenetics, and other cellular processes. While these energy and signaling mechanisms of ketone bodies are currently being studied in a variety of aging-related diseases such as Alzheimer’s disease and type 2 diabetes mellitus, they may also be relevant to military service members undergoing stressors that mimic or accelerate aging pathways, particularly traumatic brain injury and muscle rehabilitation and recovery. Here we summarize the biology of ketone bodies relevant to resilience and rehabilitation, strategies for translational use of ketone bodies, and current clinical investigations in this area.
Collapse
Affiliation(s)
| | - Andrew P Koutnik
- Institute for Human and Machine Cognition, Pensacola, FL, USA.,Department of Molecular Pharmacology and Physiology, USF, Tampa, FL, USA
| | - Jeff S Volek
- Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - John C Newman
- Buck Institute for Research on Aging, Novato, CA, USA. .,Division of Geriatrics, UCSF, San Francisco, CA, USA.
| |
Collapse
|
202
|
Management of Gout-associated MSU crystals-induced NLRP3 inflammasome activation by procyanidin B2: targeting IL-1β and Cathepsin B in macrophages. Inflammopharmacology 2020; 28:1481-1493. [PMID: 33006110 DOI: 10.1007/s10787-020-00758-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022]
Abstract
Gout, the most prevalent inflammatory arthritis worldwide, released interleukin-1β (IL-1β) and Cathepsin B inflammatory mediators that constitute the hallmark of the disease. Herein we aimed to investigate whether procyanidin B2 (PCB2), a natural dietary compound, can suppress MSU crystals-stimulated gouty inflammation. Treated with lipopolysaccharide (LPS) plus MSU, both mouse peritoneal macrophages (MPM) and mouse bone marrow-derived macrophages (BMDM) released a large amount of mature IL-1β compared to those treated with MSU or LPS alone, while IL-1β release was blocked by TLR4 and its downstream effector inhibitors. In two mouse models of gout, oral administration of PCB2 suppressed MSU crystals-induced increasing expression of IL-1β, Cathepsin B and NLRP3 in the air pouch skin and paws, accompanied with the downregulation prostaglandin E2 (PGE2) in pouch exudates. Inflammatory immune cell infiltration including macrophages and neutrophils were significantly blocked by PCB2 in air pouch skin and paws of mice gout groups. PCB2 also suppressed the release of IL-1β and Cathepsin B induced by MSU plus LPS in MPM. Our results suggest that the inhibitory effects of PCB2 on NLRP3 inflammasome may alleviate inflammatory response in gout, and this might be a promising anti-inflammatory mechanism of PCB2 against the inflammation in gout.
Collapse
|
203
|
Wu M, Ma M, Tan Z, Zheng H, Liu X. Neutrophil: A New Player in Metastatic Cancers. Front Immunol 2020; 11:565165. [PMID: 33101283 PMCID: PMC7546851 DOI: 10.3389/fimmu.2020.565165] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
The interaction between cancer cells and immune cells is important for the cancer development. However, much attention has been given to T cells and macrophages. Being the most abundant leukocytes in the blood, the functions of neutrophils in cancer have been underdetermined. They have long been considered an “audience” in the development of cancer. However, emerging evidence indicate that neutrophils are a heterogeneous population with plasticity, and subpopulation of neutrophils (such as low density neutrophils, polymorphonuclear-myeloid-derived suppressor cells) are actively involved in cancer growth and metastasis. Here, we review the current understanding of the role of neutrophils in cancer development, with a specific focus on their pro-metastatic functions. We also discuss the potential and challenges of neutrophils as therapeutic targets. A better understanding the role of neutrophils in cancer will discover new mechanisms of metastasis and develop new immunotherapies by targeting neutrophils.
Collapse
Affiliation(s)
- Mengyue Wu
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Mutian Ma
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Hong Zheng
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Xia Liu
- Department of Toxicology and Cancer Biology, Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
204
|
Shrungeswara AH, Unnikrishnan MK. Energy Provisioning and Inflammasome Activation: The Pivotal Role of AMPK in Sterile Inflammation and Associated Metabolic Disorders. Antiinflamm Antiallergy Agents Med Chem 2020; 20:107-117. [PMID: 32938355 DOI: 10.2174/1871523019666200916115034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/02/2020] [Accepted: 08/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Body defenses and metabolic processes probably co-evolved in such a way that rapid, energy-intensive acute inflammatory repair is functionally integrated with energy allocation in a starvation/ infection / injury-prone primitive environment. Disruptive metabolic surplus, aggravated by sedentary lifestyle induces chronic under-activation of AMPK, the master regulator of intracellular energy homeostasis. Sudden increase in chronic, dysregulated 'sterile' inflammatory disorders probably results from a shift towards calorie rich, sanitized, cushioned, injury/ infection free environment, repositioning inflammatory repair pathways towards chronic, non-microbial, 'sterile', 'low grade', and 'parainflammation'. AMPK, (at the helm of energy provisioning) supervises the metabolic regulation of inflammasome activation, a common denominator in lifestyle disorders. DISCUSSION In this review, we discuss various pathways linking AMPK under-activation and inflammasome activation. AMPK under-activation, the possible norm in energy-rich sedentary lifestyle, could be the central agency that stimulates inflammasome activation by multiple pathways such as 1: decreasing autophagy, and accumulation of intracellular DAMPs, (particulate crystalline molecules, advanced glycation end-products, oxidized lipids, etc.) 2: stimulating a glycolytic shift (pro-inflammatory) in metabolism, 3: promoting NF-kB activation and decreasing Nrf2 activation, 4: increasing reactive oxygen species (ROS) formation, Unfolded Protein Response (UPR) and Endoplasmic Reticulum (ER) stress. CONCLUSION The 'inverse energy crisis' associated with calorie-rich, sedentary lifestyle, advocates dietary and pharmacological interventions for treating chronic metabolic disorders by overcoming / reversing AMPK under-activation.
Collapse
Affiliation(s)
- Akhila H Shrungeswara
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | |
Collapse
|
205
|
Ryu S, Shchukina I, Youm YH, Qing H, Hilliard BK, Dlugos T, Zhang X, Yasumoto Y, Booth CJ, Fernández-Hernando C, Suárez Y, Khanna KM, Horvath TL, Dietrich MO, Artyomov MN, Wang A, Dixit VD. Ketogenesis restrains aging-induced exacerbation of COVID in a mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33236006 DOI: 10.1101/2020.09.11.294363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing age is the strongest predictor of risk of COVID-19 severity. Unregulated cytokine storm together with impaired immunometabolic response leads to highest mortality in elderly infected with SARS-CoV-2. To investigate how aging compromises defense against COVID-19, we developed a model of natural murine beta coronavirus (mCoV) infection with mouse hepatitis virus strain MHV-A59 (mCoV-A59) that recapitulated majority of clinical hallmarks of COVID-19. Aged mCoV-A59-infected mice have increased mortality and higher systemic inflammation in the heart, adipose tissue and hypothalamus, including neutrophilia and loss of γδ T cells in lungs. Ketogenic diet increases beta-hydroxybutyrate, expands tissue protective γδ T cells, deactivates the inflammasome and decreases pathogenic monocytes in lungs of infected aged mice. These data underscore the value of mCoV-A59 model to test mechanism and establishes harnessing of the ketogenic immunometabolic checkpoint as a potential treatment against COVID-19 in the elderly. Highlights - Natural MHV-A59 mouse coronavirus infection mimics COVID-19 in elderly.- Aged infected mice have systemic inflammation and inflammasome activation.- Murine beta coronavirus (mCoV) infection results in loss of pulmonary γδ T cells.- Ketones protect aged mice from infection by reducing inflammation. eTOC Blurb Elderly have the greatest risk of death from COVID-19. Here, Ryu et al report an aging mouse model of coronavirus infection that recapitulates clinical hallmarks of COVID-19 seen in elderly. The increased severity of infection in aged animals involved increased inflammasome activation and loss of γδ T cells that was corrected by ketogenic diet.
Collapse
|
206
|
Møller N. Ketone Body, 3-Hydroxybutyrate: Minor Metabolite - Major Medical Manifestations. J Clin Endocrinol Metab 2020; 105:5856152. [PMID: 32525972 DOI: 10.1210/clinem/dgaa370] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022]
Abstract
Ketone bodies - 3-hydroxybutyrate (3-OHB), acetoacetate, and acetone - are ancient, evolutionarily preserved, small fuel substrates, which uniquely can substitute and alternate with glucose under conditions of fuel and food deficiency. Once canonized as a noxious, toxic pathogen leading to ketoacidosis in patients with diabetes, it is now becoming increasingly clear that 3-OHB possesses a large number of beneficial, life-preserving effects in the fields of clinical science and medicine. 3-OHB, the most prominent ketone body, binds to specific hydroxyl-carboxylic acid receptors and inhibits histone deacetylase enzymes, free fatty acid receptors, and the NOD-like receptor protein 3 inflammasome, tentatively inhibiting lipolysis, inflammation, oxidative stress, cancer growth, angiogenesis, and atherosclerosis, and perhaps contributing to the increased longevity associated with exercise and caloric restriction. Clinically ketone bodies/ketogenic diets have for a long time been used to reduce the incidence of seizures in epilepsy and may have a role in the treatment of other neurological diseases such as dementia. 3-OHB also acts to preserve muscle protein during systemic inflammation and is an important component of the metabolic defense against insulin-induced hypoglycemia. Most recently, a number of studies have reported that 3-OHB dramatically increases myocardial blood flow and cardiac output in control subjects and patients with heart failure. At the moment, scientific interest in ketone bodies, in particular 3-OHB, is in a hectic transit and, hopefully, future, much needed, controlled clinical studies will reveal and determine to which extent the diverse biological manifestations of 3-OHB should be introduced medically.
Collapse
Affiliation(s)
- Niels Møller
- Department of Clinical Medicine, Medical/Steno Aarhus Research Laboratory, Aarhus University, Aarhus N, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
207
|
Benito A, Hajji N, O’Neill K, Keun HC, Syed N. β-Hydroxybutyrate Oxidation Promotes the Accumulation of Immunometabolites in Activated Microglia Cells. Metabolites 2020; 10:metabo10090346. [PMID: 32859120 PMCID: PMC7570092 DOI: 10.3390/metabo10090346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 01/24/2023] Open
Abstract
Metabolic regulation of immune cells has arisen as a critical set of processes required for appropriate response to immunological signals. While our knowledge in this area has rapidly expanded in leukocytes, much less is known about the metabolic regulation of brain-resident microglia. In particular, the role of alternative nutrients to glucose remains poorly understood. Here, we use stable-isotope (13C) tracing strategies and metabolomics to characterize the oxidative metabolism of β-hydroxybutyrate (BHB) in human (HMC3) and murine (BV2) microglia cells and the interplay with glucose in resting and LPS-activated BV2 cells. We found that BHB is imported and oxidised in the TCA cycle in both cell lines with a subsequent increase in the cytosolic NADH:NAD+ ratio. In BV2 cells, stimulation with LPS upregulated the glycolytic flux, increased the cytosolic NADH:NAD+ ratio and promoted the accumulation of the glycolytic intermediate dihydroxyacetone phosphate (DHAP). The addition of BHB enhanced LPS-induced accumulation of DHAP and promoted glucose-derived lactate export. BHB also synergistically increased LPS-induced accumulation of succinate and other key immunometabolites, such as α-ketoglutarate and fumarate generated by the TCA cycle. Finally, BHB upregulated the expression of a key pro-inflammatory (M1 polarisation) marker gene, NOS2, in BV2 cells activated with LPS. In conclusion, we identify BHB as a potentially immunomodulatory metabolic substrate for microglia that promotes metabolic reprogramming during pro-inflammatory response.
Collapse
Affiliation(s)
- Adrian Benito
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London W12 0NN, UK; (A.B.); (N.H.); (K.O.)
| | - Nabil Hajji
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London W12 0NN, UK; (A.B.); (N.H.); (K.O.)
| | - Kevin O’Neill
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London W12 0NN, UK; (A.B.); (N.H.); (K.O.)
| | - Hector C. Keun
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
- Correspondence: (H.C.K.); (N.S.)
| | - Nelofer Syed
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London W12 0NN, UK; (A.B.); (N.H.); (K.O.)
- Correspondence: (H.C.K.); (N.S.)
| |
Collapse
|
208
|
Kolbrink B, Riebeling T, Kunzendorf U, Krautwald S. Plasma Membrane Pores Drive Inflammatory Cell Death. Front Cell Dev Biol 2020; 8:817. [PMID: 32974349 PMCID: PMC7471660 DOI: 10.3389/fcell.2020.00817] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
Necroptosis and pyroptosis are two forms of regulated cell death. They are executed by the proteins mixed-lineage kinase domain-like (MLKL) and gasdermin D (GSDMD), respectively. Once activated by numerous pathways, these proteins form membrane pores that allow the influx and efflux of various ions, proteins, and water, ultimately resulting in the death of the cell. These modalities of cell death are considered highly inflammatory because of the release of inflammatory cytokines and damage-associated molecular patterns, and are thereby not only deleterious for the dying cell itself, but also its environment or the entire organism. The relevance for these processes has been observed in various physiological and pathophysiological conditions, ranging from viral and bacterial infections over autoimmune and chronic inflammatory diseases to ischemic organ damage. In recent years, initial in vitro experiments have shed light on a range of connections between necroptosis and pyroptosis. Initial in vivo studies also indicate that, in many disease models, these two forms of cell death cannot be considered individually, as they demonstrate a complex interaction. In this article, we provide an overview of the currently known structure, pathways of activation, and functions of MLKL and GSDMD. With emerging evidence for an interconnection between necroptosis and pyroptosis in not only in vitro, but also in vivo models of disease, we highlight in particular the clinical relevance of the crosslinks between these two forms of inflammatory cell death and their implications for novel therapeutic strategies in a variety of diseases.
Collapse
Affiliation(s)
- Benedikt Kolbrink
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Theresa Riebeling
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ulrich Kunzendorf
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
209
|
Rahmel T, Hübner M, Koos B, Wolf A, Willemsen KM, Strauß G, Effinger D, Adamzik M, Kreth S. Impact of carbohydrate-reduced nutrition in septic patients on ICU: study protocol for a prospective randomised controlled trial. BMJ Open 2020; 10:e038532. [PMID: 32641340 PMCID: PMC7348645 DOI: 10.1136/bmjopen-2020-038532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Sepsis is defined as detrimental immune response to an infection. This overwhelming reaction often abolishes a normal reconstitution of the immune cell homeostasis that in turn increases the risk for further complications. Recent studies revealed a favourable impact of ketone bodies on resolution of inflammation. Thus, a ketogenic diet may provide an easy-to-apply and cost-effective treatment option potentially alleviating sepsis-evoked harm. This study is designed to assess the feasibility, efficiency and safety of a ketogenic diet in septic patients. METHODS AND ANALYSIS This monocentric study is a randomised, controlled and open-label trial, which is conducted on an intensive care unit of a German university hospital. As intervention enteral nutrition with reduced amount of carbohydrates (ketogenic) or standard enteral nutrition (control) is applied. The primary endpoint is the detection of ketone bodies in patients' blood and urine samples. As secondary endpoints, the impact on important safety-relevant issues (eg, glucose metabolism, lactate serum concentration, incidence of metabolic acidosis, thyroid function and 30-day mortality) and the effect on the immune system are analysed. ETHICS AND DISSEMINATION The study has received the following approvals: Ethics Committee of the Medical Faculty of Ruhr-University Bochum (No. 18-6557-BR). Results will be made available to critical care survivors, their caregivers, the funders, the critical care societies and other researchers by publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBERS German Clinical Trial Register (DRKS00017710); Universal Trial Number (U1111-1237-2493).
Collapse
Affiliation(s)
- Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Max Hübner
- Faculty of Medicine - LMU, Walter-Brendel Center of Experimental Medicine, München, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Alexander Wolf
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Katrin-Maria Willemsen
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Gabriele Strauß
- Faculty of Medicine - LMU, Walter-Brendel Center of Experimental Medicine, München, Germany
| | - David Effinger
- Faculty of Medicine - LMU, Walter-Brendel Center of Experimental Medicine, München, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Simone Kreth
- Faculty of Medicine - LMU, Walter-Brendel Center of Experimental Medicine, München, Germany
| |
Collapse
|
210
|
Weatherly LM, Shane HL, Friend SA, Lukomska E, Baur R, Anderson SE. Topical Application of the Antimicrobial Agent Triclosan Induces NLRP3 Inflammasome Activation and Mitochondrial Dysfunction. Toxicol Sci 2020; 176:147-161. [PMID: 32321163 PMCID: PMC7367438 DOI: 10.1093/toxsci/kfaa056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
5-Chloro-2-(2,4-dichlorophenoxy)phenol (triclosan) is an antimicrobial chemical widely used in consumer household and clinical healthcare products. Human and animal studies have associated triclosan exposure with allergic disease. Mechanistic studies have identified triclosan as a mitochondrial uncoupler; recent studies suggest that mitochondria play an important role in immune cell function and are involved in activation of the NLRP3 inflammasome. In this study, early immunological effects were evaluated via NLRP3 activation following dermal triclosan application in a BALB/c murine model. These investigations revealed rapid caspase-1 activation and mature IL-1β secretion in the skin and draining lymph nodes (dLNs) after 1.5% and 3% triclosan exposure. Correspondingly, pro-Il-1b and S100a8 gene expression increased along with extracellular ATP in the skin. Peak gene expression of chemokines associated with caspase-1 activation occurred after 2 days of exposure in both skin tissue and dLNs. Phenotypic analysis showed an increase in neutrophils and macrophages in the dLN and myeloid and inflammatory monocytes in the skin tissue. Triclosan also caused mitochondrial dysfunction shown through effects on mitochondrial reactive oxygen species, mass, mitochondrial membrane potential, and mitochondrial morphology. These results indicate that following triclosan exposure, activation of the NLRP3 inflammasome occurs in both the skin tissue and dLNs, providing a possible mechanism for triclosan's effects on allergic disease and further support a connection between mitochondrial involvements in immunological responses.
Collapse
Affiliation(s)
- Lisa M. Weatherly
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| | - Hillary L. Shane
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| | - Sherri A. Friend
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| | - Ewa Lukomska
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| | - Rachel Baur
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| | - Stacey E. Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| |
Collapse
|
211
|
Liu Q, Su LY, Sun C, Jiao L, Miao Y, Xu M, Luo R, Zuo X, Zhou R, Zheng P, Xiong W, Xue T, Yao YG. Melatonin alleviates morphine analgesic tolerance in mice by decreasing NLRP3 inflammasome activation. Redox Biol 2020; 34:101560. [PMID: 32413745 PMCID: PMC7225735 DOI: 10.1016/j.redox.2020.101560] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Morphine is frequently used for pain relief, but long-term morphine therapy in patients with chronic pain results in analgesic tolerance and hyperalgesia. There are no effective therapeutic treatments that limit these detrimental side effects. We found pretreatment with melatonin could decrease morphine-induced analgesic tolerance. There was a significant activation of the NLRP3 inflammasome in the prefrontal cortex and the peripheral blood of morphine-treated mice compared to control animals, which could be blocked by melatonin. The inflammasome activation induced by morphine was mediated by the microglia. SiRNA knockdown or pharmacological inhibition of the NLRP3 abolished the morphine-induced inflammasome activation. Co-administration of melatonin and low-dose morphine had better analgesia effects in the murine models of pain and led to a lower NLRP3 inflammasome activity in brain tissues. Mice deficient for Nlrp3 had a higher nociceptive threshold and were less sensitive to develop morphine-induced analgesic tolerance and acetic acid-induced pain relative to wild-type animals. Concordantly, we observed a significantly elevated level of serum IL-1β, which indicates an increase of NLRP3 inflammasome activity associated with the reduced level of serum melatonin, in heroin-addicted patients relative to healthy individuals. Our results provide a solid basis for conducting a clinical trial with the co-administration of melatonin and morphine for the relief of severe pain.
Collapse
Affiliation(s)
- Qianjin Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ling-Yan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
| | - Chunli Sun
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Lijin Jiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ying Miao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Xin Zuo
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ping Zheng
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wei Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
212
|
Han Y, Sun W, Ren D, Zhang J, He Z, Fedorova J, Sun X, Han F, Li J. SIRT1 agonism modulates cardiac NLRP3 inflammasome through pyruvate dehydrogenase during ischemia and reperfusion. Redox Biol 2020; 34:101538. [PMID: 32325423 PMCID: PMC7176991 DOI: 10.1016/j.redox.2020.101538] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleotide-binding oligomerization domain-Like Receptor with a Pyrin domain 3 (NLRP3) inflammasome was emerged as a marker of metabolic dysregulation. We revealed that age-related Sirtuin-1 (SIRT1) modulates cardiac metabolism that medicated inflammatory response during ischemia and reperfusion (I/R) stress. We hypothesize that SIRT1 attenuates NLRP3 inflammasome-dependent inflammation and pyroptosis during myocardial I/R through metabolic modulation. C57BL/6J wild type (WT) mice, inducible cardiomyocyte specific SIRT1 knockout (icSIRT1 KO) and inducible cardiomyocyte specific PDH E1α knockout (icPDH E1α KO) mice were subjected to ligation and release of left anterior descending coronary artery for in vivo regional I/R models. The echocardiography measurement demonstrated that SIRT1 agonist SRT1720 (30 μg/g) improved cardiac systolic function during 45 min of ischemia and 6 h of reperfusion in C57BL/6J WT mice. The biochemical analysis showed that I/R triggered activation of cardiac pyruvate dehydrogenase (PDH), while SIRT1 agonist SRT1720 inhibited I/R-induced PDH activity and reduced production of reactive oxygen species (ROS) during myocardial I/R. Moreover, SRT1720 regulates PDH-related glucose oxidative metabolism to reduce NLRP3 inflammasome activation and pyroptosis in an Akt signaling dependent manner during I/R. Furthermore, an impaired Akt signaling was observed in icSIRT1 KO versus SIRT1fox/flox mice under I/R stress. Intriguingly, we observed lower levels of ROS generation, decreased NLRP3 levels and less pyroptosis occurred in the icPDH E1α KO versus PDH E1αflox/flox hearts during I/R. Taken together, the results indicate that SIRT1 agonism can inhibit activation of NLRP3 inflammasome via Akt-dependent metabolic regulation during ischemic insults by I/R.
Collapse
Affiliation(s)
- Ying Han
- Cardiovascular Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Surgery, University of South Florida, Tampa, USA
| | - Weiju Sun
- Department of Surgery, University of South Florida, Tampa, USA; Cardiovascular Department, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, USA
| | - Jingwen Zhang
- Department of Surgery, University of South Florida, Tampa, USA
| | - Zhibin He
- Department of Surgery, University of South Florida, Tampa, USA
| | - Julia Fedorova
- Department of Surgery, University of South Florida, Tampa, USA
| | - Xiaodong Sun
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, USA
| | - Fang Han
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, USA
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, USA.
| |
Collapse
|
213
|
β-Hydroxybutyrate Increases Exercise Capacity Associated with Changes in Mitochondrial Function in Skeletal Muscle. Nutrients 2020; 12:nu12071930. [PMID: 32610627 PMCID: PMC7400376 DOI: 10.3390/nu12071930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
β-hydroxybutyrate is the main ketone body generated by the liver under starvation. Under these conditions, it can sustain ATP levels by its oxidation in mitochondria. As mitochondria can modify its shape and function under different nutritional challenges, we study the chronic effects of β-hydroxybutyrate supplementation on mitochondrial morphology and function, and its relation to exercise capacity. Male C57BL/6 mice were supplemented with β-hydroxybutyrate mineral salt (3.2%) or control (CT, NaCl/KCl) for six weeks and submitted to a weekly exercise performance test. We found an increase in distance, maximal speed, and time to exhaustion at two weeks of supplementation. Fatty acid metabolism and OXPHOS subunit proteins declined at two weeks in soleus but not in tibialis anterior muscles. Oxygen consumption rate on permeabilized fibers indicated a decrease in the presence of pyruvate in the short-term treatment. Both the tibialis anterior and soleus showed decreased levels of Mitofusin 2, while electron microscopy assessment revealed a significant reduction in mitochondrial cristae shape in the tibialis anterior, while a reduction in the mitochondrial number was observed only in soleus. These results suggest that short, but not long-term, β-hydroxybutyrate supplementation increases exercise capacity, associated with modifications in mitochondrial morphology and function in mouse skeletal muscle.
Collapse
|
214
|
Ishimwe JA, Garrett MR, Sasser JM. 1,3-Butanediol attenuates hypertension and suppresses kidney injury in female rats. Am J Physiol Renal Physiol 2020; 319:F106-F114. [PMID: 32508113 DOI: 10.1152/ajprenal.00141.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Thirty-seven million people in the United States are estimated to have chronic kidney disease (CKD). Hypertension (HTN) is the second leading risk factor for developing kidney disease. A recent study reported that increasing levels of β-hydroxybutyrate levels by administration of its precursor, 1,3-butanediol, decreased salt-induced HTN in male Dahl salt-sensitive (S) rats. The effect of 1,3-butanediol on hypertensive kidney disease in female rats or the absence of high salt has not been investigated. This study tested the hypothesis that 1,3-butanediol attenuates HTN and the progression of CKD in female S-SHR(11) rats. The S-SHR(11) strain is a congenic rat strain generated from genetic modification of the Dahl S rat, previously characterized as a model of accelerated renal disease. Rats received 1,3-butanediol (20% via drinking water) or control for 10 wk and were maintained on a 0.3% NaCl rodent diet (n = 12-14 rats/group). Blood pressure was measured after 6 and 9 wk of treatment by tail-cuff plethysmography; after 10 wk, urine and tissues were collected. Activity of the treatment was confirmed by measuring plasma β-hydroxybutyrate levels, which were greater in the treated group. The 1,3-butanediol-treated group had lower systolic blood pressure, proteinuria, plasma creatinine, and renal fibrosis after 9 wk of treatment compared with controls. The treated group had significantly smaller spleens and increased the renal anti-inflammatory molecules interleukin-10 and granulocyte-macrophage colony-stimulating factor, suggesting reduced inflammation. The present data demonstrate that 1,3-butanediol lowers blood pressure and renal injury in female rats and could be a novel nutritional intervention for the treatment of CKD.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
215
|
Byrne NJ, Soni S, Takahara S, Ferdaoussi M, Al Batran R, Darwesh AM, Levasseur JL, Beker D, Vos DY, Schmidt MA, Alam AS, Maayah ZH, Schertzer JD, Seubert JM, Ussher JR, Dyck JRB. Chronically Elevating Circulating Ketones Can Reduce Cardiac Inflammation and Blunt the Development of Heart Failure. Circ Heart Fail 2020; 13:e006573. [PMID: 32493060 DOI: 10.1161/circheartfailure.119.006573] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Previous studies have shown beneficial effects of acute infusion of the primary ketone body, β-hydroxybutyrate, in heart failure (HF). However, whether chronic elevations in circulating ketones are beneficial remains unknown. METHODS To chronically elevate circulating ketones in mice, we deleted the expression of the ketolytic, rate-limiting-enzyme, SCOT (succinyl-CoA:3-ketoacid-CoA transferase 1; encoded by Oxct1), in skeletal muscle. Tamoxifen-inducible skeletal muscle-specific Oxct1Muscle-/- knockout (n=32) mice and littermate controls (wild type; WT; n=35) were subjected to transverse aortic constriction (TAC) surgery to induce HF. RESULTS Deletion of SCOT in skeletal, but not cardiac muscle resulted in elevated concentrations of fasted circulating β-hydroxybutyrate in knockout mice compared with WT mice (P=0.030). Five weeks following TAC, WT mice progressed to HF, whereas knockout mice with elevated fasting circulating ketones were largely protected from the TAC-induced effects observed in WT mice (ejection fraction, P=0.011; mitral E/A, P=0.012). Furthermore, knockout mice with TAC had attenuated expression of markers of sterile inflammation and macrophage infiltration, which were otherwise elevated in WT mice subjected to TAC. Lastly, addition of β-hydroxybutyrate to isolated hearts was associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3)-inflammasome activation, which has been previously shown to play a role in contributing to HF-induced cardiac inflammation. CONCLUSIONS These data show that chronic elevation of circulating ketones protects against the development of HF that is associated with the ability of β-hydroxybutyrate to directly reduce inflammation. These beneficial effects of ketones were associated with reduced cardiac NLRP3 inflammasome activation, suggesting that ketones may modulate cardiac inflammation via this mechanism.
Collapse
Affiliation(s)
- Nikole J Byrne
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada.,Department of Pediatrics (N.J.B., S.S., Z.H.M., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Shubham Soni
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada.,Department of Pediatrics (N.J.B., S.S., Z.H.M., J.R.B.D.), University of Alberta, Edmonton, Canada.,Alberta Diabetes Institute (S.S., R.A.B., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Shingo Takahara
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada.,Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan (S.T.)
| | - Mourad Ferdaoussi
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Rami Al Batran
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada.,Alberta Diabetes Institute (S.S., R.A.B., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada.,Faculty of Medicine and Dentistry, and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.B., A.M.D., J.M.S., J.R.U.), University of Alberta, Edmonton, Canada
| | - Ahmed M Darwesh
- Faculty of Medicine and Dentistry, and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.B., A.M.D., J.M.S., J.R.U.), University of Alberta, Edmonton, Canada
| | - Jody L Levasseur
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Donna Beker
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Dyonne Y Vos
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Mya A Schmidt
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Abrar S Alam
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Zaid H Maayah
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada.,Department of Pediatrics (N.J.B., S.S., Z.H.M., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada (J.D.S.)
| | - John M Seubert
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada.,Department of Pharmacology (J.M.S), University of Alberta, Edmonton, Canada.,Faculty of Medicine and Dentistry, and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.B., A.M.D., J.M.S., J.R.U.), University of Alberta, Edmonton, Canada
| | - John R Ussher
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada.,Alberta Diabetes Institute (S.S., R.A.B., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada.,Faculty of Medicine and Dentistry, and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.B., A.M.D., J.M.S., J.R.U.), University of Alberta, Edmonton, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre (N.J.B., S.S., S.T., M.F., R.A.B., J.L.L., D.B., D.Y.V., M.A.S., A.S.A., Z.H.M., J.M.S., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada.,Department of Pediatrics (N.J.B., S.S., Z.H.M., J.R.B.D.), University of Alberta, Edmonton, Canada.,Alberta Diabetes Institute (S.S., R.A.B., J.R.U., J.R.B.D.), University of Alberta, Edmonton, Canada
| |
Collapse
|
216
|
Review: Following the smoke signals: inflammatory signaling in metabolic homeostasis and homeorhesis in dairy cattle. Animal 2020; 14:s144-s154. [PMID: 32024563 DOI: 10.1017/s1751731119003203] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cascades are a critical component of the immune response to infection or tissue damage, involving an array of signals, including water-soluble metabolites, lipid mediators and several classes of proteins. Early investigation of these signaling pathways focused largely on immune cells and acute disease models. However, more recent findings have highlighted critical roles of both immune cells and inflammatory mediators on tissue remodeling and metabolic homeostasis in healthy animals. In dairy cattle, inflammatory signals in various tissues and in circulation change rapidly and dramatically, starting just prior to and at the onset of lactation. Furthermore, several observations in healthy cows point to homeostatic control of inflammatory tone, which we define as a regulatory process to balance immune tolerance with activation to keep downstream effects under control. Recent evidence suggests that peripartum inflammatory changes influence whole-body nutrient flux of dairy cows over the course of days and months. Inflammatory mediators can suppress appetite, even at levels that do not induce acute responses (e.g. fever), thereby decreasing nutrient availability. On the other hand, inhibition of inflammatory signaling with non-steroidal anti-inflammatory drug (NSAID) treatment suppresses hepatic gluconeogenesis, leading to hypoglycemia in some cases. Over the long term, though, peripartum NSAID treatment substantially increases peak and whole-lactation milk synthesis by multiparous cows. Inflammatory regulation of nutrient flux may provide a homeorhetic mechanism to aid cows in adapting to rapid changes in metabolic demand at the onset of lactation, but excessive systemic inflammation has negative effects on metabolic homeostasis through inhibition of appetite and promotion of immune cell activity. Thus, in this review, we provide perspectives on the overlapping regulation of immune responses and metabolism by inflammatory mediators, which may provide a mechanistic underpinning for links between infectious and metabolic diseases in transition dairy cows. Moreover, we point to novel approaches to the management of this challenging phase of the production cycle.
Collapse
|
217
|
Santillán-Cigales JJ, Mercado-Gómez OF, Arriaga-Ávila V, Landgrave-Gómez J, Guevara-Guzmán R. Daytime-restricted feeding modulates the expression of inflammatory mediators and diminishes reactive astrogliosis and microgliosis following status epilepticus. Brain Res 2020; 1734:146724. [PMID: 32057806 DOI: 10.1016/j.brainres.2020.146724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 02/09/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Jair Santillán-Cigales
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Octavio Fabián Mercado-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Virginia Arriaga-Ávila
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Jorge Landgrave-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| |
Collapse
|
218
|
Evans LW, Stratton MS, Ferguson BS. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat Prod Rep 2020; 37:653-676. [PMID: 31993614 PMCID: PMC7577396 DOI: 10.1039/c9np00057g] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020Chronic, low-grade inflammation is linked to aging and has been termed "inflammaging". Inflammaging is considered a key contributor to the development of metabolic dysfunction and a broad spectrum of diseases or disorders including declines in brain and heart function. Genome-wide association studies (GWAS) coupled with epigenome-wide association studies (EWAS) have shown the importance of diet in the development of chronic and age-related diseases. Moreover, dietary interventions e.g. caloric restriction can attenuate inflammation to delay and/or prevent these diseases. Common themes in these studies entail the use of phytochemicals (plant-derived compounds) or the production of short chain fatty acids (SCFAs) as epigenetic modifiers of DNA and histone proteins. Epigenetic modifications are dynamically regulated and as such, serve as potential therapeutic targets for the treatment or prevention of age-related disease. In this review, we will focus on the role for natural products that include phytochemicals and short chain fatty acids (SCFAs) as regulators of these epigenetic adaptations. Specifically, we discuss regulators of methylation, acetylation and acylation, in the protection from chronic inflammation driven metabolic dysfunction and deterioration of neurocognitive and cardiac function.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
219
|
Goldberg EL, Shaw AC, Montgomery RR. How Inflammation Blunts Innate Immunity in Aging. Interdiscip Top Gerontol Geriatr 2020; 43:1-17. [PMID: 32294641 PMCID: PMC8063508 DOI: 10.1159/000504480] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
The collective loss of immune protection during aging leads to poor vaccine responses and an increased severity of infection for the elderly. Here, we review our current understanding of effects of aging on the cellular and molecular dysregulation of innate immune cells as well as the relevant tissue milieu which influences their functions. The innate immune system is composed of multiple cell types which provide distinct and essential roles in tissue surveillance and antigen presentation as well as early responses to infection or injury. Functional defects that arise during aging lead to a reduced dynamic range of responsiveness, altered cytokine dynamics, and impaired tissue repair. Heightened inflammation influences both the dysregulation of innate immune responses as well as surrounding tissue microenvironments which have a critical role in development of a functional immune response. In particular, age-related physical and inflammatory changes in the skin, lung, lymph nodes, and adipose tissue reflect disrupted architecture and spatial organization contributing to diminished immune responsiveness. Underlying mechanisms include altered transcriptional programming and dysregulation of critical innate immune signaling cascades. Further, we identify signaling functions of bioactive lipid mediators which address chronic inflammation and may contribute to the resolution of inflammation to improve innate immunity during aging.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert C Shaw
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA,
| |
Collapse
|
220
|
Hou X, Xu G, Wang Z, Zhan X, Li H, Li R, Shi W, Wang C, Chen Y, Ai Y, Xiao X, Bai Z. Glaucocalyxin A alleviates LPS-mediated septic shock and inflammation via inhibiting NLRP3 inflammasome activation. Int Immunopharmacol 2020; 81:106271. [DOI: 10.1016/j.intimp.2020.106271] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
|
221
|
Neudorf H, Myette-Côté É, P. Little J. The Impact of Acute Ingestion of a Ketone Monoester Drink on LPS-Stimulated NLRP3 Activation in Humans with Obesity. Nutrients 2020; 12:nu12030854. [PMID: 32209983 PMCID: PMC7146505 DOI: 10.3390/nu12030854] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022] Open
Abstract
Activation of the NOD-like receptor pyrin-domain containing 3 (NLRP3) inflammasome is associated with chronic low-grade inflammation in metabolic diseases such as obesity. Mechanistic studies have shown that β-hydroxybutyrate (OHB) attenuates activation of NLRP3, but human data are limited. In a randomized, double-blind, placebo-controlled crossover trial (n = 11) we tested the hypothesis that acutely raising β-OHB by ingestion of exogenous ketones would attenuate NLRP3 activation in humans with obesity. Blood was sampled before and 30 min post-ingestion of a ketone monoester drink ((R)-3-hydroxybutyl (R)-3-hydroxybutyrate, 482 mg/kg body mass) or placebo. A 75 g oral glucose load was then ingested, and a third blood sample was obtained 60 min following glucose ingestion. NLRP3 activation was quantified by assessing monocyte caspase-1 activation and interleukin (IL)-1β secretion in ex vivo lipopolysaccharide (LPS)-stimulated whole-blood cultures. LPS-stimulated caspase-1 activation increased following glucose ingestion (main effect of time; p = 0.032), with no differences between conditions. IL-1β secretion did not differ between conditions but was lower 60 min post-glucose ingestion compared to the fasting baseline (main effect of time, p = 0.014). Plasma IL-1β was detectable in ~80% of samples and showed a decrease from fasting baseline to 60 min in the ketone condition only (condition × time interaction, p = 0.01). In individuals with obesity, an excursion into hyperglycemia following ingestion of a glucose load augments LPS-induced activation of caspase-1 in monocytes with no apparent impact of raising circulating β-OHB concentration via ingestion of exogenous ketones. Exogenous ketone supplementation may impact plasma IL-1β, but these findings require confirmation in studies with larger sample sizes.
Collapse
|
222
|
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19:253-275. [PMID: 31969717 DOI: 10.1038/s41573-019-0054-z] [Citation(s) in RCA: 457] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
223
|
Cheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1β is a potential therapeutic target for periodontitis: a narrative review. Int J Oral Sci 2020; 12:2. [PMID: 31900383 PMCID: PMC6949296 DOI: 10.1038/s41368-019-0068-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 02/05/2023] Open
Abstract
Interleukin(IL)-1β, a pro-inflammatory cytokine, was elevated and participates in periodontitis. Not only the link between IL-1β and periodontitis was proved by clinical evidence, but also the increased IL-1β triggers a series of inflammatory reactions and promotes bone resorption. Currently, IL-1β blockage has been therapeutic strategies for autoimmune and autoinflammatory diseases such as rheumatoid arthritis, cryopyrin-associated periodic syndromes, gout and type II diabetes mellitus. It is speculated that IL-1β be a potential therapeutic target for periodontitis. The review focuses on the production, mechanism, present treatments and future potential strategies for IL-1β in periodontitis.
Collapse
Affiliation(s)
- Ran Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiwu Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingming Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
224
|
Caplliure‐Llopis J, Peralta‐Chamba T, Carrera‐Juliá S, Cuerda‐Ballester M, Drehmer‐Rieger E, López‐Rodriguez MM, de la Rubia Ortí JE. Therapeutic alternative of the ketogenic Mediterranean diet to improve mitochondrial activity in Amyotrophic Lateral Sclerosis (ALS): A Comprehensive Review. Food Sci Nutr 2020; 8:23-35. [PMID: 31993129 PMCID: PMC6977418 DOI: 10.1002/fsn3.1324] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease which is pathogenically based on the mitochondrial alteration of motor neurons, causing progressive neuron death. While ALS is characterized by enormous oxidative stress, the Mediterranean diet has been seen to have high antioxidant power. Therefore, the aim of this study is to determine how the Mediterranean diet can improve mitochondrial activity, establishing the specific nutrients and, in addition, observing the pathogenic mechanisms related to the disease that would achieve this improvement. To this end, a comprehensive review of the literature was performed using PubMed. KBs have been observed to have a neuroprotective effect to improve energy balance, increasing survival and the number of motor neurons. This ketogenesis can be achieved after following a Mediterranean diet which is associated with great benefits in other neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and ALS. These benefits are due to the high antioxidant power especially based on polyphenols contained mainly in olive oil, wine, nuts, or berries. In short, KBs could be considered as a promising option to treat ALS, representing an alternative source to glucose in motor neurons by providing neuroprotection. In addition, treatment results can be improved as ketogenesis can be achieved (increase in KBs) by following a Mediterranean diet, thanks to the high antioxidant properties which, at the same time, would improve the high oxidative stress that characterizes the disease.
Collapse
Affiliation(s)
- Jordi Caplliure‐Llopis
- Doctoral Degree's SchoolCatholic University of ValenciaValenciaSpain
- University Hospital la RiberaAlziraSpain
| | | | - Sandra Carrera‐Juliá
- Doctoral Degree's SchoolCatholic University of ValenciaValenciaSpain
- Faculty of Medicine and OdontologyCatholic. University of ValenciaValenciaSpain
| | | | - Eraci Drehmer‐Rieger
- Department of Health and Functional ValorizationCatholic University of ValenciaValenciaSpain
| | | | | |
Collapse
|
225
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
226
|
Goldberg EL, Shchukina I, Asher JL, Sidorov S, Artyomov MN, Dixit VD. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat Metab 2020; 2:50-61. [PMID: 32694683 PMCID: PMC10150608 DOI: 10.1038/s42255-019-0160-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/11/2019] [Indexed: 12/29/2022]
Abstract
Ketone bodies are essential alternative fuels that allow humans to survive periods of glucose scarcity induced by starvation and prolonged exercise. A widely used ketogenic diet (KD), which is extremely high in fat with very low carbohydrates, drives the host into using β-hydroxybutyrate for the production of ATP and lowers NLRP3-mediated inflammation. However, the extremely high fat composition of KD raises the question of how ketogenesis affects adipose tissue to control inflammation and energy homeostasis. Here, by using single-cell RNA sequencing of adipose-tissue-resident immune cells, we show that KD expands metabolically protective γδ T cells that restrain inflammation. Notably, long-term ad libitum KD feeding in mice causes obesity, impairs metabolic health and depletes the adipose-resident γδ T cells. In addition, mice lacking γδ T cells have impaired glucose homeostasis. Our results suggest that γδ T cells are mediators of protective immunometabolic responses that link fatty acid-driven fuel use to reduced adipose tissue inflammation.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer L Asher
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sviatoslav Sidorov
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Vishwa Deep Dixit
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
227
|
Jackson A, Forsyth CB, Shaikh M, Voigt RM, Engen PA, Ramirez V, Keshavarzian A. Diet in Parkinson's Disease: Critical Role for the Microbiome. Front Neurol 2019; 10:1245. [PMID: 31920905 PMCID: PMC6915094 DOI: 10.3389/fneur.2019.01245] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Parkinson's disease (PD) is the most common movement disorder affecting up to 1% of the population above the age of 60 and 4–5% of those above the age of 85. Little progress has been made on efforts to prevent disease development or halt disease progression. Diet has emerged as a potential factor that may prevent the development or slow the progression of PD. In this review, we discuss evidence for a role for the intestinal microbiome in PD and how diet-associated changes in the microbiome may be a viable approach to prevent or modify disease progression. Methods: We reviewed studies demonstrating that dietary components/foods were related to risk for PD. We reviewed evidence for the dysregulated intestinal microbiome in PD patients including abnormal shifts in the intestinal microbiota composition (i.e., dysbiosis) characterized by a loss of short chain fatty acid (SCFA) bacteria and increased lipopolysaccharide (LPS) bacteria. We also examined several candidate mechanisms by which the microbiota can influence PD including the NLRP3 inflammasome, insulin resistance, mitochondrial function, vagal nerve signaling. Results: The PD-associated microbiome is associated with decreased production of SCFA and increased LPS and it is believed that these changes may contribute to the development or exacerbation of PD. Diet robustly impacts the intestinal microbiome and the Western diet is associated with increased risk for PD whereas the Mediterranean diet (including high intake of dietary fiber) decreases PD risk. Mechanistically this may be the consequence of changes in the relative abundance of SCFA-producing or LPS-containing bacteria in the intestinal microbiome with effects on intestinal barrier function, endotoxemia (i.e., systemic LPS), NLRP3 inflammasome activation, insulin resistance, and mitochondrial dysfunction, and the production of factors such as glucagon like peptide 1 (GLP-1) and brain derived neurotrophic factor (BDNF) as well as intestinal gluconeogenesis. Conclusions: This review summarizes a model of microbiota-gut-brain-axis regulation of neuroinflammation in PD including several new mechanisms. We conclude with the need for clinical trials in PD patients to test this model for beneficial effects of Mediterranean based high fiber diets.
Collapse
Affiliation(s)
- Aeja Jackson
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Christopher B Forsyth
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Maliha Shaikh
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Robin M Voigt
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Phillip A Engen
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Vivian Ramirez
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Ali Keshavarzian
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| |
Collapse
|
228
|
Xia C, Razavi M, Rao X, Braunstein Z, Mao H, Toomey AC, Wang Y, Simon DI, Zhao S, Rajagopalan S, Zhong J. MRP14 enhances the ability of macrophage to recruit T cells and promotes obesity-induced insulin resistance. Int J Obes (Lond) 2019; 43:2434-2447. [PMID: 31040394 PMCID: PMC6821582 DOI: 10.1038/s41366-019-0366-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Myeloid-related protein-14 (MRP14) and its binding partner MRP8 play an essential role in innate immune function and have been implicated in a variety of inflammatory diseases. However, the role of MRP14 in obesity-induced inflammation and insulin resistance is not well defined. This study investigated the role of MRP14 in macrophage-mediated adipose tissue inflammation and obesity-induced insulin resistance. SUBJECTS AND RESULTS Wild-type (WT) and Mrp14-/- mice were fed with a high-fat diet or normal chow for 12 weeks. Tissue-resident macrophages in both adipose tissue and liver from obese WT mice expressed higher levels of MRP14 in the visceral adipose fat and liver compared with the lean mice. Mrp14-/- mice demonstrated a significantly improved postprandial insulin sensitivity, as measured by intraperitoneal glucose tolerance test and insulin tolerance testing. Macrophages secreted MRP14 in response to inflammatory stimuli, such as LPS. Extracellular MRP8/14 induced the production of CCL5 and CXCL9. Deficiency of MRP14 did not affect macrophage proliferation, mitochondrial respiration, and glycolytic function, but Mrp14-/- macrophages showed a reduced ability to attract T cells. Depletion of the extracellular MRP14 reduced the T cell attracting ability of WT macrophages to a level similar to Mrp14-/- macrophages. CONCLUSION Our data indicate that MRP14 deficiency decreases obesity-induced insulin resistance and MRP8/14 regulates T-cell recruitment through the induction of T-cell chemoattractant production from macrophages.
Collapse
Affiliation(s)
- Chang Xia
- College of Health Science & Nursing, Wuhan Polytechnic University, 430023, Wuhan, Hubei, China
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michael Razavi
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaoquan Rao
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Zachary Braunstein
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Hong Mao
- Department of Endocrinology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430014, Wuhan, Hubei, China
| | - Amelia C Toomey
- Department of Health Sciences, University of Missouri, Columbia, MO, USA
| | - Yunmei Wang
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daniel I Simon
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shi Zhao
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
229
|
Wu Y, Gong Y, Luan Y, Li Y, Liu J, Yue Z, Yuan B, Sun J, Xie C, Li L, Zhen J, Jin X, Zheng Y, Wang X, Xie L, Wang W. BHBA treatment improves cognitive function by targeting pleiotropic mechanisms in transgenic mouse model of Alzheimer's disease. FASEB J 2019; 34:1412-1429. [PMID: 31914599 DOI: 10.1096/fj.201901984r] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/17/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
Accumulation of amyloid β (Aβ) peptide, inflammation, and oxidative stress contribute to Alzheimer's disease (AD) and trigger complex pathogenesis. The ketone body β-hydroxybutyrate (BHBA) is an endogenous metabolic intermediate that protects against stroke and neurodegenerative diseases, but the underlying mechanisms are unclear. The present study aims to elucidate the protective effects of BHBA in the early stage of AD model and investigate the underlying molecular mechanisms. Three-and-half-month-old double-transgenic mice (5XFAD) overexpressing β-amyloid precursor protein (APP) and presenilin-1 (PS1) were used as the AD model. The 5XFAD mice received 1.5 mmol/kg/d BHBA subcutaneously for 28 days. Morris water maze test, nest construction, and passive avoidance experiments were performed to assess the therapeutic effects on AD prevention in vivo, and brain pathology of 5XFAD mice including amyloid plaque deposition and microglia activation were assessed. Gene expression profiles in the cortexes of 5XFAD- and BHBA-treated 5XFAD mice were performed with high-throughput sequencing and bioinformatic analysis. Mouse HT22 cells were treated with 2 mM BHBA to explore its in vitro protective effects of BHBA on hippocampal neurons against Aβ oligomer toxicity, ATP production, ROS generation, and mitochondrial aerobic respiratory function. APP, BACE1, and neprilysin (NEP) expression levels were evaluated in HT22 cells following treatment with BHBA by measuring the presence or absence of G protein-coupled receptor 109A (GPR109A). BHBA improved cognitive function of 5XFAD mice in Morris water maze test, nesting construction and passive avoidance experiments, and attenuated Aβ accumulation and microglia overactivation in the brain. BHBA also enhanced mitochondrial respiratory function of hippocampal neurons and protected it from Aβ toxicity. The enzymes, APP and NEP were regulated by BHBA via G-protein-coupled receptor 109A (GPR109A). Furthermore, RNA sequencing revealed that BHBA-regulated genes mainly annotated in aging, immune system, nervous system, and neurodegenerative diseases. Our data suggested that BHBA confers protection against the AD-like pathological events in the AD mouse model by targeting multiple aspects of AD and it may become a promising candidate for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yancheng Wu
- Innovative Institute of Animal Healthy Breeding, Key Laboratory of Waterfowl Healthy Breeding of Guangdong Province, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China.,College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Yuhong Gong
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Yongxin Luan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Yang Li
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Zitong Yue
- Changchun Jida Middle School Experimental School, Changchun, P.R. China
| | - Boyu Yuan
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Jingxuan Sun
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Changxin Xie
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Lijuan Li
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China.,The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Junli Zhen
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| | - Xinxin Jin
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Yan Zheng
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| | - Xiaomin Wang
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, P.R. China
| | - Wei Wang
- Innovative Institute of Animal Healthy Breeding, Key Laboratory of Waterfowl Healthy Breeding of Guangdong Province, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China.,College of Veterinary Medicine, Jilin University, Changchun, P.R. China.,Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
230
|
Gomez-Lopez N, Motomura K, Miller D, Garcia-Flores V, Galaz J, Romero R. Inflammasomes: Their Role in Normal and Complicated Pregnancies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2757-2769. [PMID: 31740550 PMCID: PMC6871659 DOI: 10.4049/jimmunol.1900901] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytoplasmic multiprotein complexes that coordinate inflammatory responses, including those that take place during pregnancy. Inflammasomes and their downstream mediators caspase-1 and IL-1β are expressed by gestational tissues (e.g., the placenta and chorioamniotic membranes) during normal pregnancy. Yet, only the activation of the NLRP3 inflammasome in the chorioamniotic membranes has been partially implicated in the sterile inflammatory process of term parturition. In vivo and ex vivo studies have consistently shown that the activation of the NLRP3 inflammasome is a mechanism whereby preterm labor and birth occur in the context of microbial- or alarmin-induced inflammation. In the placenta, the activation of the NLRP3 inflammasome is involved in the pathogenesis of preeclampsia and other pregnancy syndromes associated with placental inflammation. This evidence suggests that inhibition of the NLRP3 inflammasome or its downstream mediators may foster the development of novel anti-inflammatory therapies for the prevention or treatment of pregnancy complications.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Kenichiro Motomura
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Jose Galaz
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI 48201
- Detroit Medical Center, Detroit, MI 48201; and
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199
| |
Collapse
|
231
|
HMGCS2 Mediates Ketone Production and Regulates the Proliferation and Metastasis of Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11121876. [PMID: 31779269 PMCID: PMC6966636 DOI: 10.3390/cancers11121876] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor worldwide; however, the traditional therapeutic approaches and survival rates are still limited. To improve current therapies, it is necessary to investigate the molecular mechanisms underlying liver cancer and to identify potential therapeutic targets. The aims of this study were to verify the mechanisms and therapeutic potential of the ketogenesis rate-limiting enzyme 3-Hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) in HCC. Immunohistochemical staining of human liver disease tissue arrays showed that HMGCS2 is abundantly expressed in normal liver tissues but is downregulated in cirrhosis and HCC tissues. In HCC patients, lower HMGCS2 expression was correlated with higher pathological grades and clinical stages. In our investigation of the molecular mechanisms of HMGCS2 in HCC, we showed that knockdown of HMGCS2 decreased ketone production, which promoted cell proliferation, cell migration, and xenograft tumorigenesis by enhancing c-Myc/cyclinD1 and EMT signaling and by suppressing the caspase-dependent apoptosis pathway. Ketone body treatment reduced the proliferation- and migration-promoting effects of HMGCS2 knockdown in cells. In contrast, HMGCS2 overexpression increased the intracellular ketone level and inhibited cell proliferation, cell migration, and xenograft tumorigenesis. Finally, ketogenic diet administration significantly inhibited liver cancer cell growth in mice. Our studies highlight the potential therapeutic strategy of targeting HMGCS2-mediated ketogenesis in liver cancer.
Collapse
|
232
|
Goldberg EL, Molony RD, Kudo E, Sidorov S, Kong Y, Dixit VD, Iwasaki A. Ketogenic diet activates protective γδ T cell responses against influenza virus infection. Sci Immunol 2019; 4:eaav2026. [PMID: 31732517 PMCID: PMC7189564 DOI: 10.1126/sciimmunol.aav2026] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 08/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Abstract
Influenza A virus (IAV) infection-associated morbidity and mortality are a key global health care concern, necessitating the identification of new therapies capable of reducing the severity of IAV infections. In this study, we show that the consumption of a low-carbohydrate, high-fat ketogenic diet (KD) protects mice from lethal IAV infection and disease. KD feeding resulted in an expansion of γδ T cells in the lung that improved barrier functions, thereby enhancing antiviral resistance. Expansion of these protective γδ T cells required metabolic adaptation to a ketogenic diet because neither feeding mice a high-fat, high-carbohydrate diet nor providing chemical ketone body substrate that bypasses hepatic ketogenesis protected against infection. Therefore, KD-mediated immune-metabolic integration represents a viable avenue toward preventing or alleviating influenza disease.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Ryan D Molony
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
- Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Eriko Kudo
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Sviatoslav Sidorov
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vishwa Deep Dixit
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
233
|
Shi L, Zhao Y, Fei C, Guo J, Jia Y, Wu D, Wu L, Chang C. Cellular senescence induced by S100A9 in mesenchymal stromal cells through NLRP3 inflammasome activation. Aging (Albany NY) 2019; 11:9626-9642. [PMID: 31727865 PMCID: PMC6874461 DOI: 10.18632/aging.102409] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/26/2019] [Indexed: 04/12/2023]
Abstract
Bone marrow stromal cells from patients with myelodysplastic syndrome (MDS) display a senescence phenotype, but the underlying mechanism has not been elucidated. Pro-inflammatory signaling within the malignant clone and the bone marrow microenvironment has been identified as a key pathogenetic driver of MDS. Our study revealed that S100A9 is highly-expressed in lower-risk MDS. Moreover, normal primary mesenchymal stromal cells (MSCs) and the human stromal cell line HS-27a co-cultured with lower-risk MDS bone marrow mononuclear cells acquired a senescence phenotype. Exogenous supplemented S100A9 also induced cellular senescence in MSCs and HS-27a cells. Importantly, Toll-like receptor 4 (TLR4) inhibition or knockdown attenuated the cellular senescence induced by S100A9. Furthermore, we showed that S100A9 induces NLRP3 inflammasome formation, and IL-1β secretion; findings in samples from MDS patients further confirmed these thoughts. Moreover, ROS and IL-1β inhibition suppressed the cellular senescence induced by S100A9, whereas NLRP3 overexpression and exogenous IL-1β supplementation induces cellular senescence. Our study demonstrated that S100A9 promotes cellular senescence of bone marrow stromal cells via TLR4, NLRP3 inflammasome formation, and IL-1β secretion for its effects. Our findings deepen the understanding of the molecular mechanisms involved in MDS reprogramming of MSCs and indicated the essential role of S100A9 in tumor-environment interactions in bone marrow.
Collapse
Affiliation(s)
- Lei Shi
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Youshan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chengming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yan Jia
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Lingyun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
234
|
Kim M, Yu HY, Ju H, Shin JH, Kim A, Lee J, Ryu CM, Yun H, Lee S, Lim J, Heo J, Shin DM, Choo MS. Induction of detrusor underactivity by extensive vascular endothelial damages of iliac arteries in a rat model and its pathophysiology in the genetic levels. Sci Rep 2019; 9:16328. [PMID: 31705030 PMCID: PMC6841737 DOI: 10.1038/s41598-019-52811-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022] Open
Abstract
We tried to establish a reliable detrusor underactivity (DUA) rat model and to investigate pathophysiology of chronic bladder ischemia (CBI) on voiding behavior and bladder function. Adult male rats were divided into five groups. The arterial injury (AI) groups (AI-10, AI-20, AI-30) underwent vascular endothelial damage (VED) of bilateral iliac arteries (with 10, 20, and 30 bilateral repetitions of injury, respectively) and received a 1.25% cholesterol diet. The sham group underwent sham operation and received the same diet. Controls received a regular diet. After 8 weeks, all rats underwent unanesthetized cystometrogram. Bladder tissues were processed for organ bath investigation, immunohistochemistry staining, and genome-wide gene expression analysis. Awake cystometry analysis showed that frequency of voiding contractions and micturition pressure were lower in the AI-30 group than in sham group (p < 0.01). Contractile responses to various stimuli were lower in AI-20 and AI-30 groups (both p < 0.001). In the AI-20 and AI-30 groups, atherosclerotic occlusion in the iliac arteries, tissue inflammation, fibrosis, denervation, and apoptosis of bladder muscle were prominent compared to the sham. Mechanistically, the expression of purinergic receptor P2X-1 was reduced in the AI-30 group, and the genome-wide gene expression analysis revealed that genes related to IL-17 and HIF-1 signaling pathways including INF-γ receptor-1 and C-X-C motif chemokine ligand-2 were upregulated in the CBI-induced DUA rat model. A rat model of progressive VED successfully induced DUA. Abnormal tissue inflammation, fibrosis, denervation, and bladder muscle tissue apoptosis may be involved in CBI-induced DUA pathophysiology.
Collapse
Affiliation(s)
- Myong Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hwan Yeul Yu
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hyein Ju
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jung Hyun Shin
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Hospital, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Jaehoon Lee
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chae-Min Ryu
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - HongDuck Yun
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seungun Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jisun Lim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jinbeom Heo
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea. .,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Myung-Soo Choo
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
235
|
Kim YG, Kim SM, Kim KP, Lee SH, Moon JY. The Role of Inflammasome-Dependent and Inflammasome-Independent NLRP3 in the Kidney. Cells 2019; 8:cells8111389. [PMID: 31694192 PMCID: PMC6912448 DOI: 10.3390/cells8111389] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023] Open
Abstract
Cytoplasmic nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) forms an inflammasome with apoptosis-associated speck-like protein containing a CARD (ASC) and pro-caspase-1, which is followed by the cleavage of pro-caspase-1 to active caspase-1 and ultimately the activation of IL-1β and IL-18 and induction of pyroptosis in immune cells. NLRP3 activation in kidney diseases aggravates inflammation and subsequent fibrosis, and this effect is abrogated by genetic or pharmacologic deletion of NLRP3. Inflammasome-dependent NLRP3 mediates the progression of kidney diseases by escalating the inflammatory response in immune cells and the cross-talk between immune cells and renal nonimmune cells. However, recent studies have suggested that NLRP3 has several inflammasome-independent functions in the kidney. Inflammasome-independent NLRP3 regulates apoptosis in tubular epithelial cells by interacting with mitochondria and mediating mitochondrial reactive oxygen species production and mitophagy. This review will summarize the mechanisms by which NLRP3 functions in the kidney in both inflammasome-dependent and inflammasome-independent ways and the role of NLRP3 and NLRP3 inhibitors in kidney diseases.
Collapse
Affiliation(s)
- Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Medical School, Seoul 02447, Korea; (Y.G.K.); (S.-M.K.); (S.-H.L.)
| | - Su-Mi Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Medical School, Seoul 02447, Korea; (Y.G.K.); (S.-M.K.); (S.-H.L.)
| | - Ki-Pyo Kim
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University of Medicine, Incheon 22212, Korea;
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Medical School, Seoul 02447, Korea; (Y.G.K.); (S.-M.K.); (S.-H.L.)
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Medical School, Seoul 02447, Korea; (Y.G.K.); (S.-M.K.); (S.-H.L.)
- Correspondence: ; Tel.: +82-2-440-6262
| |
Collapse
|
236
|
Torok NJ. Macrophage Nourishment in Nonalcoholic Steatohepatitis: A Novel Role for Ketone Bodies. Hepatology 2019; 70:1856-1858. [PMID: 31107977 DOI: 10.1002/hep.30777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Natalie J Torok
- Gastroenterology and Hepatology, Stanford University, Stanford, CA.,VA Palo Alto, Palo Alto, CA
| |
Collapse
|
237
|
Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients 2019; 11:nu11102497. [PMID: 31627352 PMCID: PMC6836190 DOI: 10.3390/nu11102497] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
Diets low in carbohydrates and proteins and enriched in fat stimulate the hepatic synthesis of ketone bodies (KB). These molecules are used as alternative fuel for energy production in target tissues. The synthesis and utilization of KB are tightly regulated both at transcriptional and hormonal levels. The nuclear receptor peroxisome proliferator activated receptor α (PPARα), currently recognized as one of the master regulators of ketogenesis, integrates nutritional signals to the activation of transcriptional networks regulating fatty acid β-oxidation and ketogenesis. New factors, such as circadian rhythms and paracrine signals, are emerging as important aspects of this metabolic regulation. However, KB are currently considered not only as energy substrates but also as signaling molecules. β-hydroxybutyrate has been identified as class I histone deacetylase inhibitor, thus establishing a connection between products of hepatic lipid metabolism and epigenetics. Ketogenic diets (KD) are currently used to treat different forms of infantile epilepsy, also caused by genetic defects such as Glut1 and Pyruvate Dehydrogenase Deficiency Syndromes. However, several researchers are now focusing on the possibility to use KD in other diseases, such as cancer, neurological and metabolic disorders. Nonetheless, clear-cut evidence of the efficacy of KD in other disorders remains to be provided in order to suggest the adoption of such diets to metabolic-related pathologies.
Collapse
|
238
|
Singh V, Yeoh BS, Walker RE, Xiao X, Saha P, Golonka RM, Cai J, Bretin ACA, Cheng X, Liu Q, Flythe MD, Chassaing B, Shearer GC, Patterson AD, Gewirtz AT, Vijay-Kumar M. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut 2019; 68:1801-1812. [PMID: 30670576 DOI: 10.1136/gutjnl-2018-316250] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Diets rich in fermentable fibres provide an array of health benefits; however, many patients with IBD report poor tolerance to fermentable fibre-rich foods. Intervention studies with dietary fibres in murine models of colonic inflammation have yielded conflicting results on whether fibres ameliorate or exacerbate IBD. Herein, we examined how replacing the insoluble fibre, cellulose, with the fermentable fibres, inulin or pectin, impacted murine colitis resulting from immune dysregulation via inhibition of interleukin (IL)-10 signalling and/or innate immune deficiency (Tlr5KO). DESIGN Mice were fed with diet containing either cellulose, inulin or pectin and subjected to weekly injections of an IL-10 receptor (αIL-10R) neutralising antibody. Colitis development was examined by serological, biochemical, histological and immunological parameters. RESULTS Inulin potentiated the severity of αIL10R-induced colitis, while pectin ameliorated the disease. Such exacerbation of colitis following inulin feeding was associated with enrichment of butyrate-producing bacteria and elevated levels of caecal butyrate. Blockade of butyrate production by either metronidazole or hops β-acids ameliorated colitis severity in inulin-fed mice, whereas augmenting caecal butyrate via tributyrin increased colitis severity in cellulose containing diet-fed mice. Elevated butyrate levels were associated with increased IL-1β activity, while inhibition of the NOD-like receptor protein 3 by genetic, pharmacologic or dietary means markedly reduced colitis. CONCLUSION These results not only support the notion that fermentable fibres have the potential to ameliorate colitis but also caution that, in some contexts, prebiotic fibres can lead to gut dysbiosis and surfeit colonic butyrate that might exacerbate IBD.
Collapse
Affiliation(s)
- Vishal Singh
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Beng San Yeoh
- Nutritional Sciences, Graduate Program in Immunology and Infectious Diseases, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rachel E Walker
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Xia Xiao
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Piu Saha
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Rachel M Golonka
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Alexis Charles Andre Bretin
- Center for Inflammation Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Xi Cheng
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Qing Liu
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michael D Flythe
- USDA-Agriculture Research Service, University of Kentucky Campus, Lexington, Kentucky, USA
| | - Benoit Chassaing
- Center for Inflammation Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA.,Neuroscience Institute, Institutefor Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew T Gewirtz
- Center for Inflammation Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA.,Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
239
|
de Castro-Jorge LA, de Carvalho RVH, Klein TM, Hiroki CH, Lopes AH, Guimarães RM, Fumagalli MJ, Floriano VG, Agostinho MR, Slhessarenko RD, Ramalho FS, Cunha TM, Cunha FQ, da Fonseca BAL, Zamboni DS. The NLRP3 inflammasome is involved with the pathogenesis of Mayaro virus. PLoS Pathog 2019; 15:e1007934. [PMID: 31479495 PMCID: PMC6743794 DOI: 10.1371/journal.ppat.1007934] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/13/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Mayaro virus (MAYV) is an arbovirus that circulates in Latin America and is emerging as a potential threat to public health. Infected individuals develop Mayaro fever, a severe inflammatory disease characterized by high fever, rash, arthralgia, myalgia and headache. The disease is often associated with a prolonged arthralgia mediated by a chronic inflammation that can last months. Although the immune response against other arboviruses, such as chikungunya virus (CHIKV), dengue virus (DENV) and Zika virus (ZIKV), has been extensively studied, little is known about the pathogenesis of MAYV infection. In this study, we established models of MAYV infection in macrophages and in mice and found that MAYV can replicate in bone marrow-derived macrophages and robustly induce expression of inflammasome proteins, such as NLRP3, ASC, AIM2, and Caspase-1 (CASP1). Infection performed in macrophages derived from Nlrp3-/-, Aim2-/-, Asc-/-and Casp1/11-/-mice indicate that the NLRP3, but not AIM2 inflammasome is essential for production of inflammatory cytokines, such as IL-1β. We also determined that MAYV triggers NLRP3 inflammasome activation by inducing reactive oxygen species (ROS) and potassium efflux. In vivo infections performed in inflammasome-deficient mice indicate that NLRP3 is involved with footpad swelling, inflammation and pain, establishing a role of the NLRP3 inflammasome in the MAYV pathogenesis. Accordingly, we detected higher levels of caspase1-p20, IL-1β and IL-18 in the serum of MAYV-infected patients as compared to healthy individuals, supporting the participation of the NLRP3-inflammasome during MAYV infection in humans.
Collapse
Affiliation(s)
- Luiza A. de Castro-Jorge
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Renan V. H. de Carvalho
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Taline M. Klein
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Carlos H. Hiroki
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Alexandre H. Lopes
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Rafaela M. Guimarães
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Marcílio Jorge Fumagalli
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Vitor G. Floriano
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Mayara R. Agostinho
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | | | - Fernando Silva Ramalho
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Fernando Q. Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Benedito A. L. da Fonseca
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Dario S. Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|
240
|
Pharmacological inhibition of the NLRP3 inflammasome as a potential target for cancer-induced bone pain. Pharmacol Res 2019; 147:104339. [DOI: 10.1016/j.phrs.2019.104339] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022]
|
241
|
Emery Joseph Crownover J, Holland AM. Therapeutic ketosis for mild traumatic brain injury. TRANSLATIONAL SPORTS MEDICINE 2019. [DOI: 10.1002/tsm2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Angelia Maleah Holland
- Nutrition, Exercise, and Stress Laboratory, Department of Kinesiology Augusta University Augusta Georgia
| |
Collapse
|
242
|
Abstract
The cause of insulin resistance in obesity and type 2 diabetes mellitus (T2DM) is not limited to impaired insulin signalling but also involves the complex interplay of multiple metabolic pathways. The analysis of large data sets generated by metabolomics and lipidomics has shed new light on the roles of metabolites such as lipids, amino acids and bile acids in modulating insulin sensitivity. Metabolites can regulate insulin sensitivity directly by modulating components of the insulin signalling pathway, such as insulin receptor substrates (IRSs) and AKT, and indirectly by altering the flux of substrates through multiple metabolic pathways, including lipogenesis, lipid oxidation, protein synthesis and degradation and hepatic gluconeogenesis. Moreover, the post-translational modification of proteins by metabolites and lipids, including acetylation and palmitoylation, can alter protein function. Furthermore, the role of the microbiota in regulating substrate metabolism and insulin sensitivity is unfolding. In this Review, we discuss the emerging roles of metabolites in the pathogenesis of insulin resistance and T2DM. A comprehensive understanding of the metabolic adaptations involved in insulin resistance may enable the identification of novel targets for improving insulin sensitivity and preventing, and treating, T2DM.
Collapse
|
243
|
Shin JI, Lee KH, Joo YH, Lee JM, Jeon J, Jung HJ, Shin M, Cho S, Kim TH, Park S, Jeon BY, Jeong H, Lee K, Kang K, Oh M, Lee H, Lee S, Kwon Y, Oh GH, Kronbichler A. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review. J Autoimmun 2019; 103:102299. [PMID: 31326231 DOI: 10.1016/j.jaut.2019.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023]
Abstract
Inflammasomes are a multi-protein platform forming a part of the innate immune system. Inflammasomes are at standby status and can be activated when needed. Inflammasome activation is an important mechanism for the production of active interleukin (IL)-1β and IL-18, which have important roles to instruct adaptive immunity. Active forms of inflammasomes trigger a series of inflammatory cascades and lead to the differentiation and polarization of naïve T cells and secretion of various cytokines, which can induce various kinds of autoimmune and rheumatic diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), gout, Sjögren's syndrome, Behçet's disease, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and IgA vasculitis (former Henoch-Schönlein purpura ). In this review, we summarize studies published on inflammasomes and review their roles in various autoimmune diseases. Understanding of the role of inflammasomes may facilitate the diagnosis of autoimmune diseases and the development of tailored therapies in the future.
Collapse
Affiliation(s)
- Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea.
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea
| | - Yo Han Joo
- Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon M Lee
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Jaewook Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Jae Jung
- Yonsei University College of Medicine, Seoul, South Korea
| | - Minkyue Shin
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seobum Cho
- Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Hwan Kim
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyuk Park
- Yonsei University College of Medicine, Seoul, South Korea
| | - Bong Yeol Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunwoo Jeong
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kangto Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kyutae Kang
- Yonsei University College of Medicine, Seoul, South Korea
| | - Myungsuk Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hansang Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seungchul Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Yeji Kwon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Geun Ho Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
244
|
Szekanecz Z, Szamosi S, Kovács GE, Kocsis E, Benkő S. The NLRP3 inflammasome - interleukin 1 pathway as a therapeutic target in gout. Arch Biochem Biophys 2019; 670:82-93. [DOI: 10.1016/j.abb.2019.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
|
245
|
García-Caballero M, Zecchin A, Souffreau J, Truong ACK, Teuwen LA, Vermaelen W, Martín-Pérez R, de Zeeuw P, Bouché A, Vinckier S, Cornelissen I, Eelen G, Ghesquière B, Mazzone M, Dewerchin M, Carmeliet P. Role and therapeutic potential of dietary ketone bodies in lymph vessel growth. Nat Metab 2019; 1:666-675. [PMID: 32694649 DOI: 10.1038/s42255-019-0087-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
Lymphatic vessels (LVs), lined by lymphatic endothelial cells (LECs), are indispensable for life1. However, the role of metabolism in LECs has been incompletely elucidated. In the present study, it is reported that LEC-specific loss of OXCT1, a key enzyme of ketone body oxidation2, reduces LEC proliferation, migration and vessel sprouting in vitro and impairs lymphangiogenesis in development and disease in Prox1ΔOXCT1 mice. Mechanistically, OXCT1 silencing lowers acetyl-CoA levels, tricarboxylic acid cycle metabolite pools, and nucleotide precursor and deoxynucleotide triphosphate levels required for LEC proliferation. Ketone body supplementation to LECs induces the opposite effects. Notably, elevation of lymph ketone body levels by a high-fat, low-carbohydrate ketogenic diet or by administration of the ketone body β-hydroxybutyrate increases lymphangiogenesis after corneal injury and myocardial infarction. Intriguingly, in a mouse model of microsurgical ablation of LVs in the tail, which repeats features of acquired lymphoedema in humans, the ketogenic diet improves LV function and growth, reduces infiltration of anti-lymphangiogenic immune cells and decreases oedema, suggesting a novel dietary therapeutic opportunity.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Annalisa Zecchin
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
| | - Joris Souffreau
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Anh-Co Khanh Truong
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Laure-Anne Teuwen
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Wesley Vermaelen
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Rosa Martín-Pérez
- Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Ivo Cornelissen
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Department of Pharmacology, Research and Development, Janssen Pharmaceutical Company of Johnson and Johnson, Beerse, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
246
|
Cowie AM, Dittel BN, Stucky CL. A Novel Sex-Dependent Target for the Treatment of Postoperative Pain: The NLRP3 Inflammasome. Front Neurol 2019; 10:622. [PMID: 31244767 PMCID: PMC6581722 DOI: 10.3389/fneur.2019.00622] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
In recent years the innate immune system has been shown to be crucial for the pathogenesis of postoperative pain. The mediators released by innate immune cells drive the sensitization of sensory neurons following injury by directly acting on peripheral nerve terminals at the injury site. The predominate sensitization signaling pathway involves the proinflammatory cytokine interleukin-1β (IL-1β). IL-1β is known to cause pain by directly acting on sensory neurons. Evidence demonstrates that blockade of IL-1β signaling decreases postoperative pain, however complete blockade of IL-1β signaling increases the risk of infection and decreases effective wound healing. IL-1β requires activation by an inflammasome; inflammasomes are cytosolic receptors of the innate immune system. NOD-like receptor protein 3 (NLRP3) is the predominant inflammasome activated by endogenous molecules that are released by tissue injury such as that which occurs during neuropathic and inflammatory pain disorders. Given that selective inhibition of NLRP3 alleviates postoperative mechanical pain, its selective targeting may be a novel and effective strategy for the treatment of pain that would avoid complications of global IL-1β inhibition. Moreover, NLRP3 is activated in pain in a sex-dependent and cell type-dependent manner. Sex differences in the innate immune system have been shown to drive pain and sensitization through different mechanisms in inflammatory and neuropathic pain disorders, indicating that it is imperative that both sexes are studied when researchers investigate and identify new targets for pain therapeutics. This review will highlight the roles of the innate immune response, the NLRP3 inflammasome, and sex differences in neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Ashley M Cowie
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bonnie N Dittel
- Blood Research Institute, Versiti, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
247
|
Li T, Ren L, Wang D, Song M, Li Q, Li J. Optimization of extraction conditions and determination of purine content in marine fish during boiling. PeerJ 2019; 7:e6690. [PMID: 31119066 PMCID: PMC6507899 DOI: 10.7717/peerj.6690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/27/2019] [Indexed: 11/20/2022] Open
Abstract
Background Gout is the second most common metabolic disease affecting human health. The disease of gout is closely related to the level of uric acid, which is the end-product of human purine metabolism. Moreover, food is the main way of external ingestion of purine. Method A simple and time-saving method was developed to extract purines like adenine, hypoxanthine, guanine, and xanthine from marine fish by single factor design combined with Box-Behnken. The contents of these purines in the edible parts and internal organs of marine fish, as well as Scophthalmus maximus, were determined by high-performance liquid chromatography to investigate the relationship between the boiling process and purine content. Result The mixed-acid method was chosen for the extraction of purine bases and the extraction conditions were as follows: mixture acid 90.00% TFA/80.00% FA (v/v, 1:1); hydrolysis temperature 90.00 °C; time 10.00 min; liquid-to-solid ratio 30:1. The total purine content of the edible parts (eyes, dorsal muscles, abdominal muscles, and skin) was the highest in Scophthalmus maximus, followed by sphyraena, Sardinella, Trichiurus lepturus, Scomberomorus niphonius, Pleuronectiformes, Sea catfish, Anguillidae, and Rajiformes. Moreover, boiling significantly reduced the purine content in the marine fish because of the transfer of the purines to the cooking liquid during boiling. Scophthalmus maximus, Sphyraena, and Sardinella were regard as high-purine marine fish, which we should eat less. We also confirmed that boiling significantly transferred purine bases from fish to cooking liquid. Thus, boiling could reduce the purine content of fish, thereby reducing the risk of hyperuricemia and gout.
Collapse
Affiliation(s)
- Tingting Li
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Likun Ren
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Minjie Song
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Qiuying Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| |
Collapse
|
248
|
Perez DA, Galvão I, Athayde RM, Rezende BM, Vago JP, Silva JD, Reis AC, Ribeiro LS, Gomes JHS, Pádua RM, Braga FC, Sousa LP, Teixeira MM, Pinho V. Inhibition of the sphingosine-1-phosphate pathway promotes the resolution of neutrophilic inflammation. Eur J Immunol 2019; 49:1038-1051. [PMID: 30939218 DOI: 10.1002/eji.201848049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/27/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid derived from plasma membrane and has a known role in productive phase of inflammation, but its role in neutrophil survival and resolution phase of inflammation is unknown. Here, we investigated the effects of inhibition of S1P receptors and the blockade of S1P synthesis in BALB/c mice and human neutrophils. S1P and S1PR1-3 receptors expression were increased in cells from the pleural cavity stimulated with LPS. Using different antagonists of S1PRs and inhibitors of different steps of the metabolic pathway of S1P production, we show that S1P and its receptors are involved in regulating neutrophil survival and resolution of inflammation in the pleural cavity. Given the role of the S1P-S1PR axis in resolution of inflammation, we sought to identify whether blockade at different levels of the sphingosine-1-phosphate synthesis pathway could affect neutrophil survival in vitro. Inhibitors of the S1P pathway were also able to induce human neutrophil apoptosis. In addition, blockade of S1P synthesis or its receptor facilitated the efferocytosis of apoptotic neutrophil. Taken together, our data demonstrate a fundamental role for S1P in regulating the outcome of inflammatory responses, and position S1P-S1PR axis as a potential target for treatment of neutrophilic inflammation.
Collapse
Affiliation(s)
- Denise A Perez
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rayssa M Athayde
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Barbara M Rezende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P Vago
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Julia D Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alesandra C Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas S Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José H S Gomes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo M Pádua
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernão C Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
249
|
Brenton JN, Banwell B, Bergqvist AGC, Lehner-Gulotta D, Gampper L, Leytham E, Coleman R, Goldman MD. Pilot study of a ketogenic diet in relapsing-remitting MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e565. [PMID: 31089482 PMCID: PMC6487505 DOI: 10.1212/nxi.0000000000000565] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Objective To assess the safety and tolerability of a modified Atkins diet (KDMAD), a type of ketogenic diet (KD), in subjects with relapsing MS while exploring potential benefits of KDs in MS. Methods Twenty subjects with relapsing MS enrolled into a 6-month, single-arm, open-label study of the KDMAD. Adherence to KDMAD was objectively monitored by daily urine ketone testing. Fatigue and depression scores and fasting adipokines were obtained at baseline and on diet. Brain MRI was obtained at baseline and 6 months. Intention to treat was used for primary data analysis, and a per-protocol approach was used for secondary analysis. Results No subject experienced worsening disease on diet. Nineteen subjects (95%) adhered to KDMAD for 3 months and 15 (75%) adhered for 6 months. Anthropometric improvements were noted on KDMAD, with reductions in body mass index and total fat mass (p < 0.0001). Fatigue (p = 0.002) and depression scores (p = 0.003) were improved. Serologic leptin was significantly lower at 3 months (p < 0.0001) on diet. Conclusions KDMAD is safe, feasible to study, and well tolerated in subjects with relapsing MS. KDMAD improves fatigue and depression while also promoting weight loss and reducing serologic proinflammatory adipokines. Classification of evidence The study is rated Class IV because of the absence of a non-KD control group.
Collapse
Affiliation(s)
- J Nicholas Brenton
- Division of Pediatric Neurology (J.N.B., D.L.-G.), Department of Neurology, University of Virginia, Charlottesville; Department of Pediatric Neurology (B.B., A.G.C.B.), University of Pennsylvania/Children's Hospital of Philadelphia; and Department of Neurology (L.G., E.L., R.C., M.D.G.), University of Virginia, Charlottesville
| | - Brenda Banwell
- Division of Pediatric Neurology (J.N.B., D.L.-G.), Department of Neurology, University of Virginia, Charlottesville; Department of Pediatric Neurology (B.B., A.G.C.B.), University of Pennsylvania/Children's Hospital of Philadelphia; and Department of Neurology (L.G., E.L., R.C., M.D.G.), University of Virginia, Charlottesville
| | - A G Christina Bergqvist
- Division of Pediatric Neurology (J.N.B., D.L.-G.), Department of Neurology, University of Virginia, Charlottesville; Department of Pediatric Neurology (B.B., A.G.C.B.), University of Pennsylvania/Children's Hospital of Philadelphia; and Department of Neurology (L.G., E.L., R.C., M.D.G.), University of Virginia, Charlottesville
| | - Diana Lehner-Gulotta
- Division of Pediatric Neurology (J.N.B., D.L.-G.), Department of Neurology, University of Virginia, Charlottesville; Department of Pediatric Neurology (B.B., A.G.C.B.), University of Pennsylvania/Children's Hospital of Philadelphia; and Department of Neurology (L.G., E.L., R.C., M.D.G.), University of Virginia, Charlottesville
| | - Lauren Gampper
- Division of Pediatric Neurology (J.N.B., D.L.-G.), Department of Neurology, University of Virginia, Charlottesville; Department of Pediatric Neurology (B.B., A.G.C.B.), University of Pennsylvania/Children's Hospital of Philadelphia; and Department of Neurology (L.G., E.L., R.C., M.D.G.), University of Virginia, Charlottesville
| | - Emily Leytham
- Division of Pediatric Neurology (J.N.B., D.L.-G.), Department of Neurology, University of Virginia, Charlottesville; Department of Pediatric Neurology (B.B., A.G.C.B.), University of Pennsylvania/Children's Hospital of Philadelphia; and Department of Neurology (L.G., E.L., R.C., M.D.G.), University of Virginia, Charlottesville
| | - Rachael Coleman
- Division of Pediatric Neurology (J.N.B., D.L.-G.), Department of Neurology, University of Virginia, Charlottesville; Department of Pediatric Neurology (B.B., A.G.C.B.), University of Pennsylvania/Children's Hospital of Philadelphia; and Department of Neurology (L.G., E.L., R.C., M.D.G.), University of Virginia, Charlottesville
| | - Myla D Goldman
- Division of Pediatric Neurology (J.N.B., D.L.-G.), Department of Neurology, University of Virginia, Charlottesville; Department of Pediatric Neurology (B.B., A.G.C.B.), University of Pennsylvania/Children's Hospital of Philadelphia; and Department of Neurology (L.G., E.L., R.C., M.D.G.), University of Virginia, Charlottesville
| |
Collapse
|
250
|
Yang Q, Liu R, Yu Q, Bi Y, Liu G. Metabolic regulation of inflammasomes in inflammation. Immunology 2019; 157:95-109. [PMID: 30851192 DOI: 10.1111/imm.13056] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammasome activation and subsequent inflammatory cytokine secretion are essential for innate immune defence against multiple stimuli and are regarded as a link to adaptive immune responses. Dysfunction of inflammasome activation has been discovered at the onset or progression of infectious diseases, autoimmune diseases and cancer, all of which are also associated with metabolic factors. Furthermore, many studies concerning the metabolic regulation of inflammasome activation have emerged in recent years, especially regarding the activity of the NLRP3 inflammasome under metabolic reprogramming. In this review, we discuss the molecular mechanisms of the interactions between metabolic pathways and inflammasome activation, which exerts further important effects on various diseases.
Collapse
Affiliation(s)
- Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ruichen Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|