201
|
Boxem M, Maliga Z, Klitgord N, Li N, Lemmens I, Mana M, de Lichtervelde L, Mul JD, van de Peut D, Devos M, Simonis N, Yildirim MA, Cokol M, Kao HL, de Smet AS, Wang H, Schlaitz AL, Hao T, Milstein S, Fan C, Tipsword M, Drew K, Galli M, Rhrissorrakrai K, Drechsel D, Koller D, Roth FP, Iakoucheva LM, Dunker AK, Bonneau R, Gunsalus KC, Hill DE, Piano F, Tavernier J, van den Heuvel S, Hyman AA, Vidal M. A protein domain-based interactome network for C. elegans early embryogenesis. Cell 2008; 134:534-45. [PMID: 18692475 DOI: 10.1016/j.cell.2008.07.009] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/20/2008] [Accepted: 07/07/2008] [Indexed: 01/08/2023]
Abstract
Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or "interactome" networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early-embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms.
Collapse
Affiliation(s)
- Mike Boxem
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Strnad P, Gönczy P. Mechanisms of procentriole formation. Trends Cell Biol 2008; 18:389-96. [PMID: 18620859 DOI: 10.1016/j.tcb.2008.06.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 06/03/2008] [Accepted: 06/11/2008] [Indexed: 01/05/2023]
Abstract
The centrosome comprises a pair of centrioles and associated pericentriolar material, and it is the principal microtubule-organizing centre of most animal cells. Like the genetic material, the centrosome is duplicated once and only once during the cell cycle. Despite the fact that both doubling events are crucial for genome integrity, the understanding of the mechanisms governing centrosome duplication has lagged behind the fuller knowledge of DNA replication. Here, we review recent findings that provide important mechanistic insights into how a single procentriole forms next to each centriole once per cell cycle, thus ensuring that one centrosome becomes two.
Collapse
Affiliation(s)
- Petr Strnad
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology (EPFL), School of Life Sciences, Lausanne, Switzerland
| | | |
Collapse
|
203
|
Alieva IB, Uzbekov RE. The centrosome is a polyfunctional multiprotein cell complex. BIOCHEMISTRY (MOSCOW) 2008; 73:626-43. [DOI: 10.1134/s0006297908060023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
204
|
Müller-Reichert T, Mäntler J, Srayko M, O'Toole E. Electron microscopy of the early Caenorhabditis elegans embryo. J Microsc 2008; 230:297-307. [PMID: 18445160 DOI: 10.1111/j.1365-2818.2008.01985.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The early Caenorhabditis elegans embryo is currently a popular model system to study centrosome assembly, kinetochore organization, spindle formation, and cellular polarization. Here, we present and review methods for routine electron microscopy and 3D analysis of the early C. elegans embryo. The first method uses laser-induced chemical fixation to preserve the fine structure of isolated embryos. This approach takes advantage of time-resolved fixation to arrest development at specific stages. The second method uses high-pressure freezing of whole worms followed by freeze-substitution (HPF-FS) for ultrastructural analysis. This technique allows staging of developing early embryos within the worm uterus, and has the advantage of superior sample preservation required for high-resolution 3D reconstruction. The third method uses a correlative approach to stage isolated, single embryos by light microscopy followed by HPF-FS and electron tomography. This procedure combines the advantages of time-resolved fixation and superior ultrastructural preservation by high-pressure freezing and allows a higher throughput electron microscopic analysis. The advantages and disadvantages of these methods for different applications are discussed.
Collapse
Affiliation(s)
- T Müller-Reichert
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
| | | | | | | |
Collapse
|
205
|
Zhu F, Lawo S, Bird A, Pinchev D, Ralph A, Richter C, Müller-Reichert T, Kittler R, Hyman AA, Pelletier L. The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis. Curr Biol 2008; 18:136-41. [PMID: 18207742 DOI: 10.1016/j.cub.2007.12.055] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
Centrosomes are the major microtubule-organizing centers of mammalian cells. They are composed of a centriole pair and surrounding microtubule-nucleating material termed pericentriolar material (PCM). Bipolar mitotic spindle assembly relies on two intertwined processes: centriole duplication and centrosome maturation. In the first process, the single interphase centrosome duplicates in a tightly regulated manner so that two centrosomes are present in mitosis. In the second process, the two centrosomes increase in size and microtubule nucleation capacity through PCM recruitment, a process referred to as centrosome maturation. Failure to properly orchestrate centrosome duplication and maturation is inevitably linked to spindle defects, which can result in aneuploidy and promote cancer progression. It has been proposed that centriole assembly during duplication relies on both PCM and centriole proteins, raising the possibility that centriole duplication depends on PCM recruitment. In support of this model, C. elegans SPD-2 and mammalian NEDD-1 (GCP-WD) are key regulators of both these processes. SPD-2 protein sequence homologs have been identified in flies, mice, and humans, but their roles in centrosome biogenesis until now have remained unclear. Here, we show that Cep192, the human homolog of C. elegans and D. melanogaster SPD-2, is a major regulator of PCM recruitment, centrosome maturation, and centriole duplication in mammalian cells. We propose a model in which Cep192 and Pericentrin are mutually dependent for their localization to mitotic centrosomes during centrosome maturation. Both proteins are then required for NEDD-1 recruitment and the subsequent assembly of gamma-TuRCs and other factors into fully functional centrosomes.
Collapse
Affiliation(s)
- Fei Zhu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Rogers GC, Rusan NM, Peifer M, Rogers SL. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol Biol Cell 2008; 19:3163-78. [PMID: 18463166 DOI: 10.1091/mbc.e07-10-1069] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In animal cells, centrosomes nucleate microtubules that form polarized arrays to organize the cytoplasm. Drosophila presents an interesting paradox however, as centrosome-deficient mutant animals develop into viable adults. To understand this discrepancy, we analyzed behaviors of centrosomes and microtubules in Drosophila cells, in culture and in vivo, using a combination of live-cell imaging, electron microscopy, and RNAi. The canonical model of the cycle of centrosome function in animal cells states that centrosomes act as microtubule-organizing centers throughout the cell cycle. Unexpectedly, we found that many Drosophila cell-types display an altered cycle, in which functional centrosomes are only present during cell division. On mitotic exit, centrosomes disassemble producing interphase cells containing centrioles that lack microtubule-nucleating activity. Furthermore, steady-state interphase microtubule levels are not changed by codepleting both gamma-tubulins. However, gamma-tubulin RNAi delays microtubule regrowth after depolymerization, suggesting that it may function partially redundantly with another pathway. Therefore, we examined additional microtubule nucleating factors and found that Mini-spindles, CLIP-190, EB1, or dynein RNAi also delayed microtubule regrowth; surprisingly, this was not further prolonged when we codepleted gamma-tubulins. Taken together, these results modify our view of the cycle of centrosome function and reveal a multi-component acentrosomal microtubule assembly pathway to establish interphase microtubule arrays in Drosophila.
Collapse
Affiliation(s)
- Gregory C Rogers
- Department of Biology, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
207
|
Dammermann A, Maddox PS, Desai A, Oegema K. SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules. ACTA ACUST UNITED AC 2008; 180:771-85. [PMID: 18299348 PMCID: PMC2265562 DOI: 10.1083/jcb.200709102] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centrioles are surrounded by pericentriolar material (PCM), which is proposed to promote new centriole assembly by concentrating γ-tubulin. Here, we quantitatively monitor new centriole assembly in living Caenorhabditis elegans embryos, focusing on the conserved components SAS-4 and SAS-6. We show that SAS-4 and SAS-6 are coordinately recruited to the site of new centriole assembly and reach their maximum levels during S phase. Centriolar SAS-6 is subsequently reduced by a mechanism intrinsic to the early assembly pathway that does not require progression into mitosis. Centriolar SAS-4 remains in dynamic equilibrium with the cytoplasmic pool until late prophase, when it is stably incorporated in a step that requires γ-tubulin and microtubule assembly. These results indicate that γ-tubulin in the PCM stabilizes the nascent daughter centriole by promoting microtubule addition to its outer wall. Such a mechanism may help restrict new centriole assembly to the vicinity of preexisting parent centrioles that recruit PCM.
Collapse
Affiliation(s)
- Alexander Dammermann
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
208
|
Loncarek J, Hergert P, Magidson V, Khodjakov A. Control of daughter centriole formation by the pericentriolar material. Nat Cell Biol 2008; 10:322-8. [PMID: 18297061 PMCID: PMC2365476 DOI: 10.1038/ncb1694] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 01/11/2008] [Indexed: 12/14/2022]
Abstract
Controlling the number of its centrioles is vital for the cell, as supernumerary centrioles cause multipolar mitosis and genomic instability. Normally, one daughter centriole forms on each mature (mother) centriole; however, a mother centriole can produce multiple daughters within a single cell cycle. The mechanisms that prevent centriole 'overduplication' are poorly understood. Here we use laser microsurgery to test the hypothesis that attachment of the daughter centriole to the wall of the mother inhibits formation of additional daughters. We show that physical removal of the daughter induces reduplication of the mother in S-phase-arrested cells. Under conditions when multiple daughters form simultaneously on a single mother, all of these daughters must be removed to induce reduplication. The number of daughter centrioles that form during reduplication does not always match the number of ablated daughter centrioles. We also find that exaggeration of the pericentriolar material (PCM) by overexpression of the PCM protein pericentrin in S-phase-arrested CHO cells induces formation of numerous daughter centrioles. We propose that that the size of the PCM cloud associated with the mother centriole restricts the number of daughters that can form simultaneously.
Collapse
Affiliation(s)
- Jadranka Loncarek
- Division of Molecular Medicine, Wadsworth Center, Albany, New York State Department of Health, Albany, New York 12201−0509
| | - Polla Hergert
- Division of Molecular Medicine, Wadsworth Center, Albany, New York State Department of Health, Albany, New York 12201−0509
| | - Valentin Magidson
- Division of Molecular Medicine, Wadsworth Center, Albany, New York State Department of Health, Albany, New York 12201−0509
| | - Alexey Khodjakov
- Division of Molecular Medicine, Wadsworth Center, Albany, New York State Department of Health, Albany, New York 12201−0509
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
209
|
Abstract
Early cell biologists perceived centrosomes to be permanent cellular structures. Centrosomes were observed to reproduce once each cycle and to orchestrate assembly a transient mitotic apparatus that segregated chromosomes and a centrosome to each daughter at the completion of cell division. Centrosomes are composed of a pair of centrioles buried in a complex pericentriolar matrix. The bulk of microtubules in cells lie with one end buried in the pericentriolar matrix and the other extending outward into the cytoplasm. Centrioles recruit and organize pericentriolar material. As a result, centrioles dominate microtubule organization and spindle assembly in cells born with centrosomes. Centrioles duplicate in concert with chromosomes during the cell cycle. At the onset of mitosis, sibling centrosomes separate and establish a bipolar spindle that partitions a set of chromosomes and a centrosome to each daughter cell at the completion of mitosis and cell division. Centriole inheritance has historically been ascribed to a template mechanism in which the parental centriole contributed to, if not directed, assembly of a single new centriole once each cell cycle. It is now clear that neither centrioles nor centrosomes are essential to cell proliferation. This review examines the recent literature on inheritance of centrioles in animal cells.
Collapse
Affiliation(s)
- Patricia G Wilson
- Regenerative Bioscience Center, Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
210
|
Abstract
To assemble a mitotic spindle and accurately segregate chromosomes to progeny, a cell needs to precisely regulate its centrosome number, a feat largely accomplished through the tight control of centriole duplication. Recent work showing that the overexpression of centriolar proteins can lead to the formation of multiple centrioles in the absence of pre-existing centrioles challenges the idea that it is a self-replicating organelle.
Collapse
|
211
|
Boutros R, Lobjois V, Ducommun B. CDC25B Involvement in the Centrosome Duplication Cycle and in Microtubule Nucleation. Cancer Res 2007; 67:11557-64. [DOI: 10.1158/0008-5472.can-07-2415] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
212
|
Yabe T, Ge X, Pelegri F. The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication. Dev Biol 2007; 312:44-60. [PMID: 17950723 PMCID: PMC2693064 DOI: 10.1016/j.ydbio.2007.08.054] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 08/25/2007] [Accepted: 08/29/2007] [Indexed: 11/30/2022]
Abstract
A female-sterile zebrafish maternal-effect mutation in cellular atoll (cea) results in defects in the initiation of cell division starting at the second cell division cycle. This phenomenon is caused by defects in centrosome duplication, which in turn affect the formation of a bipolar spindle. We show that cea encodes the centriolar coiled-coil protein Sas-6, and that zebrafish Cea/Sas-6 protein localizes to centrosomes. cea also has a genetic paternal contribution, which when mutated results in an arrested first cell division followed by normal cleavage. Our data supports the idea that, in zebrafish, paternally inherited centrosomes are required for the first cell division while maternally derived factors are required for centrosomal duplication and cell divisions in subsequent cell cycles. DNA synthesis ensues in the absence of centrosome duplication, and the one-cycle delay in the first cell division caused by cea mutant sperm leads to whole genome duplication. We discuss the potential implications of these findings with regards to the origin of polyploidization in animal species. In addition, the uncoupling of developmental time and cell division count caused by the cea mutation suggests the presence of a time window, normally corresponding to the first two cell cycles, which is permissive for germ plasm recruitment.
Collapse
Affiliation(s)
| | - Xiaoyan Ge
- Laboratory of Genetics, University of Wisconsin – Madison
| | | |
Collapse
|
213
|
Gomez-Ferreria MA, Rath U, Buster DW, Chanda SK, Caldwell JS, Rines DR, Sharp DJ. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr Biol 2007; 17:1960-6. [PMID: 17980596 DOI: 10.1016/j.cub.2007.10.019] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 10/02/2007] [Accepted: 10/04/2007] [Indexed: 11/28/2022]
Abstract
As cells enter mitosis, centrosomes dramatically increase in size and ability to nucleate microtubules. This process, termed centrosome maturation, is driven by the accumulation and activation of gamma-tubulin and other proteins that form the pericentriolar material on centrosomes during G2/prophase. Here, we show that the human centrosomal protein, Cep192 (centrosomal protein of 192 kDa), is an essential component of the maturation machinery. Specifically, we have found that siRNA depletion of Cep192 results in a complete loss of functional centrosomes in mitotic but not interphase cells. In mitotic cells lacking Cep192, microtubules become organized around chromosomes but rarely acquire stable bipolar configurations. These cells contain normal numbers of centrioles but cannot assemble gamma-tubulin, pericentrin, or other pericentriolar proteins into an organized PCM. Alternatively, overexpression of Cep192 results in the formation of multiple, extracentriolar foci of gamma-tubulin and pericentrin. Together, our findings support the hypothesis that Cep192 stimulates the formation of the scaffolding upon which gamma-tubulin ring complexes and other proteins involved in microtubule nucleation and spindle assembly become functional during mitosis.
Collapse
Affiliation(s)
- Maria Ana Gomez-Ferreria
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
Lundin VF, Srayko M, Hyman AA, Leroux MR. Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans. Dev Biol 2007; 313:320-34. [PMID: 18062952 DOI: 10.1016/j.ydbio.2007.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 11/29/2022]
Abstract
The efficient folding of actin and tubulin in vitro and in Saccharomyces cerevisiae is known to require the molecular chaperones prefoldin and CCT, yet little is known about the functions of these chaperones in multicellular organisms. Whereas none of the six prefoldin genes are essential in yeast, where prefoldin-independent folding of actin and tubulin is sufficient for viability, we demonstrate that reducing prefoldin function by RNAi in Caenorhabditis elegans causes defects in cell division that result in embryonic lethality. Our analyses suggest that these defects result mainly from a decrease in alpha-tubulin levels and a subsequent reduction in the microtubule growth rate. Prefoldin subunit 1 (pfd-1) mutant animals with maternally contributed PFD-1 develop to the L4 larval stage with gonadogenesis defects that include aberrant distal tip cell migration. Importantly, RNAi knockdown of prefoldin, CCT or tubulin in developing animals phenocopy the pfd-1 cell migration phenotype. Furthermore, reducing CCT function causes more severe phenotypes (compared with prefoldin knockdown) in the embryo and developing gonad, consistent with a broader role for CCT in protein folding. Overall, our results suggest that efficient chaperone-mediated tubulin biogenesis is essential in C. elegans, owing to the critical role of the microtubule cytoskeleton in metazoan development.
Collapse
Affiliation(s)
- Victor F Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | | | | | | |
Collapse
|
215
|
Drosophila Spd-2 recruits PCM to the sperm centriole, but is dispensable for centriole duplication. Curr Biol 2007; 17:1759-64. [PMID: 17919907 PMCID: PMC2045633 DOI: 10.1016/j.cub.2007.08.065] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/21/2007] [Accepted: 08/29/2007] [Indexed: 11/30/2022]
Abstract
In C. elegans, genome-wide screens have identified just five essential centriole-duplication factors: SPD-2, ZYG-1, SAS-5, SAS-6, and SAS-4 [1–8]. These proteins are widely believed to comprise a conserved core duplication module [3, 9–14]. In worm embryos, SPD-2 is the most upstream component of this module, and it is also essential for pericentriolar material (PCM) recruitment to the centrioles [1, 4, 15, 16]. Here, we show that Drosophila Spd-2 (DSpd-2) is a component of both the centrioles and the PCM and has a role in recruiting PCM to the centrioles. DSpd-2 appears not, however, to be essential for centriole duplication in somatic cells. Moreover, PCM recruitment in DSpd-2 mutant somatic cells is only partially compromised, and mitosis appears unperturbed. In contrast, DSpd-2 is essential for proper PCM recruitment to the fertilizing sperm centriole, and hence for microtubule nucleation and pronuclear fusion. DSpd-2 therefore appears to have a particularly important role in recruiting PCM to the sperm centriole. We speculate that the SPD-2 family of proteins might only be absolutely essential for the recruitment of centriole duplication factors and PCM to the centriole(s) that enter the egg with the fertilizing sperm.
Collapse
|
216
|
Strnad P, Leidel S, Vinogradova T, Euteneuer U, Khodjakov A, Gönczy P. Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev Cell 2007; 13:203-13. [PMID: 17681132 PMCID: PMC2628752 DOI: 10.1016/j.devcel.2007.07.004] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/29/2007] [Accepted: 07/11/2007] [Indexed: 12/21/2022]
Abstract
Centrosome duplication involves the formation of a single procentriole next to each centriole, once per cell cycle. The mechanisms governing procentriole formation and those restricting its occurrence to one event per centriole are poorly understood. Here, we show that HsSAS-6 is necessary for procentriole formation and that it localizes asymmetrically next to the centriole at the onset of procentriole formation. HsSAS-6 levels oscillate during the cell cycle, with the protein being degraded in mitosis and starting to accumulate again at the end of the following G1. Our findings indicate that APC(Cdh1) targets HsSAS-6 for degradation by the 26S proteasome. Importantly, we demonstrate that increased HsSAS-6 levels promote formation of more than one procentriole per centriole. Therefore, regulated HsSAS-6 levels normally ensure that each centriole seeds the formation of a single procentriole per cell cycle, thus playing a fundamental role in driving the centrosome duplication cycle and ensuring genome integrity.
Collapse
Affiliation(s)
- Petr Strnad
- Swiss Institute for Experimental Cancer Research, Swiss Federal Institute of Technology, School of Life Sciences, CH-1066 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
217
|
|
218
|
Abstract
Ciliated epithelial cells have the unique ability to generate hundreds of centrioles during differentiation. We used centrosomal proteins as molecular markers in cultured mouse tracheal epithelial cells to understand this process. Most centrosomal proteins were up-regulated early in ciliogenesis, initially appearing in cytoplasmic foci and then incorporated into centrioles. Three candidate proteins were further characterized. The centrosomal component SAS-6 localized to basal bodies and the proximal region of the ciliary axoneme, and depletion of SAS-6 prevented centriole assembly. The intraflagellar transport component polaris localized to nascent centrioles before incorporation into cilia, and depletion of polaris blocked axoneme formation. The centriolar satellite component PCM-1 colocalized with centrosomal components in cytoplasmic granules surrounding nascent centrioles. Interfering with PCM-1 reduced the amount of centrosomal proteins at basal bodies but did not prevent centriole assembly. This system will help determine the mechanism of centriole formation in mammalian cells and how the limitation on centriole duplication is overcome in ciliated epithelial cells.
Collapse
Affiliation(s)
- Eszter K Vladar
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
219
|
Rodrigues-Martins A, Bettencourt-Dias M, Riparbelli M, Ferreira C, Ferreira I, Callaini G, Glover DM. DSAS-6 Organizes a Tube-like Centriole Precursor, and Its Absence Suggests Modularity in Centriole Assembly. Curr Biol 2007; 17:1465-72. [PMID: 17689959 DOI: 10.1016/j.cub.2007.07.034] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/17/2007] [Accepted: 07/17/2007] [Indexed: 11/29/2022]
Abstract
Centrioles are microtubule-based cylindrical structures that exhibit 9-fold symmetry and facilitate the organization of centrosomes, flagella, and cilia [1]. Abnormalities in centrosome structure and number occur in many cancers [1, 2]. Despite its importance, very little is known about centriole biogenesis. Recent studies in C. elegans have highlighted a group of molecules necessary for centriole assembly [1, 3]. ZYG-1 kinase recruits a complex of two coiled-coil proteins, SAS-6 and SAS-5, which are necessary to form the C. elegans centriolar tube, a scaffold in centriole formation [4, 5]. This complex also recruits SAS-4, which is required for the assembly of the centriolar microtubules that decorate that tube [4, 5]. Here we show that Drosophila SAS-6 is involved in centriole assembly and cohesion. Overexpression of DSAS-6 in syncitial embryos led to the de novo formation of multiple microtubule-organizing centers (MTOCs). Strikingly, the center of these MTOCs did not contain centrioles, as described previously for SAK/PLK4 overexpression [6]. Instead, tube-like structures were present, supporting the idea that centriolar assembly starts with the formation of a tube-like scaffold, dependent on DSAS-6 [5]. In DSAS-6 loss-of-function mutants, centrioles failed to close and to elongate the structure along all axes of the 9-fold symmetry, suggesting modularity in centriole assembly. We propose that the tube is built from nine subunits fitting together laterally and longitudinally in a modular and sequential fashion, like pieces of a layered "hollow" cake.
Collapse
Affiliation(s)
- Ana Rodrigues-Martins
- Cancer Research UK Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
220
|
Bettencourt-Dias M, Glover DM. Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 2007; 8:451-63. [PMID: 17505520 DOI: 10.1038/nrm2180] [Citation(s) in RCA: 411] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Centrosomes, which were first described in the late 19th century, are found in most animal cells and undergo duplication once every cell cycle so that their number remains stable, like the genetic material of a cell. However, their function and regulation have remained elusive and controversial. Only recently has some understanding of these fundamental aspects of centrosome function and biogenesis been gained through the concerted application of genomics and proteomics, which we term 'centrosomics'. The identification of new molecules has highlighted the evolutionary conservation of centrosome function and provided a conceptual framework for understanding centrosome behaviour and how it can go awry in human disease.
Collapse
Affiliation(s)
- Mónica Bettencourt-Dias
- Instituto Gulbenkian de Ciência, Cell Cycle Regulation Laboratory, Rua da Quinta Grande, 6, P-2780-156 Oeiras, Portugal.
| | | |
Collapse
|
221
|
Peel N, Stevens NR, Basto R, Raff JW. Overexpressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr Biol 2007; 17:834-43. [PMID: 17475495 PMCID: PMC1885955 DOI: 10.1016/j.cub.2007.04.036] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 04/13/2007] [Accepted: 04/18/2007] [Indexed: 01/11/2023]
Abstract
Background Centrosomes have important roles in many aspects of cell organization, and aberrations in their number and function are associated with various diseases, including cancer. Centrosomes consist of a pair of centrioles surrounded by a pericentriolar matrix (PCM), and their replication is tightly regulated. Here, we investigate the effects of overexpressing the three proteins known to be required for centriole replication in Drosophila—DSas-6, DSas-4, and Sak. Results By directly observing centriole replication in living Drosophila embryos, we show that the overexpression of GFP-DSas-6 can drive extra rounds of centriole replication within a single cell cycle. Extra centriole-like structures also accumulate in brain cells that overexpress either GFP-DSas-6 or GFP-Sak, but not DSas-4-GFP. No extra centrioles accumulate in spermatocytes that overexpress any of these three proteins. Most remarkably, the overexpression of any one of these three proteins results in the rapid de novo formation of many hundreds of centriole-like structures in unfertilized eggs, which normally do not contain centrioles. Conclusions Our data suggest that the levels of centriolar DSas-6 determine the number of daughter centrioles formed during centriole replication. Overexpression of either DSas-6 or Sak can induce the formation of extra centrioles in some tissues but not others, suggesting that centriole replication is regulated differently in different tissues. The finding that the overexpression of DSas-4, DSas-6, or Sak can rapidly induce the de novo formation of centriole-like structures in Drosophila eggs suggests that this process results from the stabilization of centriole-precursors that are normally present in the egg.
Collapse
Affiliation(s)
- Nina Peel
- The Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Naomi R. Stevens
- The Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Renata Basto
- The Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Jordan W. Raff
- The Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- Corresponding author
| |
Collapse
|
222
|
Rodrigues-Martins A, Riparbelli M, Callaini G, Glover DM, Bettencourt-Dias M. Revisiting the role of the mother centriole in centriole biogenesis. Science 2007; 316:1046-50. [PMID: 17463247 DOI: 10.1126/science.1142950] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Centrioles duplicate once in each cell division cycle through so-called templated or canonical duplication. SAK, also called PLK4 (SAK/PLK4), a kinase implicated in tumor development, is an upstream regulator of canonical biogenesis necessary for centriole formation. We found that overexpression of SAK/PLK4 could induce amplification of centrioles in Drosophila embryos and their de novo formation in unfertilized eggs. Both processes required the activity of DSAS-6 and DSAS-4, two molecules required for canonical duplication. Thus, centriole biogenesis is a template-free self-assembly process triggered and regulated by molecules that ordinarily associate with the existing centriole. The mother centriole is not a bona fide template but a platform for a set of regulatory molecules that catalyzes and regulates daughter centriole assembly.
Collapse
Affiliation(s)
- A Rodrigues-Martins
- Instituto Gulbenkian de Ciência, Cell Cycle Regulation Laboratory, Rua da Quinta Grande, 6, P-2780-156 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
223
|
Kemp CA, Song MH, Addepalli MK, Hunter G, O'Connell K. Suppressors of zyg-1 define regulators of centrosome duplication and nuclear association in Caenorhabditis elegans. Genetics 2007; 176:95-113. [PMID: 17446307 PMCID: PMC1893046 DOI: 10.1534/genetics.107.071803] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Caenorhabditis elegans, the kinase ZYG-1 is required for centrosome duplication. To identify factors that interact with ZYG-1, we used a classical genetic approach and identified 21 szy (suppressor of zyg-1) genes that when mutated restore partial viability to a zyg-1 mutant. None of the suppressors render animals completely independent of zyg-1 activity and analysis of a subset of the suppressors indicates that all restore the normal process of centrosome duplication to zyg-1 mutants. Thirteen of these suppressor mutations confer phenotypes of their own and cytological examination reveals that these genes function in a variety of cellular processes including cell cycle timing, microtubule organization, cytokinesis, chromosome segregation, and centrosome morphology. Interestingly, several of the szy genes play a role in attaching the centrosome to the nuclear envelope. We have found that one such szy gene is sun-1, a gene encoding a nuclear envelope component. We further show that the role of SUN-1 in centrosome duplication is distinct from its role in attachment. Our approach has thus identified numerous candidate regulators of centrosome duplication and uncovered an unanticipated regulatory mechanism involving factors that tether the centrosome to the nucleus.
Collapse
Affiliation(s)
- Catherine A Kemp
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
224
|
Abstract
Tissue stem cells play a key role in tissue maintenance. Drosophila melanogaster central brain neuroblasts are excellent models for stem cell asymmetric division. Earlier work showed that their mitotic spindle orientation is established before spindle formation. We investigated the mechanism by which this occurs, revealing a novel centrosome cycle. In interphase, the two centrioles separate, but only one is active, retaining pericentriolar material and forming a “dominant centrosome.” This centrosome acts as a microtubule organizing center (MTOC) and remains stationary, forming one pole of the future spindle. The second centriole is inactive and moves to the opposite side of the cell before being activated as a centrosome/MTOC. This is accompanied by asymmetric localization of Polo kinase, a key centrosome regulator. Disruption of centrosomes disrupts the high fidelity of asymmetric division. We propose a two-step mechanism to ensure faithful spindle positioning: the novel centrosome cycle produces a single interphase MTOC, coarsely aligning the spindle, and spindle–cortex interactions refine this alignment.
Collapse
Affiliation(s)
- Nasser M Rusan
- Department of Biology and 2Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
225
|
Centrosome duplication: of rules and licenses. Trends Cell Biol 2007; 17:215-21. [PMID: 17383880 DOI: 10.1016/j.tcb.2007.03.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 12/31/2006] [Accepted: 03/14/2007] [Indexed: 01/11/2023]
Abstract
Most microtubule arrays in animal cells, including the bipolar spindle required for cell division, are organized by centrosomes. Thus, strict control of centrosome numbers is crucial for accurate chromosome segregation. Each centrosome comprises two centrioles, which need to be duplicated exactly once in every cell cycle. Recent work has begun to illuminate the mechanisms that regulate centriole duplication. First, genetic and structural studies concur to delineate a centriole assembly pathway in Caenorhabditis elegans. Second, the protease Separase, previously known to trigger sister chromatid separation, has been implicated in a licensing mechanism that restricts centrosome duplication to a single occurrence per cell cycle. Finally, Plk4 (also called Sak), a member of the Polo kinase family, has been identified as a novel positive regulator of centriole formation.
Collapse
|
226
|
Schlaitz AL, Srayko M, Dammermann A, Quintin S, Wielsch N, MacLeod I, de Robillard Q, Zinke A, Yates JR, Müller-Reichert T, Shevchenko A, Oegema K, Hyman AA. The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly. Cell 2007; 128:115-27. [PMID: 17218259 PMCID: PMC2987564 DOI: 10.1016/j.cell.2006.10.050] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 09/28/2006] [Accepted: 10/20/2006] [Indexed: 01/08/2023]
Abstract
Microtubule behavior changes during the cell cycle and during spindle assembly. However, it remains unclear how these changes are regulated and coordinated. We describe a complex that targets the Protein Phosphatase 2A holoenzyme (PP2A) to centrosomes in C. elegans embryos. This complex includes Regulator of Spindle Assembly 1 (RSA-1), a targeting subunit for PP2A, and RSA-2, a protein that binds and recruits RSA-1 to centrosomes. In contrast to the multiple functions of the PP2A catalytic subunit, RSA-1 and RSA-2 are specifically required for microtubule outgrowth from centrosomes and for spindle assembly. The centrosomally localized RSA-PP2A complex mediates these functions in part by regulating two critical mitotic effectors: the microtubule destabilizer KLP-7 and the C. elegans regulator of spindle assembly TPXL-1. By regulating a subset of PP2A functions at the centrosome, the RSA complex could therefore provide a means of coordinating microtubule outgrowth from centrosomes and kinetochore microtubule stability during mitotic spindle assembly.
Collapse
Affiliation(s)
- Anne-Lore Schlaitz
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Martin Srayko
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Alexander Dammermann
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, California 92093
| | - Sophie Quintin
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Natalie Wielsch
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ian MacLeod
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Quentin de Robillard
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Andrea Zinke
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Thomas Müller-Reichert
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Andrei Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, California 92093
| | - Anthony A. Hyman
- Max-Planck-Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
- To whom correspondence should be addressed, , Phone:+49 351 210 1700, Fax: +49 351 210 1289
| |
Collapse
|
227
|
Pelletier L, O'Toole E, Schwager A, Hyman AA, Müller-Reichert T. Centriole assembly in Caenorhabditis elegans. Nature 2007; 444:619-23. [PMID: 17136092 DOI: 10.1038/nature05318] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 10/06/2006] [Indexed: 11/09/2022]
Abstract
Centrioles are necessary for flagella and cilia formation, cytokinesis, cell-cycle control and centrosome organization/spindle assembly. They duplicate once per cell cycle, but the mechanisms underlying their duplication remain unclear. Here we show using electron tomography of staged C. elegans one-cell embryos that daughter centriole assembly begins with the formation and elongation of a central tube followed by the peripheral assembly of nine singlet microtubules. Tube formation and elongation is dependent on the SAS-5 and SAS-6 proteins, whereas the assembly of singlet microtubules onto the central tube depends on SAS-4. We further show that centriole assembly is triggered by an upstream signal mediated by SPD-2 and ZYG-1. These results define a structural pathway for the assembly of a daughter centriole and should have general relevance for future studies on centriole assembly in other organisms.
Collapse
Affiliation(s)
- Laurence Pelletier
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
228
|
Müller-Reichert T, Srayko M, Hyman A, O'Toole ET, McDonald K. Correlative light and electron microscopy of early Caenorhabditis elegans embryos in mitosis. Methods Cell Biol 2007; 79:101-19. [PMID: 17327153 DOI: 10.1016/s0091-679x(06)79004-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thomas Müller-Reichert
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
229
|
Delattre M, Canard C, Gönczy P. Sequential protein recruitment in C. elegans centriole formation. Curr Biol 2006; 16:1844-9. [PMID: 16979563 DOI: 10.1016/j.cub.2006.07.059] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/11/2006] [Accepted: 07/14/2006] [Indexed: 11/22/2022]
Abstract
Formation of the microtubule-based centriole is a poorly understood process that is crucial for duplication of the centrosome, the principal microtubule-organizing center of animal cells . Five proteins have been identified as being essential for centriole formation in Caenorhabditis elegans: the kinase ZYG-1, as well as the coiled-coil proteins SAS-4, SAS-5, SAS-6, and SPD-2 . The relationship between these proteins is incompletely understood, limiting understanding of how they contribute to centriole formation. In this study, we established the order in which these five proteins are recruited to centrioles, and we conducted molecular epistasis experiments expanding on earlier work. We find that SPD-2 is loaded first and is needed for the centriolar localization of the four other proteins. ZYG-1 recruitment is required thereafter for the remaining three proteins to localize to centrioles. SAS-5 and SAS-6 are recruited next and are needed for the presence of SAS-4, which is incorporated last. Our results indicate in addition that the presence of SAS-5 and SAS-6 allows diminution of centriolar ZYG-1. Moreover, astral microtubules appear dispensable for the centriolar recruitment of all five proteins. Several of these proteins have homologs in other metazoans, and we expect the assembly pathway that stems from our work to be conserved.
Collapse
Affiliation(s)
- Marie Delattre
- Swiss Institute for Experimental Cancer Research, School of Life Sciences (ISREC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | | | |
Collapse
|
230
|
Srayko M, O'toole ET, Hyman AA, Müller-Reichert T. Katanin Disrupts the Microtubule Lattice and Increases Polymer Number in C. elegans Meiosis. Curr Biol 2006; 16:1944-9. [PMID: 17027492 DOI: 10.1016/j.cub.2006.08.029] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 11/17/2022]
Abstract
Katanin is a heterodimer that exhibits ATP-dependent microtubule-severing activity in vitro. In Xenopus egg extracts, katanin activity correlates with the addition of cyclin B/cdc2, suggesting a role for microtubule severing in the disassembly of long interphase microtubules as the cell prepares for mitosis. However, studies from plant cells, cultured neurons, and nematode embryos suggest that katanin could be required for the organization or postnucleation processing of microtubules, rather than the dissolution of microtubule structures. Here we reexamine katanin's role by studying acentrosomal female meiotic spindles in C. elegans embryos. In mutant embryos lacking katanin, microtubules form around meiotic chromatin but do not organize into bipolar spindles. By using electron tomography, we found that katanin converts long microtubule polymers into shorter microtubule fragments near meiotic chromatin. We further show that turning on katanin during mitosis also creates a large pool of short microtubules near the centrosome. Furthermore, the identification of katanin-dependent microtubule lattice defects supports a mechanism involving an initial perforation of the protofilament wall. Taken together, our data suggest that katanin is used during meiotic spindle assembly to increase polymer number from a relatively inefficient chromatin-based microtubule nucleation pathway.
Collapse
Affiliation(s)
- Martin Srayko
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | | | | | | |
Collapse
|
231
|
Kim DY, Roy R. Cell cycle regulators control centrosome elimination during oogenesis in Caenorhabditis elegans. ACTA ACUST UNITED AC 2006; 174:751-7. [PMID: 16954347 PMCID: PMC2064329 DOI: 10.1083/jcb.200512160] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In many animals, the bipolar spindle of the first zygotic division is established after the contribution of centrioles by the sperm at fertilization. To avoid the formation of a multipolar spindle in the zygote, centrosomes are eliminated during oogenesis in most organisms, although the mechanism of this selective elimination is poorly understood. We show that cki-2, a Caenorhabditis elegans cyclin-dependent kinase (Cdk) inhibitor, is required for their appropriate elimination during oogenesis. In the absence of cki-2, embryos have supernumerary centrosomes and form multipolar spindles that result in severe aneuploidy after anaphase of the first division. Moreover, we demonstrate that this defect can be suppressed by reducing cyclin E or Cdk2 levels. This implies that the proper regulation of a cyclin E-Cdk complex by cki-2 is required for the elimination of the centrosome that occurs before or during oogenesis to ensure the assembly of a bipolar spindle in the C. elegans zygote.
Collapse
Affiliation(s)
- Dae Young Kim
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
232
|
Labbé JC, Roy R. New developmental insights from high-throughput biological analysis in Caenorhabditis elegans. Clin Genet 2006; 69:306-14. [PMID: 16630163 DOI: 10.1111/j.1399-0004.2006.00587.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of Caenorhabditis elegans as a model system for understanding animal development and human disease has long been recognized as an efficient tool of discovery. Recent developments, particularly in our understanding of RNA-mediated interference and its ability to modify gene activity, have facilitated the use of C. elegans in determining gene function via high-throughput analysis. These new strategies have provided a framework that allows investigators to analyse gene function globally at the genomic level and will likely become a prototypic model for biological analysis in the post-genome era.
Collapse
Affiliation(s)
- J-C Labbé
- Institut de recherche en immunologie et en cancérologie, Universite de Montreal, Montreal, Quebec, Canada.
| | | |
Collapse
|
233
|
Motegi F, Velarde NV, Piano F, Sugimoto A. Two phases of astral microtubule activity during cytokinesis in C. elegans embryos. Dev Cell 2006; 10:509-20. [PMID: 16580995 DOI: 10.1016/j.devcel.2006.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 01/10/2006] [Accepted: 03/05/2006] [Indexed: 10/21/2022]
Abstract
Microtubules of the mitotic spindle are believed to provide positional cues for the assembly of the actin-based contractile ring and the formation of the subsequent cleavage furrow during cytokinesis. In Caenorhabditis elegans, astral microtubules have been thought to inhibit cortical contraction outside the cleavage furrow. Here, we demonstrate by live imaging and RNA interference (RNAi) that astral microtubules play two distinct roles in initiating cleavage furrow formation. In early anaphase, microtubules are required for contractile ring assembly; in late anaphase, microtubules show different cortical behavior and seem to suppress cortical contraction at the poles, as suggested in previous studies. These two distinct phases of microtubule behavior depend on distinct regulatory pathways, one involving the gamma-tubulin complex and the other requiring aurora-A kinase. We propose that temporal and spatial regulation of two distinct phases of astral microtubule behavior is crucial in specifying the position and timing of furrowing.
Collapse
Affiliation(s)
- Fumio Motegi
- Laboratory for Developmental Genomics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Kobe, 650-0047, Japan
| | | | | | | |
Collapse
|
234
|
Ferree PM, McDonald K, Fasulo B, Sullivan W. The Origin of Centrosomes in Parthenogenetic Hymenopteran Insects. Curr Biol 2006; 16:801-7. [PMID: 16631588 DOI: 10.1016/j.cub.2006.03.066] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 02/07/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
A longstanding enigma has been the origin of maternal centrosomes that facilitate parthenogenetic development in Hymenopteran insects. In young embryos, hundreds of microtubule-organizing centers (MTOCs) are assembled completely from maternal components. Two of these MTOCs join the female pronucleus to set up the first mitotic spindle in unfertilized embryos and drive their development. These MTOCs appear to be canonical centrosomes because they contain gamma-tubulin, CP190, and centrioles and they undergo duplication. Here, we present evidence that these centrosomes originate from accessory nuclei (AN), organelles derived from the oocyte nuclear envelope. In the parasitic wasps Nasonia vitripennis and Muscidifurax uniraptor, the position and number of AN in mature oocytes correspond to the position and number of maternal centrosomes in early embryos. These AN also contain high concentrations of gamma-tubulin. In the honeybee, Apis mellifera, distinct gamma-tubulin foci are present in each AN. Additionally, the Hymenopteran homolog of the Drosophila centrosomal protein Dgrip84 localizes on the outer surfaces of AN. These organelles disintegrate in the late oocyte, leaving behind small gamma-tubulin foci, which likely seed the formation of maternal centrosomes. Accessory nuclei, therefore, may have played a significant role in the evolution of haplodiploidy in Hymenopteran insects.
Collapse
Affiliation(s)
- Patrick M Ferree
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, 95064, USA
| | | | | | | |
Collapse
|
235
|
Zheng L, Schwartz C, Wee L, Oliferenko S. The fission yeast transforming acidic coiled coil-related protein Mia1p/Alp7p is required for formation and maintenance of persistent microtubule-organizing centers at the nuclear envelope. Mol Biol Cell 2006; 17:2212-22. [PMID: 16481403 PMCID: PMC1446099 DOI: 10.1091/mbc.e05-08-0811] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule-organizing centers (MTOCs) concentrate microtubule nucleation, attachment and bundling factors and thus restrict formation of microtubule arrays in spatial and temporal manner. How MTOCs occur remains an exciting question in cell biology. Here, we show that the transforming acidic coiled coil-related protein Mia1p/Alp7p functions in emergence of large MTOCs in interphase fission yeast cells. We found that Mia1p was a microtubule-binding protein that preferentially localized to the minus ends of microtubules and was associated with the sites of microtubule attachment to the nuclear envelope. Cells lacking Mia1p exhibited less microtubule bundles. Microtubules could be nucleated and bundled but were frequently released from the nucleation sites in mia1delta cells. Mia1p was required for stability of microtubule bundles and persistent use of nucleation sites both in interphase and postanaphase array dynamics. The gamma-tubulin-rich material was not organized in large perinuclear or microtubule-associated structures in mia1delta cells. Interestingly, absence of microtubules in dividing wild-type cells prevented appearance of large gamma-tubulin-rich MTOC structures in daughters. When microtubule polymerization was allowed, MTOCs were efficiently assembled de novo. We propose a model where MTOC emergence is a self-organizing process requiring the continuous association of microtubules with nucleation sites.
Collapse
Affiliation(s)
- Liling Zheng
- Cell Dynamics Group, Temasek Life Sciences Laboratory, 117604 Singapore, Singapore
| | | | | | | |
Collapse
|
236
|
Haren L, Remy MH, Bazin I, Callebaut I, Wright M, Merdes A. NEDD1-dependent recruitment of the gamma-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. ACTA ACUST UNITED AC 2006; 172:505-15. [PMID: 16461362 PMCID: PMC2063671 DOI: 10.1083/jcb.200510028] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The centrosome is the major microtubule organizing structure in somatic cells. Centrosomal microtubule nucleation depends on the protein γ-tubulin. In mammals, γ-tubulin associates with additional proteins into a large complex, the γ-tubulin ring complex (γTuRC). We characterize NEDD1, a centrosomal protein that associates with γTuRCs. We show that the majority of γTuRCs assemble even after NEDD1 depletion but require NEDD1 for centrosomal targeting. In contrast, NEDD1 can target to the centrosome in the absence of γ-tubulin. NEDD1-depleted cells show defects in centrosomal microtubule nucleation and form aberrant mitotic spindles with poorly separated poles. Similar spindle defects are obtained by overexpression of a fusion protein of GFP tagged to the carboxy-terminal half of NEDD1, which mediates binding to γTuRCs. Further, we show that depletion of NEDD1 inhibits centriole duplication, as does depletion of γ-tubulin. Our data suggest that centriole duplication requires NEDD1-dependent recruitment of γ-tubulin to the centrosome.
Collapse
Affiliation(s)
- Laurence Haren
- Institut de Sciences et Technologies du Médicament de Toulouse, Centre National de la Recherche Scientifique/Pierre Fabre, 31400 Toulouse, France
| | | | | | | | | | | |
Collapse
|
237
|
Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA. The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 2006; 7:1140-6. [PMID: 16244668 DOI: 10.1038/ncb1320] [Citation(s) in RCA: 633] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/29/2005] [Indexed: 11/09/2022]
Abstract
The human Polo-like kinase 1 (PLK1) and its functional homologues that are present in other eukaryotes have multiple, crucial roles in meiotic and mitotic cell division. By contrast, the functions of other mammalian Polo family members remain largely unknown. Plk4 is the most structurally divergent Polo family member; it is maximally expressed in actively dividing tissues and is essential for mouse embryonic development. Here, we identify Plk4 as a key regulator of centriole duplication. Both gain- and loss-of-function experiments demonstrate that Plk4 is required--in cooperation with Cdk2, CP110 and Hs-SAS6--for the precise reproduction of centrosomes during the cell cycle. These findings provide an attractive explanation for the crucial function of Plk4 in cell proliferation and have implications for the role of Polo kinases in tumorigenesis.
Collapse
Affiliation(s)
- Robert Habedanck
- Department of Cell Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
238
|
Abstract
Centrosomes are dynamic organelles involved in many aspects of cell function and growth. Centrosomes act as microtubule organizing centers, and provide a site for concerted regulation of cell cycle progression. While there is diversity in microtubule organizing center structure among eukaryotes, many centrosome components, such as centrin, are conserved. Experimental analysis has provided an outline to describe centrosome duplication, and numerous centrosome components have been identified. Even so, more work is needed to provide a detailed understanding of the interactions between centrosome components and their roles in centrosome function and duplication. Precise duplication of centrosomes once during each cell cycle ensures proper mitotic spindle formation and chromosome segregation. Defects in centrosome duplication or function are linked to human diseases including cancer. Here we provide a multifaceted look at centrosomes with a detailed summary of the centrosome cycle.
Collapse
|
239
|
Shang Y, Tsao CC, Gorovsky MA. Mutational analyses reveal a novel function of the nucleotide-binding domain of gamma-tubulin in the regulation of basal body biogenesis. ACTA ACUST UNITED AC 2005; 171:1035-44. [PMID: 16344310 PMCID: PMC2171320 DOI: 10.1083/jcb.200508184] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used in vitro mutagenesis and gene replacement to study the function of the nucleotide-binding domain (NBD) of γ-tubulin in Tetrahymena thermophila. In this study, we show that the NBD has an essential function and that point mutations in two conserved residues lead to over-production and mislocalization of basal body (BB) assembly. These results, coupled with previous studies (Dammermann, A., T. Muller-Reichert, L. Pelletier, B. Habermann, A. Desai, and K. Oegema. 2004. Dev. Cell. 7:815–829; La Terra, S., C.N. English, P. Hergert, B.F. McEwen, G. Sluder, and A. Khodjakov. 2005. J. Cell Biol. 168:713–722), suggest that to achieve the precise temporal and spatial regulation of BB/centriole assembly, the initiation activity of γ-tubulin is normally suppressed by a negative regulatory mechanism that acts through its NBD.
Collapse
Affiliation(s)
- Yuhua Shang
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
240
|
Bousquet M, Quelen C, De Mas V, Duchayne E, Roquefeuil B, Delsol G, Laurent G, Dastugue N, Brousset P. The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 2005; 24:7248-52. [PMID: 16091753 DOI: 10.1038/sj.onc.1208850] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several tyrosine kinase genes are involved in chromosomal translocations in chronic myeloproliferative disorders, but there are still uncharacterized translocations in some cases. We report two such cases corresponding to atypical chronic myeloid leukaemia with a t(8;9)(p22;p24) translocation. By fluorescence in situ hybridisation (FISH) on the corresponding metaphases with a bacterial artificial chromosome probe encompassing the janus kinase 2 (JAK2) gene at 9p24, we observed a split for both patients, suggesting that this gene was rearranged. The locus at 8p22 contains different candidate genes including the pericentriolar material 1 gene (PCM1), already implicated in reciprocal translocations. The rearrangement of the PCM1 gene was demonstrated by FISH, for both patients. By RT-PCR, we confirmed the fusion of 3' part of JAK2 with the 5' part of PCM1. Sequence analysis of the chimeric PCM1-JAK2 mRNA suggests that the putative protein displays the coiled-coil domains of PCM1 and the tyrosine kinase domain of JAK2. This new translocation identifies JAK2 as a possible therapeutic target for compounds with anti-tyrosine kinase activity.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/therapeutic use
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Agents/therapeutic use
- Autoantigens
- Cell Cycle Proteins/chemistry
- Cell Cycle Proteins/genetics
- Chromosomes, Human, Pair 8
- Chromosomes, Human, Pair 9
- Cytarabine/therapeutic use
- Fatal Outcome
- Genetic Variation
- Humans
- Hydroxyurea/therapeutic use
- Idarubicin/therapeutic use
- In Situ Hybridization, Fluorescence
- Janus Kinase 2
- Karyotyping
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Oncogene Proteins, Fusion/genetics
- Open Reading Frames
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/genetics
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/genetics
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Secondary Prevention
- Sequence Analysis, RNA
- Translocation, Genetic
- Treatment Outcome
Collapse
Affiliation(s)
- Marina Bousquet
- Inserm U563 CPTP and laboratoire de cytogénétique des hémopathies, CHU Purpan, Place Baylac, 31059 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Gunsalus KC, Ge H, Schetter AJ, Goldberg DS, Han JDJ, Hao T, Berriz GF, Bertin N, Huang J, Chuang LS, Li N, Mani R, Hyman AA, Sönnichsen B, Echeverri CJ, Roth FP, Vidal M, Piano F. Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 2005; 436:861-5. [PMID: 16094371 DOI: 10.1038/nature03876] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 05/23/2005] [Indexed: 01/31/2023]
Abstract
Although numerous fundamental aspects of development have been uncovered through the study of individual genes and proteins, system-level models are still missing for most developmental processes. The first two cell divisions of Caenorhabditis elegans embryogenesis constitute an ideal test bed for a system-level approach. Early embryogenesis, including processes such as cell division and establishment of cellular polarity, is readily amenable to large-scale functional analysis. A first step toward a system-level understanding is to provide 'first-draft' models both of the molecular assemblies involved and of the functional connections between them. Here we show that such models can be derived from an integrated gene/protein network generated from three different types of functional relationship: protein interaction, expression profiling similarity and phenotypic profiling similarity, as estimated from detailed early embryonic RNA interference phenotypes systematically recorded for hundreds of early embryogenesis genes. The topology of the integrated network suggests that C. elegans early embryogenesis is achieved through coordination of a limited set of molecular machines. We assessed the overall predictive value of such molecular machine models by dynamic localization of ten previously uncharacterized proteins within the living embryo.
Collapse
Affiliation(s)
- Kristin C Gunsalus
- Center for Comparative Functional Genomics, Department of Biology, New York University, New York, New York 10003, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Abstract
Centrosome duplication is required for proper cell division, and centriole formation is a key step in this process. This review discusses recent studies in C. elegans that have identified five core proteins required for centriole formation, thus shedding light into the mechanisms underlying centrosome duplication in nematodes and beyond.
Collapse
Affiliation(s)
- Sebastian Leidel
- Swiss Institute for Experimental Cancer Research (ISREC), Lausanne
| | | |
Collapse
|
243
|
Srayko M, Kaya A, Stamford J, Hyman AA. Identification and Characterization of Factors Required for Microtubule Growth and Nucleation in the Early C. elegans Embryo. Dev Cell 2005; 9:223-36. [PMID: 16054029 DOI: 10.1016/j.devcel.2005.07.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 06/10/2005] [Accepted: 07/08/2005] [Indexed: 11/19/2022]
Abstract
Microtubules (MTs) are dynamic polymers that undergo cell cycle and position-sensitive regulation of polymerization and depolymerization. Although many different factors that regulate MT dynamics have been described, to date there has been no systematic analysis of genes required for MT dynamics in a single system. Here, we use a transgenic EB1::GFP strain, which labels the growing plus ends of MTs, to analyze the growth rate, nucleation rate, and distribution of growing MTs in the Caenorhabditis elegans embryo. We also present the results from an RNAi screen of 40 genes previously implicated in MT-based processes. Our findings suggest that fast microtubule growth is dependent on the amount of free tubulin and the ZYG-9-TAC-1 complex. Robust MT nucleation by centrosomes requires AIR-1, SPD-2, SPD-5, and gamma-tubulin. However, we found that centrosomes do not nucleate MTs to saturation; rather, the depolymerizing kinesin-13 subfamily member KLP-7 is required to limit microtubule outgrowth from centrosomes.
Collapse
Affiliation(s)
- Martin Srayko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| | | | | | | |
Collapse
|
244
|
Leidel S, Delattre M, Cerutti L, Baumer K, Gönczy P. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat Cell Biol 2005; 7:115-25. [PMID: 15665853 DOI: 10.1038/ncb1220] [Citation(s) in RCA: 312] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms that ensure centrosome duplication are poorly understood. In Caenorhabditis elegans, ZYG-1, SAS-4, SAS-5 and SPD-2 are required for centriole formation. However, it is unclear whether these proteins have functional homologues in other organisms. Here, we identify SAS-6 as a component that is required for daughter centriole formation in C. elegans. SAS-6 is a coiled-coil protein that is recruited to centrioles at the onset of the centrosome duplication cycle. Our analysis indicates that SAS-6 and SAS-5 associate and that this interaction, as well as ZYG-1 function, is required for SAS-6 centriolar recruitment. SAS-6 is the founding member of an evolutionarily conserved protein family that contains the novel PISA motif. We investigated the function of the human homologue of SAS-6. GFP-HsSAS-6 localizes to centrosomes and its overexpression results in excess foci-bearing centriolar markers. Furthermore, siRNA-mediated inactivation of HsSAS-6 in U2OS cells abrogates centrosome overduplication following aphidicolin treatment and interferes with the normal centrosome duplication cycle. Therefore, HsSAS-6 is also required for centrosome duplication, indicating that the function of SAS-6-related proteins has been widely conserved during evolution.
Collapse
Affiliation(s)
- Sebastian Leidel
- Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges/Lausanne, Switzerland
| | | | | | | | | |
Collapse
|