201
|
Tillu DV, Melemedjian OK, Asiedu MN, Qu N, De Felice M, Dussor G, Price TJ. Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain. Mol Pain 2012; 8:5. [PMID: 22269797 PMCID: PMC3284441 DOI: 10.1186/1744-8069-8-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background Despite advances in our understanding of basic mechanisms driving post-surgical pain, treating incision-induced pain remains a major clinical challenge. Moreover, surgery has been implicated as a major cause of chronic pain conditions. Hence, more efficacious treatments are needed to inhibit incision-induced pain and prevent the transition to chronic pain following surgery. We reasoned that activators of AMP-activated protein kinase (AMPK) may represent a novel treatment avenue for the local treatment of incision-induced pain because AMPK activators inhibit ERK and mTOR signaling, two important pathways involved in the sensitization of peripheral nociceptors. Results To test this hypothesis we used a potent and efficacious activator of AMPK, resveratrol. Our results demonstrate that resveratrol profoundly inhibits ERK and mTOR signaling in sensory neurons in a time- and concentration-dependent fashion and that these effects are mediated by AMPK activation and independent of sirtuin activity. Interleukin-6 (IL-6) is thought to play an important role in incision-induced pain and resveratrol potently inhibited IL-6-mediated signaling to ERK in sensory neurons and blocked IL-6-mediated allodynia in vivo through a local mechanism of action. Using a model of incision-induced allodynia in mice, we further demonstrate that local injection of resveratrol around the surgical wound strongly attenuates incision-induced allodynia. Intraplantar IL-6 injection and plantar incision induces persistent nociceptive sensitization to PGE2 injection into the affected paw after the resolution of allodynia to the initial stimulus. We further show that resveratrol treatment at the time of IL-6 injection or plantar incision completely blocks the development of persistent nociceptive sensitization consistent with the blockade of a transition to a chronic pain state by resveratrol treatment. Conclusions These results highlight the importance of signaling to translation control in peripheral sensitization of nociceptors and provide further evidence for activation of AMPK as a novel treatment avenue for acute and chronic pain states.
Collapse
Affiliation(s)
- Dipti V Tillu
- Department of Pharmacology, University of Arizona, 1501 N Campbell Ave, PO BOX 245050, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
Sirtuin 1 (SIRT1) is an evolutionarily conserved NAD(+)-dependent deacetylase that is at the pinnacle of metabolic control, all the way from yeast to humans. SIRT1 senses changes in intracellular NAD(+) levels, which reflect energy level, and uses this information to adapt the cellular energy output such that it matches cellular energy requirements. The changes induced by SIRT1 activation are generally (but not exclusively) transcriptional in nature and are related to an increase in mitochondrial metabolism and antioxidant protection. These attractive features have validated SIRT1 as a therapeutic target in the management of metabolic disease and prompted an intensive search to identify pharmacological SIRT1 activators. In this review, we first give an overview of the SIRT1 biology with a particular focus on its role in metabolic control. We then analyze the pros and cons of the current strategies used to activate SIRT1 and explore the emerging evidence indicating that modulation of NAD(+) levels could provide an effective way to achieve such goals.
Collapse
Affiliation(s)
- Carles Cantó
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
203
|
Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans. PLoS One 2011; 6:e28835. [PMID: 22216122 PMCID: PMC3244416 DOI: 10.1371/journal.pone.0028835] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/15/2011] [Indexed: 11/19/2022] Open
Abstract
Compounds that delay aging might also postpone age-related diseases and extend healthspan in humans. Icariin is a flavonol extracted from several plant species of the Epimedium family. The icariin and its metabolic derivatives have been shown to exert wide protective effects in age-related diseases. However, whether icariin and its derivatives have the potency of delaying aging remains unclear. Here, we report that icariin and its derivative icariside II extend C. elegans lifespan. Using HPLC, we found high level of icariside II in the animals treated with icariin, suggesting icariside II is the bioactive form in vivo of icariin. Icariside II also increased the thermo and oxidative stress tolerance, slowed locomotion decline in late adulthood and delayed the onset of paralysis mediated by polyQ and Aβ1–42 proteotoxicity. The lifespan extension effect of icariside II is dependent on the insulin/IGF-1 signaling (IIS) since the daf-16(mu86) and daf-2(e1370) failed to show any lifespan extension upon icariside II treatment. Consistently, icariside II treatment upregulates the expression of DAF-16 targets in the wild-type. Moreover, our data suggests that the heat shock transcription factor HSF-1 has a role in icariside II-dependent lifespan extension further implicating the IIS pathway. In conclusion, we demonstrate a novel natural compound, icariside II as the bioactive form of icariin, extends the healthspan via IIS pathway in C. elegans.
Collapse
|
204
|
Bi J, Li H, Ye SQ, Ding S. Pre-B-cell colony-enhancing factor exerts a neuronal protection through its enzymatic activity and the reduction of mitochondrial dysfunction in in vitro ischemic models. J Neurochem 2011; 120:334-46. [PMID: 22044451 DOI: 10.1111/j.1471-4159.2011.07566.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pre-B-cell colony-enhancing factor (PBEF) is known as a rate-limiting enzyme that converts nicotinamide (NAM) to NMN in the salvage pathway of mammalian NAD⁺ biosynthesis. Previously we found PBEF is exclusively expressed in neurons in the mouse brain; heterozygous PBEF knockout (Pbef⁺/⁻) mice have larger ischemic lesion than wild type mice in photothrombosis-induced ischemia. For the mechanistic study of neuronal protective role of PBEF, we used in vitro oxygen-glucose deprivation (OGD) and glutamate excitotoxicity models of primary cultured neurons in current study. Our results showed that the treatments of neurons with NAM and NAD⁺, the substrate and downstream product of PBEF, respectively, significantly reduced neuronal death after OGD and glutamate excitotoxicity, while treatment of neurons treated with FK866, a PBEF inhibitor, increased neuronal death after OGD. Furthermore, over-expression of human PBEF reduced glutamate excitotoxicity, while over-expression of human PBEF mutants (i.e. H247A and H247E) without enzymatic activity had no effect on neuronal death. We further tested the effect of PBEF on mitochondrial function and biogenesis. Our results show that addition of NAD⁺ and NAM increased mitochondrial biogenesis in neurons after OGD. Over-expression of PBEF in neurons reduced mitochondrial membrane potential depolarization following glutamate stimulation, while over-expression of H247A and H247E did not affect mitochondrial membrane potential depolarization. We conclude that PBEF has a neuroprotective effect in ischemia through its enzymatic activity for NAD⁺ production that can ameliorate mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jing Bi
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
205
|
|
206
|
Huang J, Yang Z. [Genetic mechanisms of longevity responses to dietary restriction]. YI CHUAN = HEREDITAS 2011; 33:1153-1158. [PMID: 22120068 DOI: 10.3724/sp.j.1005.2011.01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dietary restriction effectively extends lifespan in mammals and decreases the incidence and progression of many age-dependent diseases. To understand the genetic mechanisms that longevity responses to dietary restriction would have far-reaching impacts on future medical treatments to deal with the ageing problems. Until recently, we knew nothing about these mechanisms in metazoans. Recent advances of the genetic bases of energy sensing and life control in yeast, invertebrates, and mammals have begun to settle the problem. More evidence indicates that the brain has a principal role in sensing dietary restriction and extending lifespan in metazoans. This paper reviews recently development of mechanisms, regulatory factors, genes, nervous control, and related hypothesizes of DR-longevity mechanisms in metazoans.
Collapse
Affiliation(s)
- Jin Huang
- Institute of Geriatrics, The 5th Medical College of Peking University, Beijing, China.
| | | |
Collapse
|
207
|
Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011; 477:482-5. [PMID: 21938067 PMCID: PMC3188402 DOI: 10.1038/nature10296] [Citation(s) in RCA: 478] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 06/10/2011] [Indexed: 01/06/2023]
Abstract
Overexpression of sirtuins (NAD(+)-dependent protein deacetylases) has been reported to increase lifespan in budding yeast (Saccharomyces cerevisiae), Caenorhabditis elegans and Drosophila melanogaster. Studies of the effects of genes on ageing are vulnerable to confounding effects of genetic background. Here we re-examined the reported effects of sirtuin overexpression on ageing and found that standardization of genetic background and the use of appropriate controls abolished the apparent effects in both C. elegans and Drosophila. In C. elegans, outcrossing of a line with high-level sir-2.1 overexpression abrogated the longevity increase, but did not abrogate sir-2.1 overexpression. Instead, longevity co-segregated with a second-site mutation affecting sensory neurons. Outcrossing of a line with low-copy-number sir-2.1 overexpression also abrogated longevity. A Drosophila strain with ubiquitous overexpression of dSir2 using the UAS-GAL4 system was long-lived relative to wild-type controls, as previously reported, but was not long-lived relative to the appropriate transgenic controls, and nor was a new line with stronger overexpression of dSir2. These findings underscore the importance of controlling for genetic background and for the mutagenic effects of transgene insertions in studies of genetic effects on lifespan. The life-extending effect of dietary restriction on ageing in Drosophila has also been reported to be dSir2 dependent. We found that dietary restriction increased fly lifespan independently of dSir2. Our findings do not rule out a role for sirtuins in determination of metazoan lifespan, but they do cast doubt on the robustness of the previously reported effects of sirtuins on lifespan in C. elegans and Drosophila.
Collapse
Affiliation(s)
- Camilla Burnett
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 2011; 477:E1-2. [PMID: 21938026 DOI: 10.1038/nature10440] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/10/2011] [Indexed: 11/08/2022]
|
209
|
Abstract
This review begins with the premise that an organism's life span is determined by the balance between two countervailing forces: (i) the sum of destabilizing effects and (ii) the sum of protective longevity-assurance processes. Against this backdrop, the role of electrophiles is discussed, both as destabilizing factors and as signals that induce protective responses. Because most biological macromolecules contain nucleophilic centers, electrophiles are particularly reactive and toxic in a biological context. The majority of cellular electrophiles are generated from polyunsaturated fatty acids by a peroxidation chain reaction that is readily triggered by oxygen-centered radicals, but propagates without further input of reactive oxygen species (ROS). Thus, the formation of lipid-derived electrophiles such as 4-hydroxynon-2-enal (4-HNE) is proposed to be relatively insensitive to the level of initiating ROS, but to depend mainly on the availability of peroxidation-susceptible fatty acids. This is consistent with numerous observations that life span is inversely correlated to membrane peroxidizability, and with the hypothesis that 4-HNE may constitute the mechanistic link between high susceptibility of membrane lipids to peroxidation and shortened life span. Experimental interventions that directly alter membrane composition (and thus their peroxidizability) or modulate 4-HNE levels have the expected effects on life span, establishing that the connection is not only correlative but causal. Specific molecular mechanisms are considered, by which 4-HNE could (i) destabilize biological systems via nontargeted reactions with cellular macromolecules and (ii) modulate signaling pathways that control longevity-assurance mechanisms.
Collapse
Affiliation(s)
- Piotr Zimniak
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
210
|
The spatial association of gene expression evolves from synchrony to asynchrony and stochasticity with age. PLoS One 2011; 6:e24076. [PMID: 21912663 PMCID: PMC3166296 DOI: 10.1371/journal.pone.0024076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/29/2011] [Indexed: 12/19/2022] Open
Abstract
For multicellular organisms, different tissues coordinate to integrate physiological functions, although this systematically and gradually declines in the aging process. Therefore, an association exists between tissue coordination and aging, and investigating the evolution of tissue coordination with age is of interest. In the past decade, both common and heterogeneous aging processes among tissues were extensively investigated. The results on spatial association of gene changes that determine lifespan appear complex and paradoxical. To reconcile observed commonality and heterogeneity of gene changes among tissues and to address evolution feature of tissue coordination with age, we introduced a new analytical strategy to systematically analyze genome-wide spatio-temporal gene expression profiles. We first applied the approach to natural aging process in three species (Rat, Mouse and Drosophila) and then to anti-aging process in Mouse. The results demonstrated that temporal gene expression alteration in different tissues experiences a progressive association evolution from spatial synchrony to asynchrony and stochasticity with age. This implies that tissue coordination gradually declines with age. Male mice showed earlier spatial asynchrony in gene expression than females, suggesting that male animals are more prone to aging than females. The confirmed anti-aging interventions (resveratrol and caloric restriction) enhanced tissue coordination, indicating their underlying anti-aging mechanism on multiple tissue levels. Further, functional analysis suggested asynchronous DNA/protein damage accumulation as well as asynchronous repair, modification and degradation of DNA/protein in tissues possibly contributes to asynchronous and stochastic changes of tissue microenvironment. This increased risk for a variety of age-related diseases such as neurodegeneration and cancer that eventually accelerate organismal aging and death. Our study suggests a novel molecular event occurring in aging process of multicellular species that may represent an intrinsic molecular mechanism of aging.
Collapse
|
211
|
Van Meter M, Mao Z, Gorbunova V, Seluanov A. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair. Aging (Albany NY) 2011; 3:829-835. [PMID: 21946623 PMCID: PMC3227448 DOI: 10.18632/aging.100389] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/22/2011] [Indexed: 05/31/2023]
Abstract
The sirtuin gene family comprises an evolutionarily ancient set of NAD+ dependent protein deacetylase and mono-ADP ribosyltransferase enzymes. Found in all domains of life, sirtuins regulate a diverse array of biological processes, including DNA repair, gene silencing, apoptosis and metabolism. Studies in multiple model organisms have indicated that sirtuins may also function to extend lifespan and attenuate age-related pathologies. To date, most of these studies have focused on the deacetylase activity of sirtuins, and relatively little is known about the other biochemical activity of sirtuins, mono-ADP ribosylation. We recently reported that the mammalian sirtuin, SIRT6, mono-ADP ribosylates PARP1 to promote DNA repair in response to oxidative stress. In this research perspective we review the role of SIRT6 in DNA repair and discuss the emerging implications for sirtuin directed mono-ADP ribosylation in aging and age-related diseases.
Collapse
Affiliation(s)
- Michael Van Meter
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
212
|
Rizki G, Iwata TN, Li J, Riedel CG, Picard CL, Jan M, Murphy CT, Lee SS. The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet 2011; 7:e1002235. [PMID: 21909281 PMCID: PMC3164695 DOI: 10.1371/journal.pgen.1002235] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/28/2011] [Indexed: 01/18/2023] Open
Abstract
The conserved DAF-16/FOXO transcription factors and SIR-2.1/SIRT1 deacetylases are critical for diverse biological processes, particularly longevity and stress response; and complex regulation of DAF-16/FOXO by SIR-2.1/SIRT1 is central to appropriate biological outcomes. Caenorhabditis elegans Host Cell Factor 1 (HCF-1) is a longevity determinant previously shown to act as a co-repressor of DAF-16. We report here that HCF-1 represents an integral player in the regulatory loop linking SIR-2.1/SIRT1 and DAF-16/FOXO in both worms and mammals. Genetic analyses showed that hcf-1 acts downstream of sir-2.1 to influence lifespan and oxidative stress response in C. elegans. Gene expression profiling revealed a striking 80% overlap between the DAF-16 target genes responsive to hcf-1 mutation and sir-2.1 overexpression. Subsequent GO-term analyses of HCF-1 and SIR-2.1-coregulated DAF-16 targets suggested that HCF-1 and SIR-2.1 together regulate specific aspects of DAF-16-mediated transcription particularly important for aging and stress responses. Analogous to its role in regulating DAF-16/SIR-2.1 target genes in C. elegans, the mammalian HCF-1 also repressed the expression of several FOXO/SIRT1 target genes. Protein–protein association studies demonstrated that SIR-2.1/SIRT1 and HCF-1 form protein complexes in worms and mammalian cells, highlighting the conservation of their regulatory relationship. Our findings uncover a conserved interaction between the key longevity determinants SIR-2.1/SIRT1 and HCF-1, and they provide new insights into the complex regulation of FOXO proteins. The nematode C. elegans has been instrumental in identifying and characterizing genetic components that influence aging. Studies in worms have been successfully extended to complex mammalian organisms allowing for the identification of genetic factors that impact longevity in mammals. DAF-16/FOXO transcription factors are among the best characterized longevity factors, and their increased activity leads to a longer lifespan and improved stress resistance in many organisms. Elucidating how the activities of DAF-16/FOXO are regulated will provide new insights into the basic biology of aging and will aid future therapeutic developments aiming to improve healthy aging and alleviate age-related diseases in humans. We utilized both C. elegans and mammalian cell culture systems to dissect the functional and molecular interactions between two important DAF-16 regulators, HCF-1 and SIR-2.1/SIRT1. We demonstrated that HCF-1 and SIR-2.1/SIRT1 physically associate and antagonize each other to properly regulate DAF-16/FOXO-mediated expression of genes important for longevity and stress response. We further showed that the functional relationships among these three proteins are conserved in mammals. Our work implicates HCF-1 as an important player in the regulation of FOXO by SIRT1, and thereby a potential longevity determinant in humans, and prompts further characterization of HCF-1's functions in aging and age-related pathologies.
Collapse
Affiliation(s)
- Gizem Rizki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Terri Naoko Iwata
- Department of Molecular Biology and Genetics, Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Ji Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Christian G. Riedel
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Simches Research Center, Boston, Massachusetts, United States of America
| | - Colette Lafontaine Picard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Max Jan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Coleen T. Murphy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
213
|
Saul N, Pietsch K, Stürzenbaum SR, Menzel R, Steinberg CEW. Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity. JOURNAL OF NATURAL PRODUCTS 2011; 74:1713-1720. [PMID: 21805983 DOI: 10.1021/np200011a] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The model organism Caenorhabditis elegans was utilized to determine, in vivo, the mode(s) of action of four plant polyphenols, namely, tannic acid (TA), gallic acid (GA), ellagic acid (EA), and catechin (CT). The determination of lifespan, stress resistance, growth, reproduction, eating-related behaviors, antioxidative capacities, and lifespan assays with the mev-1 and the eat-2 mutants as well as in the presence of dead bacteria provided new insights into their action. All four compounds prolonged lifespan, but only TA and CT mediated distinct stress protection. Longevity is unlikely the result of antioxidant capacities but rather due to calorie restriction imitating and hormetic properties in the case of TA and EA or antimicrobial capacities of GA and EA. Furthermore, the prominent "disposable soma theory" is only partly reflected by these polyphenols. In summary, this study underlines the diversity of polyphenolic phytochemicals and their mechanistic background.
Collapse
Affiliation(s)
- Nadine Saul
- Laboratory of Freshwater & Stress Ecology, Department of Biology, Humboldt-Universität zu Berlin, Späthstrasse 80/81, 12437 Berlin, Germany.
| | | | | | | | | |
Collapse
|
214
|
Abstract
Sirtuins are NAD(+) dependent deacetylases that counter aging and diseases of aging. Sirtuin research has focused on SirT1, which deacetylates transcription factors and cofactors in the nucleus. More recent findings highlight SirT3 as a mitochondrial sirtuin that regulates metabolism and oxidative stress. This review focuses on new data linking SirT3 to management of reactive oxygen species from mitochondria, which may have profound implications for aging and late-onset diseases.
Collapse
|
215
|
Pietsch K, Saul N, Chakrabarti S, Stürzenbaum SR, Menzel R, Steinberg CEW. Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 2011; 12:329-47. [PMID: 21503726 DOI: 10.1007/s10522-011-9334-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 04/04/2011] [Indexed: 12/26/2022]
Abstract
Quercetin, Caffeic- and Rosmarinic acid exposure extend lifespan in Caenorhabditis elegans. This comparative study uncovers basic common and contrasting underlying mechanisms: For all three compounds, life extension was characterized by hormetic dose response curves, but hsp-level expression was variable. Quercetin and Rosmarinic acid both suppressed bacterial growth; however, antibacterial properties were not the dominant reason for life extension. Exposure to Quercetin, Caffeic- and Rosmarinic acid resulted in reduced body size, altered lipid-metabolism and a tendency towards a delay in reproductive timing; however the total number of offspring was not affected. An indirect dietary restriction effect, provoked by either chemo-repulsion or diminished pharyngeal pumping was rejected. Quercetin and Caffeic acid were shown to increase the antioxidative capacity in vivo and, by means of a lipofuscin assay, reduce the oxidative damage in the nematodes. Finally, it was possible to demonstrate that the life and thermotolerance enhancing properties of Caffeic- and Rosmarinic acid both rely on osr-1, sek-1, sir-2.1 and unc-43 plus daf-16 in the case of Caffeic acid. Taken together, hormesis, in vivo antioxidative/prooxidative properties, modulation of genetic players, as well as the re-allocation of energy all contribute (to some extent and dependent on the polyphenol) to life extension.
Collapse
Affiliation(s)
- Kerstin Pietsch
- Humboldt-Universität zu Berlin, Department of Biology, Laboratory of Freshwater & Stress Ecology, Späthstr. 80/81, 12437, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
216
|
Park HR, Lee J. Neurogenic contributions made by dietary regulation to hippocampal neurogenesis. Ann N Y Acad Sci 2011; 1229:23-8. [DOI: 10.1111/j.1749-6632.2011.06089.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
217
|
Chiba T, Tsuchiya T, Komatsu T, Mori R, Hayashi H, Shimokawa I. Development of calorie restriction mimetics as therapeutics for obesity, diabetes, inflammatory and neurodegenerative diseases. Curr Genomics 2011; 11:562-7. [PMID: 21629433 PMCID: PMC3078680 DOI: 10.2174/138920210793360934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/27/2010] [Accepted: 10/12/2010] [Indexed: 12/15/2022] Open
Abstract
Calorie restriction (CR) is the most robust intervention that decreases morbidity and mortality, and thereby increases the lifespan of many organisms. Although the signaling pathways involved in the beneficial effects of CR are not yet fully understood. Several candidate pathways and key molecules have been identified. The effects of CR are highly conserved from lower organisms such as yeast to higher mammals such as rodents and monkeys. Recent studies have also demonstrated beneficial effects of CR in humans, although we need much longer studies to evaluate whether CR also increases the lifespan of humans. In reality, it is difficult for us to conduct CR interventions in humans because the subjects must be kept in a state of hunger and the duration of this state needed to achieve a clinically meaningful effect is still unknown. Thus, research in this field is focusing on the development of molecules that mimic the beneficial effects of CR without reducing food intake. Some of these candidate molecules include plant-derived functional chemicals (phyto-chemicals), synthetic small molecules, and endocrine molecules such as adipokines. Several studies have already shown that this research field may yield novel drugs for the treatment of age-related diseases such as diabetes. In this article, we describe the target pathways, candidate molecules, and strategies to develop CR mimetics.
Collapse
Affiliation(s)
- Takuya Chiba
- Department of Investigative Pathology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 Japan
| | | | | | | | | | | |
Collapse
|
218
|
Li G, Luna C, Navarro ID, Epstein DL, Huang W, Gonzalez P, Challa P. Resveratrol prevention of oxidative stress damage to lens epithelial cell cultures is mediated by forkhead box O activity. Invest Ophthalmol Vis Sci 2011; 52:4395-401. [PMID: 21345980 DOI: 10.1167/iovs.10-6652] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE To evaluate the potential role that FoxO transcription factors play in modulating resveratrol's protective effects against oxidative stress in lens epithelial cells. METHODS Primary human or porcine lens epithelial cells (LECs) were treated with resveratrol (RES) 25 μM and incubated under either physiologic (5%) or chronic hyperoxic (40%) oxygen conditions. Acute oxidative stress was applied using 600 μM H(2)O(2). Changes in expression of FoxO1A, FoxO3A, and FoxO4 were analyzed. The production of intracellular reactive oxygen species (iROS), SA-β-galactosidase (SA-β-gal) activity, and autofluorescence (AF) was assessed by flow cytometry. SiRNAs of FoxO1A, FoxO3A, and FoxO4 were used to study the roles that these transcription factors play in resveratrol's protective effects against cell death induced by oxidative stress. RESULTS RES incubation under 40% oxygen increased the expression of FoxO1A, FoxO3A, and FoxO4. RES also increases mitochondrial membrane potential under 5% and/or 40% O(2) conditions and significantly decreased iROS, SA-β-gal, and AF normally induced by hyperoxic conditions. While RES had a mild pro-apoptotic effect in nonstressed cells, it significantly prevented apoptosis induced by H(2)O(2) stress. SiRNA inhibition of FoxO1A, FoxO3A, and FoxO4 not only led to loss of the anti-apoptotic effects of RES in stressed cells but actually exhibited a mild pro-apoptotic effect. CONCLUSIONS RES exerts a protective effect against oxidative damage in LEC cultures. The levels of expression of FoxO1A, FoxO3A, and FoxO4 appear to play a central role in determining the pro- or anti-apoptotic effects of RES. This has implications for future studies on oxidative stress-related lenticular disorders such as cataract formation.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Duke Eye Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
219
|
Xue YL, Ahiko T, Miyakawa T, Amino H, Hu F, Furihata K, Kita K, Shirasawa T, Sawano Y, Tanokura M. Isolation and Caenorhabditis elegans lifespan assay of flavonoids from onion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5927-5934. [PMID: 21563825 DOI: 10.1021/jf104798n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The main flavonoids were isolated from three selected onion cultivars. Three phenolic compounds were obtained by reverse-phase HPLC, and their structures were elucidated by multiple NMR measurements. There were two known compounds, quercetin and quercetin 3'-O-β-D-glucopyranoside (Q3'G), and one novel compound, quercetin 3-O-β-D-glucopyranoside-(4→1)-β-d-glucopyranoside (Q3M), which was identified in onion for the first time. These flavonoids were found to be more abundant in the onion peel than in the flesh or core. Their antioxidative activities were tested using the DPPH method, and their antiaging activities were evaluated using a Caenorhabditis elegans lifespan assay. No direct correlation was found between antioxidative activity and antiaging activity. Quercetin showed the highest antioxidative activity, whereas Q3M showed the strongest antiaging activity among these flavonoids, which might be related to its high hydrophilicity.
Collapse
Affiliation(s)
- You-Lin Xue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Powolny AA, Singh SV, Melov S, Hubbard A, Fisher AL. The garlic constituent diallyl trisulfide increases the lifespan of C. elegans via skn-1 activation. Exp Gerontol 2011; 46:441-52. [PMID: 21296648 PMCID: PMC3104016 DOI: 10.1016/j.exger.2011.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 02/07/2023]
Abstract
Medicinal benefits of Allium vegetables, such as garlic, have been noted throughout recorded history, including protection against cancer and cardiovascular disease. We now demonstrate that garlic constituent diallyl trisulfide (DATS) increases longevity of Caenorhabditis elegans by affecting the skn-1 pathway. Treatment of worms with 5-10 μM DATS increased worm mean lifespan even when treatment is started during young adulthood. To explore the mechanisms involved in the DATS-mediated increase in longevity, we treated daf-2, daf-16, and eat-2 mutants and found that DATS increased the lifespan of daf-2 and daf-16 mutants, but not the eat-2 mutants. Microarray experiments demonstrated that a number of genes regulated by oxidative stress and the skn-1 transcription factor were also changed by DATS treatment. Consistently, DATS treatment leads to the induction of the skn-1 target gene gst-4, and this induction was dependent on skn-1. We also found that the effects of DATS on worm lifespan depend on skn-1 activity in both in the intestine and ASI neurons. Together our data suggest that DATS is able to increase worm lifespan by enhancing the function of the pro-longevity transcription factor skn-1.
Collapse
Affiliation(s)
- Anna A. Powolny
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Shivendra V. Singh
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Simon Melov
- Buck Institute for Age Research, Novato, CA 94945
| | - Alan Hubbard
- School of Public Health, University of California, Berkeley, California 94720
| | - Alfred L. Fisher
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
221
|
Frankel S, Ziafazeli T, Rogina B. dSir2 and longevity in Drosophila. Exp Gerontol 2011; 46:391-6. [PMID: 20728527 PMCID: PMC2997167 DOI: 10.1016/j.exger.2010.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/06/2010] [Accepted: 08/16/2010] [Indexed: 12/19/2022]
Abstract
The silent information regulator 2 (Sir2 or Sirtuin) family of proteins is highly conserved and has been implicated in the extension of longevity for several species. Mammalian Sirtuins have been shown to affect various aspects of physiology including metabolism, the stress response, cell survival, replicative senescence, inflammation, the circadian rhythm, neurodegeneration, and even cancer. Evidence in Drosophila implicates Sir2 in at least some of the beneficial effects of caloric restriction (CR). CR delays age-related pathology and extends life span in a wide variety of species. Here we will review the evidence linking Drosophila Sir2 (dSir2) to longevity regulation and the pathway associated with CR in Drosophila, as well as the effects of the Sir2 activator resveratrol and potential interactions between dSir2 and p53.
Collapse
Affiliation(s)
- Stewart Frankel
- Department of Biology, University of Hartford, West Hartford, CT, 06117, USA
| | | | | |
Collapse
|
222
|
|
223
|
Abstract
Age is the most important risk factor for diseases affecting the Western world, and slowing age-related degeneration would greatly improve the quality of human life. In rodents, caloric restriction (CR) extends lifespan by up to 50%. However, attempts to mimic the effects of CR pharmacologically have been limited by our poor understanding of the mechanisms involved. SIRT1 is proposed to mediate key aspects of CR, and small molecule activators may therefore act as CR mimetics. The polyphenol resveratrol activates SIRT1 in an in vitro assay, and produces changes that resemble CR in vivo, including improvements in insulin sensitivity, endurance, and overall survival in obese mice. However, resveratrol has numerous other targets that could contribute to its health benefits. Moreover, unlike bona fide CR, resveratrol has not been shown to extend lifespan in lean mice. Overexpression of SIRT1 or treatment with a novel activator is sufficient to improve metabolism, supporting the idea that resveratrol could act through this pathway. However, the poor phenotype of SIRT1 null mice has thus far precluded a more definitive test.
Collapse
Affiliation(s)
- Beamon Agarwal
- Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | |
Collapse
|
224
|
Martorell P, Forment JV, de Llanos R, Montón F, Llopis S, González N, Genovés S, Cienfuegos E, Monzó H, Ramón D. Use of Saccharomyces cerevisiae and Caenorhabditis elegans as model organisms to study the effect of cocoa polyphenols in the resistance to oxidative stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2077-85. [PMID: 21288028 DOI: 10.1021/jf104217g] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Developing functional foods to improve the quality of life for elderly people has great economic and social impact. Searching for and validating ingredients with in vivo antioxidant effects is one of the key steps in developing this kind of food. Here we describe the combined use of simple biological models and transcriptomics to define the functional intracellular molecular targets of a polyphenol-enriched cocoa powder. Cocoa powder supplemented culture medium led to increased resistance to oxidative stress, in both the budding yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans, and, in the latter, lifespan was also increased. These effects are fully dependent on the polyphenols present in the cocoa powder and on the sirtuins Hst3 (yeast) and SIR-2.1 (worm). The transcription factor DAF-16 also plays an important role in the case of the nematode, indicating that the insulin/IGF-1 (insulin-like growth factor) signaling pathway is related with the antioxidative effect of cocoa polyphenols. All in all, these results confirm that this polyphenol-enriched cocoa powder, with antioxidant activity, has great potential use as a functional food ingredient for elderly people. Furthermore, this work reveals the value of using simple biological models to screen for compounds that are of interest for the food and pharmacological industry.
Collapse
Affiliation(s)
- Patricia Martorell
- Biópolis SL, Parc Científic Universitat de València, C/Catedrático Agustín Escardino 9, edificio 2, 46980-Paterna, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Mair W, Morantte I, Rodrigues APC, Manning G, Montminy M, Shaw RJ, Dillin A. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 2011; 470:404-8. [PMID: 21331044 PMCID: PMC3098900 DOI: 10.1038/nature09706] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 11/26/2010] [Indexed: 01/07/2023]
Abstract
Activating AMPK or inactivating calcineurin slows ageing in Caenorhabditis elegans and both have been implicated as therapeutic targets for age-related pathology in mammals. However, the direct targets that mediate their effects on longevity remain unclear. In mammals, CREB-regulated transcriptional coactivators (CRTCs) are a family of cofactors involved in diverse physiological processes including energy homeostasis, cancer and endoplasmic reticulum stress. Here we show that both AMPK and calcineurin modulate longevity exclusively through post-translational modification of CRTC-1, the sole C. elegans CRTC. We demonstrate that CRTC-1 is a direct AMPK target, and interacts with the CREB homologue-1 (CRH-1) transcription factor in vivo. The pro-longevity effects of activating AMPK or deactivating calcineurin decrease CRTC-1 and CRH-1 activity and induce transcriptional responses similar to those of CRH-1 null worms. Downregulation of crtc-1 increases lifespan in a crh-1-dependent manner and directly reducing crh-1 expression increases longevity, substantiating a role for CRTCs and CREB in ageing. Together, these findings indicate a novel role for CRTCs and CREB in determining lifespan downstream of AMPK and calcineurin, and illustrate the molecular mechanisms by which an evolutionarily conserved pathway responds to low energy to increase longevity.
Collapse
Affiliation(s)
- William Mair
- The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
226
|
Li Y, Xu S, Giles A, Nakamura K, Lee JW, Hou X, Donmez G, Li J, Luo Z, Walsh K, Guarente L, Zang M. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J 2011; 25:1664-79. [PMID: 21321189 DOI: 10.1096/fj.10-173492] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endoplasmic reticulum (ER) stress has been implicated in the pathophysiology of human type 2 diabetes (T2DM). Although SIRT1 has a therapeutic effect on metabolic deterioration in T2DM, the precise mechanisms by which SIRT1 improves insulin resistance remain unclear. Here, we demonstrate that adenovirus-mediated overexpression of SIRT1 in the liver of diet-induced insulin-resistant low-density lipoprotein receptor-deficient mice and of genetically obese ob/ob mice attenuates hepatic steatosis and ameliorates systemic insulin resistance. These beneficial effects were associated with decreased mammalian target of rapamycin complex 1 (mTORC1) activity, inhibited the unfolded protein response (UPR), and enhanced insulin receptor signaling in the liver, leading to decreased hepatic gluconeogenesis and improved glucose tolerance. The tunicamycin-induced splicing of X-box binding protein-1 and expression of GRP78 and CHOP were reduced by resveratrol in cultured cells in a SIRT1-dependent manner. Conversely, SIRT1-deficient mouse embryonic fibroblasts challenged with tunicamycin exhibited markedly increased mTORC1 activity and impaired ER homeostasi and insulin signaling. These effects were abolished by mTORC1 inhibition by rapamycin in human HepG2 cells. These studies indicate that SIRT1 serves as a negative regulator of UPR signaling in T2DM and that SIRT1 attenuates hepatic steatosis, ameliorates insulin resistance, and restores glucose homeostasis, largely through the inhibition of mTORC1 and ER stress.
Collapse
Affiliation(s)
- Yu Li
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 2011; 66:191-201. [PMID: 20974732 PMCID: PMC3021372 DOI: 10.1093/gerona/glq178] [Citation(s) in RCA: 692] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/08/2010] [Indexed: 01/17/2023] Open
Abstract
Rapamycin was administered in food to genetically heterogeneous mice from the age of 9 months and produced significant increases in life span, including maximum life span, at each of three test sites. Median survival was extended by an average of 10% in males and 18% in females. Rapamycin attenuated age-associated decline in spontaneous activity in males but not in females. Causes of death were similar in control and rapamycin-treated mice. Resveratrol (at 300 and 1200 ppm food) and simvastatin (12 and 120 ppm) did not have significant effects on survival in male or female mice. Further evaluation of rapamycin's effects on mice is likely to help delineate the role of the mammalian target of rapamycin complexes in the regulation of aging rate and age-dependent diseases and may help to guide a search for drugs that retard some or all of the diseases of aging.
Collapse
Affiliation(s)
- Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Wagner AE, Boesch-Saadatmandi C, Breckwoldt D, Schrader C, Schmelzer C, Döring F, Hashida K, Hori O, Matsugo S, Rimbach G. Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2. Altern Ther Health Med 2011; 11:1. [PMID: 21199573 PMCID: PMC3020228 DOI: 10.1186/1472-6882-11-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 01/03/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Both resveratrol and vitamin C (ascorbic acid) are frequently used in complementary and alternative medicine. However, little is known about the underlying mechanisms for potential health benefits of resveratrol and its interactions with ascorbic acid. METHODS The antioxidant enzymes heme oxygenase-1 and paraoxonase-1 were analysed for their mRNA and protein levels in HUH7 liver cells treated with 10 and 25 μmol/l resveratrol in the absence and presence of 100 and 1000 μmol/l ascorbic acid. Additionally the transactivation of the transcription factor Nrf2 and paraoxonase-1 were determined by reporter gene assays. RESULTS Here, we demonstrate that resveratrol induces the antioxidant enzymes heme oxygenase-1 and paraoxonase-1 in cultured hepatocytes. Heme oxygenase-1 induction by resveratrol was accompanied by an increase in Nrf2 transactivation. Resveratrol mediated Nrf2 transactivation as well as heme oxygenase-1 induction were partly antagonized by 1000 μmol/l ascorbic acid. CONCLUSIONS Unlike heme oxygenase-1 (which is highly regulated by Nrf2) paraoxonase-1 (which exhibits fewer ARE/Nrf2 binding sites in its promoter) induction by resveratrol was not counteracted by ascorbic acid. Addition of resveratrol to the cell culture medium produced relatively low levels of hydrogen peroxide which may be a positive hormetic redox-signal for Nrf2 dependent gene expression thereby driving heme oxygenase-1 induction. However, high concentrations of ascorbic acid manifold increased hydrogen peroxide production in the cell culture medium which may be a stress signal thereby disrupting the Nrf2 signalling pathway.
Collapse
|
229
|
Abstract
XBP1 (X-box-binding protein 1) is a key modulator of the UPR (unfolded protein response), which is involved in a wide range of pathological and physiological processes. The mRNA encoding the active spliced form of XBP1 (XBP1s) is generated from the unspliced form by IRE1 (inositol-requiring enzyme 1) during the UPR. However, the post-translational modulation of XBP1s remains largely unknown. In the present study, we demonstrate that XBP1s is a target of acetylation and deacetylation mediated by p300 and SIRT1 (sirtuin 1) respectively. p300 increases the acetylation and protein stability of XBP1s, and enhances its transcriptional activity, whereas SIRT1 deacetylates XBP1s and inhibits its transcriptional activity. Deficiency of SIRT1 enhances XBP1s-mediated luciferase reporter activity in HEK (human embryonic kidney)-293 cells and the up-regulation of XBP1s target gene expression under ER (endoplasmic reticulum) stress in MEFs (mouse embryonic fibroblasts). Consistent with XBP1s favouring cell survival under ER stress, Sirt1-/- MEFs display a greater resistance to ER-stress-induced apoptotic cell death compared with Sirt1+/+ MEFs. Taken together, these results suggest that acetylation/deacetylation constitutes an important post-translational mechanism in controlling protein levels, as well as the transcriptional activity, of XBP1s. The present study provides a novel insight into the molecular mechanisms by which SIRT1 regulates UPR signalling.
Collapse
Affiliation(s)
- Feng-Ming Wang
- Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15240, USA
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China
| | - Hong-Jiao Ouyang
- Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15240, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15240, USA
- Department of Comprehensive Care, Restorative Dentistry, and Endodontics, School of Dental Medicine, University of Pittsburgh, PA 15240, USA
| |
Collapse
|
230
|
Kinsley CH, Franssen RA, Meyer EA. Reproductive experience may positively adjust the trajectory of senescence. Curr Top Behav Neurosci 2011; 10:317-45. [PMID: 21611905 DOI: 10.1007/7854_2011_123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although aging is inexorable, aging well is not. From the perspective of research in rats and complementary models, reproductive experience has significant effects; indeed, benefits, which include better-than-average cognitive skills, a slowing of the slope of decline, and a healthier brain and/or nervous system well later into life. Work from our lab and others has suggested that the events of pregnancy and parturition, collectively referred to as reproductive experience-an amalgam of hormone exposure, sensory stimulation, and offspring behavioral experience and interaction-may summate to flatten the degree of decline normally associated with aging. Mimicking the effects of an enriched environment, reproductive experience has been shown to: enhance/protect cognition and decrease anxiety well out to two-plus years; result in fewer hippocampal deposits of the Alzheimer's disease herald, amyloid precursor protein (APP); and, in general, lead to a healthier biology. Based on a suite of recent work in organisms as diverse as nematodes, flies, and mammals, the ubiquitous hormone insulin and its large family of related substances and receptors may play a major role in mediating some of the effects of RE on the parameters of aging studied thus far. We will discuss the current set of data that suggest mechanisms for successful biological and neurobiological aging, and the implications for understanding aging and senescence in their broadest terms.
Collapse
Affiliation(s)
- Craig Howard Kinsley
- Department of Psychology, Center for Neuroscience, Gottwald Science Center and 116 Richmond Hall, University of Richmond, B-326/328, 28 Westhampton Way, Richmond, VA, 23173, USA,
| | | | | |
Collapse
|
231
|
Blum CA, Ellis JL, Loh C, Ng PY, Perni RB, Stein RL. SIRT1 Modulation as a Novel Approach to the Treatment of Diseases of Aging. J Med Chem 2010; 54:417-32. [DOI: 10.1021/jm100861p] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Charles A. Blum
- Sirtris, A GSK Company, 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - James L. Ellis
- Sirtris, A GSK Company, 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Christine Loh
- Sirtris, A GSK Company, 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Pui Yee Ng
- Sirtris, A GSK Company, 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Robert B. Perni
- Sirtris, A GSK Company, 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Ross L. Stein
- Sirtris, A GSK Company, 200 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
232
|
Hung CW, Chen YC, Hsieh WL, Chiou SH, Kao CL. Ageing and neurodegenerative diseases. Ageing Res Rev 2010; 9 Suppl 1:S36-46. [PMID: 20732460 DOI: 10.1016/j.arr.2010.08.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/04/2010] [Indexed: 02/06/2023]
Abstract
Ageing, which all creatures must encounter, is a challenge to every living organism. In the human body, it is estimated that cell division and metabolism occurs exuberantly until about 25 years of age. Beyond this age, subsidiary products of metabolism and cell damage accumulate, and the phenotypes of ageing appear, causing disease formation. Among these age-related diseases, neurodegenerative diseases have drawn a lot of attention due to their irreversibility, lack of effective treatment, and accompanied social and economical burdens. In seeking to ameliorate ageing and age-related diseases, the search for anti-ageing drugs has been of much interest. Numerous studies have shown that the plant polyphenol, resveratrol (3,5,4'-trihydroxystilbene), extends the lifespan of several species, prevents age-related diseases, and possesses anti-inflammatory, and anti-cancer properties. The beneficial effects of resveratrol are believed to be associated with the activation of a longevity gene, SirT1. In this review, we discuss the pathogenesis of age-related neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and cerebrovascular disease. The therapeutic potential of resveratrol, diet and the roles of stem cell therapy are discussed to provide a better understanding of the ageing mystery.
Collapse
|
233
|
Shang L, Zhou H, Xia Y, Wang H, Gao G, Chen B, Liu Q, Shao C, Gong Y. Serum withdrawal up-regulates human SIRT1 gene expression in a p53-dependent manner. J Cell Mol Med 2010; 13:4176-84. [PMID: 19267881 PMCID: PMC4496124 DOI: 10.1111/j.1582-4934.2008.00468.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
SIRT1, a nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylase, has been extensively studied recently for its critical role in the regulation of physiology, calorie restriction and aging. Studies on laboratory mice showed that expression of SIRT1 can be induced by starvation in a p53-dependent manner and requires the p53-binding sites present in the Sirt1 promoter. However, it remains to be determined whether these findings based on rodents apply to human beings. In this paper, we characterized a putative p53-binding element in the human SIRT1 promoter that might be required for the up-regulation of SIRT1 in response to nutritional stress. The p53-binding site in the promoter of human SIRT1 is more deviant from the consensus sequence than the corresponding sequence in the mouse Sirt1. There is a C to A change at the second half site in human SIRT1, thus disrupting the core-binding element CWWG in the canonical RRRCWWGYYY. To test whether such sequence change would affect its binding with p53 and the SIRT1 expression under stress, we studied various human cell lines with different p53 status and cells with ectopic expression of functionally distinct p53. We found that serum withdrawal also up-regulates human SIRT1 gene expression in a p53-dependent manner and that the p53-binding element in SIRT1 is required for the up-regulation. Thus, the mechanism responsible for the regulation of SIRT1 expression by p53 is conserved between mice and human beings.
Collapse
Affiliation(s)
- Linshan Shang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Singleton RH, Yan HQ, Fellows-Mayle W, Dixon CE. Resveratrol attenuates behavioral impairments and reduces cortical and hippocampal loss in a rat controlled cortical impact model of traumatic brain injury. J Neurotrauma 2010; 27:1091-9. [PMID: 20560755 DOI: 10.1089/neu.2010.1291] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) is a plant-derived small molecule that is protective against multiple neurological and systemic insults. To date, no studies have explored the potential for resveratrol to provide behavioral protection in adult animals in the setting of traumatic brain injury (TBI). Using 50 male Sprague-Dawley rats, we employed the controlled cortical impact (CCI) model to ascertain whether post-injury administration of resveratrol would reduce the severity of the well-described cognitive and motor deficits associated with the model. Contusion volumes and hippocampal neuronal numbers were also measured to characterize the tissue and neuronal-sparing properties, respectively, of resveratrol. We found that 100 mg/kg, but not 10 mg/kg, of intraperitoneal resveratrol administered after injury provides significant behavioral protection in rats sustaining CCI. Specifically, rodents treated with 100 mg/kg of resveratrol showed improvements in motor performance (beam balance and beam walking) and testing of visuospatial memory (Morris water maze). Behavioral protection was correlated with significantly reduced contusion volumes, preservation of CA1 and CA3 hippocampal neurons, and protection from overt hippocampal loss as a result of incorporation into the overlying cortical contusion in resveratrol-treated animals. Although the mechanisms by which resveratrol mediates its neuroprotection is unclear, the current study adds to the growing literature identifying resveratrol as a potential therapy for human brain injury.
Collapse
Affiliation(s)
- Richard H Singleton
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
235
|
Wang X, Wang X, Li L, Wang D. Lifespan extension in Caenorhabditis elegans by DMSO is dependent on sir-2.1 and daf-16. Biochem Biophys Res Commun 2010; 400:613-8. [PMID: 20828537 DOI: 10.1016/j.bbrc.2010.08.113] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 08/25/2010] [Indexed: 12/19/2022]
Abstract
Dimethyl sulfoxide (DMSO) is an important solvent that is widely used in industry and medical studies, as well as in the study of aging, in which it is used as a negative control for lifespan assays; however, our data showed that 0.5% and 2% DMSO extended the lifespan of Caenorhabditis elegans by 24.4% and 23.0% (the first trial), respectively. Treatment with 0.5% DMSO did not affect the progeny number or the lifespan of C. elegans under thermal stress. Using real time reverse transcription-polymerase chain reaction (RT-PCR), we found that the expression levels of hsp-16.2, hsp-70, lys-7, old-1, and sod-5 were enhanced by 2.5, 2.9, 1.3, 2.3, and 4.5-fold, respectively, after treatment with 0.5% DMSO. This suggests that these genes downstream of DAF-16 might function in the lifespan extension properties of DMSO. Using the transgenic strain lys-7::GFP, we found that treatment with 0.5% DMSO also caused expression levels of lys-7 increased by 1.5-fold. Genetic analysis using mutants of aging-related genes showed that lifespan extension in C. elegans by DMSO was dependent on sir-2.1 and daf-16 but not eat-2 or hsf-1. In summary, we report the function and the putative mechanism of DMSO in lifespan extension of C. elegans. This study draws attention to using DMSO as a solvent when conducting aging studies.
Collapse
Affiliation(s)
- Xiangming Wang
- The Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | | | | | | |
Collapse
|
236
|
Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA. C. elegans as a model organism to investigate molecular pathways involved with Parkinson's disease. Dev Dyn 2010; 239:1282-95. [PMID: 20108318 DOI: 10.1002/dvdy.22231] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is an age-related movement disorder resulting, in part, from selective loss of dopaminergic neurons. Both invertebrate and mammalian models have been developed to study the cellular mechanisms altered during disease progression; nevertheless there are limitations within each model. Mammalian models remain invaluable in studying PD, but are expensive and time consuming. Here, we review genetic and environmental factors associated with PD, and describe how the nematode roundworm, Caenorhabditis elegans, has been used as a model organism for studying various aspects of this neurodegenerative disease. Both genetic and chemical screens have been conducted in C. elegans to identify molecular pathways, proteins, and small molecules that can impact PD pathology. Lastly, we highlight future areas of investigation, in the context of emerging fields in biology, where the nematode can be exploited to provide mechanistic insights and potential strategies to accelerate the path toward possible therapeutic intervention for PD.
Collapse
Affiliation(s)
- Adam J Harrington
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487-0344, USA
| | | | | | | |
Collapse
|
237
|
Yan Y, Gao YY, Liu BQ, Niu XF, Zhuang Y, Wang HQ. Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein response. BMC Cancer 2010; 10:445. [PMID: 20723265 PMCID: PMC2931494 DOI: 10.1186/1471-2407-10-445] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 08/20/2010] [Indexed: 11/10/2022] Open
Abstract
Background Resveratrol (RES), a natural phytoalexin found at high levels in grapes and red wine, has been shown to induce anti-proliferation and apoptosis of human cancer cell lines. However, the underlying molecular mechanisms are at present only partially understood. Method The effects of RES on activation of unfolded protein responses (UPR) were evaluated using Western blotting, semi-quantitative and real-time RT-PCR. Cell death was evaluated using Annexin V/PI staining and subsequent FACS. Results Similar as tunicamycin, treatment with RES lead to the activation of all 3 branches of the UPR, with early splicing of XBP-1 indicative of IRE1 activation, phosphorylation of eIF2α consistent with ER resident kinase (PERK) activation, activating transcription factor 6 (ATF6) splicing, and increase in expression levels of the downstream molecules GRP78/BiP, GRP94 and CHOP/GADD153 in human Burkitt's lymphoma Raji and Daudi cell lines. RES was shown to induce cell death, which could be attenuated by thwarting upregulation of CHOP. Conclusions Our data suggest that activation of the apoptotic arm of the UPR and its downstream effector CHOP/GADD153 is involved, at least in part, in RES-induced apoptosis in Burkitt's lymphoma cells.
Collapse
Affiliation(s)
- Ying Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110001, China
| | | | | | | | | | | |
Collapse
|
238
|
Sirtuin regulation in calorie restriction. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1576-83. [DOI: 10.1016/j.bbapap.2009.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/10/2009] [Accepted: 09/15/2009] [Indexed: 12/28/2022]
|
239
|
Abstract
Trehalose is a disaccharide of glucose found in diverse organisms and is suggested to act as a stress protectant against heat, cold, desiccation, anoxia, and oxidation. Here, we demonstrate that treatment of Caenorhabditis elegans with trehalose starting from the young-adult stage extended the mean life span by over 30% without any side effects. Surprisingly, trehalose treatment starting even from the old-adult stage shortly thereafter retarded the age-associated decline in survivorship and extended the remaining life span by 60%. Demographic analyses of age-specific mortality rates revealed that trehalose extended the life span by lowering age-independent vulnerability. Moreover, trehalose increased the reproductive span and retarded the age-associated decrease in pharyngeal-pumping rate and the accumulation of lipofuscin autofluorescence. Trehalose also enhanced thermotolerance and reduced polyglutamine aggregation. These results suggest that trehalose suppressed aging by counteracting internal or external stresses that disrupt protein homeostasis. On the other hand, the life span-extending effect of trehalose was abolished in long-lived insulin/IGF-1-like receptor (daf-2) mutants. RNA interference-mediated inactivation of the trehalose-biosynthesis genes trehalose-6-phosphate synthase-1 (tps-1) and tps-2, which are known to be up-regulated in daf-2 mutants, decreased the daf-2 life span. These findings indicate that a reduction in insulin/IGF-1-like signaling extends life span, at least in part, through the aging-suppressor function of trehalose. Trehalose may be a lead compound for potential nutraceutical intervention of the aging process.
Collapse
Affiliation(s)
- Yoko Honda
- Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashiku 173-0015, Tokyo, Japan
| | | | | |
Collapse
|
240
|
Ramadori G, Coppari R. Pharmacological manipulations of CNS sirtuins: potential effects on metabolic homeostasis. Pharmacol Res 2010; 62:48-54. [PMID: 20138996 PMCID: PMC2871985 DOI: 10.1016/j.phrs.2010.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 11/30/2022]
Abstract
Sirtuins are deacetylases and/or mono-ADP-ribosyltransferases found in organisms ranging from bacteria to humans. These enzymes use oxidized nicotinamide adenine dinucleotide (NAD(+)) and a long array of different proteins (e.g.: histones, transcription factors, cofactors, members of the electron transport chain, etc.) as substrates. Sirtuins-mediated reactions yield deacetylated proteins, nicotinamide (NAM) and 2'-O-acetyl-ADP-ribose (O-AADPr) or mono-ADP-ribosylated proteins and NAM. As these post-translational modifications change the activity of their targets and sirtuins depend on NAD(+) to function, these enzymes are thought to link metabolic statuses with cellular gene expression, activity and fate; as such sirtuins are thought to be bona fide metabolic-sensor proteins. Due to their diverse targets, sirtuins affect metabolism, senescence, longevity, circadian rhythms and many other biological and physiological programs. In this review we focus on their known roles on metabolic homeostasis with particular emphasis on their functions in neurons within the central nervous system (CNS). We also touch upon the possible metabolic outcomes of pharmacological manipulations of CNS sirtuins.
Collapse
Affiliation(s)
- Giorgio Ramadori
- Department of Internal Medicine (Division of Hypothalamic Research), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Roberto Coppari
- Department of Internal Medicine (Division of Hypothalamic Research), The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| |
Collapse
|
241
|
Salminen A, Kaarniranta K. ER stress and hormetic regulation of the aging process. Ageing Res Rev 2010; 9:211-7. [PMID: 20416402 DOI: 10.1016/j.arr.2010.04.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/25/2010] [Accepted: 04/14/2010] [Indexed: 12/13/2022]
Abstract
An ability to mount a stress resistance under pressure is a major host defence mechanism and has been a fundamental force during evolution. However, the adaptation capacity clearly declines during aging and this loss of stress resistance accelerates the aging process exposing the organism to degenerative diseases. The effect of stress on organisms seems to be a dose-dependent response, i.e. mild stress induces a stress tolerance and extends the lifespan whereas excessive stress accentuates the aging process. This paradox is known as hormesis in aging research. It is essential to distinguish the intensity of cellular stress and thus mount an appropriate host defence. The endoplasmic reticulum (ER) contains three branches of stress transducers, i.e. IRE1, PERK, and ATF6 pathways, all of which recognize stress-related disturbances in the function of ER. These transducers trigger a complex signaling network which activates an unfolded protein response (UPR). Interestingly, ER stress transducers can distinguish the intensity of ER stress and induce a dose-dependent UPR, either adaptive response to stress or apoptotic cell death. The efficiency of the stress recognition system and UPR signaling declines during aging. We will discuss the role of ER stress in hormetic regulation of aging process and longevity.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | |
Collapse
|
242
|
Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol Rev 2010; 90:905-81. [PMID: 20664076 DOI: 10.1152/physrev.00041.2009] [Citation(s) in RCA: 617] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene encoding for huntingtin protein. A lot has been learned about this disease since its first description in 1872 and the identification of its causative gene and mutation in 1993. We now know that the disease is characterized by several molecular and cellular abnormalities whose precise timing and relative roles in pathogenesis have yet to be understood. HD is triggered by the mutant protein, and both gain-of-function (of the mutant protein) and loss-of-function (of the normal protein) mechanisms are involved. Here we review the data that describe the emergence of the ancient huntingtin gene and of the polyglutamine trait during the last 800 million years of evolution. We focus on the known functions of wild-type huntingtin that are fundamental for the survival and functioning of the brain neurons that predominantly degenerate in HD. We summarize data indicating how the loss of these beneficial activities reduces the ability of these neurons to survive. We also review the different mechanisms by which the mutation in huntingtin causes toxicity. This may arise both from cell-autonomous processes and dysfunction of neuronal circuitries. We then focus on novel therapeutical targets and pathways and on the attractive option to counteract HD at its primary source, i.e., by blocking the production of the mutant protein. Strategies and technologies used to screen for candidate HD biomarkers and their potential application are presented. Furthermore, we discuss the opportunities offered by intracerebral cell transplantation and the likely need for these multiple routes into therapies to converge at some point as, ideally, one would wish to stop the disease process and, at the same time, possibly replace the damaged neurons.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
243
|
Fischer-Posovszky P, Kukulus V, Tews D, Unterkircher T, Debatin KM, Fulda S, Wabitsch M. Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am J Clin Nutr 2010; 92:5-15. [PMID: 20463039 DOI: 10.3945/ajcn.2009.28435] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Caloric restriction leads to retardation of the aging processes and to longer life in many organisms. This effect of caloric restriction can be mimicked by resveratrol, a natural plant product present in grapes and red wine, which is known as a potent activator of sirtuin 1 [silent mating type information regulation 2 homolog 1 (Sirt1)]. OBJECTIVES One main effect of caloric restriction in mammals is a reduction of body fat from white adipose tissue. We sought to identify the effects of resveratrol on fat cell biology and to elucidate whether Sirt1 is involved in resveratrol-mediated changes. DESIGN Human Simpson-Golabi-Behmel syndrome preadipocytes and adipocytes were used to study proliferation, adipogenic differentiation, glucose uptake, de novo lipogenesis, and adipokine secretion. Sirt1-deficient human preadipocytes were generated by using a lentiviral small hairpin RNA system to study the role of Sirt1 in resveratrol-mediated changes. RESULTS Resveratrol inhibited preadipocyte proliferation and adipogenic differentiation in a Sirt1-dependent manner. In human adipocytes, resveratrol stimulated basal and insulin-stimulated glucose uptake. De novo lipogenesis was inhibited in parallel with a down-regulation of lipogenic gene expression. Furthermore, resveratrol down-regulated the expression and secretion of interleukin-6 and interleukin-8. Sirt1 was only partially responsible for the regulation of resveratrol-mediated changes in adipokine secretion. CONCLUSIONS Taken together, our data suggest that resveratrol influences adipose tissue mass and function in a way that may positively interfere with the development of obesity-related comorbidities. Thus, our findings open up the new perspective that resveratrol-induced intracellular pathways could be a target for prevention or treatment of obesity-associated endocrine and metabolic adverse effects.
Collapse
|
244
|
Abstract
The nematode Caenorhabditis elegans ages and dies in a few weeks, but humans can live for 100 years or more. Assuming that the ancestor we share with nematodes aged rapidly, this means that over evolutionary time mutations have increased lifespan more than 2,000-fold. Which genes can extend lifespan? Can we augment their activities and live even longer? After centuries of wistful poetry and wild imagination, we are now getting answers, often unexpected ones, to these fundamental questions.
Collapse
Affiliation(s)
- Cynthia J Kenyon
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA.
| |
Collapse
|
245
|
Baur JA. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev 2010; 131:261-9. [PMID: 20219519 PMCID: PMC2862768 DOI: 10.1016/j.mad.2010.02.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 02/13/2010] [Accepted: 02/20/2010] [Indexed: 12/24/2022]
Abstract
Dietary restriction (DR) delays or prevents age-related diseases and extends lifespan in species ranging from yeast to primates. Although the applicability of this regimen to humans remains uncertain, a proportional response would add more healthy years to the average life than even a cure for cancer or heart disease. Because it is unlikely that many would be willing or able to maintain a DR lifestyle, there has been intense interest in mimicking its beneficial effects on health, and potentially longevity, with drugs. To date, such efforts have been hindered primarily by our lack of mechanistic understanding of how DR works. Sirtuins, NAD(+)-dependent deacetylases and ADP-ribosyltransferases that influence lifespan in lower organisms, have been proposed to be key mediators of DR, and based on this model, the sirtuin activator resveratrol has been proposed as a candidate DR mimetic. Indeed, resveratrol extends lifespan in yeast, worms, flies, and a short-lived species of fish. In rodents, resveratrol improves health, and prevents the early mortality associated with obesity, but its precise mechanism of action remains a subject of debate, and extension of normal lifespan has not been observed. This review summarizes recent work on resveratrol, sirtuins, and their potential to mimic beneficial effects of DR.
Collapse
Affiliation(s)
- Joseph A Baur
- Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
246
|
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2010; 5:253-95. [PMID: 20078221 DOI: 10.1146/annurev.pathol.4.110807.092250] [Citation(s) in RCA: 1626] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aging is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as type II diabetes mellitus, neurodegenerative diseases, cancer, and cardiovascular disease. Historically, researchers have focused on investigating individual pathways in isolated organs as a strategy to identify the root cause of a disease, with hopes of designing better drugs. Studies of aging in yeast led to the discovery of a family of conserved enzymes known as the sirtuins, which affect multiple pathways that increase the life span and the overall health of organisms. Since the discovery of the first known mammalian sirtuin, SIRT1, 10 years ago, there have been major advances in our understanding of the enzymology of sirtuins, their regulation, and their ability to broadly improve mammalian physiology and health span. This review summarizes and discusses the advances of the past decade and the challenges that will confront the field in the coming years.
Collapse
Affiliation(s)
- Marcia C Haigis
- Glenn Laboratories for the Molecular Biology of Aging, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
247
|
Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B, Chung JH. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010; 59:554-63. [PMID: 19934007 PMCID: PMC2828647 DOI: 10.2337/db09-0482] [Citation(s) in RCA: 515] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Resveratrol, a natural polyphenolic compound that is found in grapes and red wine, increases metabolic rate, insulin sensitivity, mitochondrial biogenesis, and physical endurance and reduces fat accumulation in mice. Although it is thought that resveratrol targets Sirt1, this is controversial because resveratrol also activates 5' AMP-activated protein kinase (AMPK), which also regulates insulin sensitivity and mitochondrial biogenesis. Here, we use mice deficient in AMPKalpha1 or -alpha2 to determine whether the metabolic effects of resveratrol are mediated by AMPK. RESEARCH DESIGN AND METHODS Mice deficient in the catalytic subunit of AMPK (alpha1 or alpha2) and wild-type mice were fed a high-fat diet or high-fat diet supplemented with resveratrol for 13 weeks. Body weight was recorded biweekly and metabolic parameters were measured. We also used mouse embryonic fibroblasts deficient in AMPK to study the role of AMPK in resveratrol-mediated effects in vitro. RESULTS Resveratrol increased the metabolic rate and reduced fat mass in wild-type mice but not in AMPKalpha1(-/-) mice. In the absence of either AMPKalpha1 or -alpha2, resveratrol failed to increase insulin sensitivity, glucose tolerance, mitochondrial biogenesis, and physical endurance. Consistent with this, the expression of genes important for mitochondrial biogenesis was not induced by resveratrol in AMPK-deficient mice. In addition, resveratrol increased the NAD-to-NADH ratio in an AMPK-dependent manner, which may explain how resveratrol may activate Sirt1 indirectly. CONCLUSIONS We conclude that AMPK, which was thought to be an off-target hit of resveratrol, is the central target for the metabolic effects of resveratrol.
Collapse
Affiliation(s)
- Jee-Hyun Um
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sung-Jun Park
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hyeog Kang
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Shutong Yang
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Marc Foretz
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Paris, France
- National de la Santé et de la Recherche Médicale, Paris, France
| | - Michael W. McBurney
- Center for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Myung K. Kim
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Benoit Viollet
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Paris, France
- National de la Santé et de la Recherche Médicale, Paris, France
| | - Jay H. Chung
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Corresponding author: Jay H. Chung,
| |
Collapse
|
248
|
SLR-2 and JMJC-1 regulate an evolutionarily conserved stress-response network. EMBO J 2010; 29:727-39. [PMID: 20057358 DOI: 10.1038/emboj.2009.387] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 12/01/2009] [Indexed: 11/08/2022] Open
Abstract
Maintaining a homeostatic interaction with the environment is crucial for the growth, survival, and propagation of all living organisms. Reestablishment of equilibrium after stress is achieved by the activation of complex transcriptional-response networks, many of which remain poorly understood. Here, we report that the zinc-finger protein, SLR-2, is a master stress regulator and is required for the normal response to pleiotropic stress conditions in Caenorhabditis elegans. Using bioinformatical tools, we identified an evolutionarily conserved nucleotide motif present in slr-2 stress-responsive genes and show that this motif is sufficient for stress induction under a variety of conditions. We also demonstrate that JMJC-1, a conserved Jumonji C domain protein, acts downstream of SLR-2 to mediate stress response in C. elegans. Moreover, the role of JMJC-1 in stress response is conserved in Drosophila and mammals. Finally, we provide evidence that the SLR-2-JMJC-1 pathway functions independently of the well-studied DAF-16/FOXO1 network. These findings point to a previously unrecognized phylogenetically conserved master stress-response pathway in metazoa.
Collapse
|
249
|
Abstract
The nicotinamide adenine dinucleotide (NAD)-activated protein deacetylase Sir2p/Sirt1 has been strongly implicated in the modulation of replicative lifespan and promotion of longevity. Part of Sirt1's capacity for lifespan extension in complex organisms may be attributed to its protective activity against neuronal degeneration. Manipulation of Sirt1's activity or levels by pharmacological and genetic means in several models of neurodegenerative diseases demonstrated its neuroprotective credentials. However, recent data have indicated that under certain contexts, Sirt1 inhibition, rather than activation, is neuroprotective. These inconsistencies highlight the complex nature of Sirt1-mediated effects. The enzyme has both histone and nonhistone targets, and could potentially act in both nuclear and cytoplasmic compartments. These activities intertwine in a manner depending on the context of a system under investigation. One needs to be cautious in extrapolating results derived from short-term observations to a longer-term context, and in assessing efficacies of Sirt1-based therapeutic approaches in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore.
| |
Collapse
|
250
|
Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation. Biochem Biophys Res Commun 2009; 391:778-82. [PMID: 19944671 DOI: 10.1016/j.bbrc.2009.11.137] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 11/24/2022]
Abstract
Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2alpha inhibitor, or overexpression of dominant negative mutants of PERK or eIF2alpha, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2alpha branch of UPR in RES-induced inhibition of cell proliferation.
Collapse
|