201
|
Abstract
In recent years, our views on how DNA and genes are organised and regulated have evolved significantly. One example is provided by reports that single DNA strands in the double helix could carry distinct forms of information. That chromatids carrying old and nascently replicated DNA strands are recognised by the mitotic machinery, then segregated in a concerted way to distinct daughter cells after cell division is remarkable. Notably, this phenomenon in several cases has been associated with the cell fate choice of resulting daughter cells. Here, we review the evidence for asymmetric or template DNA strand segregation in mammals with a focus on skeletal muscle.
Collapse
Affiliation(s)
- Brendan Evano
- Institut Pasteur, Stem Cells & Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 rue du Dr. Roux, Paris 75015, France
| | | |
Collapse
|
202
|
Motohashi N, Asakura A. Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2014; 2:1. [PMID: 25364710 PMCID: PMC4206996 DOI: 10.3389/fcell.2014.00001] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/14/2014] [Indexed: 01/17/2023] Open
Abstract
Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD.
Collapse
Affiliation(s)
- Norio Motohashi
- Department of Neurology, Paul and Sheila Wellstone Muscular Dystrophy Center, Stem Cell Institute, University of Minnesota Medical School Minneapolis, MN, USA
| | - Atsushi Asakura
- Department of Neurology, Paul and Sheila Wellstone Muscular Dystrophy Center, Stem Cell Institute, University of Minnesota Medical School Minneapolis, MN, USA
| |
Collapse
|
203
|
Ono Y. Satellite cell heterogeneity and hierarchy in skeletal muscle. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
204
|
|
205
|
Abstract
Since the seminal discovery of the cell-fate regulator Myod, studies in skeletal myogenesis have inspired the search for cell-fate regulators of similar potential in other tissues and organs. It was perplexing that a similar transcription factor for other tissues was not found; however, it was later discovered that combinations of molecular regulators can divert somatic cell fates to other cell types. With the new era of reprogramming to induce pluripotent cells, the myogenesis paradigm can now be viewed under a different light. Here, we provide a short historical perspective and focus on how the regulation of skeletal myogenesis occurs distinctly in different scenarios and anatomical locations. In addition, some interesting features of this tissue underscore the importance of reconsidering the simple-minded view that a single stem cell population emerges after gastrulation to assure tissuegenesis. Notably, a self-renewing long-term Pax7+ myogenic stem cell population emerges during development only after a first wave of terminal differentiation occurs to establish a tissue anlagen in the mouse. How the future stem cell population is selected in this unusual scenario will be discussed. Recently, a wealth of information has emerged from epigenetic and genome-wide studies in myogenic cells. Although key transcription factors such as Pax3, Pax7, and Myod regulate only a small subset of genes, in some cases their genomic distribution and binding are considerably more promiscuous. This apparent nonspecificity can be reconciled in part by the permissivity of the cell for myogenic commitment, and also by new roles for some of these regulators as pioneer transcription factors acting on chromatin state.
Collapse
Affiliation(s)
- Glenda Comai
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France.
| |
Collapse
|
206
|
Zhang Y, Han Q, Li C, Li W, Fan H, Xing Q, Yan B. Genetic analysis of the TBX1 gene promoter in indirect inguinal hernia. Gene 2013; 535:290-3. [PMID: 24295890 DOI: 10.1016/j.gene.2013.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 12/22/2022]
Abstract
Inguinal hernia is a common disease, most cases of which are indirect inguinal hernia (IIH). Genetic factors play an important role for inguinal hernia. Increased incidences of inguinal hernia have been reported in patients with 22q11.2 microdeletion syndrome, which is mainly caused by TBX1 gene mutations. Thus, we hypothesized that altered TBX1 gene expression may contribute to IIH development. In this study, the human TBX1 gene promoter was genetically analyzed in children with IIH (n=100) and ethnic-matched controls (n=167). Functions of DNA sequence variants (DSVs) within the TBX1 gene promoter were examined in cultured human fibroblast cells. The results showed that two heterozygous DSVs were found, both of which were single nucleotide polymorphisms. One DSV, g.4248 C>T (rs41298629), was identified in a 2-year-old boy with right-sided IIH, but not in all controls, which significantly decreased TBX1 gene promoter activity. Another DSV, g.4199 C>T (rs41260844), was found in both IIH patients and controls with similar frequencies (P>0.05), which did not affect TBX1 gene promoter activity. Collectively, our data suggested that the DSV within the TBX1 gene promoter may change TBX1 level, contributing to IIH development as a rare risk factor. Underlying molecular mechanisms need to be established.
Collapse
Affiliation(s)
- Yu Zhang
- Division of General Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Qingluan Han
- Division of General Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Chunyu Li
- Division of Electrocardiogram, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Wei Li
- Division of General Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Hongjin Fan
- Division of General Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Qining Xing
- Division of General Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
207
|
Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81. Nat Commun 2013; 4:1674. [PMID: 23575678 DOI: 10.1038/ncomms2675] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/01/2013] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle regeneration after injury follows a remarkable sequence of synchronized events. However, the mechanisms regulating the typical organization of the regenerating muscle at different stages remain largely unknown. Here we show that muscle regeneration in mice lacking either CD9 or CD81 is abnormal and characterized by the formation of discrete giant dystrophic myofibres, which form more quickly in the absence of both tetraspanins. We also show that, in myoblasts, these two tetraspanins associate with the immunoglobulin domain molecule CD9P-1 (EWI-F/FPRP), and that grafting of CD9P-1-depleted myoblasts in regenerating muscles also leads to abnormal regeneration. In vitro myotubes lacking CD9P-1 or both CD9 and CD81 fuse with a higher frequency than normal myotubes. Our study unveils a mechanism preventing inappropriate fusion of myotubes that has an important role in the restitution of normal muscle architecture during muscle regeneration.
Collapse
|
208
|
Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S. Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 2013; 45:2191-9. [DOI: 10.1016/j.biocel.2013.05.016] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 01/05/2023]
|
209
|
Ancestral Myf5 gene activity in periocular connective tissue identifies a subset of fibro/adipogenic progenitors but does not connote a myogenic origin. Dev Biol 2013; 385:366-79. [PMID: 23969310 DOI: 10.1016/j.ydbio.2013.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/21/2013] [Accepted: 08/13/2013] [Indexed: 11/23/2022]
Abstract
Extraocular muscles (EOM) represent a unique muscle group that controls eye movements and originates from head mesoderm, while the more typically studied body and limb muscles are somite-derived. Aiming to investigate myogenic progenitors (satellite cells) in EOM versus limb and diaphragm of adult mice, we have been using flow cytometry in combination with myogenic-specific Cre-loxP lineage marking for cell isolation. While analyzing cells from the EOM of mice that harbor Myf5(Cre)-driven GFP expression, we identified in addition to the expected GFP(+) myogenic cells (presumably satellite cells), a second dominant GFP(+) population distinguished as being Sca1(+), non-myogenic, and exhibiting a fibro/adipogenic potential. This unexpected population was not only unique to EOM compared to the other muscles but also specific to the Myf5(Cre)-driven reporter when compared to the MyoD(Cre) driver. Histological studies of periocular tissue preparations demonstrated the presence of Myf5(Cre)-driven GFP(+) cells in connective tissue locations adjacent to the muscle masses, including cells in the vasculature wall. These vasculature-associated GFP(+) cells were further identified as mural cells based on the presence of the specific XLacZ4 transgene. Unlike the EOM satellite cells that originate from a Pax3-negative lineage, these non-myogenic Myf5(Cre)-driven GFP(+) cells appear to be related to cells of a Pax3-expressing origin, presumably derived from the neural crest. In all, our lineage tracing based on multiple reporter lines has demonstrated that regardless of common ancestral expression of Myf5, there is a clear distinction between periocular myogenic and non-myogenic cell lineages according to their mutually exclusive antecedence of MyoD and Pax3 gene activity.
Collapse
|
210
|
Montarras D, L'honoré A, Buckingham M. Lying low but ready for action: the quiescent muscle satellite cell. FEBS J 2013; 280:4036-50. [DOI: 10.1111/febs.12372] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Didier Montarras
- Department of Developmental and Stem Cell Biology; CNRS URA 2578; Institut Pasteur; Paris; France
| | - Aurore L'honoré
- Department of Developmental and Stem Cell Biology; CNRS URA 2578; Institut Pasteur; Paris; France
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology; CNRS URA 2578; Institut Pasteur; Paris; France
| |
Collapse
|
211
|
Moncaut N, Rigby PWJ, Carvajal JJ. Dial M(RF) for myogenesis. FEBS J 2013; 280:3980-90. [DOI: 10.1111/febs.12379] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Moncaut
- Division of Cancer Biology; The Institute of Cancer Research; London; UK
| | - Peter W. J. Rigby
- Division of Cancer Biology; The Institute of Cancer Research; London; UK
| | - Jaime J. Carvajal
- Molecular Embryology Team; Centro Andaluz de Biología del Desarrollo; Seville; Spain
| |
Collapse
|
212
|
Caruso N, Herberth B, Bartoli M, Puppo F, Dumonceaux J, Zimmermann A, Denadai S, Lebossé M, Roche S, Geng L, Magdinier F, Attarian S, Bernard R, Maina F, Levy N, Helmbacher F. Deregulation of the protocadherin gene FAT1 alters muscle shapes: implications for the pathogenesis of facioscapulohumeral dystrophy. PLoS Genet 2013; 9:e1003550. [PMID: 23785297 PMCID: PMC3681729 DOI: 10.1371/journal.pgen.1003550] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 04/23/2013] [Indexed: 01/01/2023] Open
Abstract
Generation of skeletal muscles with forms adapted to their function is essential for normal movement. Muscle shape is patterned by the coordinated polarity of collectively migrating myoblasts. Constitutive inactivation of the protocadherin gene Fat1 uncoupled individual myoblast polarity within chains, altering the shape of selective groups of muscles in the shoulder and face. These shape abnormalities were followed by early onset regionalised muscle defects in adult Fat1-deficient mice. Tissue-specific ablation of Fat1 driven by Pax3-cre reproduced muscle shape defects in limb but not face muscles, indicating a cell-autonomous contribution of Fat1 in migrating muscle precursors. Strikingly, the topography of muscle abnormalities caused by Fat1 loss-of-function resembles that of human patients with facioscapulohumeral dystrophy (FSHD). FAT1 lies near the critical locus involved in causing FSHD, and Fat1 mutant mice also show retinal vasculopathy, mimicking another symptom of FSHD, and showed abnormal inner ear patterning, predictive of deafness, reminiscent of another burden of FSHD. Muscle-specific reduction of FAT1 expression and promoter silencing was observed in foetal FSHD1 cases. CGH array-based studies identified deletion polymorphisms within a putative regulatory enhancer of FAT1, predictive of tissue-specific depletion of FAT1 expression, which preferentially segregate with FSHD. Our study identifies FAT1 as a critical determinant of muscle form, misregulation of which associates with FSHD.
Collapse
Affiliation(s)
- Nathalie Caruso
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Balàzs Herberth
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Marc Bartoli
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Francesca Puppo
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Julie Dumonceaux
- INSERM U974, UMR 7215 CNRS, Institut de Myologie, UM 76 Université Pierre et Marie Curie, Paris, France
| | - Angela Zimmermann
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Simon Denadai
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Marie Lebossé
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Stephane Roche
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Linda Geng
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Frederique Magdinier
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
| | - Shahram Attarian
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
- AP-HM, Neurologie, maladies neuro-musculaires, Hôpital de la Timone, Marseille, France
| | - Rafaelle Bernard
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
- AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, Marseille, France
| | - Flavio Maina
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Nicolas Levy
- Aix-Marseille Université, Faculté de Médecine de la Timone, INSERM UMR 910, Marseille, France
- AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, Marseille, France
| | - Françoise Helmbacher
- Aix-Marseille Université, CNRS, IBDML UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| |
Collapse
|
213
|
Embryonic founders of adult muscle stem cells are primed by the determination gene Mrf4. Dev Biol 2013; 381:241-55. [PMID: 23623977 DOI: 10.1016/j.ydbio.2013.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/27/2013] [Accepted: 04/17/2013] [Indexed: 01/15/2023]
Abstract
Skeletal muscle satellite cells play a critical role during muscle growth, homoeostasis and regeneration. Selective induction of the muscle determination genes Myf5, Myod and Mrf4 during prenatal development can potentially impact on the reported functional heterogeneity of adult satellite cells. Accordingly, expression of Myf5 was reported to diminish the self-renewal potential of the majority of satellite cells. In contrast, virtually all adult satellite cells showed antecedence of Myod activity. Here we examine the priming of myogenic cells by Mrf4 throughout development. Using a Cre-lox based genetic strategy and novel highly sensitive Pax7 reporter alleles compared to the ubiquitous Rosa26-based reporters, we show that all adult satellite cells, independently of their anatomical location or embryonic origin, have been primed for Mrf4 expression. Given that Mrf4Cre and Mrf4nlacZ are active exclusively in progenitors during embryogenesis, whereas later expression is restricted to differentiated myogenic cells, our findings suggest that adult satellite cells emerge from embryonic founder cells in which the Mrf4 locus was activated. Therefore, this level of myogenic priming by induction of Mrf4, does not compromise the potential of the founder cells to assume an upstream muscle stem cell state. We propose that embryonic myogenic cells and the majority of adult muscle stem cells form a lineage continuum.
Collapse
|
214
|
Hebert SL, Daniel ML, McLoon LK. The role of Pitx2 in maintaining the phenotype of myogenic precursor cells in the extraocular muscles. PLoS One 2013; 8:e58405. [PMID: 23505501 PMCID: PMC3591328 DOI: 10.1371/journal.pone.0058405] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/04/2013] [Indexed: 12/11/2022] Open
Abstract
Many differences exist between extraocular muscles (EOM) and non-cranial skeletal muscles. One striking difference is the sparing of EOM in various muscular dystrophies compared to non-cranial skeletal muscles. EOM undergo continuous myonuclear remodeling in normal, uninjured adults, and distinct transcription factors are required for the early determination, development, and maintenance of EOM compared to limb skeletal muscle. Pitx2, a bicoid-like homeobox transcription factor, is required for the development of EOM and the maintenance of characteristic properties of the adult EOM phenotype, but is not required for the development of limb muscle. We hypothesize that these unique properties of EOM contribute to the constitutive differences between EOM and non-craniofacial skeletal muscles. Using flow cytometry, CD34(+)/Sca1(-/)CD45(-/)CD31(-) cells (EECD34 cells) were isolated from extraocular and limb skeletal muscle and in vitro, EOM EECD34 cells proliferated faster than limb muscle EECD34 cells. To further define these myogenic precursor cells from EOM and limb skeletal muscle, they were analyzed for their expression of Pitx2. Western blotting and immunohistochemical data demonstrated that EOM express higher levels of Pitx2 than limb muscle, and 80% of the EECD34 cells expressed Pitx2. siRNA knockdown of Pitx2 expression in EECD34 cells in vitro decreased proliferation rates and impaired the ability of EECD34 cells to fuse into multinucleated myotubes. High levels of Pitx2 were retained in dystrophic and aging mouse EOM and the EOM EECD34 cells compared to limb muscle. The differential expression of Pitx2 between EOM and limb skeletal muscle along with the functional changes in response to lower levels of Pitx2 expression in the myogenic precursor cells suggest a role for Pitx2 in the maintenance of constitutive differences between EOM and limb skeletal muscle that may contribute to the sparing of EOM in muscular dystrophies.
Collapse
Affiliation(s)
- Sadie L. Hebert
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mark L. Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
215
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
216
|
Song Y, McFarland DC, Velleman SG. Growth and sex effects on the expression of syndecan-4 and glypican-1 in turkey myogenic satellite cell populations. Mol Cell Biochem 2013; 378:65-72. [PMID: 23435996 DOI: 10.1007/s11010-013-1594-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
The adult skeletal muscle stem cells, satellite cells, are responsible for skeletal muscle growth and regeneration. Satellite cells represent a heterogeneous cell population that differentially express cell surface markers. The membrane-associated heparan sulfate proteoglycans, syndecan-4, and glypican-1, are differentially expressed by satellite cells during the proliferation and differentiation stages of satellite cells. However, how the population of syndecan-4- or glypican-1-positive satellite cells changes during proliferation and differentiation, and how sex and muscle growth potential affect the expression of these genes is unknown. Differences in the amount of satellite cells positive for syndecan-4 or glypican-1 would affect the process of proliferation and differentiation which would impact both muscle mass accretion and the regeneration of muscle. In the current study, the percentage of satellite cells positive for syndecan-4 or glypican-1 from male and female turkeys from a Randombred Control Line 2 and a line (F) selected for increased 16-week body weight were measured during proliferation and differentiation. Growth selection altered the population of syndecan-4- and glypican-1-positive satellite cells and there were sex differences in the percentage of syndecan-4- and glypican-1-positive satellite cells. This study provides new information on dynamic changes in syndecan-4- and glypican-1-positive satellite cells showing that they are differentially expressed during myogenesis and growth selection and sex affects their expression.
Collapse
Affiliation(s)
- Yan Song
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | | | | |
Collapse
|
217
|
Adachi N, Takechi M, Hirai T, Kuratani S. Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head. Evol Dev 2013; 14:257-76. [PMID: 23017074 DOI: 10.1111/j.1525-142x.2012.00543.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The vertebrate mesoderm differs distinctly between the head and trunk, and the evolutionary origin of the head mesoderm remains enigmatic. Although the presence of somite-like segmentation in the head mesoderm of model animals is generally denied at molecular developmental levels, the appearance of head cavities in elasmobranch embryos has not been explained, and the possibility that they may represent vestigial head somites once present in an amphioxus-like ancestor has not been ruled out entirely. To examine whether the head cavities in the shark embryo exhibit any molecular signatures reminiscent of trunk somites, we isolated several developmentally key genes, including Pax1, Pax3, Pax7, Pax9, Myf5, Sonic hedgehog, and Patched2, which are involved in myogenic and chondrogenic differentiation in somites, and Pitx2, Tbx1, and Engrailed2, which are related to the patterning of the head mesoderm, from an elasmobranch species, Scyliorhinus torazame. Observation of the expression patterns of these genes revealed that most were expressed in patterns that resembled those found in amniote embryos. In addition, the head cavities did not exhibit an overt similarity to somites; that is, the similarity was no greater than that of the unsegmented head mesoderm in other vertebrates. Moreover, the shark head mesoderm showed an amniote-like somatic/visceral distinction according to the expression of Pitx2, Tbx1, and Engrailed2. We conclude that the head cavities do not represent a manifestation of ancestral head somites; rather, they are more likely to represent a derived trait obtained in the lineage of gnathostomes.
Collapse
Affiliation(s)
- Noritaka Adachi
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | |
Collapse
|
218
|
Moncman CL, Andrade ME, McCool AA, McMullen CA, Andrade FH. Development transitions of thin filament proteins in rat extraocular muscles. Exp Cell Res 2013; 319:23-31. [PMID: 23174654 DOI: 10.1016/j.yexcr.2012.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 11/02/2012] [Accepted: 11/11/2012] [Indexed: 10/27/2022]
Abstract
Extraocular muscles are a unique subset of striated muscles. During postnatal development, the extraocular muscles undergo a number of myosin isoform transitions that occur between postnatal day P10 (P10) and P15. These include: (1) loss of embryonic myosin from the global layer resulting in the expression restricted to the orbital layer; (2) the onset of expression of extraocular myosin and the putative tonic myosin (myh 7b/14); and (3) the redistribution of nonmuscle myosin IIB from a subsarcolemmal position to a sarcomeric distribution in the slow fibers of the global layer. For this study, we examined the postnatal appearance and distribution of α-actinin, tropomyosin, and nebulin isoforms during postnatal development of the rat extraocular muscles. Although sarcomeric α-actinin is detectable from birth, α-actinin 3 appears around P15. Both tropomyosin-1 and -2 are present from birth in the same distribution as in the adult animal. The expression of nebulin was monitored by gel electrophoresis and western blots. At P5-10, nebulin exhibits a lower molecular mass than observed P15 and later during postnatal development. The changes in α-actinin 3 and nebulin expression between P10 and P15 coincide with transitions in myosin isoforms as detailed above. These data point to P10-P15 as the critical period for the maturation of the extraocular muscles, coinciding with eyelid opening.
Collapse
Affiliation(s)
- Carole L Moncman
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, United States.
| | | | | | | | | |
Collapse
|
219
|
Abstract
Muscles of the vertebrate neck include the cucullaris and hypobranchials. Although a functional neck first evolved in the lobe-finned fishes (Sarcopterygii) with the separation of the pectoral/shoulder girdle from the skull, the neck muscles themselves have a much earlier origin among the vertebrates. For example, lampreys possess hypobranchial muscles, and may also possess the cucullaris. Recent research in chick has established that these two muscles groups have different origins, the hypobranchial muscles having a somitic origin but the cucullaris muscle deriving from anterior lateral plate mesoderm associated with somites 1-3. Additionally, the cucullaris utilizes genetic pathways more similar to the head than the trunk musculature. Although the latter results are from experiments in the chick, cucullaris homologues occur in a variety of more basal vertebrates such as the sharks and zebrafish. Data are urgently needed from these taxa to determine whether the cucullaris in these groups also derives from lateral plate mesoderm or from the anterior somites, and whether the former or the latter represent the basal vertebrate condition. Other lateral plate mesoderm derivatives include the appendicular skeleton (fins, limbs and supporting girdles). If the cucullaris is a definitive lateral plate-derived structure it may have evolved in conjunction with the shoulder/limb skeleton in vertebrates and thereby provided a greater degree of flexibility to the heads of predatory vertebrates.
Collapse
Affiliation(s)
- Rolf Ericsson
- Department of Palaeontology, Natural History Museum, London, UK.
| | | | | |
Collapse
|
220
|
Della Gaspera B, Armand AS, Lecolle S, Charbonnier F, Chanoine C. Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis. PLoS One 2012; 7:e52359. [PMID: 23300648 PMCID: PMC3534117 DOI: 10.1371/journal.pone.0052359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
Xenopus myotome is formed by a first medial and lateral myogenesis directly arising from the presomitic mesoderm followed by a second myogenic wave emanating from the dermomyotome. Here, by a series of gain and loss of function experiments, we showed that Mef2d, a member of the Mef2 family of MADS-box transcription factors, appeared as an upstream regulator of lateral myogenesis, and as an inducer of dermomyotome formation at the beginning of neurulation. In the lateral presomitic cells, we showed that Mef2d transactivates Myod expression which is necessary for lateral myogenesis. In the most lateral cells of the presomitic mesoderm, we showed that Mef2d and Paraxis (Tcf15), a member of the Twist family of transcription factors, were co-localized and activate directly the expression of Meox2, which acts upstream of Pax3 expression during dermomyotome formation. Cell tracing experiments confirm that the most lateral Meox2 expressing cells of the presomitic mesoderm correspond to the dermomyotome progenitors since they give rise to the most dorsal cells of the somitic mesoderm. Thus, Xenopus Mef2d couples lateral myogenesis to dermomyotome formation before somite segmentation. These results together with our previous works reveal striking similarities between dermomyotome and tendon formation in Xenopus: both develop in association with myogenic cells and both involve a gene transactivation pathway where one member of the Mef2 family, Mef2d or Mef2c, cooperates with a bHLH protein of the Twist family, Paraxis or Scx (Scleraxis) respectively. We propose that these shared characteristics in Xenopus laevis reflect the existence of a vertebrate ancestral mechanism which has coupled the development of the myogenic cells to the formation of associated tissues during somite compartmentalization.
Collapse
Affiliation(s)
- Bruno Della Gaspera
- Centre d'Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France.
| | | | | | | | | |
Collapse
|
221
|
Garland CB, Pomerantz JH. Regenerative strategies for craniofacial disorders. Front Physiol 2012; 3:453. [PMID: 23248598 PMCID: PMC3521957 DOI: 10.3389/fphys.2012.00453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/12/2012] [Indexed: 01/26/2023] Open
Abstract
Craniofacial disorders present markedly complicated problems in reconstruction because of the complex interactions of the multiple, simultaneously affected tissues. Regenerative medicine holds promise for new strategies to improve treatment of these disorders. This review addresses current areas of unmet need in craniofacial reconstruction and emphasizes how craniofacial tissues differ from their analogs elsewhere in the body. We present a problem-based approach to illustrate current treatment strategies for various craniofacial disorders, to highlight areas of need, and to suggest regenerative strategies for craniofacial bone, fat, muscle, nerve, and skin. For some tissues, current approaches offer excellent reconstructive solutions using autologous tissue or prosthetic materials. Thus, new “regenerative” approaches would need to offer major advantages in order to be adopted. In other tissues, the unmet need is great, and we suggest the greatest regenerative need is for muscle, skin, and nerve. The advent of composite facial tissue transplantation and the development of regenerative medicine are each likely to add important new paradigms to our treatment of craniofacial disorders.
Collapse
Affiliation(s)
- Catharine B Garland
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California San Francisco San Francisco, CA, USA ; Craniofacial and Mesenchymal Biology Program, University of California San Francisco San Francisco, CA, USA
| | | |
Collapse
|
222
|
Carvajal Monroy PL, Grefte S, Kuijpers-Jagtman AM, Wagener FADTG, Von den Hoff JW. Strategies to improve regeneration of the soft palate muscles after cleft palate repair. TISSUE ENGINEERING. PART B, REVIEWS 2012; 18:468-77. [PMID: 22697475 PMCID: PMC3696944 DOI: 10.1089/ten.teb.2012.0049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/12/2012] [Indexed: 12/13/2022]
Abstract
Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. These patients are unable to separate the nasal from the oral cavity leading to air loss during speech. Although surgical repair ameliorates soft palate function by joining the clefted muscles of the soft palate, optimal function is often not achieved. The regeneration of muscles in the soft palate after surgery is hampered because of (1) their low intrinsic regenerative capacity, (2) the muscle properties related to clefting, and (3) the development of fibrosis. Adjuvant strategies based on tissue engineering may improve the outcome after surgery by approaching these specific issues. Therefore, this review will discuss myogenesis in the noncleft and cleft palate, the characteristics of soft palate muscles, and the process of muscle regeneration. Finally, novel therapeutic strategies based on tissue engineering to improve soft palate function after surgical repair are presented.
Collapse
Affiliation(s)
- Paola L Carvajal Monroy
- Department of Orthodontics and Craniofacial Biology, at the Nijmegen Centre for Molecular Life Sciences of the Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
223
|
Mourikis P, Gopalakrishnan S, Sambasivan R, Tajbakhsh S. Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development 2012; 139:4536-48. [PMID: 23136394 DOI: 10.1242/dev.084756] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During organogenesis, a continuum of founder stem cells produces temporally distinct progeny until development is complete. Similarly, in skeletal myogenesis, phenotypically and functionally distinct myoblasts and differentiated cells are generated during development. How this occurs in muscle and other tissues in vertebrates remains largely unclear. We showed previously that committed cells are required for maintaining muscle stem cells. Here we show that active Notch signalling specifies a subpopulation of myogenic cells with high Pax7 expression. By genetically modulating Notch activity, we demonstrate that activated Notch (NICD) blocks terminal differentiation in an Rbpj-dependent manner that is sufficient to sustain stem/progenitor cells throughout embryogenesis, despite the absence of committed progeny. Although arrested in lineage progression, NICD-expressing cells of embryonic origin progressively mature and adopt characteristics of foetal myogenic cells, including expression of the foetal myogenesis regulator Nfix. siRNA-mediated silencing of NICD promotes the temporally appropriate foetal myogenic fate in spite of expression of markers for multiple cell types. We uncover a differential effect of Notch, whereby high Notch activity is associated with stem/progenitor cell expansion in the mouse embryo, yet it promotes reversible cell cycle exit in the foetus and the appearance of an adult muscle stem cell state. We propose that active Notch signalling is sufficient to sustain an upstream population of muscle founder stem cells while suppressing differentiation. Significantly, Notch does not override other signals that promote temporal myogenic cell fates during ontology where spatiotemporal developmental cues produce distinct phenotypic classes of myoblasts.
Collapse
Affiliation(s)
- Philippos Mourikis
- Stem Cells and Development, Department of Developmental Biology, CNRS URA 2578, Institut Pasteur, 25 rue du Dr Roux, 75105 Paris, France
| | | | | | | |
Collapse
|
224
|
Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis. Proc Natl Acad Sci U S A 2012; 109:18839-44. [PMID: 23112163 DOI: 10.1073/pnas.1208690109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.
Collapse
|
225
|
Wilschut KJ, Ling VB, Bernstein HS. Concise review: stem cell therapy for muscular dystrophies. Stem Cells Transl Med 2012. [PMID: 23197695 DOI: 10.5966/sctm.2012-0071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Muscular dystrophy comprises a group of genetic diseases that cause progressive weakness and degeneration of skeletal muscle resulting from defective proteins critical to muscle structure and function. This leads to premature exhaustion of the muscle stem cell pool that maintains muscle integrity during normal use and exercise. Stem cell therapy holds promise as a treatment for muscular dystrophy by providing cells that can both deliver functional muscle proteins and replenish the stem cell pool. Here, we review the current state of research on myogenic stem cells and identify the important challenges that must be addressed as stem cell therapy is brought to the clinic.
Collapse
|
226
|
Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 2012; 139:2845-56. [PMID: 22833472 DOI: 10.1242/dev.069088] [Citation(s) in RCA: 593] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Following their discovery in 1961, it was speculated that satellite cells were dormant myoblasts, held in reserve until required for skeletal muscle repair. Evidence for this accumulated over the years, until the link between satellite cells and the myoblasts that appear during muscle regeneration was finally established. Subsequently, it was demonstrated that, when grafted, satellite cells could also self-renew, conferring on them the coveted status of 'stem cell'. The emergence of other cell types with myogenic potential, however, questioned the precise role of satellite cells. Here, we review recent recombination-based studies that have furthered our understanding of satellite cell biology. The clear consensus is that skeletal muscle does not regenerate without satellite cells, confirming their pivotal and non-redundant role.
Collapse
|
227
|
Guan Y, Gorenshteyn D, Burmeister M, Wong AK, Schimenti JC, Handel MA, Bult CJ, Hibbs MA, Troyanskaya OG. Tissue-specific functional networks for prioritizing phenotype and disease genes. PLoS Comput Biol 2012; 8:e1002694. [PMID: 23028291 PMCID: PMC3459891 DOI: 10.1371/journal.pcbi.1002694] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 08/02/2012] [Indexed: 12/16/2022] Open
Abstract
Integrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes. Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is challenging, as “functionality” and “functional relationships” are often not resolved for specific tissue types. We address this challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-specific networks as compared to the global functional network. We used a testis-specific functional relationship network to predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-specific effects of genetic perturbations, diseases and drugs. Tissue specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. We propose an effective strategy to model tissue-specific functional relationship networks in the laboratory mouse. We integrated large scale genomics datasets as well as low-throughput tissue-specific expression profiles to estimate the probability that two proteins are co-functioning in the tissue under study. These networks can accurately reflect the diversity of protein functions across different organs and tissue compartments. By computationally exploring the tissue-specific networks, we can accurately predict novel phenotype-related gene candidates. We experimentally confirmed a top candidate gene, Mybl1, to affect several male fertility phenotypes, predicted based on male-reproductive system-specific networks and we predicted candidates related to a rare genetic disease ataxia, which are supported by experimental and literature evidence. The above results demonstrate the power of modeling tissue-specific dynamics of co-functionality through computational approaches.
Collapse
Affiliation(s)
- Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dmitriy Gorenshteyn
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Margit Burmeister
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular & Behavioral Neuroscience Institution, Department of Psychiatry, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aaron K. Wong
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - John C. Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Mary Ann Handel
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Carol J. Bult
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Matthew A. Hibbs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Trinity University, Computer Science Department, San Antonio, Texas, United States of America
- * E-mail: (MAH); (OGT)
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (MAH); (OGT)
| |
Collapse
|
228
|
Della Gaspera B, Armand AS, Sequeira I, Chesneau A, Mazabraud A, Lécolle S, Charbonnier F, Chanoine C. Myogenic waves and myogenic programs during Xenopus embryonic myogenesis. Dev Dyn 2012; 241:995-1007. [PMID: 22434732 DOI: 10.1002/dvdy.23780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Although Xenopus is a key model organism in developmental biology, little is known about the myotome formation in this species. Here, we assessed the expression of myogenic regulatory factors of the Myod family (MRFs) during embryonic development and revealed distinct MRF programs. RESULTS The expression pattern of each MRF during embryonic development highlights three successive myogenic waves. We showed that a first median and lateral myogenesis initiates before dermomyotome formation: the median cell population expresses Myf5, Myod, and Mrf4, whereas the lateral one expresses Myod, moderate levels of Myogenin and Mrf4. The second wave of myoblasts arising from the dermomyotome is characterized by the full MRF program expression, with high levels of Myogenin. The third wave is revealed by Myf5 expression in the myotome and could contribute to the formation of plurinucleated fibers at larval stages. Furthermore, Myf5- or Myod-expressing anlagen are identified in craniofacial myogenesis. CONCLUSIONS The first median and lateral myogenesis and their associated MRF programs have probably disappeared in mammals. However, some aspects of Xenopus myogenesis have been conserved such as the development of somitic muscles by successive myogenic waves and the existence of Myf5-dependent and -independent lineages.
Collapse
Affiliation(s)
- Bruno Della Gaspera
- Centre d'Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
Satellite cells represent the primary population of stem cells resident in skeletal muscle. These adult muscle stem cells facilitate the postnatal growth, remodeling, and regeneration of skeletal muscle. Given the remarkable regenerative potential of satellite cells, there is great promise for treatment of muscle pathologies such as the muscular dystrophies with this cell population. Various protocols have been developed which allow for isolation, enrichment, and expansion of satellite cell derived muscle stem cells. However, isolated satellite cells have yet to translate into effective modalities for therapeutic intervention. Broadening our understanding of satellite cells and their niche requirements should improve our in vivo and ex vivo manipulation of these cells to expedite their use for regeneration of diseased muscle. This review explores the fates of satellite cells as determined by their molecular signatures, ontogeny, and niche dependent programming.
Collapse
Affiliation(s)
- Arif Aziz
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, Canada K1H 8L6
| | | | | |
Collapse
|
230
|
Ippolito J, Arpke RW, Haider KT, Zhang J, Kyba M. Satellite cell heterogeneity revealed by G-Tool, an open algorithm to quantify myogenesis through colony-forming assays. Skelet Muscle 2012; 2:13. [PMID: 22703589 PMCID: PMC3439689 DOI: 10.1186/2044-5040-2-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/15/2012] [Indexed: 12/14/2022] Open
Abstract
Background Muscle growth and repair is accomplished by the satellite cell pool, a self-renewing population of myogenic progenitors. Functional heterogeneity within the satellite cell compartment and changes in potential with experimental intervention can be revealed by in vitro colony-forming cell (CFC) assays, however large numbers of colonies need to be assayed to give meaningful data, and manually quantifying nuclei and scoring markers of differentiation is experimentally limiting. Methods We present G-Tool, a multiplatform (Java) open-source algorithm that analyzes an ensemble of fluorescent micrographs of satellite cell-derived colonies to provide quantitative and statistically meaningful metrics of myogenic potential, including proliferation capacity and propensity to differentiate. Results We demonstrate the utility of G-Tool in two applications: first, we quantify the response of satellite cells to oxygen concentration. Compared to 3% oxygen which approximates tissue levels, we find that 21% oxygen, the ambient level, markedly limits the proliferative potential of transit amplifying progeny but at the same time inhibits the rate of terminal myogenic differentiation. We also test whether satellite cells from different muscles have intrinsic differences that can be read out in vitro. Compared to masseter, dorsi, forelimb and hindlimb muscles, we find that the diaphragm satellite cells have significantly increased proliferative potential and a reduced propensity to spontaneously differentiate. These features may be related to the unique always-active status of the diaphragm. Conclusions G-Tool facilitates consistent and reproducible CFC analysis between experiments and individuals. It is released under an open-source license that enables further development by interested members of the community.
Collapse
Affiliation(s)
- Joseph Ippolito
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | |
Collapse
|
231
|
Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity. Nat Commun 2012; 3:903. [DOI: 10.1038/ncomms1890] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/04/2012] [Indexed: 12/17/2022] Open
|
232
|
Yusuf F, Brand-Saberi B. Myogenesis and muscle regeneration. Histochem Cell Biol 2012; 138:187-99. [DOI: 10.1007/s00418-012-0972-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 12/27/2022]
|
233
|
Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 2012; 30:243-52. [PMID: 22069237 DOI: 10.1002/stem.775] [Citation(s) in RCA: 359] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Notch signaling plays a key role in virtually all tissues and organs in metazoans; however, limited examples are available for the regulatory role of this pathway in adult quiescent stem cells. We performed a temporal and ontological assessment of effectors of the Notch pathway that indicated highest activity in freshly isolated satellite cells and, unexpectedly, a sharp decline before the first mitosis, and subsequently in proliferating, satellite cell-derived myoblasts. Using genetic tools to conditionally abrogate canonical Notch signaling during homeostasis, we demonstrate that satellite cells differentiate spontaneously and contribute to myofibers, thereby resulting in a severe depletion of the stem cell pool. Furthermore, whereas loss of Rbpj function provokes some satellite cells to proliferate before fusing, strikingly, the majority of mutant cells terminally differentiate unusually from the quiescent state, without passing through S-phase. This study establishes Notch signaling pathway as the first regulator of cellular quiescence in adult muscle stem cells.
Collapse
Affiliation(s)
- Philippos Mourikis
- Stem Cells & Development, Department of Developmental Biology, Institut Pasteur, CNRS URA 2578, Paris, France
| | | | | | | | | | | |
Collapse
|
234
|
Schaub C, Nagaso H, Jin H, Frasch M. Org-1, the Drosophila ortholog of Tbx1, is a direct activator of known identity genes during muscle specification. Development 2012; 139:1001-12. [PMID: 22318630 DOI: 10.1242/dev.073890] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the T-Box gene family of transcription factors are important players in regulatory circuits that generate myogenic and cardiogenic lineage diversities in vertebrates. We show that during somatic myogenesis in Drosophila, the single ortholog of vertebrate Tbx1, optomotor-blind-related-gene-1 (org-1), is expressed in a small subset of muscle progenitors, founder cells and adult muscle precursors, where it overlaps with the products of the muscle identity genes ladybird (lb) and slouch (slou). In addition, org-1 is expressed in the lineage of the heart-associated alary muscles. org-1 null mutant embryos lack Lb and Slou expression within the muscle lineages that normally co-express org-1. As a consequence, the respective muscle fibers and adult muscle precursors are either severely malformed or missing, as are the alary muscles. To address the mechanisms that mediate these regulatory interactions between Org-1, Lb and Slou, we characterized distinct enhancers associated with somatic muscle expression of lb and slou. We demonstrate that these lineage- and stage-specific cis-regulatory modules (CRMs) bind Org-1 in vivo, respond to org-1 genetically and require T-box domain binding sites for their activation. In summary, we propose that org-1 is a common and direct upstream regulator of slou and lb in the developmental pathway of these two neighboring muscle lineages. Cross-repression between slou and lb and combinatorial activation of lineage-specific targets by Org-1-Slou and Org-1-Lb, respectively, then leads to the distinction between the two lineages. These findings provide new insights into the regulatory circuits that control the proper pattering of the larval somatic musculature in Drosophila.
Collapse
Affiliation(s)
- Christoph Schaub
- Friedrich-Alexander University of Erlangen-Nuremberg, Department of Biology, Division of Developmental Biology, Staudtstrasse 5, Erlangen, Germany
| | | | | | | |
Collapse
|
235
|
Moncaut N, Cross JW, Siligan C, Keith A, Taylor K, Rigby PWJ, Carvajal JJ. Musculin and TCF21 coordinate the maintenance of myogenic regulatory factor expression levels during mouse craniofacial development. Development 2012; 139:958-67. [PMID: 22318627 DOI: 10.1242/dev.068015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The specification of the skeletal muscle lineage during craniofacial development is dependent on the activity of MYF5 and MYOD, two members of the myogenic regulatory factor family. In the absence of MYF5 or MYOD there is not an overt muscle phenotype, whereas in the double Myf5;MyoD knockout branchiomeric myogenic precursors fail to be specified and skeletal muscle is not formed. The transcriptional regulation of Myf5 is controlled by a multitude of regulatory elements acting at different times and anatomical locations, with at least five operating in the branchial arches. By contrast, only two enhancers have been implicated in the regulation of MyoD. In this work, we characterize an enhancer element that drives Myf5 expression in the branchial arches from 9.5 days post-coitum and show that its activity in the context of the entire locus is dependent on two highly conserved E-boxes. These binding sites are required in a subset of Myf5-expressing cells including both progenitors and those which have entered the myogenic pathway. The correct levels of expression of Myf5 and MyoD result from activation by musculin and TCF21 through direct binding to specific enhancers. Consistent with this, we show that in the absence of musculin the timing of activation of Myf5 and MyoD is not affected but the expression levels are significantly reduced. Importantly, normal levels of Myf5 expression are restored at later stages, which might explain the absence of particular muscles in the Msc;Tcf21 double-knockout mice.
Collapse
Affiliation(s)
- Natalia Moncaut
- Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, UK
| | | | | | | | | | | | | |
Collapse
|
236
|
Han D, Zhao H, Parada C, Hacia JG, Bringas P, Chai Y. A TGFβ-Smad4-Fgf6 signaling cascade controls myogenic differentiation and myoblast fusion during tongue development. Development 2012; 139:1640-50. [PMID: 22438570 DOI: 10.1242/dev.076653] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The tongue is a muscular organ and plays a crucial role in speech, deglutition and taste. Despite the important physiological functions of the tongue, little is known about the regulatory mechanisms of tongue muscle development. TGFβ family members play important roles in regulating myogenesis, but the functional significance of Smad-dependent TGFβ signaling in regulating tongue skeletal muscle development remains unclear. In this study, we have investigated Smad4-mediated TGFβ signaling in the development of occipital somite-derived myogenic progenitors during tongue morphogenesis through tissue-specific inactivation of Smad4 (using Myf5-Cre;Smad4(flox/flox) mice). During the initiation of tongue development, cranial neural crest (CNC) cells occupy the tongue buds before myogenic progenitors migrate into the tongue primordium, suggesting that CNC cells play an instructive role in guiding tongue muscle development. Moreover, ablation of Smad4 results in defects in myogenic terminal differentiation and myoblast fusion. Despite compromised muscle differentiation, tendon formation appears unaffected in the tongue of Myf5-Cre;Smad4(flox/flox) mice, suggesting that the differentiation and maintenance of CNC-derived tendon cells are independent of Smad4-mediated signaling in myogenic cells in the tongue. Furthermore, loss of Smad4 results in a significant reduction in expression of several members of the FGF family, including Fgf6 and Fgfr4. Exogenous Fgf6 partially rescues the tongue myoblast fusion defect of Myf5-Cre;Smad4(flox/flox) mice. Taken together, our study demonstrates that a TGFβ-Smad4-Fgf6 signaling cascade plays a crucial role in myogenic cell fate determination and lineage progression during tongue myogenesis.
Collapse
Affiliation(s)
- Dong Han
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
237
|
Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 2012; 148:112-25. [PMID: 22265406 DOI: 10.1016/j.cell.2011.11.049] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/20/2011] [Accepted: 11/03/2011] [Indexed: 12/31/2022]
Abstract
Satellite cells are adult skeletal muscle stem cells that are quiescent and constitute a poorly defined heterogeneous population. Using transgenic Tg:Pax7-nGFP mice, we show that Pax7-nGFP(Hi) cells are less primed for commitment and have a lower metabolic status and delayed first mitosis compared to Pax7-nGFP(Lo) cells. Pax7-nGFP(Hi) can give rise to Pax7-nGFP(Lo) cells after serial transplantations. Proliferating Pax7-nGFP(Hi) cells exhibit lower metabolic activity, and the majority performs asymmetric DNA segregation during cell division, wherein daughter cells retaining template DNA strands express stem cell markers. Using chromosome orientation-fluorescence in situ hybridization, we demonstrate that all chromatids segregate asymmetrically, whereas Pax7-nGFP(Lo) cells perform random DNA segregation. Therefore, quiescent Pax7-nGFP(Hi) cells represent a reversible dormant stem cell state, and during muscle regeneration, Pax7-nGFP(Hi) cells generate distinct daughter cell fates by asymmetrically segregating template DNA strands to the stem cell. These findings provide major insights into the biology of stem cells that segregate DNA asymmetrically.
Collapse
Affiliation(s)
- Pierre Rocheteau
- Institut Pasteur, Stem Cells and Development, Department of Developmental Biology, CNRS URA 2578, 25 rue du Dr. Roux, Paris 75015, France
| | | | | | | | | |
Collapse
|
238
|
Gayraud-Morel B, Chrétien F, Jory A, Sambasivan R, Negroni E, Flamant P, Soubigou G, Coppée JY, Di Santo J, Cumano A, Mouly V, Tajbakhsh S. Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells. J Cell Sci 2012; 125:1738-49. [PMID: 22366456 DOI: 10.1242/jcs.097006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Skeletal muscle stem cell fate in adult mice is regulated by crucial transcription factors, including the determination genes Myf5 and Myod. The precise role of Myf5 in regulating quiescent muscle stem cells has remained elusive. Here we show that most, but not all, quiescent satellite cells express Myf5 protein, but at varying levels, and that resident Myf5 heterozygous muscle stem cells are more primed for myogenic commitment compared with wild-type satellite cells. Paradoxically however, heterotypic transplantation of Myf5 heterozygous cells into regenerating muscles results in higher self-renewal capacity compared with wild-type stem cells, whereas myofibre regenerative capacity is not altered. By contrast, Pax7 haploinsufficiency does not show major modifications by transcriptome analysis. These observations provide a mechanism linking Myf5 levels to muscle stem cell heterogeneity and fate by exposing two distinct and opposing phenotypes associated with Myf5 haploinsufficiency. These findings have important implications for how stem cell fates can be modulated by crucial transcription factors while generating a pool of responsive heterogeneous cells.
Collapse
Affiliation(s)
- Barbara Gayraud-Morel
- Stem Cells and Development, Department of Developmental Biology, Institut Pasteur, CNRS URA 2578, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Grefte S, Kuijpers MAR, Kuijpers-Jagtman AM, Torensma R, Von den Hoff JW. Myogenic capacity of muscle progenitor cells from head and limb muscles. Eur J Oral Sci 2012; 120:38-45. [PMID: 22288919 DOI: 10.1111/j.1600-0722.2011.00920.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The restoration of muscles in the soft palate of patients with cleft lip and/or palate is accompanied by fibrosis, which leads to speech and feeding problems. Treatment strategies that improve muscle regeneration have only been tested in limb muscles. Therefore, in the present study the myogenic potential of muscle progenitor cells (MPCs) isolated from head muscles was compared with that of limb muscles. Muscle progenitor cells were isolated from the head muscles and limb muscles of rats and cultured. The proliferation of MPCs was analysed by DNA quantification. The differentiation capacity was analysed by quantifying the numbers of fused cells, and by measuring the mRNA levels of differentiation markers. Muscle progenitor cells were stained to quantify the expression of paired box protein Pax 7 (Pax-7), myoblast determination protein 1 (MyoD), and myogenin. Proliferation was similar in the head MPCs and the limb MPCs. Differentiating head and limb MPCs showed a comparable number of fused cells and mRNA expression levels of myosin-1 (Myh1), myosin-3 (Myh3), and myosin-4 (Myh4). During proliferation and differentiation, the number of Pax-7(+), MyoD(+), and myogenin(+) cells in head and limb MPCs was equal. It was concluded that head and limb MPCs show similar myogenic capacities in vitro. Therefore, in vivo myogenic differences between those muscles might rely on the local microenvironment. Thus, regenerative strategies for limb muscles might also be used for head muscles.
Collapse
Affiliation(s)
- Sander Grefte
- Radboud University Nijmegen Medical Centre, Department of Orthodontics and Craniofacial Biology, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
240
|
Yablonka-Reuveni Z. The skeletal muscle satellite cell: still young and fascinating at 50. J Histochem Cytochem 2012; 59:1041-59. [PMID: 22147605 DOI: 10.1369/0022155411426780] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell's indispensable role in muscle repair has been reaffirmed.
Collapse
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| |
Collapse
|
241
|
Efficient in vitro myogenic reprogramming of human primary mesenchymal stem cells and endothelial cells by Myf5. Biol Cell 2012; 103:531-42. [DOI: 10.1042/bc20100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
242
|
Takagaki Y, Yamagishi H, Matsuoka R. Factors Involved in Signal Transduction During Vertebrate Myogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:187-272. [DOI: 10.1016/b978-0-12-394307-1.00004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
243
|
Patel K, Morgan J. 185th ENMC International Workshop: stem/precursor cells as a therapeutic strategy for muscular dystrophies 3-5 June 2011, Naarden, The Netherlands. Neuromuscul Disord 2011; 22:447-52. [PMID: 22130186 DOI: 10.1016/j.nmd.2011.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/29/2011] [Indexed: 01/06/2023]
Affiliation(s)
- Ketan Patel
- School of Biological Sciences, University of Reading, Hopkins Building, Reading RG6 6UB, UK
| | | |
Collapse
|
244
|
Aare S, Ochala J, Norman HS, Radell P, Eriksson LI, Göransson H, Chen YW, Hoffman EP, Larsson L. Mechanisms underlying the sparing of masticatory versus limb muscle function in an experimental critical illness model. Physiol Genomics 2011; 43:1334-50. [PMID: 22010006 DOI: 10.1152/physiolgenomics.00116.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute quadriplegic myopathy (AQM) is a common debilitating acquired disorder in critically ill intensive care unit (ICU) patients that is characterized by tetraplegia/generalized weakness of limb and trunk muscles. Masticatory muscles, on the other hand, are typically spared or less affected, yet the mechanisms underlying this striking muscle-specific difference remain unknown. This study aims to evaluate physiological parameters and the gene expression profiles of masticatory and limb muscles exposed to factors suggested to trigger AQM, such as mechanical ventilation, immobilization, neuromuscular blocking agents, corticosteroids (CS), and sepsis for 5 days by using a unique porcine model mimicking the ICU conditions. Single muscle fiber cross-sectional area and force-generating capacity, i.e., maximum force normalized to fiber cross-sectional area (specific force), revealed maintained masseter single muscle fiber cross-sectional area and specific-force after 5 days' exposure to all triggering factors. This is in sharp contrast to observations in limb and trunk muscles, showing a dramatic decline in specific force in response to 5 days' exposure to the triggering factors. Significant differences in gene expression were observed between craniofacial and limb muscles, indicating a highly complex and muscle-specific response involving transcription and growth factors, heat shock proteins, matrix metalloproteinase inhibitor, oxidative stress responsive elements, and sarcomeric proteins underlying the relative sparing of cranial vs. spinal nerve innervated muscles during exposure to the ICU intervention.
Collapse
Affiliation(s)
- Sudhakar Aare
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 2011; 138:3647-56. [PMID: 21828093 DOI: 10.1242/dev.067587] [Citation(s) in RCA: 664] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Distinct cell populations with regenerative capacity have been reported to contribute to myofibres after skeletal muscle injury, including non-satellite cells as well as myogenic satellite cells. However, the relative contribution of these distinct cell types to skeletal muscle repair and homeostasis and the identity of adult muscle stem cells remain unknown. We generated a model for the conditional depletion of satellite cells by expressing a human diphtheria toxin receptor under control of the murine Pax7 locus. Intramuscular injection of diphtheria toxin during muscle homeostasis, or combined with muscle injury caused by myotoxins or exercise, led to a marked loss of muscle tissue and failure to regenerate skeletal muscle. Moreover, the muscle tissue became infiltrated by inflammatory cells and adipocytes. This localised loss of satellite cells was not compensated for endogenously by other cell types, but muscle regeneration was rescued after transplantation of adult Pax7(+) satellite cells alone. These findings indicate that other cell types with regenerative potential depend on the presence of the satellite cell population, and these observations have important implications for myopathic conditions and stem cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Ramkumar Sambasivan
- Institut Pasteur, Stem Cells and Development, CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
247
|
Takechi M, Takeuchi M, Ota KG, Nishimura O, Mochii M, Itomi K, Adachi N, Takahashi M, Fujimoto S, Tarui H, Okabe M, Aizawa S, Kuratani S. Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:526-46. [PMID: 21809437 DOI: 10.1002/jez.b.21427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 06/14/2011] [Indexed: 02/02/2023]
Abstract
Because of their crucial phylogenetic positions, hagfishes, sharks, and bichirs are recognized as key taxa in our understanding of vertebrate evolution. The expression patterns of the regulatory genes involved in developmental patterning have been analyzed in the context of evolutionary developmental studies. However, in a survey of public sequence databases, we found that the large-scale sequence data for these taxa are still limited. To address this deficit, we used conventional Sanger DNA sequencing and a next-generation sequencing technology based on 454 GS FLX sequencing to obtain expressed sequence tags (ESTs) of the Japanese inshore hagfish (Eptatretus burgeri; 161,482 ESTs), cloudy catshark (Scyliorhinus torazame; 165,819 ESTs), and gray bichir (Polypterus senegalus; 34,336 ESTs). We deposited the ESTs in a newly constructed database, designated the "Vertebrate TimeCapsule." The ESTs include sequences from genes that can be effectively used in evolutionary developmental studies; for instance, several encode cartilaginous extracellular matrix proteins, which are central to an understanding of the ways in which evolutionary processes affected the skeletal elements, whereas others encode regulatory genes involved in craniofacial development and early embryogenesis. Here, we discuss how hagfishes, sharks, and bichirs contribute to our understanding of vertebrate evolution, we review the current status of the publicly available sequence data for these three taxa, and we introduce our EST projects and newly developed database.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Braun T, Gautel M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 2011; 12:349-61. [PMID: 21602905 DOI: 10.1038/nrm3118] [Citation(s) in RCA: 503] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscle is the dominant organ system in locomotion and energy metabolism. Postnatal muscle grows and adapts largely by remodelling pre-existing fibres, whereas embryonic muscle grows by the proliferation of myogenic cells. Recently, the genetic hierarchies of the myogenic transcription factors that control vertebrate muscle development - by myoblast proliferation, migration, fusion and functional adaptation into fast-twitch and slow-twitch fibres - have become clearer. The transcriptional mechanisms controlling postnatal hypertrophic growth, remodelling and functional differentiation redeploy myogenic factors in concert with serum response factor (SRF), JUNB and forkhead box protein O3A (FOXO3A). It has also emerged that there is extensive post-transcriptional regulation by microRNAs in development and postnatal remodelling.
Collapse
Affiliation(s)
- Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Department for Cardiac Development and Remodelling, Benekestrasse, Bad Nauheim, Germany. thomas.braun@ mpi-bn.mpg.de
| | | |
Collapse
|
249
|
Hinits Y, Williams VC, Sweetman D, Donn TM, Ma TP, Moens CB, Hughes SM. Defective cranial skeletal development, larval lethality and haploinsufficiency in Myod mutant zebrafish. Dev Biol 2011; 358:102-12. [PMID: 21798255 DOI: 10.1016/j.ydbio.2011.07.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022]
Abstract
Myogenic regulatory factors of the myod family (MRFs) are transcription factors essential for mammalian skeletal myogenesis. Here we show that a mutation in the zebrafish myod gene delays and reduces early somitic and pectoral fin myogenesis, reduces miR-206 expression, and leads to a persistent reduction in somite size until at least the independent feeding stage. A mutation in myog, encoding a second MRF, has little obvious phenotype at early stages, but exacerbates the loss of somitic muscle caused by lack of Myod. Mutation of both myod and myf5 ablates all skeletal muscle. Haploinsufficiency of myod leads to reduced embryonic somite muscle bulk. Lack of Myod causes a severe reduction in cranial musculature, ablating most muscles including the protractor pectoralis, a putative cucullaris homologue. This phenotype is accompanied by a severe dysmorphology of the cartilaginous skeleton and failure of maturation of several cranial bones, including the opercle. As myod expression is restricted to myogenic cells, the data show that myogenesis is essential for proper skeletogenesis in the head.
Collapse
Affiliation(s)
- Yaniv Hinits
- Randall Division for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
250
|
Bothe I, Tenin G, Oseni A, Dietrich S. Dynamic control of head mesoderm patterning. Development 2011; 138:2807-21. [DOI: 10.1242/dev.062737] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The embryonic head mesoderm gives rise to cranial muscle and contributes to the skull and heart. Prior to differentiation, the tissue is regionalised by the means of molecular markers. We show that this pattern is established in three discrete phases, all depending on extrinsic cues. Assaying for direct and first-wave indirect responses, we found that the process is controlled by dynamic combinatorial as well as antagonistic action of retinoic acid (RA), Bmp and Fgf signalling. In phase 1, the initial anteroposterior (a-p) subdivision of the head mesoderm is laid down in response to falling RA levels and activation of Fgf signalling. In phase 2, Bmp and Fgf signalling reinforce the a-p boundary and refine anterior marker gene expression. In phase 3, spreading Fgf signalling drives the a-p expansion of MyoR and Tbx1 expression along the pharynx, with RA limiting the expansion of MyoR. This establishes the mature head mesoderm pattern with markers distinguishing between the prospective extra-ocular and jaw skeletal muscles, the branchiomeric muscles and the cells for the outflow tract of the heart.
Collapse
Affiliation(s)
- Ingo Bothe
- School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Gennadiy Tenin
- School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK
| | - Adelola Oseni
- School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK
| | - Susanne Dietrich
- School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| |
Collapse
|