201
|
Honma S, Ono D, Suzuki Y, Inagaki N, Yoshikawa T, Nakamura W, Honma KI. Suprachiasmatic nucleus: cellular clocks and networks. PROGRESS IN BRAIN RESEARCH 2012; 199:129-141. [PMID: 22877663 DOI: 10.1016/b978-0-444-59427-3.00029-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The suprachiasmatic nucleus (SCN), the master circadian clock of mammals, is composed of multiple circadian oscillator neurons. Most of them exhibit significant circadian rhythms in their clock gene expression and spontaneous firing when cultured in dispersed cells, as well as in an organotypic slice. The distribution of periods depends on the SCN tissue organization, suggesting that cell-to-cell interaction is important for synchronization of the constituent oscillator cells. This cell-to-cell interaction involves both synaptic interactions and humoral mediators. Cellular oscillators form at least three separate but mutually coupled regional pacemakers, and two of them are involved in the photoperiodic regulation of behavioral rhythms in mice. Coupling of cellular oscillators in the SCN tissue compensates for the dysfunction due to clock gene mutations, on the one hand, and desynchronization within and between the regional pacemakers that suppresses the coherent rhythm expression from the SCN, on the other hand. The multioscillator pacemaker structure of the SCN is advantageous for responding to a wide range of environmental challenges without losing coherent rhythm outputs.
Collapse
Affiliation(s)
- Sato Honma
- Department of Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Daisuke Ono
- Department of Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Advanced Photonic Bioimaging Section, Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yohko Suzuki
- Advanced Photonic Bioimaging Section, Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Natsuko Inagaki
- Department of Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoko Yoshikawa
- Advanced Photonic Bioimaging Section, Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nakamura
- Department of Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Chronodentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Ken-Ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
202
|
Özkaya Ö, Rosato E. The Circadian Clock of the Fly: A Neurogenetics Journey Through Time. GENE-ENVIRONMENT INTERPLAY 2012; 77:79-123. [DOI: 10.1016/b978-0-12-387687-4.00004-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
203
|
Meijer JH, Colwell CS, Rohling JHT, Houben T, Michel S. Dynamic neuronal network organization of the circadian clock and possible deterioration in disease. PROGRESS IN BRAIN RESEARCH 2012; 199:143-162. [PMID: 22877664 DOI: 10.1016/b978-0-444-59427-3.00009-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, the suprachiasmatic nuclei (SCNs) function as a circadian pacemaker that drives 24-h rhythms in physiology and behavior. The SCN is a multicellular clock in which the constituent oscillators show dynamics in their functional organization and phase coherence. Evidence has emerged that plasticity in phase synchrony among SCN neurons determines (i) the amplitude of the rhythm, (ii) the response to continuous light, (iii) the capacity to respond to seasonal changes, and (iv) the phase-resetting capacity. A decrease in circadian amplitude and phase-resetting capacity is characteristic during aging and can be a result of disease processes. Whether the decrease in amplitude is caused by a loss of synchronization or by a loss of single-cell rhythmicity remains to be determined and is important for the development of strategies to ameliorate circadian disorders.
Collapse
Affiliation(s)
- Johanna H Meijer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Christopher S Colwell
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands; Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jos H T Rohling
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thijs Houben
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Michel
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
204
|
Sleep, vigilance, and thermosensitivity. Pflugers Arch 2011; 463:169-76. [PMID: 22048563 PMCID: PMC3256315 DOI: 10.1007/s00424-011-1042-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/09/2011] [Accepted: 10/10/2011] [Indexed: 11/06/2022]
Abstract
The regulation of sleep and wakefulness is well modeled with two underlying processes: a circadian and a homeostatic one. So far, the parameters and mechanisms of additional sleep-permissive and wake-promoting conditions have been largely overlooked. The present overview focuses on one of these conditions: the effect of skin temperature on the onset and maintenance of sleep, and alertness. Skin temperature is quite well suited to provide the brain with information on sleep-permissive and wake-promoting conditions because it changes with most if not all of them. Skin temperature changes with environmental heat and cold, but also with posture, environmental light, danger, nutritional status, pain, and stress. Its effect on the brain may thus moderate the efficacy by which the clock and homeostat manage to initiate or maintain sleep or wakefulness. The review provides a brief overview of the neuroanatomical pathways and physiological mechanisms by which skin temperature can affect the regulation of sleep and vigilance. In addition, current pitfalls and possibilities of practical applications for sleep enhancement are discussed, including the recent finding of impaired thermal comfort perception in insomniacs.
Collapse
|
205
|
Girardet C, Bosler O. [Structural plasticity of the adult central nervous system: insights from the neuroendocrine hypothalamus]. Biol Aujourdhui 2011; 205:179-97. [PMID: 21982406 DOI: 10.1051/jbio/2011018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Indexed: 01/26/2023]
Abstract
Accumulating evidence renders the dogma obsolete according to which the structural organization of the brain would remain essentially stable in adulthood, changing only in response to a need for compensatory processes during increasing age and degeneration. It has indeed become clear from investigations on various models that the adult nervous system can adapt to physiological demands by altering reversibly its synaptic circuits. This potential for structural and functional modifications results not only from the plastic properties of neurons but also from the inherent capacity of the glial cellular components to undergo remodeling as well. This is currently known for astrocytes, the major glial cells in brain which are well-recognized as dynamic partners in the mechanisms of synaptic transmission, and for the tanycytes and pituicytes which contribute to the regulation of neurosecretory processes in neurohemal regions of the hypothalamus. Studies on the neuroendocrine hypothalamus, whose role is central in homeostatic regulations, have gained good insights into the spectacular neuronal-glial rearrangements that may subserve functional plasticity in the adult brain. Following pioneering works on the morphological reorganizations taking place in the hypothalamo-neurohypophyseal system under certain physiological conditions such as dehydration and lactation, studies on the gonadotropic system that orchestrates reproductive functions have re-emphasized the dynamic interplay between neurons and glia in brain structural plasticity processes. This review summarizes the major contributions provided by these researches in the field and also addresses the question of the morphological rearrangements that occur on a 24-h basis in the central component of the circadian clock responsible for the temporal aspects of endocrine regulations. Taken together, the reviewed data highlight the close cooperation between neurons and glia in developing strategies for functional adaptation of the brain to the changing conditions of the internal and external environment.
Collapse
Affiliation(s)
- Clémence Girardet
- Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, France.
| | | |
Collapse
|
206
|
Atkinson SE, Maywood ES, Chesham JE, Wozny C, Colwell CS, Hastings MH, Williams SR. Cyclic AMP signaling control of action potential firing rate and molecular circadian pacemaking in the suprachiasmatic nucleus. J Biol Rhythms 2011; 26:210-20. [PMID: 21628548 DOI: 10.1177/0748730411402810] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian pacemaking in suprachiasmatic nucleus (SCN) neurons revolves around transcriptional/posttranslational feedback loops, driven by protein products of "clock" genes. These loops are synchronized and sustained by intercellular signaling, involving vasoactive intestinal peptide (VIP) via its VPAC2 receptor, which positively regulates cAMP synthesis. In turn, SCN cells communicate circadian time to the brain via a daily rhythm in electrophysiological activity. To investigate the mechanisms whereby VIP/VPAC2/cAMP signaling controls SCN molecular and electrical pacemaking, we combined bioluminescent imaging of circadian gene expression and whole-cell electrophysiology in organotypic SCN slices. As a potential direct target of cAMP, we focused on hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. Mutations of VIP-ergic signaling compromised the SCN molecular pacemaker, diminishing the amplitude and intercellular synchrony of circadian gene expression. These deficits were transiently reversed by elevation of cAMP. Similarly, cellular synchrony in electrical firing rates was lost in SCN slices lacking the VPAC2 receptor for VIP. Whole-cell current-clamp recordings in wild-type (WT) slices revealed voltage responses shaped by the conductance I(h), which is mediated by HCN channel activity. The influence of I(h) on voltage responses showed a modest peak in early circadian day, identifying HCN channels as a putative mediator of cAMP-dependent circadian effects on firing rate. I(h), however, was unaffected by loss of VIP-ergic signaling in VPAC2-null slices, and inhibition of cAMP synthesis had no discernible effect on I(h) but did suppress gene expression and SCN firing rates. Moreover, only sustained but not acute, pharmacological blockade of HCN channels reduced action potential (AP) firing. Thus, our evidence suggests that in the SCN, cAMP-mediated signaling is not a principal regulator of HCN channel function and that HCN is not a determinant of AP firing rate. VIP/cAMP-dependent signaling sustains the SCN molecular oscillator and action potential firing via mechanisms yet to be identified.
Collapse
Affiliation(s)
- Susan E Atkinson
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
207
|
Abstract
Neurons in the suprachiasmatic nucleus (SCN) function as part of a central timing circuit that drives daily changes in our behaviour and underlying physiology. A hallmark feature of SCN neuronal populations is that they are mostly electrically silent during the night, start to fire action potentials near dawn and then continue to generate action potentials with a slow and steady pace all day long. Sets of currents are responsible for this daily rhythm, with the strongest evidence for persistent Na(+) currents, L-type Ca(2+) currents, hyperpolarization-activated currents (I(H)), large-conductance Ca(2+) activated K(+) (BK) currents and fast delayed rectifier (FDR) K(+) currents. These rhythms in electrical activity are crucial for the function of the circadian timing system, including the expression of clock genes, and decline with ageing and disease. This article reviews our current understanding of the ionic and molecular mechanisms that drive the rhythmic firing patterns in the SCN.
Collapse
Affiliation(s)
- Christopher S Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, California 90024, USA.
| |
Collapse
|
208
|
Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus. Nat Commun 2011; 2:327. [PMID: 21610730 PMCID: PMC3112533 DOI: 10.1038/ncomms1316] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/18/2011] [Indexed: 12/14/2022] Open
Abstract
Synchronous oscillations of thousands of cellular clocks in the suprachiasmatic nucleus (SCN), the circadian centre, are coordinated by precisely timed cell–cell communication, the principle of which is largely unknown. Here we show that the amount of RGS16 (regulator of G protein signalling 16), a protein known to inactivate Gαi, increases at a selective circadian time to allow time-dependent activation of intracellular cyclic AMP signalling in the SCN. Gene ablation of Rgs16 leads to the loss of circadian production of cAMP and as a result lengthens circadian period of behavioural rhythm. The temporally precise regulation of the cAMP signal by clock-controlled RGS16 is needed for the dorsomedial SCN to maintain a normal phase-relationship to the ventrolateral SCN. Thus, RGS16-dependent temporal regulation of intracellular G protein signalling coordinates the intercellular synchrony of SCN pacemaker neurons and thereby defines the 24 h rhythm in behaviour. Circadian rhythm is controlled by the suprachiasmatic nucleus and the mechanisms that control the rhythm are largely undiscovered. In this study, a G protein regulator, RGS16, is shown to be involved in the production of cyclic AMP that is required for the suprachiasmatic nucleus to maintain rhythm
Collapse
|
209
|
Fukuda H, Tokuda I, Hashimoto S, Hayasaka N. Quantitative analysis of phase wave of gene expression in the mammalian central circadian clock network. PLoS One 2011; 6:e23568. [PMID: 21912598 PMCID: PMC3162606 DOI: 10.1371/journal.pone.0023568] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/20/2011] [Indexed: 12/19/2022] Open
Abstract
Background The suprachiasmatic nucleus (SCN), the master circadian clock, is a heterogeneous oscillator network, yet displays a robust synchronization dynamics. Recent single-cell bioluminescent imaging revealed temporal gradients in circadian clock gene expression in the SCN ex vivo. However, due to technical difficulty in biological approaches to elucidate the entire network structure of the SCN, characteristics of the gradient, which we refer to as phase wave, remain unknown. Methodology/Principal Findings We implemented new approaches, i.e., quantitative analysis and model simulation to characterize the phase waves in Per2::Luciferase clock reporter gene expression of the rat SCN slice. Our quantitative study demonstrated not only a high degree of synchronization between the neurons and regular occurrence of the phase wave propagation, but also a significant amount of phase fluctuations contained in the wave. In addition, our simulations based on local coupling model suggest that the intercellular coupling strength estimated by the model simulations is significantly higher than the critical value for generating the phase waves. Model simulations also suggest that heterogeneity of the SCN neurons is one of the main factors causing the phase wave fluctuations. Furthermore, robustness of the SCN network against dynamical noise and variation of the natural frequencies inherent in these neurons was quantitatively assessed. Conclusions/Significance To our knowledge, this is the first quantitative evaluation of the phase wave and further characterization of the SCN neuronal network features generating the wave i.e., intercellular synchrony, phase fluctuation, strong local coupling, heterogeneous periodicity and robustness. Our present study provides an approach, which will lead to a comprehensive understanding of mechanistic and/or biological significance of the phase wave in the central circadian oscillatory system.
Collapse
Affiliation(s)
- Hirokazu Fukuda
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Isao Tokuda
- Department of Micro System Technology, Ritsumeikan University, Shiga, Japan
| | - Seiichi Hashimoto
- Molecular Medicine Research Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Naoto Hayasaka
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
- * E-mail:
| |
Collapse
|
210
|
Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons. J Neurosci 2011; 31:8181-93. [PMID: 21632940 DOI: 10.1523/jneurosci.2017-10.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide PDF (pigment-dispersing factor)-secreting large ventrolateral neurons (lLN(v)s) in the Drosophila brain regulate daily patterns of rest and arousal. These bilateral wake-promoting neurons are light responsive and integrate information from the circadian system, sleep circuits, and light environment. To begin to dissect the synaptic circuitry of the circadian neural network, we performed simultaneous dual whole-cell patch-clamp recordings of pairs of lLN(v)s. Both ipsilateral and contralateral pairs of lLN(v)s exhibit synchronous rhythmic membrane activity with a periodicity of ∼ 5-10 s. This rhythmic lLN(v) activity is blocked by TTX, voltage-gated sodium blocker, or α-bungarotoxin, nicotinic acetylcholine receptor antagonist, indicating that action potential-dependent cholinergic synaptic connections are required for rhythmic lLN(v) activity. Since injecting current into one neuron of the pair had no effect on the membrane activity of the other neuron of the pair, this suggests that the synchrony is attributable to bilateral inputs and not coupling between the pairs of lLN(v)s. To further elucidate the nature of these synaptic inputs to lLN(v)s, we blocked or activated a variety of neurotransmitter receptors and measured effects on network activity and ionic conductances. These measurements indicate the lLN(v)s possess excitatory nicotinic ACh receptors, inhibitory ionotropic GABA(A) receptors, and inhibitory ionotropic GluCl (glutamate-gated chloride) receptors. We demonstrate that cholinergic input, but not GABAergic input, is required for synchronous membrane activity, whereas GABA can modulate firing patterns. We conclude that neuropeptidergic lLN(v)s that control rest and arousal receive synchronous synaptic inputs mediated by ACh.
Collapse
|
211
|
A multicellular model for differential regulation of circadian signals in the core and shell regions of the suprachiasmatic nucleus. J Theor Biol 2011; 288:44-56. [PMID: 21871462 DOI: 10.1016/j.jtbi.2011.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 07/17/2011] [Accepted: 08/11/2011] [Indexed: 01/07/2023]
Abstract
We developed a multicellular model of the mammalian circadian clock characterized by a high degree of heterogeneity with respect to single cell periodicity and behavior (intrinsic and driven oscillators), neurotransmitter release (VIP, GABA and glutamate synthesis) and spatial organization (core and shell regions), mimicking structural patterns within the suprachiasmatic nucleus (SCN) associated with distinct circadian functions. We simulated the SCN core and shell separately utilizing experimentally derived connectivity schemes for the two subdivisions as observed within the rat SCN. The core was modeled via a small world network characterized by VIP and GABA co-localization, whereas the shell was simulated as a nearest neighbor network promoting local GABAergic connections. To study the function of the axonal plexus extending from the densely innervated ventrolateral region to distal areas across the dorsomedial SCN, directed long range links from the core to the shell were gradually introduced via a probability p(cs) that ranged from 0 to 1. A probability value of 0 excluded core-shell interactions, whereas p(cs)=1 achieved maximal connectivity between the two regions. Our model exhibited a threshold in the number of core-to-shell links required for sufficient cell-to-cell coordination to maintain periodicity and rhythmic behavior across the entire model network (including both shell and core populations) in constant darkness as well as 12:12h light-dark cycles. By contrast, constant light was shown to increase phase synchronization across the shell while core populations remained poorly synchronized, suggesting differential light response across the two SCN compartments. We further simulated increasing percentages of intrinsic oscillators and demonstrated a negative correlation between the number of intrinsic oscillators distributed across the SCN and the ability of the system to produce synchronized signals. Simulations that differed with respect to the placement of intrinsic oscillators supported the hypothesis that improved synchronization is achieved with networks characterized by localized intrinsic oscillators placed exclusively within the shell versus networks containing uniformly distributed intrinsic oscillators in both SCN compartments. This study has successfully reproduced a number of spatiotemporal and behavioral attributes of the SCN, providing a useful computational tool to correlate observed circadian phenotypes with distinct chemoarchitectural properties of spatially localized neural populations.
Collapse
|
212
|
Kasukawa T, Masumoto KH, Nikaido I, Nagano M, Uno KD, Tsujino K, Hanashima C, Shigeyoshi Y, Ueda HR. Quantitative expression profile of distinct functional regions in the adult mouse brain. PLoS One 2011; 6:e23228. [PMID: 21858037 PMCID: PMC3155528 DOI: 10.1371/journal.pone.0023228] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022] Open
Abstract
The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B*) project, in which we profiled the genome-wide expression of ∼50 small brain regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212 regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://brainstars.org/) for exploring genome-wide expression in the adult mouse brain, and have made this database openly accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of its regulatory network systems.
Collapse
Affiliation(s)
- Takeya Kasukawa
- Functional Genomics Unit, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Koh-hei Masumoto
- Laboratory for Systems Biology, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka, Japan
| | - Itoshi Nikaido
- Functional Genomics Unit, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- Laboratory for Systems Biology, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka, Japan
| | - Kenichiro D. Uno
- Functional Genomics Unit, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Kaori Tsujino
- Laboratory for Systems Biology, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Hyogo, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka, Japan
- * E-mail: (HRU); (YS)
| | - Hiroki R. Ueda
- Functional Genomics Unit, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- Laboratory for Systems Biology, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
- Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto, Japan
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Kobe, Hyogo, Japan
- * E-mail: (HRU); (YS)
| |
Collapse
|
213
|
|
214
|
A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci U S A 2011; 108:14306-11. [PMID: 21788520 DOI: 10.1073/pnas.1101767108] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) is the principal circadian pacemaker of mammals, coordinating daily rhythms of behavior and metabolism. Circadian timekeeping in SCN neurons revolves around transcriptional/posttranslational feedback loops, in which Period (Per) and Cryptochrome (Cry) genes are negatively regulated by their protein products. Recent studies have revealed, however, that these "core loops" also rely upon cytosolic and circuit-level properties for sustained oscillation. To characterize interneuronal signals responsible for robust pacemaking in SCN cells and circuits, we have developed a unique coculture technique using wild-type (WT) "graft" SCN to drive pacemaking (reported by PER2::LUCIFERASE bioluminescence) in "host" SCN deficient either in elements of neuropeptidergic signaling or in elements of the core feedback loop. We demonstrate that paracrine signaling is sufficient to restore cellular synchrony and amplitude of pacemaking in SCN circuits lacking vasoactive intestinal peptide (VIP). By using grafts with mutant circadian periods we show that pacemaking in the host SCN is specified by the genotype of the graft, confirming graft-derived factors as determinants of the host rhythm. By combining pharmacological with genetic manipulations, we show that a hierarchy of neuropeptidergic signals underpins this paracrine regulation, with a preeminent role for VIP augmented by contributions from arginine vasopressin (AVP) and gastrin-releasing peptide (GRP). Finally, we show that interneuronal signaling is sufficiently powerful to maintain circadian pacemaking in arrhythmic Cry-null SCN, deficient in essential elements of the transcriptional negative feedback loops. Thus, a hierarchy of paracrine neuropeptidergic signals determines cell- and circuit-level circadian pacemaking in the SCN.
Collapse
|
215
|
Polidarová L, Sládek M, Soták M, Pácha J, Sumová A. Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Chronobiol Int 2011; 28:204-15. [PMID: 21452916 DOI: 10.3109/07420528.2010.548615] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Physiological functions of the gastrointestinal tract (GIT) are temporally controlled such that they exhibit circadian rhythms. The circadian rhythms are synchronized with the environmental light-dark cycle via signaling from the central circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus, and by food intake. The aim of the study was to determine the extent to which disturbance in the SCN signaling via prolonged exposure to constant light affects circadian rhythms in the liver, duodenum, and colon, as well as to determine whether and to what extent food intake can restore rhythmicity in individual parts of the GIT. Adult male rats were maintained in constant light (LL) for 30 days and fed ad libitum throughout the entire interval or exposed to a restricted feeding (RF) regime for the last 14 days in LL. Locomotor and feeding behaviors were recorded throughout the experiment. On the 30th day, daily expression profiles of clock genes (Per1, Per2, Rev-erbα, and Bmal1) and of clock-controlled genes (Wee1 and Dbp) were measured by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in the duodenum, colon, and liver. By the end of the LL exposure, rats fed ad libitum had completely lost their circadian rhythms in activity and food intake. Daily expression profiles of clock genes and clock-controlled genes in the GIT were impaired to an extent depending on the tissue and gene studied, but not completely abolished. In the liver and colon, exposure to LL abolished circadian rhythms in expression of Per1, Per2, Bmal1, and Wee1, whereas it impaired, but preserved, rhythms in expression of Rev-erbα and Dbp. In the duodenum, all but Wee1 expression rhythms were preserved. Restricted feeding restored the rhythms to a degree that varied with the tissue and gene studied. Whereas in the liver and duodenum the profiles of all clock genes and clock-controlled genes became rhythmic, in the colon only Per1, Bmal1, and Rev-erbα-but not Per2, Wee1, and Dbp-were expressed rhythmically. The data demonstrate a greater persistence of the rhythmicity of the circadian clocks in the duodenum compared with that in the liver and colon under conditions when signaling from the SCN is disrupted. Moreover, disrupted rhythmicity may be restored more effectively by a feeding regime in the duodenum and liver compared to the colon.
Collapse
Affiliation(s)
- Lenka Polidarová
- Departments of Neurohumoral Regulations, Institute of Physiology v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
216
|
Vasalou C, Herzog E, Henson M. Multicellular model for intercellular synchronization in circadian neural networks. Biophys J 2011; 101:12-20. [PMID: 21723810 PMCID: PMC3127187 DOI: 10.1016/j.bpj.2011.04.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 03/22/2011] [Accepted: 04/18/2011] [Indexed: 12/22/2022] Open
Abstract
We developed a multicellular model characterized by a high degree of heterogeneity to investigate possible mechanisms that underlie circadian network synchronization and rhythmicity in the suprachiasmatic nucleus (SCN). We populated a two-dimensional grid with 400 model neurons coupled via γ-aminobutyric acid (GABA) and vasoactive intestinal polypeptide (VIP) neurotransmitters through a putative Ca(2+) mediated signaling cascade to investigate their roles in gene expression and electrical firing activity of cell populations. As observed experimentally, our model predicted that GABA would affect the amplitude of circadian oscillations but not synchrony among individual oscillators. Our model recapitulated experimental findings of decreased synchrony and average periods, loss of rhythmicity, and reduced circadian amplitudes as VIP signaling was eliminated. In addition, simulated increases of VIP reduced periodicity and synchrony. We therefore postulated a physiological range of VIP within which the system is able to produce sustained and synchronized oscillations. Our model recapitulated experimental findings of diminished amplitudes and periodicity with decreasing intracellular Ca(2+) concentrations, suggesting that such behavior could be due to simultaneous decrease of individual oscillation amplitudes and population synchrony. Simulated increases in Cl(-) levels resulted in increased Cl(-) influx into the cytosol, a decrease of inhibitory postsynaptic currents, and ultimately a shift of GABA-elicited responses from inhibitory to excitatory. The simultaneous reduction of IPSCs and increase in membrane resting potential produced GABA dose-dependent increases in firing rates across the population, as has been observed experimentally. By integrating circadian gene regulation and electrophysiology with intracellular and intercellular signaling, we were able to develop the first (to our knowledge) multicellular model that allows the effects of clock genes, electrical firing, Ca(2+), GABA, and VIP on circadian system behavior to be predicted.
Collapse
Affiliation(s)
- Christina Vasalou
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts
| | - Erik D. Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Michael A. Henson
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
217
|
Abstract
Humans and other mammals exhibit a remarkable array of cyclical changes in physiology and behaviour. These are often synchronized to the changing environmental light–dark cycle and persist in constant conditions. Such circadian rhythms are controlled by an endogenous clock, located in the suprachiasmatic nuclei of the hypothalamus. This structure and its cells have unique properties, and some of these are reviewed to highlight how this central clock controls and sculpts our daily activities.
Collapse
|
218
|
Mohawk JA, Takahashi JS. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 2011; 34:349-58. [PMID: 21665298 DOI: 10.1016/j.tins.2011.05.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 11/18/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the master circadian pacemaker in mammals. The individual cells of the SCN are capable of functioning independently from one another and therefore must form a cohesive circadian network through intercellular coupling. The network properties of the SCN lead to coordination of circadian rhythms among its neurons and neuronal subpopulations. There is increasing evidence for multiple interconnected oscillators within the SCN, and in this review we will highlight recent advances in our knowledge of the complex organization and function of the cellular and network-level SCN clock. Understanding the way in which synchrony is achieved between cells in the SCN will provide insight into the means by which this important nucleus orchestrates circadian rhythms throughout the organism.
Collapse
Affiliation(s)
- Jennifer A Mohawk
- Department of Neuroscience and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | | |
Collapse
|
219
|
Loh DH, Dragich JM, Kudo T, Schroeder AM, Nakamura TJ, Waschek JA, Block GD, Colwell CS. Effects of vasoactive intestinal peptide genotype on circadian gene expression in the suprachiasmatic nucleus and peripheral organs. J Biol Rhythms 2011; 26:200-9. [PMID: 21628547 PMCID: PMC3942163 DOI: 10.1177/0748730411401740] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The neuropeptide vasoactive intestinal polypeptide (VIP) has emerged as a key candidate molecule mediating the synchronization of rhythms in clock gene expression within the suprachiasmatic nucleus (SCN). In addition, neurons expressing VIP are anatomically well positioned to mediate communication between the SCN and peripheral oscillators. In this study, we examined the temporal expression profile of 3 key circadian genes: Per1, Per2 , and Bmal1 in the SCN, the adrenal glands and the liver of mice deficient for the Vip gene (VIP KO), and their wild-type counterparts. We performed these measurements in mice held in a light/dark cycle as well as in constant darkness and found that rhythms in gene expression were greatly attenuated in the VIP-deficient SCN. In the periphery, the impact of the loss of VIP varied with the tissue and gene measured. In the adrenals, rhythms in Per1 were lost in VIP-deficient mice, while in the liver, the most dramatic impact was on the phase of the diurnal expression rhythms. Finally, we examined the effects of the loss of VIP on ex vivo explants of the same central and peripheral oscillators using the PER2::LUC reporter system. The VIP-deficient mice exhibited low amplitude rhythms in the SCN as well as altered phase relationships between the SCN and the peripheral oscillators. Together, these data suggest that VIP is critical for robust rhythms in clock gene expression in the SCN and some peripheral organs and that the absence of this peptide alters both the amplitude of circadian rhythms as well as the phase relationships between the rhythms in the SCN and periphery.
Collapse
Affiliation(s)
- Dawn H. Loh
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - Joanna M. Dragich
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - Takashi Kudo
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - Analyne M. Schroeder
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - Takahiro J. Nakamura
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - James A. Waschek
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - Gene D. Block
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| |
Collapse
|
220
|
Hughes ATL, Guilding C, Piggins HD. Neuropeptide signaling differentially affects phase maintenance and rhythm generation in SCN and extra-SCN circadian oscillators. PLoS One 2011; 6:e18926. [PMID: 21559484 PMCID: PMC3084722 DOI: 10.1371/journal.pone.0018926] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/11/2011] [Indexed: 02/02/2023] Open
Abstract
Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC(2), play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC(2) receptors (Vipr2(-/-)) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. Within the brain, the SCN is not the only site containing endogenous circadian oscillators, nor is it the only site of VPAC(2) receptor expression; both VPAC(2) receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. The functional role of VPAC(2) receptors in rhythm generation and maintenance in these tissues is, however, unknown. We used wild type (WT) and Vipr2(-/-) mice expressing a luciferase reporter (PER2::LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC(2) receptor. Vipr2(-/-) SCN cultures expressed significantly lower amplitude PER2::LUC oscillations than WT SCN. Surprisingly, in Vipr2(-/-) Arc/ME/PT complex (Arc, median eminence and pars tuberalis), DMH and pituitary, the period, amplitude and rate of damping of rhythms were not significantly different to WT. Intriguingly, while we found WT SCN and Arc/ME/PT tissues to maintain a consistent circadian phase when cultured, the phase of corresponding Vipr2(-/-) cultures was reset by cull/culture procedure. These data demonstrate that while the main rhythm parameters of extra-SCN circadian oscillations are maintained in Vipr2(-/-) mice, the ability of these oscillators to resist phase shifts is compromised. These deficiencies may contribute towards the aberrant behavior and metabolism associated with Vipr2(-/-) animals. Further, our data indicate a link between circadian rhythm strength and the ability of tissues to resist circadian phase resetting.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | |
Collapse
|
221
|
Tuning the period of the mammalian circadian clock: additive and independent effects of CK1εTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking. J Neurosci 2011; 31:1539-44. [PMID: 21273438 DOI: 10.1523/jneurosci.4107-10.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Circadian pacemaking in the suprachiasmatic nucleus (SCN) revolves around a transcriptional/posttranslational feedback loop in which period (Per) and cryptochrome (Cry) genes are negatively regulated by their protein products. Genetically specified differences in this oscillator underlie sleep and metabolic disorders, and dictate diurnal/nocturnal preference. A critical goal, therefore, is to identify mechanisms that generate circadian phenotypic diversity, through both single gene effects and gene interactions. The individual stabilities of PER or CRY proteins determine pacemaker period, and PER/CRY complexes have been proposed to afford mutual stabilization, although how PER and CRY proteins with contrasting stabilities interact is unknown. We therefore examined interactions between two mutations in male mice: Fbxl3(Afh), which lengthens period by stabilizing CRY, and Csnk1ε(tm1Asil) (CK1ε(Tau)), which destabilizes PER, thereby accelerating the clock. By intercrossing these mutants, we show that the stabilities of CRY and PER are independently regulated, contrary to the expectation of mutual stabilization. Segregation of wild-type and mutant alleles generated a spectrum of periods for rest-activity behavior and SCN bioluminescence rhythms. The mutations exerted independent, additive effects on circadian period, biased toward shorter periods determined by CK1ε(Tau). Notably, Fbxl3(Afh) extended the duration of the nadir of the PER2-driven bioluminescence rhythm but CK1ε(Tau) reversed this, indicating that despite maintained CRY expression, CK1ε(Tau) truncated the interval of negative feedback. These results argue for independent, additive biochemical actions of PER and CRY in circadian control, and complement genome-wide epistatic analyses, seeking to decipher the multigenic control of circadian pacemaking.
Collapse
|
222
|
Ferrari E, Maywood ES, Restani L, Caleo M, Pirazzini M, Rossetto O, Hastings MH, Niranjan D, Schiavo G, Davletov B. Re-assembled botulinum neurotoxin inhibits CNS functions without systemic toxicity. Toxins (Basel) 2011; 3:345-55. [PMID: 22069712 PMCID: PMC3202830 DOI: 10.3390/toxins3040345] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/18/2011] [Accepted: 03/23/2011] [Indexed: 11/23/2022] Open
Abstract
The therapeutic potential of botulinum neurotoxin type A (BoNT/A) has recently been widely recognized. BoNT/A acts to silence synaptic transmission via specific proteolytic cleavage of an essential neuronal protein, SNAP25. The advantages of BoNT/A-mediated synaptic silencing include very long duration, high potency and localized action. However, there is a fear of possible side-effects of BoNT/A due to its diffusible nature which may lead to neuromuscular blockade away from the injection site. We recently developed a “protein-stapling” technology which allows re-assembly of BoNT/A from two separate fragments. This technology allowed, for the first time, safe production of this popular neuronal silencing agent. Here we evaluated the re-assembled toxin in several CNS assays and assessed its systemic effects in an animal model. Our results show that the re-assembled toxin is potent in inhibiting CNS function at 1 nM concentration but surprisingly does not exhibit systemic toxicity after intraperitoneal injection even at 200 ng/kg dose. This shows that the re-assembled toxin represents a uniquely safe tool for neuroscience research and future medical applications.
Collapse
Affiliation(s)
- Enrico Ferrari
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
| | - Elizabeth S. Maywood
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
| | - Laura Restani
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy; (L.R.); (M.C.)
| | - Matteo Caleo
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy; (L.R.); (M.C.)
| | - Marco Pirazzini
- Dipartimento di Scienze Biomediche, Università di Padova, 35121 Padova, Italy; (M.P.); (O.R.)
| | - Ornella Rossetto
- Dipartimento di Scienze Biomediche, Università di Padova, 35121 Padova, Italy; (M.P.); (O.R.)
| | - Michael H. Hastings
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
| | - Dhevahi Niranjan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
| | - Giampietro Schiavo
- Molecular NeuroPathoBiology Laboratory, Cancer Research UK London Research Institute, London WC2A 3LY, UK;
| | - Bazbek Davletov
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
- Author to whom correspondence should be addressed; ; Tel.: +44-1-223-402-009; Fax: +44-1-223-402-310
| |
Collapse
|
223
|
Meijer JH, Michel S, Vanderleest HT, Rohling JHT. Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network. Eur J Neurosci 2011; 32:2143-51. [PMID: 21143668 DOI: 10.1111/j.1460-9568.2010.07522.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Circadian rhythms are an essential property of many living organisms, and arise from an internal pacemaker, or clock. In mammals, this clock resides in the suprachiasmatic nucleus (SCN) of the hypothalamus, and generates an intrinsic circadian rhythm that is transmitted to other parts of the CNS. We will review the evidence that basic adaptive functions of the circadian system rely on functional plasticity in the neuronal network organization, and involve a change in phase relation among oscillatory neurons. We will illustrate this for: (i) photic entrainment of the circadian clock to the light-dark cycle; and (ii) seasonal adaptation of the clock to changes in day length. Molecular studies have shown plasticity in the phase relation between the ventral and dorsal SCN during adjustment to a shifted environmental cycle. Seasonal adaptation relies predominantly on plasticity in the phase relation between the rostral and caudal SCN. Electrical activity is integrated in the SCN, and appears to reflect the sum of the differently phased molecular expression patterns. While both photic entrainment and seasonal adaptation arise from a redistribution of SCN oscillatory activity patterns, different neuronal coupling mechanisms are employed, which are reviewed in the present paper.
Collapse
Affiliation(s)
- Johanna H Meijer
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
224
|
Farnell YF, Shende VR, Neuendorff N, Allen GC, Earnest DJ. Immortalized cell lines for real-time analysis of circadian pacemaker and peripheral oscillator properties. Eur J Neurosci 2011; 33:1533-40. [PMID: 21366728 DOI: 10.1111/j.1460-9568.2011.07629.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the mammalian circadian system, cell-autonomous clocks in the suprachiasmatic nuclei (SCN) are distinguished from those in other brain regions and peripheral tissues by the capacity to generate coordinated rhythms and drive oscillations in other cells. To further establish in vitro models for distinguishing the functional properties of SCN and peripheral oscillators, we developed immortalized cell lines derived from fibroblasts and the SCN anlage of mPer2 (Luc) knockin mice. Circadian rhythms in luminescence driven by the mPER2::LUC fusion protein were observed in cultures of mPer2 (Luc) SCN cells and in serum-shocked or SCN2.2-co-cultured mPer2 (Luc) fibroblasts. SCN mPer2 (Luc) cells generated self-sustained circadian oscillations that persisted for at least four cycles with periodicities of ≈24 h. Immortalized fibroblasts only showed circadian rhythms of mPER2::LUC expression in response to serum shock or when co-cultured with SCN2.2 cells. Circadian oscillations of luminescence in mPer2 (Luc) fibroblasts decayed after 3-4 cycles in serum-shocked cultures but robustly persisted for 6-7 cycles in the presence of SCN2.2 cells. In the co-culture model, the circadian behavior of mPer2 (Luc) fibroblasts was dependent on the integrity of the molecular clockworks in co-cultured SCN cells as persistent rhythmicity was not observed in the presence of immortalized SCN cells derived from mice with targeted disruption of Per1 and Per2 (Per1(ldc) /Per2 (ldc) ). Because immortalized mPer2 (Luc) SCN cells and fibroblasts retain their indigenous circadian properties, these in vitro models will be valuable for real-time comparisons of clock gene rhythms in SCN and peripheral oscillators and identifying the diffusible signals that mediate the distinctive pacemaking function of the SCN.
Collapse
Affiliation(s)
- Yuhua F Farnell
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
225
|
Hannibal J, Hsiung HM, Fahrenkrug J. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice. Am J Physiol Regul Integr Comp Physiol 2011; 300:R519-30. [DOI: 10.1152/ajpregu.00599.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4–6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen; and
| | - Hansen M. Hsiung
- Division of Endocrine Research, Eli Lilly and Co., Indianapolis, Indiana
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen; and
| |
Collapse
|
226
|
Komin N, Murza AC, Hernández-García E, Toral R. Synchronization and entrainment of coupled circadian oscillators. Interface Focus 2011; 1:167-76. [PMID: 22419982 PMCID: PMC3262239 DOI: 10.1098/rsfs.2010.0327] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/20/2010] [Indexed: 11/12/2022] Open
Abstract
Circadian rhythms in mammals are controlled by the neurons located in the suprachiasmatic nucleus of the hypothalamus. In physiological conditions, the system of neurons is very efficiently entrained by the 24 h light-dark cycle. Most of the studies carried out so far emphasize the crucial role of the periodicity imposed by the light-dark cycle in neuronal synchronization. Nevertheless, heterogeneity as a natural and permanent ingredient of these cellular interactions seemingly plays a major role in these biochemical processes. In this paper, we use a model that considers the neurons of the suprachiasmatic nucleus as chemically coupled modified Goodwin oscillators, and introduce non-negligible heterogeneity in the periods of all neurons in the form of quenched noise. The system response to the light-dark cycle periodicity is studied as a function of the interneuronal coupling strength, external forcing amplitude and neuronal heterogeneity. Our results indicate that the right amount of heterogeneity helps the extended system to respond globally in a more coherent way to the external forcing. Our proposed mechanism for neuronal synchronization under external periodic forcing is based on heterogeneity-induced oscillator death, damped oscillators being more entrainable by the external forcing than the self-oscillating neurons with different periods.
Collapse
Affiliation(s)
| | | | | | - R. Toral
- IFISC (Instituto de Física Interdisciplinar y Sistemas Complejos), CSIC-UIB, Campus UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|
227
|
Abstract
The mammalian circadian system is a complex hierarchical temporal network which is organized around an ensemble of uniquely coupled cells comprising the principal circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus. This central pacemaker is entrained each day by the environmental light/dark cycle and transmits synchronizing cues to cell-autonomous oscillators in tissues throughout the body. Within cells of the central pacemaker and the peripheral tissues, the underlying molecular mechanism by which oscillations in gene expression occur involves interconnected feedback loops of transcription and translation. Over the past 10 years, we have learned much regarding the genetics of this system, including how it is particularly resilient when challenged by single-gene mutations, how accessory transcriptional loops enhance the robustness of oscillations, how epigenetic mechanisms contribute to the control of circadian gene expression, and how, from coupled neuronal networks, emergent clock properties arise. Here, we will explore the genetics of the mammalian circadian system from cell-autonomous molecular oscillations, to interactions among central and peripheral oscillators and ultimately, to the daily rhythms of behavior observed in the animal.
Collapse
|
228
|
Hu WP, Li JD, Colwell CS, Zhou QY. Decreased REM sleep and altered circadian sleep regulation in mice lacking vasoactive intestinal polypeptide. Sleep 2011; 34:49-56. [PMID: 21203371 DOI: 10.1093/sleep/34.1.49] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Vasoactive intestinal polypeptide (VIP) has been implicated in sleep regulation as a promoter of rapid eye movement (REM) sleep. Previous work has shown that the amount of time spent in REM sleep is increased by intracerebroventricular administration of VIP, and reduced by treatment with VIP antagonists or antibodies against VIP. A variety of evidence suggests that VIP is critical for normal expression of circadian rhythmicity of diverse physiological and behavioral parameters. In the present study, we investigated the role of this peptide in sleep regulation using VIP-deficient (VIP-/-) mice. METHODS EEG/EMG sleep-wake patterns were recorded in VIP-/- mice and their wild-type littermate controls under normal light-dark (LD), constant darkness (DD) and sleep deprivation conditions. RESULTS VIP-/- mice exhibited reduced REM sleep time over the 24-h cycle while total daily amounts of NREM sleep and wakefulness were not altered significantly. The reduced REM sleep time in VIP-/- mice occurred entirely during the day due to a reduction in the duration, but not the frequency, of REM sleep bouts. In response to sleep deprivation, compensatory rebounds in NREM sleep and REM sleep were also attenuated in VIP-/- mice. Finally, the loss of VIP altered the temporal distribution of sleep in that the VIP -/- mice exhibited smaller amplitude rhythms in total sleep, NREM sleep, and REM sleep under both LD and DD. CONCLUSIONS These results indicate that VIP regulates the duration of REM sleep, sleep homeostatic mechanisms as well as the temporal patterning of sleep.
Collapse
Affiliation(s)
- Wang-Ping Hu
- Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
229
|
Girardet C, Becquet D, Blanchard MP, François-Bellan AM, Bosler O. Neuroglial and synaptic rearrangements associated with photic entrainment of the circadian clock in the suprachiasmatic nucleus. Eur J Neurosci 2010; 32:2133-42. [DOI: 10.1111/j.1460-9568.2010.07520.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
230
|
Froy O, Miskin R. Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging (Albany NY) 2010; 2:7-27. [PMID: 20228939 PMCID: PMC2837202 DOI: 10.18632/aging.100116] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 01/09/2010] [Indexed: 01/19/2023]
Abstract
Increased longevity and improved health can be achieved in mammals by two feeding regimens, caloric restriction (CR), which limits the amount of daily calorie intake, and intermittent fasting (IF), which allows the food to be available ad libitum every other day. The precise mechanisms mediating these beneficial effects are still unresolved. Resetting the circadian clock is another intervention that can lead to increased life span and well being, while clock disruption is associated with aging and morbidity. Currently, a large body of evidence links circadian rhythms with metabolism and feeding regimens. In particular, CR, and possibly also IF, can entrain the master clock located in the suprachiasmatic nuclei (SCN) of the brain hypothalamus. These findings raise the hypothesis that the beneficial effects exerted by these feeding regimens could be mediated, at least in part, through resetting of the circadian clock, thus leading to synchrony in metabolism and physiology. This hypothesis is reinforced by a transgenic mouse model showing spontaneously reduced eating alongside robust circadian rhythms and increased life span. This review will summarize recent findings concerning the relationships between feeding regimens, circadian rhythms, and metabolism with implications for ageing attenuation and life span extension.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|
231
|
Dahdal D, Reeves DC, Ruben M, Akabas MH, Blau J. Drosophila pacemaker neurons require g protein signaling and GABAergic inputs to generate twenty-four hour behavioral rhythms. Neuron 2010; 68:964-77. [PMID: 21145008 PMCID: PMC3030199 DOI: 10.1016/j.neuron.2010.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2010] [Indexed: 01/30/2023]
Abstract
Intercellular signaling is important for accurate circadian rhythms. In Drosophila, the small ventral lateral neurons (s-LN(v)s) are the dominant pacemaker neurons and set the pace of most other clock neurons in constant darkness. Here we show that two distinct G protein signaling pathways are required in LN(v)s for 24 hr rhythms. Reducing signaling in LN(v)s via the G alpha subunit Gs, which signals via cAMP, or via the G alpha subunit Go, which we show signals via Phospholipase 21c, lengthens the period of behavioral rhythms. In contrast, constitutive Gs or Go signaling makes most flies arrhythmic. Using dissociated LN(v)s in culture, we found that Go and the metabotropic GABA(B)-R3 receptor are required for the inhibitory effects of GABA on LN(v)s and that reduced GABA(B)-R3 expression in vivo lengthens period. Although no clock neurons produce GABA, hyperexciting GABAergic neurons disrupts behavioral rhythms and s-LN(v) molecular clocks. Therefore, s-LN(v)s require GABAergic inputs for 24 hr rhythms.
Collapse
Affiliation(s)
- David Dahdal
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
232
|
Lee B, Li A, Hansen KF, Cao R, Yoon JH, Obrietan K. CREB influences timing and entrainment of the SCN circadian clock. J Biol Rhythms 2010; 25:410-20. [PMID: 21135157 PMCID: PMC3529591 DOI: 10.1177/0748730410381229] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The transcriptional feedback circuit, which is at the core of the suprachiasmatic nucleus (SCN) circadian (i.e., 24 h) clock, is tightly coupled to both external entrainment cues, such as light, as well as rhythmic cues that arise on a system-wide level within the SCN. One potential signaling pathway by which these cues are conveyed to the molecular clock is the CREB/CRE transcriptional cascade. In this study, we employed a tetracycline-inducible CREB repressor mouse strain, in which approximately 60% of the SCN neurons express the transgene, to test CREB functionality in the clock and its effects on overt rhythmicity. We show that attenuated CREB signaling in the SCN led to a significant reduction in light-evoked clock entrainment. An examination of circadian timing revealed that CREB repressor mice exhibited normal free-running rhythms in the absence of external lighting cues. However, under conditions of constant light, which typically leads to a lengthening of the circadian period, CREB repressor mice exhibited a dramatic arrhythmic phenotype, which could be reversed with doxycycline. At a cellular level, the repression of CREB led to a significant reduction in both the expression of the circadian clock proteins PERIOD1 and PERIOD2 and the clock output hormones AVP and VIP. Together, these data support the idea that the CRE transcriptional pathway orchestrates transcriptional events that are essential for both the maintenance of SCN timing and light entrainment of the circadian clock.
Collapse
Affiliation(s)
- Boyoung Lee
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Center for Neural Science, Korea Institute of Science and Technology, Seoul, Korea
| | - Aiqing Li
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Katelin F. Hansen
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Ruifeng Cao
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Jae Hwa Yoon
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| |
Collapse
|
233
|
Yamada Y, Forger D. Multiscale complexity in the mammalian circadian clock. Curr Opin Genet Dev 2010; 20:626-33. [PMID: 20934868 PMCID: PMC3042735 DOI: 10.1016/j.gde.2010.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/02/2010] [Accepted: 09/15/2010] [Indexed: 01/08/2023]
Abstract
The field of systems biology studies how the interactions among individual components (e.g. genes and proteins) yield interesting and complex behavior. The circadian (daily) timekeeping system in mammals is an ideal system to study complexity because of its many biological scales (from genes to animal behavior). A wealth of data at each of these scales has recently been discovered. Within each scale, modeling can advance our understanding of challenging problems that arise in studying mammalian timekeeping. However, future work must focus on bridging the multiple spatial and temporal scales in the modeling of SCN network. Here we review recent advances, and then delve into a few areas that are promising research directions. We also discuss the flavor of modeling needed (simple or detailed) as well as new techniques that are needed to meet the challenges in modeling data across scales.
Collapse
Affiliation(s)
- Yr Yamada
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States
| | | |
Collapse
|
234
|
Power A, Hughes ATL, Samuels RE, Piggins HD. Rhythm-promoting actions of exercise in mice with deficient neuropeptide signaling. J Biol Rhythms 2010; 25:235-46. [PMID: 20679493 DOI: 10.1177/0748730410374446] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Daily exercise promotes physical health as well as improvements in mental and neural functions. Studies in intact wild-type (WT) rodents have revealed that the brain's suprachiasmatic nuclei (SCN), site of the main circadian pacemaker, are also responsive to scheduled wheel running. It is unclear, however, if and how animals with a dysfunctional circadian pacemaker respond to exercise. Here, we tested whether scheduled voluntary exercise (SVE) in a running wheel for 6 hours per day could promote neural and behavioral rhythmicity in animals whose circadian competence is compromised through genetically targeted loss of vasoactive intestinal polypeptide (VIP(-/-) mice) or its VPAC(2) receptor (Vipr2(-/-) mice). We report that in constant dark (DD), rhythmic VIP(-/-) and Vipr2(-/-) mice show weak free-running rhythms with a period of <23 hours and all wild-type mice are strongly rhythmic with approximately 23.5-hour periodicity. VIP(-/-) and Vipr2(-/-) mice rapidly (<7 days) synchronize to daily SVE, while WT mice take much longer (>35 days). Following 21 to 50 days of SVE, WT mice show small changes in their rhythms, and most Vipr2(-/-) mice now sustain robust near 24-hour behavioral rhythms, whereas very few VIP(-/-) mice do. This study demonstrates that scheduled daily exercise can markedly improve circadian rhythms in behavioral activity and raises the possibility that this noninvasive approach may be useful as an intervention in clinical etiologies in which there are dysfunctions of circadian time keeping.
Collapse
Affiliation(s)
- A Power
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK M13 9PT
| | | | | | | |
Collapse
|
235
|
Abstract
Neuroactive peptides and the intracellular calcium concentration ([Ca(2+) ](i) ) play important roles in light-induced modulation of gene expression in the suprachiasmatic nucleus (SCN) neurons that ultimately control behavioral rhythms. Vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) are expressed rhythmically within populations of SCN neurons. Pituitary adenylate cyclase-activating peptide (PACAP) is released from retinohypothalamic tract (RHT) terminals synapsing on SCN neurons. Nociceptin/orphanin FQ (OFQ) receptors are functionally expressed in the SCN. We examined the role of several neuropeptides on Ca(2+) signaling, simultaneously imaging multiple neurons within the SCN neural network. VIP reduced the [Ca(2+) ](i) in populations of SCN neurons during the day, but had little effect at night. Stimulation of the RHT at frequencies that simulate light input signaling evoked transient [Ca(2+) ](i) elevations that were not altered by VIP. AVP elevated the [Ca(2+) ](i) during both the day and night, PACAP produced variable responses, and OFQ induced a reduction in the [Ca(2+) ](i) similar to VIP. During the day, VIP lowered the [Ca(2+) ](i) to near nighttime levels, while AVP elevated [Ca(2+) ](i) during both the day and night, suggesting that the VIP effects on [Ca(2+) ](i) were dependent, and the AVP effects independent of the action potential firing activity state of the neuron. We hypothesize that VIP and AVP regulate, at least in part, Ca(2+) homeostasis in SCN neurons and may be a major point of regulation for SCN neuronal synchronization.
Collapse
Affiliation(s)
- Robert P Irwin
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, L-606, Portland, OR, 97239 USA.
| | | |
Collapse
|
236
|
Brown SA, Pagani L, Cajochen C, Eckert A. Systemic and cellular reflections on ageing and the circadian oscillator: a mini-review. Gerontology 2010; 57:427-34. [PMID: 20980722 DOI: 10.1159/000320673] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 08/26/2010] [Indexed: 11/19/2022] Open
Abstract
From circulation to digestion to excretion, a circadian clock synchronizes most aspects of mammalian physiology with the solar day. During normal ageing, this daily coordination gradually erodes, and during pathological ageing such erosion is exacerbated. Recent experiments suggest that therapies aimed at sustaining circadian function increase quality of life in elderly patients. Hence, a better understanding of the interactions between the circadian clock and ageing - at both cellular and systemic levels - could lead to direct benefits for aged individuals.
Collapse
Affiliation(s)
- Steven A Brown
- Department of Pharmacology and Toxicology, University of Zurich, Switzerland. steven.brown @ pharma.uzh.ch
| | | | | | | |
Collapse
|
237
|
Schroeder A, Loh DH, Jordan MC, Roos KP, Colwell CS. Circadian regulation of cardiovascular function: a role for vasoactive intestinal peptide. Am J Physiol Heart Circ Physiol 2010; 300:H241-50. [PMID: 20952671 DOI: 10.1152/ajpheart.00190.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The circadian system, driven by the suprachiasmatic nucleus (SCN), regulates properties of cardiovascular function. The dysfunction of this timing system can result in cardiac pathology. The neuropeptide vasoactive intestinal peptide (VIP) is crucial for circadian rhythms in a number of biological processes including SCN electrical activity and wheel running behavior. Anatomic evidence indicates that SCN neurons expressing VIP are well positioned to drive circadian regulation of cardiac function through interactions with the autonomic centers. In this study, we tested the hypothesis that loss of VIP would result in circadian deficits in heart rate (HR) and clock gene expression in cardiac tissue. We implanted radiotelemetry devices into VIP-deficient mice and wild-type (WT) controls and continuously recorded HR, body temperature, and cage activity in freely moving mice. Under light-dark conditions, VIP-deficient mice displayed weak rhythms in HR, body temperature, and cage activity, with onsets that were advanced in phase compared with WT mice. Similarly, clock gene expression in cardiac tissue was rhythmic but phase advanced in mutant mice. In constant darkness, the normal circadian rhythms in HR were lost in VIP-deficient mice; however, most mutant mice continued to exhibit circadian rhythms of body temperature with shortened free-running period. The loss of VIP altered, but did not abolish, autonomic regulation of HR. Analysis of the echocardiograms did not find any evidence for a loss of cardiac function in VIP-deficient mice, and the size of the hearts did not differ between genotypes. These results demonstrate that VIP is an important regulator of physiological circadian rhythmicity in the heart.
Collapse
Affiliation(s)
- Analyne Schroeder
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California 90024, USA
| | | | | | | | | |
Collapse
|
238
|
Ko CH, Yamada YR, Welsh DK, Buhr ED, Liu AC, Zhang EE, Ralph MR, Kay SA, Forger DB, Takahashi JS. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol 2010; 8:e1000513. [PMID: 20967239 PMCID: PMC2953532 DOI: 10.1371/journal.pbio.1000513] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 08/27/2010] [Indexed: 11/18/2022] Open
Abstract
Bmal1 is an essential transcriptional activator within the mammalian circadian clock. We report here that the suprachiasmatic nucleus (SCN) of Bmal1-null mutant mice, unexpectedly, generates stochastic oscillations with periods that overlap the circadian range. Dissociated SCN neurons expressed fluctuating levels of PER2 detected by bioluminescence imaging but could not generate circadian oscillations intrinsically. Inhibition of intercellular communication or cyclic-AMP signaling in SCN slices, which provide a positive feed-forward signal to drive the intracellular negative feedback loop, abolished the stochastic oscillations. Propagation of this feed-forward signal between SCN neurons then promotes quasi-circadian oscillations that arise as an emergent property of the SCN network. Experimental analysis and mathematical modeling argue that both intercellular coupling and molecular noise are required for the stochastic rhythms, providing a novel biological example of noise-induced oscillations. The emergence of stochastic circadian oscillations from the SCN network in the absence of cell-autonomous circadian oscillatory function highlights a previously unrecognized level of circadian organization.
Collapse
Affiliation(s)
- Caroline H. Ko
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Yujiro R. Yamada
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David K. Welsh
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California, San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Ethan D. Buhr
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Andrew C. Liu
- Genomics Institute of Novartis Research Foundation, San Diego, California, United States of America
| | - Eric E. Zhang
- Genomics Institute of Novartis Research Foundation, San Diego, California, United States of America
| | - Martin R. Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Center for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, Canada
| | - Steve A. Kay
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Daniel B. Forger
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joseph S. Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
239
|
Meng QJ, Maywood ES, Bechtold DA, Lu WQ, Li J, Gibbs JE, Dupré SM, Chesham JE, Rajamohan F, Knafels J, Sneed B, Zawadzke LE, Ohren JF, Walton KM, Wager TT, Hastings MH, Loudon ASI. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci U S A 2010; 107:15240-5. [PMID: 20696890 PMCID: PMC2930590 DOI: 10.1073/pnas.1005101107] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Circadian pacemaking requires the orderly synthesis, posttranslational modification, and degradation of clock proteins. In mammals, mutations in casein kinase 1 (CK1) epsilon or delta can alter the circadian period, but the particular functions of the WT isoforms within the pacemaker remain unclear. We selectively targeted WT CK1epsilon and CK1delta using pharmacological inhibitors (PF-4800567 and PF-670462, respectively) alongside genetic knockout and knockdown to reveal that CK1 activity is essential to molecular pacemaking. Moreover, CK1delta is the principal regulator of the clock period: pharmacological inhibition of CK1delta, but not CK1epsilon, significantly lengthened circadian rhythms in locomotor activity in vivo and molecular oscillations in the suprachiasmatic nucleus (SCN) and peripheral tissue slices in vitro. Period lengthening mediated by CK1delta inhibition was accompanied by nuclear retention of PER2 protein both in vitro and in vivo. Furthermore, phase mapping of the molecular clockwork in vitro showed that PF-670462 treatment lengthened the period in a phase-specific manner, selectively extending the duration of PER2-mediated transcriptional feedback. These findings suggested that CK1delta inhibition might be effective in increasing the amplitude and synchronization of disrupted circadian oscillators. This was tested using arrhythmic SCN slices derived from Vipr2(-/-) mice, in which PF-670462 treatment transiently restored robust circadian rhythms of PER2::Luc bioluminescence. Moreover, in mice rendered behaviorally arrhythmic by the Vipr2(-/-) mutation or by constant light, daily treatment with PF-670462 elicited robust 24-h activity cycles that persisted throughout treatment. Accordingly, selective pharmacological targeting of the endogenous circadian regulator CK1delta offers an avenue for therapeutic modulation of perturbed circadian behavior.
Collapse
Affiliation(s)
- Qing-Jun Meng
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Elizabeth S. Maywood
- Laboratory of Molecular Biology, Neurobiology Division, Medical Research Council, Cambridge CB2 0QH, United Kingdom; and
| | - David A. Bechtold
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Wei-Qun Lu
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jian Li
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Julie E. Gibbs
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Sandrine M. Dupré
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Johanna E. Chesham
- Laboratory of Molecular Biology, Neurobiology Division, Medical Research Council, Cambridge CB2 0QH, United Kingdom; and
| | | | - John Knafels
- Pfizer Global Research and Development, Groton, CT 06340
| | - Blossom Sneed
- Pfizer Global Research and Development, Groton, CT 06340
| | | | | | | | | | - Michael H. Hastings
- Laboratory of Molecular Biology, Neurobiology Division, Medical Research Council, Cambridge CB2 0QH, United Kingdom; and
| | - Andrew S. I. Loudon
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
240
|
Abstract
Mammalian circadian rhythms are controlled by endogenous biological oscillators, including a master clock located in the hypothalamic suprachiasmatic nuclei (SCN). Since the period of this oscillation is of approximately 24 h, to keep synchrony with the environment, circadian rhythms need to be entrained daily by means of Zeitgeber ("time giver") signals, such as the light-dark cycle. Recent advances in the neurophysiology and molecular biology of circadian rhythmicity allow a better understanding of synchronization. In this review we cover several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology. Downstream from the retina, we examine retinohypothalamic communication through neurotransmitter (glutamate, aspartate, pituitary adenylate cyclase-activating polypeptide) interaction with SCN receptors and the resulting signal transduction pathways in suprachiasmatic neurons, as well as putative neuron-glia interactions. Finally, we describe and analyze clock gene expression and its importance in entrainment mechanisms, as well as circadian disorders or retinal diseases related to entrainment deficits, including experimental and clinical treatments.
Collapse
Affiliation(s)
- Diego A Golombek
- Laboratory of Chronobiology, Department of Science and Technology, University of Quilmes/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Quilmes, Argentina.
| | | |
Collapse
|
241
|
Challenges in synthetically designing mammalian circadian clocks. Curr Opin Biotechnol 2010; 21:556-65. [DOI: 10.1016/j.copbio.2010.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/21/2010] [Accepted: 07/21/2010] [Indexed: 01/21/2023]
|
242
|
Ruggiero L, Allen CN, Brown RL, Robinson DW. Mice with early retinal degeneration show differences in neuropeptide expression in the suprachiasmatic nucleus. Behav Brain Funct 2010; 6:36. [PMID: 20604961 PMCID: PMC2912232 DOI: 10.1186/1744-9081-6-36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 07/06/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In mammals, the brain clock responsible for generating circadian rhythms is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Light entrainment of the clock occurs through intrinsically photosensitive retinal ganglion cells (ipRGCs) whose axons project to the SCN via the retinohypothalamic tract. Although ipRGCs are sufficient for photoentrainment, rod and cone photoreceptors also contribute. Adult CBA/J mice, which exhibit loss of rod and cone photoreceptors during early postnatal development, have greater numbers of ipRGCs compared to CBA/N control mice. A greater number of photosensitive cells might argue for enhanced light responses, however, these mice exhibit attenuated phase shifting behaviors. To reconcile these findings, we looked for potential differences in SCN neurons of CBA/J mice that might underly the altered circadian behaviors. We hypothesized that CBA/J mice have differences in the expression of neuropeptides in the SCN, where ipRGCs synapse. The neuropeptides vasoactive intestinal peptide (VIP) and vasopressin (VP) are expressed by many SCN neurons and play an important role in the generation of circadian rhythms and photic entrainment. METHODS Using immunohistochemistry, we looked for differences in the expression of VIP and VP in the SCN of CBA/J mice, and using a light-induced FOS assay, we also examined the degree of retinal innervation of the SCN by ipRGCs. RESULTS Our data demonstrate greater numbers of VIP-and VP-positive cells in the SCN of CBA/J mice and a greater degree of light-induced FOS expression. CONCLUSIONS These results implicate changes in neuropeptide expression in the SCN which may underlie the altered circadian responses to light in these animals.
Collapse
Affiliation(s)
- Linda Ruggiero
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland 97239, USA
| | | | | | | |
Collapse
|
243
|
Pantazopoulos H, Dolatshad H, Davis FC. Chronic stimulation of the hypothalamic vasoactive intestinal peptide receptor lengthens circadian period in mice and hamsters. Am J Physiol Regul Integr Comp Physiol 2010; 299:R379-85. [PMID: 20463182 DOI: 10.1152/ajpregu.00176.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence suggests that circadian rhythms are regulated through diffusible signals generated by the suprachiasmatic nucleus (SCN). Vasoactive intestinal peptide (VIP) is located in SCN neurons positioned to receive photic input from the retinohypothalamic tract and transmit information to other SCN cells and adjacent hypothalamic areas. Studies using knockout mice indicate that VIP is essential for synchrony among SCN cells and for the expression of normal circadian rhythms. To test the hypothesis that VIP is also an SCN output signal, we recorded wheel-running activity rhythms in hamsters and continuously infused the VIP receptor agonist BAY 55-9837 in the third ventricle for 28 days. Unlike other candidate output signals, infusion of BAY 55-9837 did not affect activity levels. Instead, BAY 55-9837 lengthened the circadian period by 0.69 +/- 0.04 h (P < 0.0002 compared with controls). Period returned to baseline after infusions. We analyzed the effect of BAY 55-9837 on cultured SCN from PER2::LUC mice to determine if lengthening of the period by BAY 55-9837 is a direct effect on the SCN. Application of 10 muM BAY 55-9837 to SCN in culture lengthened the period of PER2 luciferase expression (24.73 +/- 0.24 h) compared with control SCN (23.57 +/- 0.26, P = 0.01). In addition, rhythm amplitude was significantly increased, consistent with increased synchronization of SCN neurons. The effect of BAY 55-9837 in vivo on period is similar to the effect of constant light. The present results suggest that VIP-VPAC2 signaling in the SCN may play two roles, synchronizing SCN neurons and setting the period of the SCN as a whole.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Biology, Northeastern University, Boston, Massachusetts 02478, USA
| | | | | |
Collapse
|
244
|
Abstract
Systems biology is a natural extension of molecular biology; it can be defined as biology after identification of key gene(s). Systems-biological research is a multistage process beginning with (a) the comprehensive identification and (b) quantitative analysis of individual system components and their networked interactions, which lead to the ability to (c) control existing systems toward the desired state and (d) design new ones based on an understanding of the underlying structure and dynamical principles. In this review, we use the mammalian circadian clock as a model system and describe the application of systems-biological approaches to fundamental problems in this model. This application has allowed the identification of transcriptional/posttranscriptional circuits, the discovery of a temperature-insensitive period-determining process, and the discovery of desynchronization of individual clock cells underlying the singularity behavior of mammalian clocks.
Collapse
Affiliation(s)
- Hideki Ukai
- Laboratory for Systems Biology, RIKEN Center for Developmental Biology, Hyogo, Japan
| | | |
Collapse
|
245
|
Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 2010; 35:1279-89. [PMID: 20072116 PMCID: PMC3055337 DOI: 10.1038/npp.2009.230] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Disruptions in circadian rhythms have been described in mood disorders (MD), but the involvement of genetic variation in genes pertaining to the molecular circadian machinery in the susceptibility to MD has not been conclusively determined. We examined 209 single-nucleotide polymorphisms (SNPs) covering 19 circadian genes (ADCYAP1, ARNTL, ARNTL2, BHLHB2, BHLHB3, CLOCK, CRY1, CRY2, CSNK1E, DBP, NPAS2, NR1D1, PER1, PER2, PER3, RORA, TIMELESS, VIP, and VIPR2) in a sample of 534 MD patients (335 with unipolar major mood depression (MDD) and 199 with bipolar disorder (BD)) and 440 community-based screened controls. Nominally, statistically significant associations were found in 15 circadian genes. The gene-wide test, corrected for the number of SNPs analyzed in each gene, identified significant associations in CRY1 (rs2287161), NPAS2 (rs11123857), and VIPR2 (rs885861) genes with the combined MD sample. In the MDD subsample, the same SNPs in CRY1 and NPAS2 of the combined sample remained associated, whereas in the BD subsample CLOCK (rs10462028) and VIP (rs17083008) were specifically associated. The association with an SNP located 3' near CRY1 gene in MDD remained statistically significant after permutation correction at experiment level (p=0.007). Significant additive effects were found between the SNPs that were statistically significant at the gene-wide level. We also found evidence of associations between two-marker haplotypes in CRY1 and NPAS2 genes and MD. Our data support the contribution of the circadian system to the genetic susceptibility to MD and suggest that different circadian genes may have specific effects on MD polarity.
Collapse
|
246
|
Drouyer E, LeSauter J, Hernandez AL, Silver R. Specializations of gastrin-releasing peptide cells of the mouse suprachiasmatic nucleus. J Comp Neurol 2010; 518:1249-63. [PMID: 20151358 PMCID: PMC2880332 DOI: 10.1002/cne.22272] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus regulates daily rhythms in physiology and behavior. It is composed of a heterogeneous population of cells that together form the circuits underlying its master clock function. Numerous studies suggest the existence of two regions that have been termed core and shell. At a gross level, differences between these regions map to distinct functional differences, although the specific role(s) of various peptidergic cellular phenotypes remains unknown. In mouse, gastrin-releasing peptide (GRP) cells lie in the core, are directly retinorecipient, and lack detectable rhythmicity in clock gene expression, raising interest in their role in the SCN. Here, we provide evidence that calbindin-expressing cells of perinatal mouse SCN express GRP, identified by a green fluorescent protein (GFP+), but lack detectable calbindin later in development. To explore the intra-SCN network in which GRP neurons participate, individual GFP+ cells were filled with tracer and their morphological characteristics, processes, and connections, as well as those of their non-GFP-containing immediate neighbors, were compared. The results show that GFP+ neurons form a dense network of local circuits within the core, revealed by appositions on other GFP+ cells and by the presence of dye-coupled cells. Dendrites and axons of GFP+ cells make appositions on arginine vasopressin neurons, whereas non-GFP cells have a less extensive fiber network, largely confined to the region of GFP+ cells. The results point to specialized circuitry within the SCN, presumably supporting synchronization of neural activity and reciprocal communication between core and shell regions.
Collapse
Affiliation(s)
- Elise Drouyer
- INSERM, U846, Stem Cell and Brain Research Institute, Department of Chronobiology, F-69500, Bron, France
- University of Lyon, Lyon I, UMR-S 846, 69003, Lyon, France
| | - Joseph LeSauter
- Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027
| | - Amanda L. Hernandez
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027
| | - Rae Silver
- Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027
- Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
247
|
Chiesa JJ, Cambras T, Carpentieri AR, Díez-Noguera A. Arrhythmic rats after SCN lesions and constant light differ in short time scale regulation of locomotor activity. J Biol Rhythms 2010; 25:37-46. [PMID: 20075299 DOI: 10.1177/0748730409352843] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian rhythm disruption (i.e., arrhythmicity) in motor activity is an abnormal behavioral pattern. In rats, it can be caused by the lesion of the hypothalamic suprachiasmatic nucleus (SCN) and by prolonged exposure to constant light (LL). We carried out a comparative study of these arrhythmic phenotypes to assess the role of the SCN in the regulation of the motor output beyond circadian rhythmicity. Motor activity series were studied in rats that had become arrhythmic as a result of 1) LL exposure at 2 light intensities: 300 lux (LL(300)) and 1.3 lux (LL(1.3)), and 2) SCN lesion (SCNx). The Fourier spectra, the fractal Hurst coefficient (H) from the autocorrelation function, and the beta slope from the power spectral density were calculated in data sections at baseline, when the rats were still rhythmic, and later at stages with undetectable circadian rhythms. In the LL(300) group, high power content was detected at frequencies of 8 to 4 h (i.e., ultradian). Lower power content for these harmonics was found in the LL(1.3) group, whereas no dominant harmonics appeared in the SCNx group. Independently of the manifestation of circadian rhythm, H values were higher and more sustained in time in rats exposed to LL( 300) but gradually decreased in rats exposed to LL(1.3). Fractal correlation was found in control DD group but was absent in the SCNx group. We conclude that scale-invariant regulation of the motor pattern by SCN activity is dependent on light intensity but independent of the circadian rhythm output. Adjusting the light intensity by modifying the coupling degree between the population of oscillations could affect the dynamics of each individual oscillator in the SCN, making it less predictable.
Collapse
Affiliation(s)
- Juan José Chiesa
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-CONICET, Bernal, Argentina
| | | | | | | |
Collapse
|
248
|
Circadian control of mouse heart rate and blood pressure by the suprachiasmatic nuclei: behavioral effects are more significant than direct outputs. PLoS One 2010; 5:e9783. [PMID: 20339544 PMCID: PMC2842429 DOI: 10.1371/journal.pone.0009783] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 02/25/2010] [Indexed: 11/19/2022] Open
Abstract
Background Diurnal variations in the incidence of events such as heart attack and stroke suggest a role for circadian rhythms in the etiology of cardiovascular disease. The aim of this study was to assess the influence of the suprachiasmatic nucleus (SCN) circadian clock on cardiovascular function. Methodology/Principal Findings Heart rate (HR), blood pressure (BP) and locomotor activity (LA) were measured in circadian mutant (Vipr2−/−) mice and wild type littermates, using implanted radio-telemetry devices. Sleep and wakefulness were studied in similar mice implanted with electroencephalograph (EEG) electrodes. There was less diurnal variation in the frequency and duration of bouts of rest/activity and sleep/wake in Vipr2−/− mice than in wild type (WT) and short “ultradian” episodes of arousal were more prominent, especially in constant conditions (DD). Activity was an important determinant of circadian variation in BP and HR in animals of both genotypes; altered timing of episodes of activity and rest (as well as sleep and wakefulness) across the day accounted for most of the difference between Vipr2−/− mice and WT. However, there was also a modest circadian rhythm of resting HR and BP that was independent of LA. Conclusions/Significance If appropriate methods of analysis are used that take into account sleep and locomotor activity level, mice are a good model for understanding the contribution of circadian timing to cardiovascular function. Future studies of the influence of sleep and wakefulness on cardiovascular physiology may help to explain accumulating evidence linking disrupted sleep with cardiovascular disease in man.
Collapse
|
249
|
Paschos GK, Baggs JE, Hogenesch JB, FitzGerald GA. The role of clock genes in pharmacology. Annu Rev Pharmacol Toxicol 2010; 50:187-214. [PMID: 20055702 DOI: 10.1146/annurev.pharmtox.010909.105621] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The physiology of a wide variety of organisms is organized according to periodic environmental changes imposed by the earth's rotation. This way, a large number of physiological processes present diurnal rhythms regulated by an internal timing system called the circadian clock. As part of the rhythmicity in physiology, drug efficacy and toxicity can vary with time. Studies over the past four decades present diurnal oscillations in drug absorption, distribution, metabolism, and excretion. On the other hand, diurnal variations in the availability and sensitivity of drug targets have been correlated with time-dependent changes in drug effectiveness. In this review, we provide evidence supporting the regulation of drug kinetics and dynamics by the circadian clock. We also use the examples of hypertension and cancer to show current achievements and challenges in chronopharmacology.
Collapse
Affiliation(s)
- Georgios K Paschos
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA.
| | | | | | | |
Collapse
|
250
|
Dibner C, Schibler U, Albrecht U. The Mammalian Circadian Timing System: Organization and Coordination of Central and Peripheral Clocks. Annu Rev Physiol 2010; 72:517-49. [DOI: 10.1146/annurev-physiol-021909-135821] [Citation(s) in RCA: 1626] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most physiology and behavior of mammalian organisms follow daily oscillations. These rhythmic processes are governed by environmental cues (e.g., fluctuations in light intensity and temperature), an internal circadian timing system, and the interaction between this timekeeping system and environmental signals. In mammals, the circadian timekeeping system has a complex architecture, composed of a central pacemaker in the brain's suprachiasmatic nuclei (SCN) and subsidiary clocks in nearly every body cell. The central clock is synchronized to geophysical time mainly via photic cues perceived by the retina and transmitted by electrical signals to SCN neurons. In turn, the SCN influences circadian physiology and behavior via neuronal and humoral cues and via the synchronization of local oscillators that are operative in the cells of most organs and tissues. Thus, some of the SCN output pathways serve as input pathways for peripheral tissues. Here we discuss knowledge acquired during the past few years on the complex structure and function of the mammalian circadian timing system.
Collapse
Affiliation(s)
- Charna Dibner
- Division of Endocrinology, Diabetes and Nutrition, Geneva University Hospital (HUG), CH-1211 Geneva-14, Switzerland
| | - Ueli Schibler
- Department of Molecular Biology & NCCR Frontiers in Genetics, Sciences III, University of Geneva, CH-1211 Geneva-4, Switzerland
| | - Urs Albrecht
- Department of Medicine, Division of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|