201
|
Macpherson IR, Rainero E, Mitchell LE, van den Berghe PVE, Speirs C, Dozynkiewicz MA, Chaudhary S, Kalna G, Edwards J, Timpson P, Norman JC. CLIC3 controls recycling of late endosomal MT1-MMP and dictates invasion and metastasis in breast cancer. J Cell Sci 2014; 127:3893-901. [PMID: 25015290 DOI: 10.1242/jcs.135947] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chloride intracellular channel 3 (CLIC3) drives invasiveness of pancreatic and ovarian cancer by acting in concert with Rab25 to regulate the recycling of α5β1 integrin from late endosomes to the plasma membrane. Here, we show that in two estrogen receptor (ER)-negative breast cancer cell lines, CLIC3 has little influence on integrin recycling, but controls trafficking of the pro-invasive matrix metalloproteinase MT1-MMP (also known as MMP14). In MDA-MB-231 cells, MT1-MMP and CLIC3 are localized primarily to late endosomal/lysosomal compartments located above the plane of adhesion and near the nucleus. MT1-MMP is transferred from these late endosomes to sites of cell-matrix adhesion in a CLIC3-dependent fashion. Correspondingly, CLIC3-knockdown opposes MT1-MMP-dependent invasive processes. These include the disruption of the basement membrane as acini formed from MCF10DCIS.com cells acquire invasive characteristics in 3D culture, and the invasion of MDA-MB-231 cells into Matrigel or organotypic plugs of type I collagen. Consistent with this, expression of CLIC3 predicts poor prognosis in ER-negative breast cancer. The identification of MT1-MMP as a cargo of a CLIC3-regulated pathway that drives invasion highlights the importance of late endosomal sorting and trafficking in breast cancer.
Collapse
Affiliation(s)
- Iain R Macpherson
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Elena Rainero
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Louise E Mitchell
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | | | - Claire Speirs
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | | | - Suman Chaudhary
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Gabriela Kalna
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Paul Timpson
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Jim C Norman
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| |
Collapse
|
202
|
Gurski LA, Knowles LM, Basse PH, Maranchie JK, Watkins SC, Pilch J. Relocation of CLIC1 promotes tumor cell invasion and colonization of fibrin. Mol Cancer Res 2014; 13:273-80. [PMID: 25205595 DOI: 10.1158/1541-7786.mcr-14-0249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Chloride intracellular channel 1 (CLIC1) has been shown to be upregulated in various malignancies but its exact function remains unclear. Here, it is revealed that CLIC1 is critical for the stability of invadopodia in endothelial and tumor cells embedded in a 3-dimensional (3D) matrix of fibrin. Invadopodia stability was associated with the capacity of CLIC1 to induce stress fiber and fibronectin matrix formation following its β3 integrin (ITGB3)-mediated recruitment into invadopodia. This pathway, in turn, was relevant for fibrin colonization as well as slug (SNAI2) expression and correlated with a significant role of CLIC1 in metastasis in vivo. Mechanistically, a reduction of myosin light chain kinase (MYLK) in CLIC1-depleted as well as β3 integrin-depleted cells suggests an important role of CLIC1 for integrin-mediated actomyosin dynamics in cells embedded in fibrin. Overall, these results indicate that CLIC1 is an important contributor to tumor invasion, metastasis, and angiogenesis. IMPLICATIONS This study uncovers an important new function of CLIC1 in the regulation of cell-extracellular matrix interactions and ability of tumor cells to metastasize to distant organs.
Collapse
Affiliation(s)
- Lisa A Gurski
- Department of Urology, University of Pittsburgh School of Medicine, Shadyside Medical Center, Pittsburgh, Pennsylvania
| | - Lynn M Knowles
- Department of Urology, University of Pittsburgh School of Medicine, Shadyside Medical Center, Pittsburgh, Pennsylvania
| | - Per H Basse
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Jodi K Maranchie
- Department of Urology, University of Pittsburgh School of Medicine, Shadyside Medical Center, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Simon C Watkins
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jan Pilch
- Department of Urology, University of Pittsburgh School of Medicine, Shadyside Medical Center, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Medical Center, Homburg, Saarland, Germany.
| |
Collapse
|
203
|
Tseng HY, Thorausch N, Ziegler T, Meves A, Fässler R, Böttcher RT. Sorting Nexin 31 Binds Multiple β Integrin Cytoplasmic Domains and Regulates β1 Integrin Surface Levels and Stability. J Mol Biol 2014; 426:3180-3194. [DOI: 10.1016/j.jmb.2014.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/17/2014] [Accepted: 07/03/2014] [Indexed: 11/24/2022]
|
204
|
Liu L, Ding G. Rab25 expression predicts poor prognosis in clear cell renal cell carcinoma. Exp Ther Med 2014; 8:1055-1058. [PMID: 25187796 PMCID: PMC4151676 DOI: 10.3892/etm.2014.1867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022] Open
Abstract
Rab25 has been implicated in a number of types of cancer. However, its expression status and clinical implications in clear cell renal cell carcinoma (ccRCC) remain to be investigated. The purpose of this study was to investigate the significance of Rab25 status in patients with ccRCC. Rab25 expression was determined by western blot analysis in 30 fresh ccRCC samples. Immunohistochemistry was performed on the ccRCC samples and paired adjacent noncancerous tissues from 107 patients with ccRCC who had undergone surgery. The prognostic role and correlations with other clinicopathological factors were evaluated. Rab25 expression was upregulated in ccRCC tissues compared with that in paired adjacent noncancerous tissues. A high expression of Rab25 protein was significantly correlated with the primary tumor stage; lymph node metastasis; distant metastasis; tumor, node and metastasis stage and histological grade. A Kaplan-Meier survival analysis by log-rank test demonstrated that elevated Rab25 expression predicted lower overall survival time in patients with ccRCC. Notably, multivariate analyses revealed that expression of Rab25 was an independent prognostic factor in ccRCC (hazard ratio, 3.43; 95% confidence interval, 1.13–10.38; P=0.023). In conclusion, Rab25 is a potential prognostic biomarker in ccRCC.
Collapse
Affiliation(s)
- Lunzhi Liu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
205
|
Herrmann D, Conway JRW, Vennin C, Magenau A, Hughes WE, Morton JP, Timpson P. Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis 2014; 35:1671-9. [PMID: 24903340 DOI: 10.1093/carcin/bgu108] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Basic in vitro systems can be used to model and assess complex diseases, such as cancer. Recent advances in this field include the incorporation of multiple cell types and extracellular matrix proteins into three-dimensional (3D) models to recapitulate the structure, organization and functionality of live tissue in situ. Cells within such a 3D environment behave very differently from cells on two-dimensional (2D) substrates, as cell-matrix interactions trigger signalling pathways and cellular responses in 3D, which may not be observed in 2D. Thus, the use of 3D systems can be advantageous for the assessment of disease progression over 2D set-ups alone. Here, we highlight the current advantages and challenges of employing 3D systems in the study of cancer and provide an overview to guide the appropriate use of distinct models in cancer research.
Collapse
Affiliation(s)
- David Herrmann
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - James R W Conway
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Claire Vennin
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Astrid Magenau
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - William E Hughes
- Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and
| | - Jennifer P Morton
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Paul Timpson
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| |
Collapse
|
206
|
Rossé C, Lodillinsky C, Fuhrmann L, Nourieh M, Monteiro P, Irondelle M, Lagoutte E, Vacher S, Waharte F, Paul-Gilloteaux P, Romao M, Sengmanivong L, Linch M, van Lint J, Raposo G, Vincent-Salomon A, Bièche I, Parker PJ, Chavrier P. Control of MT1-MMP transport by atypical PKC during breast-cancer progression. Proc Natl Acad Sci U S A 2014; 111:E1872-9. [PMID: 24753582 PMCID: PMC4020077 DOI: 10.1073/pnas.1400749111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dissemination of carcinoma cells requires the pericellular degradation of the extracellular matrix, which is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP). In this article, we report a co-up-regulation and colocalization of MT1-MMP and atypical protein kinase C iota (aPKCι) in hormone receptor-negative breast tumors in association with a higher risk of metastasis. Silencing of aPKC in invasive breast-tumor cell lines impaired the delivery of MT1-MMP from late endocytic storage compartments to the surface and inhibited matrix degradation and invasion. We provide evidence that aPKCι, in association with MT1-MMP-containing endosomes, phosphorylates cortactin, which is present in F-actin-rich puncta on MT1-MMP-positive endosomes and regulates cortactin association with the membrane scission protein dynamin-2. Thus, cell line-based observations and clinical data reveal the concerted activity of aPKC, cortactin, and dynamin-2, which control the trafficking of MT1-MMP from late endosome to the plasma membrane and play an important role in the invasive potential of breast-cancer cells.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adult
- Aged
- Biological Transport, Active
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Line, Tumor
- Cortactin/metabolism
- Cytoplasmic Granules/metabolism
- Disease Progression
- Dynamin II/metabolism
- Endosomes/metabolism
- Extracellular Matrix/metabolism
- Female
- Humans
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Matrix Metalloproteinase 14/genetics
- Matrix Metalloproteinase 14/metabolism
- Middle Aged
- Neoplasm Invasiveness
- Phosphorylation
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Small Interfering/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Carine Rossé
- Research Center, Institut Curie, 75005 Paris, France
- Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75005 Paris, France
| | - Catalina Lodillinsky
- Research Center, Institut Curie, 75005 Paris, France
- Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75005 Paris, France
| | | | - Maya Nourieh
- Research Center, Institut Curie, 75005 Paris, France
| | - Pedro Monteiro
- Research Center, Institut Curie, 75005 Paris, France
- Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75005 Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, University of Paris VI, Institut de Formation Doctorale, 75252 Paris Cedex 5, France
| | - Marie Irondelle
- Research Center, Institut Curie, 75005 Paris, France
- Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75005 Paris, France
| | - Emilie Lagoutte
- Research Center, Institut Curie, 75005 Paris, France
- Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75005 Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, 75005 Paris, France
| | - François Waharte
- Research Center, Institut Curie, 75005 Paris, France
- Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75005 Paris, France
| | - Perrine Paul-Gilloteaux
- Research Center, Institut Curie, 75005 Paris, France
- Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75005 Paris, France
| | - Maryse Romao
- Research Center, Institut Curie, 75005 Paris, France
- Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75005 Paris, France
| | - Lucie Sengmanivong
- Research Center, Institut Curie, 75005 Paris, France
- Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75005 Paris, France
- Nikon Imaging Centre, Institut Curie, Centre National de la Recherche Scientifique, 75005 Paris, France
| | - Mark Linch
- Protein Phosphorylation Laboratory, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | - Johan van Lint
- Department of Molecular Cell Biology, Faculty of Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Graça Raposo
- Research Center, Institut Curie, 75005 Paris, France
- Structure and Membrane Compartments, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75005 Paris, France
| | - Anne Vincent-Salomon
- Research Center, Institut Curie, 75005 Paris, France
- Department of Tumor Biology, Institut Curie, 75005 Paris, France
- Institut National de la Santé et de la Recherche Médicale U830, 75005 Paris, France; and
| | - Ivan Bièche
- Department of Genetics, Institut Curie, 75005 Paris, France
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
- Division of Cancer Studies, King’s College London, Guy’s Campus, London WC2A 3LY, United Kingdom
| | - Philippe Chavrier
- Research Center, Institut Curie, 75005 Paris, France
- Membrane and Cytoskeleton Dynamics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75005 Paris, France
| |
Collapse
|
207
|
Reverter M, Rentero C, Garcia-Melero A, Hoque M, Vilà de Muga S, Alvarez-Guaita A, Conway JRW, Wood P, Cairns R, Lykopoulou L, Grinberg D, Vilageliu L, Bosch M, Heeren J, Blasi J, Timpson P, Pol A, Tebar F, Murray RZ, Grewal T, Enrich C. Cholesterol regulates Syntaxin 6 trafficking at trans-Golgi network endosomal boundaries. Cell Rep 2014; 7:883-97. [PMID: 24746815 DOI: 10.1016/j.celrep.2014.03.043] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/30/2013] [Accepted: 03/17/2014] [Indexed: 12/27/2022] Open
Abstract
Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN). Here, using Chinese hamster ovary (CHO) Niemann-Pick type C1 (NPC1) mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6) accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs). This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.
Collapse
Affiliation(s)
- Meritxell Reverter
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Carles Rentero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Ana Garcia-Melero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Monira Hoque
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Sandra Vilà de Muga
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Alvarez-Guaita
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - James R W Conway
- Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Peta Wood
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Rose Cairns
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Lilia Lykopoulou
- First Department of Pediatrics, University of Athens, Aghia Sofia Children's Hospital, 11527 Athens, Greece
| | - Daniel Grinberg
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, CIBERER, IBUB, 08028 Barcelona, Spain
| | - Lluïsa Vilageliu
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, CIBERER, IBUB, 08028 Barcelona, Spain
| | - Marta Bosch
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Joerg Heeren
- Department of Biochemistry and Molecular Biology II. Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Juan Blasi
- Department of Pathology and Experimental Therapeutics, IDIBELL-University of Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Paul Timpson
- Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Albert Pol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avaçats (ICREA), 08010 Barcelona, Spain
| | - Francesc Tebar
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Rachael Z Murray
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical, Innovation, Queensland University of Technology, Brisbane, QLD 4095, Australia
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
208
|
Welz T, Wellbourne-Wood J, Kerkhoff E. Orchestration of cell surface proteins by Rab11. Trends Cell Biol 2014; 24:407-15. [PMID: 24675420 DOI: 10.1016/j.tcb.2014.02.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
The organization of cells into interconnected structures such as animal tissues requires a sophisticated system directing receptors and adhesion proteins to the cell surface. The Rab11 small G proteins (Rab11a, b, and Rab25) of the Ras superfamily are master regulators of the surface expression of receptors and adhesion proteins. Acting as a molecular switch, Rab11 builds distinct molecular machinery such as motor protein complexes and the exocyst to transport proteins to the cell surface. Recent evidence reveals Rab11 localization at the trans-Golgi network (TGN), post-Golgi vesicles, and the recycling endosome, placing it at the intersection between the endocytic and exocytic trafficking pathways. We review Rab11 in various cellular contexts, and discuss its regulation and mechanisms by which Rab11 couples with effector proteins.
Collapse
Affiliation(s)
- Tobias Welz
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Germany
| | - Joel Wellbourne-Wood
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Germany
| | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Germany.
| |
Collapse
|
209
|
Eskova A, Knapp B, Matelska D, Reusing S, Arjonen A, Lisauskas T, Pepperkok R, Russell R, Eils R, Ivaska J, Kaderali L, Erfle H, Starkuviene V. An RNAi screen identifies KIF15 as a novel regulator of the endocytic trafficking of integrin. J Cell Sci 2014; 127:2433-47. [PMID: 24659801 DOI: 10.1242/jcs.137281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
α2β1 integrin is one of the most important collagen-binding receptors, and it has been implicated in numerous thrombotic and immune diseases. α2β1 integrin is a potent tumour suppressor, and its downregulation is associated with increased metastasis and poor prognosis in breast cancer. Currently, very little is known about the mechanism that regulates the cell-surface expression and trafficking of α2β1 integrin. Here, using a quantitative fluorescence-microscopy-based RNAi assay, we investigated the impact of 386 cytoskeleton-associated or -regulatory genes on α2 integrin endocytosis and found that 122 of these affected the intracellular accumulation of α2 integrin. Of these, 83 were found to be putative regulators of α2 integrin trafficking and/or expression, with no observed effect on the internalization of epidermal growth factor (EGF) or transferrin. Further interrogation and validation of the siRNA screen revealed a role for KIF15, a microtubule-based molecular motor, as a significant inhibitor of the endocytic trafficking of α2 integrin. Our data suggest a novel role for KIF15 in mediating plasma membrane localization of the alternative clathrin adaptor Dab2, thus impinging on pathways that regulate α2 integrin internalization.
Collapse
Affiliation(s)
| | - Bettina Knapp
- Medical Faculty, Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Dorota Matelska
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Susanne Reusing
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Antti Arjonen
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | | | | | - Robert Russell
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Roland Eils
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany Integrative Bioinformatics and Systems Biology, DKFZ, BioQuant and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Johanna Ivaska
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Lars Kaderali
- Medical Faculty, Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Holger Erfle
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
210
|
Arcangeli A, Crociani O, Bencini L. Interaction of tumour cells with their microenvironment: ion channels and cell adhesion molecules. A focus on pancreatic cancer. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130101. [PMID: 24493749 PMCID: PMC3917355 DOI: 10.1098/rstb.2013.0101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cancer must be viewed as a 'tissue', constituted of both transformed cells and a heterogeneous microenvironment, the 'tumour microenvironment' (TME). The TME undergoes a complex remodelling during the course of multistep tumourigenesis, hence strongly contributing to tumour progression. Ion channels and transporters (ICTs), being expressed on both tumour cells and in the different cellular components of the TME, are in a strategic position to sense and mediate signals arising from the TME. Often, this transmission is mediated by integrin adhesion receptors, which are the main cellular receptors capable of mediating cell-to-cell and cell-to-matrix bidirectional signalling. Integrins can often operate in conjunction with ICT because they can behave as functional partners of ICT proteins. The role of integrin receptors in the crosstalk between tumour cells and the TME is particularly relevant in the context of pancreatic cancer (PC), characterized by an overwhelming TME which actively contributes to therapy resistance. We discuss the possibility that this occurs through integrins and ICTs, which could be exploited as targets to overcome chemoresistance in PC.
Collapse
Affiliation(s)
- Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134 Firenze, Italy
| | - Olivia Crociani
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134 Firenze, Italy
| | - Lapo Bencini
- SOD General and Oncological Surgery, Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Firenze, Italy
| |
Collapse
|
211
|
The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nat Cell Biol 2014; 16:255-67. [PMID: 24561622 DOI: 10.1038/ncb2916] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/10/2014] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) develops through distinct precursor lesions, including pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasia (IPMN). However, genetic features resulting in IPMN-associated PDA (IPMN-PDA) versus PanIN-associated PDA (PanIN-PDA) are largely unknown. Here we find that loss of Brg1, a core subunit of SWI/SNF chromatin remodelling complexes, cooperates with oncogenic Kras to form cystic neoplastic lesions that resemble human IPMN and progress to PDA. Although Brg1-null IPMN-PDA develops rapidly, it possesses a distinct transcriptional profile compared with PanIN-PDA driven by mutant Kras and hemizygous p53 deletion. IPMN-PDA also is less lethal, mirroring prognostic trends in PDA patients. In addition, Brg1 deletion inhibits Kras-dependent PanIN development from adult acinar cells, but promotes Kras-driven preneoplastic transformation in adult duct cells. Therefore, this study implicates Brg1 as a determinant of context-dependent Kras-driven pancreatic tumorigenesis and suggests that chromatin remodelling may underlie the development of distinct PDA subsets.
Collapse
|
212
|
Blancato J, Graves A, Rashidi B, Moroni M, Tchobe L, Ozdemirli M, Kallakury B, Makambi KH, Marian C, Mueller SC. SYK Allelic Loss and the Role of Syk-Regulated Genes in Breast Cancer Survival. PLoS One 2014; 9:e87610. [PMID: 24523870 PMCID: PMC3921124 DOI: 10.1371/journal.pone.0087610] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/20/2013] [Indexed: 11/26/2022] Open
Abstract
Heterozygotic loss of SYK, a non-receptor tyrosine kinase, gives rise to mouse mammary tumor formation where Syk protein levels are reduced by about half; loss of SYK mRNA is correlated with invasive cell behavior in in vitro models; and SYK loss has been correlated with distant metastases in patients. Here, allelic loss of the SYK gene was explored in breast ductal carcinoma in situ (DCIS) using fluorescence in situ hybridization and pyrosequencing, respectively, and in infiltrating ductal carcinoma (IDC) using genomic data from The Cancer Genome Atlas (TCGA). Allelic loss was present in a subset of DCIS cases where adjacent IDC was present. SYK copy number loss was found in about 26% of 1002 total breast cancer cases and 30% of IDC cases. Quantitative immunofluorescence revealed Syk protein to be six-fold higher in infiltrating immune cells compared with epithelial cells. This difference distorted tumor cell mRNA and protein levels in extracts. 20% of 1002 IDC cases contained elevated immune cell infiltration as estimated by elevated immune-specific mRNAs. In cases without immune cell infiltration, loss of SYK copy number was associated with a significant reduction of SYK mRNA. Here we define a 55 Gene Set consisting of Syk interacting, motility- and invasion-related genes. We found that overall survival was significantly reduced in IDC and Luminal A+B cases where copy number and mutations of these 55 genes were affected (Kaplan-Meier, Logrank test p-value 0.007141 and Logrank test p-value 0.001198, respectively). We conclude that reduction in Syk expression and contributions of genomic instability to copy number and mutations in the 55 Syk interacting genes significantly contribute to poorer overall patient survival. A closer examination of the role of Syk interacting motility and invasion genes and their prognostic and/or causative association with metastatic disease and patient outcome is warranted.
Collapse
Affiliation(s)
- Jan Blancato
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Ashley Graves
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Banafsheh Rashidi
- Department of Pathology, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Maria Moroni
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Leopold Tchobe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C., United States of America
- University of the District of Columbia/Lombardi Comprehensive Cancer Center Partnership, Washington, D. C., United States of America
| | - Metin Ozdemirli
- Department of Pathology, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Kepher H. Makambi
- Department of Biostatistics and Bioinformatics, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Catalin Marian
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Biochemistry Department, University of Medicine and Pharmacy, “Victor Babes”, Timisoara, Romania
| | - Susette C. Mueller
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C., United States of America
- * E-mail:
| |
Collapse
|
213
|
Abstract
Integrins are heterodimeric cell surface adhesion receptors essential for multicellular life. They connect cells to the extracellular environment and transduce chemical and mechanical signals to and from the cell. Intracellular proteins that bind the integrin cytoplasmic tail regulate integrin engagement of extracellular ligands as well as integrin localization and trafficking. Cytoplasmic integrin-binding proteins also function downstream of integrins, mediating links to the cytoskeleton and to signaling cascades that impact cell motility, growth, and survival. Here, we review key integrin-interacting proteins and their roles in regulating integrin activity, localization, and signaling.
Collapse
Affiliation(s)
- Elizabeth M Morse
- Department of Cell Biology and ‡Department of Pharmacology, Yale University School of Medicine , 333 Cedar Street, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
214
|
Astro V, Chiaretti S, Magistrati E, Fivaz M, de Curtis I. Liprin-α1, ERC1 and LL5 identify a polarized, dynamic compartment implicated in cell migration. J Cell Sci 2014; 127:3862-76. [DOI: 10.1242/jcs.155663] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell migration during development and metastatic invasion requires the coordination of actin and adhesion dynamics to promote the protrusive activity at the cell front. The knowledge of the molecular mechanisms required to achieve such coordination is fragmentary. Here we identify a new functional complex that drives cell motility. The adaptor proteins ERC1a and LL5 are required with liprin-α1 for effective migration and tumor cell invasion, and do so by stabilizing the protrusive activity at the cell front. Depletion of either protein negatively affects invasion, migration on extracellular matrix, lamellipodial persistence, as well as the internalization of active integrin β1 receptors needed for adhesion turnover at the cell front. Liprin-α1, ERC1a and LL5 also define new highly polarized and dynamic cytoplasmic structures uniquely localized near the protruding cell edge. Our results indicate that the functional complex and the associated structures described here represent an important mechanism to drive tumor cell migration.
Collapse
|
215
|
Argenzio E, Margadant C, Leyton-Puig D, Janssen H, Jalink K, Sonnenberg A, Moolenaar WH. CLIC4 regulates cell adhesion and β1 integrin trafficking. J Cell Sci 2014; 127:5189-203. [DOI: 10.1242/jcs.150623] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chloride intracellular channel (CLIC) protein CLIC4 exists in both soluble and membrane-associated forms, and is implicated in diverse cellular processes, ranging from ion channel formation to intracellular membrane remodeling. CLIC4 is rapidly recruited to the plasma membrane by lysophosphatidic acid (LPA) and serum, suggesting a possible role for CLIC4 in exocytic-endocytic trafficking. However, the function and subcellular target(s) of CLIC4 remain elusive. Here we show that in HeLa and MDA-MB-231 cells, CLIC4 knockdown decreases cell-matrix adhesion, cell spreading and integrin signalling, while increasing cell motility. LPA stimulates the recruitment of CLIC4 to β1 integrins at the plasma membrane and in Rab35-positive endosomes. CLIC4 is required for both the internalization and the serum/LPA-induced recycling of β1 integrins, but not for EGF receptor trafficking. Furthermore, we show that CLIC4 suppresses Rab35 activity and antagonizes Rab35-dependent regulation of β1-integrin trafficking. Our results define CLIC4 as a regulator of Rab35 activity and serum/LPA-dependent integrin trafficking.
Collapse
|
216
|
Abstract
Endocytosis entails selective packaging of cell-surface proteins, such as receptors for cytokines and adhesion components, in cytoplasmic vesicles (endosomes). The series of sorting events that determines the fate of internalized proteins, either degradation in lysosomes or recycling back to the plasma membrane, relies on intrinsic sequence motifs, posttranslational modifications (e.g., phosphorylation and ubiquitination), and transient assemblies of both Rab GTPases and phosphoinositide-binding proteins. This multicomponent process is enhanced and skewed in cancer cells; we review mechanisms enabling both major drivers of cancer, p53 and Ras, to bias recycling of integrins and receptor tyrosine kinases (RTKs). Likewise, cadherins and other junctional proteins of cancer cells are constantly removed from the cell surface, thereby disrupting tissue polarity and instigating motile phenotypes. Mutant forms of RTKs able to evade Cbl-mediated ubiquitination, along with overexpression of the wild-type forms and a variety of defective feedback regulatory loops, are frequently detected in tumors. Finally, we describe pharmacological attempts to harness the peculiar endocytic system of cancer, in favor of effective patient treatment.
Collapse
|
217
|
Téllez-Gabriel M, Arroyo-Solera I, León X, Gallardo A, López M, Céspedes MV, Casanova I, López-Pousa A, Quer M, Mangues MA, Barnadas A, Mangues R, Pavón MA. High RAB25 expression is associated with good clinical outcome in patients with locally advanced head and neck squamous cell carcinoma. Cancer Med 2013; 2:950-63. [PMID: 24403269 PMCID: PMC3892400 DOI: 10.1002/cam4.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/27/2013] [Accepted: 09/23/2013] [Indexed: 12/17/2022] Open
Abstract
Currently there are no molecular markers able to predict clinical outcome in locally advanced head and neck squamous cell carcinoma (HNSCC). In a previous microarray study, RAB25 was identified as a potential prognostic marker. The aim of this study was to analyze the association between RAB25 expression and clinical outcome in patients with locally advanced HNSCC treated with standard therapy. In a retrospective immunohistochemical study (n = 97), we observed that RAB25-negative tumors had lower survival (log-rank, P = 0.01) than patients bearing positive tumors. In an independent prospective mRNA study (n = 117), low RAB25 mRNA expression was associated with poor prognosis. Using classification and regression tree analysis (CART) we established two groups of patients according to their RAB25 mRNA level and their risk of death. Low mRNA level was associated with poor local recurrence-free (log-rank, P = 0.005), progression-free (log-rank, P = 0.002) and cancer-specific (log-rank, P < 0.001) survival. Multivariate Cox model analysis showed that low expression of RAB25 was an independent poor prognostic factor for survival (hazard ratio: 3.84, 95% confidence interval: 1.93-7.62, P < 0.001). Patients whose tumors showed high RAB25 expression had a low probability of death after treatment. We also found lower RAB25 expression in tumors than in normal tissue (Mann-Whitney U, P < 0.001). Moreover, overexpression of RAB25 in the UM-SCC-74B HNSCC cell line increased cisplatin sensitivity, and reduced cell migration and invasion. Our findings support a tumor suppressor role for RAB25 in HNSCC and its potential use to identify locally advanced patients with a high probability of survival after genotoxic treatment.
Collapse
Affiliation(s)
- Marta Téllez-Gabriel
- Grup d'Oncogènesi i Antitumorals (GOA), Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Goldenring JR. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat Rev Cancer 2013; 13:813-20. [PMID: 24108097 PMCID: PMC4011841 DOI: 10.1038/nrc3601] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cell carcinogenesis involves the loss of cell polarity, alteration of polarized protein presentation, dynamic cell morphology changes, increased proliferation, and increased cell motility and invasion. Membrane vesicle trafficking underlies all of these processes. Specific membrane trafficking regulators, including RAB small GTPases, through the coordinated dynamics of intracellular trafficking along cytoskeletal pathways, determine the cell surface presentation of proteins and the overall function of both differentiated and neoplastic cells. Although mutations in vesicle trafficking proteins may not be direct drivers of transformation, components of the machinery of vesicle movement have crucial roles in the phenotypes of neoplastic cells. Therefore, the regulators of membrane vesicle trafficking decisions are essential mediators of the full range of cell physiologies that drive cancer cell biology, including initial loss of cell polarity, invasion and metastasis. Targeting of these fundamental intracellular processes may permit the manipulation of cancer cell behaviour.
Collapse
Affiliation(s)
- James R Goldenring
- Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center and the Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA; and the Nashville Veternas Affairs Medical Center, Nashville, Tennessee 37212, USA
| |
Collapse
|
219
|
Lall P, Horgan CP, Oda S, Franklin E, Sultana A, Hanscom SR, McCaffrey MW, Khan AR. Structural and functional analysis of FIP2 binding to the endosome-localised Rab25 GTPase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2679-90. [PMID: 24056041 DOI: 10.1016/j.bbapap.2013.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/08/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
Rab small GTPases are the master regulators of intracellular trafficking in eukaryotes. They mediate spatial and temporal recruitment of effector proteins to distinct cellular compartments through GTP-induced changes in their conformation. Despite numerous structural studies, the molecular basis for Rab/effector specificity and subsequent biological activity remains poorly understood. Rab25, also known as Rab11c, which is epithelial-specific, has been heavily implicated in ovarian cancer development and independently appears to act as a tumour suppressor in the context of a distinct subset of carcinomas. Here, we show that Rab25 associates with FIP2 and can recruit this effector protein to endosomal membranes. We report the crystal structure of Rab25 in complex with the C-terminal region of FIP2, which consists of a central dimeric FIP2 coiled-coil that mediates a heterotetrameric Rab25-(FIP2)2-Rab25 complex. Thermodynamic analyses show that, despite a relatively conserved interface, FIP2 binds to Rab25 with an approximate 3-fold weaker affinity than to Rab11a. Reduced affinity is mainly associated with lower enthalpic gains for Rab25:FIP2 complex formation, and can be attributed to subtle differences in the conformations of switch 1 and switch 2. These cellular, structural and thermodynamic studies provide insight into the Rab11/Rab25 subfamily of small GTPases that regulate endosomal trafficking pathways in eukaryotes.
Collapse
Affiliation(s)
- Patrick Lall
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Benesh EC, Miller PM, Pfaltzgraff ER, Grega-Larson NE, Hager HA, Sung BH, Qu X, Baldwin HS, Weaver AM, Bader DM. Bves and NDRG4 regulate directional epicardial cell migration through autocrine extracellular matrix deposition. Mol Biol Cell 2013; 24:3496-510. [PMID: 24048452 PMCID: PMC3826988 DOI: 10.1091/mbc.e12-07-0539] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Bves and NDRG4 proteins interact to regulate directional cell movement by mediating cell surface fusion of internalized fibronectin for resecretion. This provides the first evidence of Bves/NDRG4 protein function within subcellular trafficking pathways and explains how the Bves complex diversely influences development, cancer, and repair. Directional cell movement is universally required for tissue morphogenesis. Although it is known that cell/matrix interactions are essential for directional movement in heart development, the mechanisms governing these interactions require elucidation. Here we demonstrate that a novel protein/protein interaction between blood vessel epicardial substance (Bves) and N-myc downstream regulated gene 4 (NDRG4) is critical for regulation of epicardial cell directional movement, as disruption of this interaction randomizes migratory patterns. Our studies show that Bves/NDRG4 interaction is required for trafficking of internalized fibronectin through the “autocrine extracellular matrix (ECM) deposition” fibronectin recycling pathway. Of importance, we demonstrate that Bves/NDRG4-mediated fibronectin recycling is indeed essential for epicardial cell directional movement, thus linking these two cell processes. Finally, total internal reflectance fluorescence microscopy shows that Bves/NDRG4 interaction is required for fusion of recycling endosomes with the basal cell surface, providing a molecular mechanism of motility substrate delivery that regulates cell directional movement. This is the first evidence of a molecular function for Bves and NDRG4 proteins within broader subcellular trafficking paradigms. These data identify novel regulators of a critical vesicle-docking step required for autocrine ECM deposition and explain how Bves facilitates cell-microenvironment interactions in the regulation of epicardial cell–directed movement.
Collapse
Affiliation(s)
- Emily C Benesh
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 Department of Pediatric Cardiology, Vanderbilt University School of Medicine, Nashville, TN 37232 Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232 Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Jacquemet G, Green DM, Bridgewater RE, von Kriegsheim A, Humphries MJ, Norman JC, Caswell PT. RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex. ACTA ACUST UNITED AC 2013; 202:917-35. [PMID: 24019536 PMCID: PMC3776348 DOI: 10.1083/jcb.201302041] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inhibition of αvβ3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)-dependent recycling of α5β1 integrin. RCP and α5β1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent α5β1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of α5β1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT Manchester, England, UK
| | | | | | | | | | | | | |
Collapse
|
222
|
Nobis M, McGhee EJ, Morton JP, Schwarz JP, Karim SA, Quinn J, Edward M, Campbell AD, McGarry LC, Evans TRJ, Brunton VG, Frame MC, Carragher NO, Wang Y, Sansom OJ, Timpson P, Anderson KI. Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of src in pancreatic cancer. Cancer Res 2013; 73:4674-86. [PMID: 23749641 DOI: 10.1158/0008-5472.can-12-4545] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cancer invasion and metastasis occur in a complex three-dimensional (3D) environment, with reciprocal feedback from the surrounding host tissue and vasculature-governing behavior. In this study, we used a novel intravital method that revealed spatiotemporal regulation of Src activity in response to the anti-invasive Src inhibitor dasatinib. A fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) Src biosensor was used to monitor drug-targeting efficacy in a transgenic p53-mutant mouse model of pancreatic cancer. In contrast to conventional techniques, FLIM-FRET analysis allowed for accurate, time-dependent, live monitoring of drug efficacy and clearance in live tumors. In 3D organotypic cultures, we showed that a spatially distinct gradient of Src activity exists within invading tumor cells, governed by the depth of penetration into complex matrices. In parallel, this gradient was also found to exist within live tumors, where Src activity is enhanced at the invasive border relative to the tumor cortex. Upon treatment with dasatinib, we observed a switch in activity at the invasive borders, correlating with impaired metastatic capacity in vivo. Src regulation was governed by the proximity of cells to the host vasculature, as cells distal to the vasculature were regulated differentially in response to drug treatment compared with cells proximal to the vasculature. Overall, our results in live tumors revealed that a threshold of drug penetrance exists in vivo and that this can be used to map areas of poor drug-targeting efficiency within specific tumor microenvironments. We propose that using FLIM-FRET in this capacity could provide a useful preclinical tool in animal models before clinical translation.
Collapse
Affiliation(s)
- Max Nobis
- The Beatson Institute for Cancer Research, Glasgow; Section of Dermatology, School of Medicine, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Jacob A, Jing J, Lee J, Schedin P, Gilbert SM, Peden AA, Junutula JR, Prekeris R. Rab40b regulates trafficking of MMP2 and MMP9 during invadopodia formation and invasion of breast cancer cells. J Cell Sci 2013; 126:4647-58. [PMID: 23902685 DOI: 10.1242/jcs.126573] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Invadopodia-dependent degradation of the basement membrane plays a major role during metastasis of breast cancer cells. Basement membrane degradation is mediated by targeted secretion of various matrix metalloproteinases (MMPs). Specifically, MMP2 and MMP9 (MMP2/9) possess the ability to hydrolyze components of the basement membrane and regulate various aspects of tumor growth and metastasis. However, the membrane transport machinery that mediates targeting of MMP2/9 to the invadopodia during cancer cell invasion remains to be defined. Because Rab GTPases are key regulators of membrane transport, we screened a human Rab siRNA library and identified Rab40b GTPase as a protein required for secretion of MMP2/9. We also have shown that Rab40b functions during at least two distinct steps of MMP2/9 transport. Here, we demonstrate that Rab40b is required for MMP2/9 sorting into VAMP4-containing secretory vesicles. We also show that Rab40b regulates transport of MMP2/9 secretory vesicles during invadopodia formation and is required for invadopodia-dependent extracellular matrix degradation. Finally, we demonstrate that Rab40b is also required for breast cancer cell invasion in vitro. On the basis of these findings, we propose that Rab40b mediates trafficking of MMP2/9 during invadopodia formation and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Abitha Jacob
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Frede J, Fraser SP, Oskay-Özcelik G, Hong Y, Ioana Braicu E, Sehouli J, Gabra H, Djamgoz MB. Ovarian cancer: Ion channel and aquaporin expression as novel targets of clinical potential. Eur J Cancer 2013; 49:2331-44. [DOI: 10.1016/j.ejca.2013.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 01/29/2013] [Accepted: 03/10/2013] [Indexed: 01/11/2023]
|
225
|
Jacquemet G, Humphries MJ, Caswell PT. Role of adhesion receptor trafficking in 3D cell migration. Curr Opin Cell Biol 2013; 25:627-32. [PMID: 23797030 PMCID: PMC3759831 DOI: 10.1016/j.ceb.2013.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 01/28/2023]
Abstract
Adhesion receptor trafficking makes a major contribution to cell migration in 3D. Integrin and syndecan receptors synergise to control signals for migration. Specific integrin heterodimers perform different roles during migration.
This review discusses recent advances in our understanding of adhesion receptor trafficking in vitro, and extrapolates them as far as what is currently possible towards an understanding of migration in three dimensions in vivo. Our specific focus is the mechanisms for endocytosis and recycling of the two major classes of cell-matrix adhesion receptors, integrins and syndecans. We review the signalling networks that are employed to regulate trafficking and conversely the effects of trafficking on signalling itself. We then define the contribution that this element of the migration process makes to processes such as wound healing and tumour invasion.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | | | | |
Collapse
|
226
|
Jiang L, Phang JM, Yu J, Harrop SJ, Sokolova AV, Duff AP, Wilk KE, Alkhamici H, Breit SN, Valenzuela SM, Brown LJ, Curmi PMG. CLIC proteins, ezrin, radixin, moesin and the coupling of membranes to the actin cytoskeleton: a smoking gun? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:643-57. [PMID: 23732235 DOI: 10.1016/j.bbamem.2013.05.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
The CLIC proteins are a highly conserved family of metazoan proteins with the unusual ability to adopt both soluble and integral membrane forms. The physiological functions of CLIC proteins may include enzymatic activity in the soluble form and anion channel activity in the integral membrane form. CLIC proteins are associated with the ERM proteins: ezrin, radixin and moesin. ERM proteins act as cross-linkers between membranes and the cortical actin cytoskeleton. Both CLIC and ERM proteins are controlled by Rho family small GTPases. CLIC proteins, ERM and Rho GTPases act in a concerted manner to control active membrane processes including the maintenance of microvillar structures, phagocytosis and vesicle trafficking. All of these processes involve the interaction of membranes with the underlying cortical actin cytoskeleton. The relationships between Rho GTPases, CLIC proteins, ERM proteins and the membrane:actin cytoskeleton interface are reviewed. Speculative models are proposed involving the formation of localised multi-protein complexes on the membrane surface that assemble via multiple weak interactions. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Lele Jiang
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Juanita M Phang
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiang Yu
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Stephen J Harrop
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna V Sokolova
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Anthony P Duff
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Krystyna E Wilk
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Heba Alkhamici
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Samuel N Breit
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Stella M Valenzuela
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Louise J Brown
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Paul M G Curmi
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia; School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
227
|
Zhang J, Wei J, Lu J, Tong Z, Liao B, Yu B, Zheng F, Huang X, Chen Z, Fang Y, Li B, Chen W, Xie D, Luo J. Overexpression of Rab25 contributes to metastasis of bladder cancer through induction of epithelial-mesenchymal transition and activation of Akt/GSK-3β/Snail signaling. Carcinogenesis 2013; 34:2401-8. [PMID: 23722651 DOI: 10.1093/carcin/bgt187] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rab25, an epithelial-specific member of the Rab family of small guanosine triphosphatases, is associated with several human cancers. The goal of this study was to determine its function in bladder cancer (BC). We examined the Rab25 expression pattern in two different cohorts of BC patients treated with radical cystectomy by quantitative PCR, western blotting and immunohistochemical staining. A series of in vitro and in vivo assays were performed to elucidate the function of Rab25 in BC and its underlying mechanisms. Rab25 expression was significantly elevated at both the messenger RNA and protein levels in BCs compared with normal bladder tissues. High Rab25 expression was closely associated with lymph node (LN) metastasis and was an independent predictor for poor disease-free survival in BC patients. Downregulation of Rab25 in BC cells markedly inhibited invasive motility in vitro and metastatic potential in vivo. In addition, downregulation of Rab25 in BC EJ and T24 cells increased the expression levels of epithelial markers (E-cadherin and α-catenin) and decreased the levels of mechamechy markers (vimentin and fibronectin). Simultaneously, downregulation of Rab25 in EJ and T24 cells resulted in the inactivation of downstream phosphorylated protein kinase B (p-Akt), phosphorylated glycogen synthase kinase-β (p-GSK-3β) and snail signaling. This study demonstrates that Rab25 can promote BC metastasis through induction of epithelial-mesenchymal transition process and activation of Akt/GSK-3β/Snail signaling pathway; Rab25 expression level can predict LN metastasis and inferior clinical outcome in BC patients.
Collapse
|
228
|
Bouvard D, Pouwels J, De Franceschi N, Ivaska J. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat Rev Mol Cell Biol 2013; 14:430-42. [DOI: 10.1038/nrm3599] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
229
|
Onodera Y, Nam JM, Sabe H. Intracellular trafficking of integrins in cancer cells. Pharmacol Ther 2013; 140:1-9. [PMID: 23711790 DOI: 10.1016/j.pharmthera.2013.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 02/01/2023]
Abstract
Integrins are heterodimeric cell surface receptors, which principally mediate the interaction between cells and their extracellular microenvironments. Because of their pivotal roles in cancer proliferation, survival, invasion and metastasis, integrins have been recognized as promising targets for cancer treatment. As is the case with other receptors, the localization of integrins on the cell surface has provided opportunities to block their functions by various inhibitory monoclonal antibodies. A number of small molecule agents blocking integrin-ligand binding have also been established, and some such agents are currently on the market or in clinical trials for some diseases including cancer. This review exclusively focuses on another strategy for cancer therapy, which comes from the obligate localization of integrins on the cell surface; targeting the intracellular trafficking of integrins. A number of studies have shown the essential roles of integrin trafficking in hallmarks of cancer, such as activation of oncogenic signaling pathways as well as acquisition of invasiveness. Recent findings have shown that increased integrin recycling activity is associated with some types of gain-of-function mutations of p53, a common feature of diverse types of cancers, which also indicates that targeting integrin recycling could be widely applicable and effective against many cancers. We also discuss possible therapeutic contexts where integrin trafficking can be effectively targeted, and what molecular interfaces may hopefully be druggable.
Collapse
Affiliation(s)
- Yasuhito Onodera
- Department of Molecular Biology Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | |
Collapse
|
230
|
Bridgewater RE, Norman JC, Caswell PT. Integrin trafficking at a glance. J Cell Sci 2013; 125:3695-701. [PMID: 23027580 DOI: 10.1242/jcs.095810] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rebecca E Bridgewater
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
231
|
Quantitative image analysis approaches for probing Rab GTPase localization and function in mammalian cells. Biochem Soc Trans 2013; 40:1389-93. [PMID: 23176486 DOI: 10.1042/bst20120145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Membrane traffic pathways play an essential role in cells, providing a mechanism for organelles of the endomembrane system to communicate and exchange material between each other. A significant number of infections and diseases are associated with trafficking pathways, and as such gaining a greater understanding of their regulation is essential. Fluorescence-based imaging techniques are widely used to probe the trafficking machinery within cells, and many of these methods have the potential to be applied in a quantitative manner. In the present mini-review, we highlight several recent examples of how image intensity, kinetic measurements, co-localization and texture feature analysis have been used to study the function of one key family of membrane traffic regulators, the Rab GTPases. We give specific emphasis to the importance of the quantitative nature of these recent studies and comment on their potential applicability to a high-throughput format.
Collapse
|
232
|
Abstract
Derailed endocytosis is a hallmark of cancer. The endocytic pathway, as demonstrated by our laboratory, is a frequent target of genomic aberrations in cancer and plays a critical role in the maintenance of cellular polarity, stem cell function, bioenergetics, proliferation, motility, invasion, metastasis, apoptosis and autophagy. The Rab GTPases, along with their effectors, are critical regulators of this endocytic machinery and can have a huge impact on the cellular itinerary of growth and metabolism. Rab25 is an epithelial-cell-specific member of the Rab GTPase superfamily, sharing close homology with Rab11a, the endosomal recycling Rab GTPase. RAB25 has been implicated in various cancers, with reports presenting it as both an oncogene and a tumour-suppressor gene. At the cellular level, Rab25 was shown to contribute to invasiveness of cancer cells by regulating integrin trafficking. Recently, our laboratory uncovered a critical role for Rab25 in cellular energetics. Assimilating all of the existing evidence, in the present review, we give an updated overview of the complex and often context-dependent role of Rab25 in cancer.
Collapse
|
233
|
Abstract
Comprising over 60 members, Rab proteins constitute the largest branch of the Ras superfamily of low-molecular-mass G-proteins. This protein family have been primarily implicated in various aspects of intracellular membrane trafficking processes. On the basis of distinct subfamily-specific sequence motifs, many Rabs have been grouped into subfamilies. The Rab11 GTPase subfamily comprises three members: Rab11a, Rab11b and Rab25/Rab11c, which, between them, have been demonstrated to bind more than 30 proteins. In the present paper, we review the function of the Rab11 subfamily. We describe their localization and primary functional roles within the cell and their implication, to date, in disease processes. We also summarize the protein machinery currently known to regulate or mediate their functions and the cargo molecules which they have been shown to transport.
Collapse
|
234
|
Abstract
Rab GTPases are master regulators of intracellular trafficking and, in recent years, their role in the control of different aspects of tumour progression has emerged. In the present review, we show that Rab GTPases are disregulated in many cancers and have central roles in tumour cell migration, invasion, proliferation, communication with stromal cells and the development of drug resistance. As a consequence, Rab proteins may be novel potential candidates for the development of anticancer drugs and, in this context, the preliminary results obtained with an inhibitor of Rab function are also discussed.
Collapse
|
235
|
Rainero E, Norman JC. Late endosomal and lysosomal trafficking during integrin-mediated cell migration and invasion: cell matrix receptors are trafficked through the late endosomal pathway in a way that dictates how cells migrate. Bioessays 2013; 35:523-32. [PMID: 23605698 DOI: 10.1002/bies.201200160] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently it has become clear that trafficking of integrins to late endosomes is key to the regulation of integrin expression and function during cell migration. Here we discuss the molecular machinery that dictates whether integrins are sorted to recycling endosomes or are targeted to late endosomes and lysosomes. Integrins and other receptors that are sorted to late endosomes are not necessarily degraded and, under certain circumstances, can be spared destruction and returned to the cell surface to drive cell migration and invasion. We will discuss how the exchange of adhesion receptors and other key regulators of cell migration between late endosomes/lysosomes and the plasma membrane can promote dynamic turnover of adhesions during cell migration.
Collapse
Affiliation(s)
- Elena Rainero
- Beatson Institute for Cancer, Research, Garscube Estate, Bearsden, Glasgow, UK
| | | |
Collapse
|
236
|
The role of endosomal signaling triggered by metastatic growth factors in tumor progression. Cell Signal 2013; 25:1539-45. [PMID: 23571269 DOI: 10.1016/j.cellsig.2013.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/28/2013] [Indexed: 01/12/2023]
Abstract
Within tumor microenvironment, a lot of growth factors such as hepatocyte growth factor and epidermal growth factor may induce similar signal cascade downstream of receptor tyrosine kinase (RTK) and trigger tumor metastasis synergistically. In the past decades, the intimate relationship of RTK-mediated receptor endocytosis with signal transduction was well established. In general, most RTK undergoes clathrin-dependent endocytosis and/or clathrin-independent endocytosis. The internalized receptors may sustain the signaling within early endosome, recycling to plasma membrane for subsequent ligand engagement or sorting to late endosomes/lysosome for receptor degradation. Moreover, receptor endocytosis influences signal transduction in a temporal and spatial manner for periodical and polarized cellular processes such as cell migration. The endosomal signalings triggered by various metastatic factors are quite similar in some critical points, which are essential for triggering cell migration and tumor progression. There are common regulators for receptor endocytosis including dynamin, Rab4, Rab5, Rab11 and Cbl. Moreover, many critical regulators within the RTK signal pathway such as Grb2, p38, PKC and Src were also modulators of endocytosis. In the future, these may constitute a new category of targets for prevention of tumor metastasis.
Collapse
|
237
|
Roche J, Nasarre P, Gemmill R, Baldys A, Pontis J, Korch C, Guilhot J, Ait-Si-Ali S, Drabkin H. Global Decrease of Histone H3K27 Acetylation in ZEB1-Induced Epithelial to Mesenchymal Transition in Lung Cancer Cells. Cancers (Basel) 2013; 5:334-56. [PMID: 24216980 PMCID: PMC3730320 DOI: 10.3390/cancers5020334] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/23/2013] [Accepted: 03/26/2013] [Indexed: 02/06/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) enables epithelial cells with a migratory mesenchymal phenotype. It is activated in cancer cells and is involved in invasion, metastasis and stem-like properties. ZEB1, an E-box binding transcription factor, is a major suppressor of epithelial genes in lung cancer. In the present study, we show that in H358 non-small cell lung cancer cells, ZEB1 downregulates EpCAM (coding for an epithelial cell adhesion molecule), ESRP1 (epithelial splicing regulatory protein), ST14 (a membrane associated serine protease involved in HGF processing) and RAB25 (a small G-protein) by direct binding to these genes. Following ZEB1 induction, acetylation of histone H4 and histone H3 on lysine 9 (H3K9) and 27 (H3K27) was decreased on ZEB1 binding sites on these genes as demonstrated by chromatin immunoprecipitation. Of note, decreased H3K27 acetylation could be also detected by western blot and immunocytochemistry in ZEB1 induced cells. In lung cancers, H3K27 acetylation level was higher in the tumor compartment than in the corresponding stroma where ZEB1 was more often expressed. Since HDAC and DNA methylation inhibitors increased expression of ZEB1 target genes, targeting these epigenetic modifications would be expected to reduce metastasis.
Collapse
Affiliation(s)
- Joëlle Roche
- Department of Medicine, Hematology Oncology Division, MUSC, 96 Jonathan Lucas St., Charleston, SC 29425, USA; E-Mails: (P.N.); (R.G.); (H.D.)
- CNRS FRE 3511, University of Poitiers, 1 rue Georges Bonnet, F-86022 Poitiers Cédex, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-549-453-550
| | - Patrick Nasarre
- Department of Medicine, Hematology Oncology Division, MUSC, 96 Jonathan Lucas St., Charleston, SC 29425, USA; E-Mails: (P.N.); (R.G.); (H.D.)
| | - Robert Gemmill
- Department of Medicine, Hematology Oncology Division, MUSC, 96 Jonathan Lucas St., Charleston, SC 29425, USA; E-Mails: (P.N.); (R.G.); (H.D.)
| | - Aleksander Baldys
- Department of Medicine, Nephrology Division, MUSC, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29425, USA; E-Mail:
| | - Julien Pontis
- Epigénétique & Destin Cellulaire, CNRS UMR 7216, University of Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France; E-Mails: (J.P.); (S.A.)
| | - Christopher Korch
- CU DNA Sequencing and Analysis Core, University of Colorado, School of Medicine, Anschutz Medical Campus, 12801 E. 17th Ave., Aurora, CO 80045, USA; E-Mail:
| | - Joëlle Guilhot
- INSERM, CIC 0802, CHU de Poitiers, F-86021 France; E-Mail:
| | - Slimane Ait-Si-Ali
- Epigénétique & Destin Cellulaire, CNRS UMR 7216, University of Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France; E-Mails: (J.P.); (S.A.)
| | - Harry Drabkin
- Department of Medicine, Hematology Oncology Division, MUSC, 96 Jonathan Lucas St., Charleston, SC 29425, USA; E-Mails: (P.N.); (R.G.); (H.D.)
| |
Collapse
|
238
|
Amornphimoltham P, Rechache K, Thompson J, Masedunskas A, Leelahavanichkul K, Patel V, Molinolo A, Gutkind JS, Weigert R. Rab25 regulates invasion and metastasis in head and neck cancer. Clin Cancer Res 2013; 19:1375-88. [PMID: 23340300 PMCID: PMC3602237 DOI: 10.1158/1078-0432.ccr-12-2858] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is one of the 10 most common cancers with a 50% five-year survival rate, which has remained unchanged for the past three decades. One of the major reasons for the aggressiveness of this cancer is that HNSCCs readily metastasize to cervical lymph nodes that are abundant in the head and neck region. Hence, discovering new molecules controlling the metastatic process as well as understanding their regulation at the molecular level are essential for effective therapeutic strategies. EXPERIMENTAL DESIGN Rab25 expression level was analyzed in HNSCC tissue microarray. We used a combination of intravital microscopy in live animals and immunofluorescence in an in vitro invasion assay to study the role of Rab25 in tumor cell migration and invasion. RESULTS In this study, we identified the small GTPase Rab25 as a key regulator of HNSCC metastasis. We observed that Rab25 is downregulated in HNSCC patients. Next, we determined that reexpression of Rab25 in a metastatic cell line is sufficient to block invasion in a three-dimensional collagen matrix and metastasis to cervical lymph nodes in a mouse model for oral cancer. Specifically, Rab25 affects the organization of F-actin at the cell surface, rather than cell proliferation, apoptosis, or tumor angiogenesis. CONCLUSION These findings suggest that Rab25 plays an important role in tumor migration and metastasis, and that understanding its function may lead to the development of new strategies to prevent metastasis in oral cancer patients.
Collapse
Affiliation(s)
- Panomwat Amornphimoltham
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Kamil Rechache
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Jamie Thompson
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Andrius Masedunskas
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Kantima Leelahavanichkul
- Molecular Carcinogenesis Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Vyomesh Patel
- Molecular Carcinogenesis Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Alfredo Molinolo
- Molecular Carcinogenesis Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - J. Silvio Gutkind
- Molecular Carcinogenesis Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Roberto Weigert
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| |
Collapse
|
239
|
Kim KH, Choi BK, Song KM, Cha KW, Kim YH, Lee H, Han IS, Kwon BS. CRIg signals induce anti-intracellular bacterial phagosome activity in a chloride intracellular channel 3-dependent manner. Eur J Immunol 2013; 43:667-78. [PMID: 23280470 DOI: 10.1002/eji.201242997] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/14/2012] [Accepted: 12/20/2012] [Indexed: 11/10/2022]
Abstract
Macrophages provide a first line of defense against bacterial infection by engulfing and killing invading bacteria, but intracellular bacteria such as Listeria monocytogenes (LM) can survive in macrophages by various mechanisms of evasion. Complement receptor of the immunoglobulin (CRIg), a C3b receptor, binds to C3b on opsonized bacteria and facilitates clearance of the bacteria by promoting their uptake. We found that CRIg signaling induced by agonistic anti-CRIg mAb enhanced the killing of intracellular LM by macrophages, and that this occurred in LM-containing phagosomes. Chloride intra-cellular channel 3 CLIC3, an intracellular chloride channel protein, was essential for CRIg-mediated LM killing by directly interacting with the cytoplasmic domain of CRIg, and the two proteins colocalized on the membranes of LM-containing vacuoles. CLIC3(-/-) mice were as susceptible to LM as CRIg(-/-) mice. These findings identify a mechanism embedded in the process by which macrophages take up opsonized bacteria that prevents the bacteria from evading cell-mediated killing.
Collapse
Affiliation(s)
- Kwang H Kim
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Korea
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Krishnan M, Lapierre LA, Knowles BC, Goldenring JR. Rab25 regulates integrin expression in polarized colonic epithelial cells. Mol Biol Cell 2013; 24:818-31. [PMID: 23345591 PMCID: PMC3596252 DOI: 10.1091/mbc.e12-10-0745] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Rab25 is a tumor suppressor in the colon, but the mechanisms underlying the influence of Rab25 on polarity are unknown. Findings on changes in polarity in Caco2-BBE cells with knockdown and rescue of Rab25 expression indicate that Rab25 regulates integrin gene expression mediated by ETV4. Rab25 is a tumor suppressor for colon cancer in humans and mice. To identify elements of intestinal polarity regulated by Rab25, we developed Caco2-BBE cell lines stably expressing short hairpin RNA for Rab25 and lines rescuing Rab25 knockdown with reexpression of rabbit Rab25. Rab25 knockdown decreased α2-, α5-, and β1-integrin expression. We observed colocalization and direct association of Rab25 with α5β1-integrins. Rab25 knockdown also up-regulated claudin-1 expression, increased transepithelial resistance, and increased invasive behavior. Rab25-knockdown cells showed disorganized brush border microvilli with decreases in villin expression. All of these changes were reversed by reintroduction of rabbit Rab25. Rab25 knockdown altered the expression of 29 gene transcripts, including the loss of α5-integrin transcripts. Rab25 loss decreased expression of one transcription factor, ETV4, and overexpression of ETV4 in Rab25-knockdown cells reversed losses of α5β1-integrin. The results suggest that Rab25 controls intestinal cell polarity through the regulation of gene expression.
Collapse
Affiliation(s)
- Moorthy Krishnan
- Section of Surgical Sciences and the Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
241
|
Knowles LM, Zewe J, Malik G, Parwani AV, Gingrich JR, Pilch J. CLT1 targets bladder cancer through integrin α5β1 and CLIC3. Mol Cancer Res 2012. [PMID: 23204394 DOI: 10.1158/1541-7786.mcr-12-0300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
High-grade non-muscle-invasive bladder cancer is commonly treated with Bacillus Calmette-Guérin, an immunotherapeutic that depends on fibronectin and tumor cell integrin α5β1 for internalization into bladder cancer cells. We previously showed that the anti-angiogenic peptide CLT1 forms cytotoxic complexes with fibronectin that are cooperatively internalized into proliferating endothelium through ligation of integrins and chloride intracellular channel 1. While CLT1 has no effect on mature, differentiated cells, we show here that CLT1 is highly cytotoxic for a panel of bladder tumor cell lines as well as a variety of cell lines derived from kidney, lung, breast, and prostate cancer. Paralleling our previous results, we found CLT1-induced tumor cell death to be increased in the presence of fibronectin, which mediated CLT1 internalization and subsequent autophagic cell death in a mechanism that depends on tumor cell integrin α5β1 and chloride intracellular channel 3 (CLIC3). This mechanistic link was further supported by our results showing upregulation of α5β1 and CLIC3 in CLT1-responsive tumor cell lines and colocalization with CLT1 in tumor tissues. Incubating tumor tissue from patients with bladder cancer with fluorescein-conjugated CLT1 resulted in a strong and specific fluorescence whereas normal bladder tissue remained negative. On the basis of its affinity for bladder tumor tissue and strong antitumor effects, we propose that CLT1 could be useful for targeting bladder cancer.
Collapse
Affiliation(s)
- Lynn M Knowles
- Department of Urology, University of Pittsburgh School of Medicine, Shadyside Medical Center, Suite G33, 5200 Centre Avenue, Pittsburgh, PA 15232, USA
| | | | | | | | | | | |
Collapse
|
242
|
Tringali C, Lupo B, Silvestri I, Papini N, Anastasia L, Tettamanti G, Venerando B. The plasma membrane sialidase NEU3 regulates the malignancy of renal carcinoma cells by controlling β1 integrin internalization and recycling. J Biol Chem 2012; 287:42835-45. [PMID: 23139422 DOI: 10.1074/jbc.m112.407718] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human plasma membrane sialidase NEU3 is a key enzyme in the catabolism of membrane gangliosides, is crucial in the regulation of cell surface processes, and has been demonstrated to be significantly up-regulated in renal cell carcinomas (RCCs). In this report, we show that NEU3 regulates β1 integrin trafficking in RCC cells by controlling β1 integrin recycling to the plasma membrane and controlling activation of the epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling. NEU3 silencing in RCC cells increased the membrane ganglioside content, in particular the GD1a content, and changed the expression of key regulators of the integrin recycling pathway. In addition, NEU3 silencing up-regulated the Ras-related protein RAB25, which directs internalized integrins to lysosomes, and down-regulated the chloride intracellular channel protein 3 (CLIC3), which induces the recycling of internalized integrins to the plasma membrane. In this manner, NEU3 silencing enhanced the caveolar endocytosis of β1 integrin, blocked its recycling and reduced its levels at the plasma membrane, and, consequently, inhibited EGFR and FAK/AKT. These events had the following effects on the behavior of RCC cells: they (a) decreased drug resistance mediated by the block of autophagy and the induction of apoptosis; (b) decreased metastatic potential mediated by down-regulation of the metalloproteinases MMP1 and MMP7; and (c) decreased adhesion to collagen and fibronectin. Therefore, our data identify NEU3 as a key regulator of the β1 integrin-recycling pathway and FAK/AKT signaling and demonstrate its crucial role in RCC malignancy.
Collapse
Affiliation(s)
- Cristina Tringali
- Department of Medical Biotechnology, University of Milan, Segrate, 20090 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
Here, we present emerging ideas surrounding the interplay between the actin cytoskeleton and receptor transport and activation. The bulk of actin dynamics in cells is thought to contribute to architecture and mobility. Actin also contributes to trafficking, acting as a molecular scaffold, providing force to deform membranes, facilitating vesicle abscission or propelling a vesicle through the cytoplasm ( 1) (,) ( 2) and recent studies highlight important connections between the directed trafficking of receptors and the impact on cell migration and actin dynamics. Additionally, a number of newly described actin nucleation promoting factors, such as the vesicle associated protein WASH, reveal unexpected roles of actin in membrane traffic and suggest that the cell dedicates a significant proportion of its regulation of actin dynamics to controlling trafficking.
Collapse
Affiliation(s)
- Tobias Zech
- Beatson Institute for Cancer Research; Bearsden, UK
| | | | | |
Collapse
|
244
|
Yu X, Zech T, McDonald L, Gonzalez EG, Li A, Macpherson I, Schwarz JP, Spence H, Futó K, Timpson P, Nixon C, Ma Y, Anton IM, Visegrády B, Insall RH, Oien K, Blyth K, Norman JC, Machesky LM. N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. J Cell Biol 2012; 199:527-44. [PMID: 23091069 PMCID: PMC3483131 DOI: 10.1083/jcb.201203025] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 09/28/2012] [Indexed: 11/22/2022] Open
Abstract
Metastasizing tumor cells use matrix metalloproteases, such as the transmembrane collagenase MT1-MMP, together with actin-based protrusions, to break through extracellular matrix barriers and migrate in dense matrix. Here we show that the actin nucleation-promoting protein N-WASP (Neural Wiskott-Aldrich syndrome protein) is up-regulated in breast cancer, and has a pivotal role in mediating the assembly of elongated pseudopodia that are instrumental in matrix degradation. Although a role for N-WASP in invadopodia was known, we now show how N-WASP regulates invasive protrusion in 3D matrices. In actively invading cells, N-WASP promoted trafficking of MT1-MMP into invasive pseudopodia, primarily from late endosomes, from which it was delivered to the plasma membrane. Upon MT1-MMP's arrival at the plasma membrane in pseudopodia, N-WASP stabilized MT1-MMP via direct tethering of its cytoplasmic tail to F-actin. Thus, N-WASP is crucial for extension of invasive pseudopods into which MT1-MMP traffics and for providing the correct cytoskeletal framework to couple matrix remodeling with protrusive invasion.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actins/metabolism
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Blotting, Western
- Breast/metabolism
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Membrane/metabolism
- Cell Movement/physiology
- Extracellular Matrix/metabolism
- Female
- Fluorescence Resonance Energy Transfer
- Fluorescent Antibody Technique
- Humans
- Immunoenzyme Techniques
- Matrix Metalloproteinase 14/metabolism
- Mice
- Neoplasm Invasiveness
- Protein Multimerization
- Protein Transport
- Pseudopodia/metabolism
- Pseudopodia/pathology
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Tumor Cells, Cultured
- Wiskott-Aldrich Syndrome Protein, Neuronal/antagonists & inhibitors
- Wiskott-Aldrich Syndrome Protein, Neuronal/genetics
- Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism
Collapse
Affiliation(s)
- Xinzi Yu
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Tobias Zech
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Laura McDonald
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Esther Garcia Gonzalez
- Centro Nacional de Biotecnologia (CNB-CSIC) Darwin 3, Campus Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - Ang Li
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Iain Macpherson
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Juliane P. Schwarz
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Heather Spence
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Kinga Futó
- Department of Biophysics, Medical School, University of Pécs, Pécs H-7624, Hungary
| | - Paul Timpson
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Colin Nixon
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Yafeng Ma
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Ines M. Anton
- Centro Nacional de Biotecnologia (CNB-CSIC) Darwin 3, Campus Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - Balázs Visegrády
- Department of Biophysics, Medical School, University of Pécs, Pécs H-7624, Hungary
| | - Robert H. Insall
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Karin Oien
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Karen Blyth
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Jim C. Norman
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Laura M. Machesky
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| |
Collapse
|
245
|
Ben-Chetrit N, Tarcic G, Yarden Y. ERK-ERF-EGR1, a novel switch underlying acquisition of a motile phenotype. Cell Adh Migr 2012; 7:33-7. [PMID: 23076209 DOI: 10.4161/cam.22263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Unlike the well-characterized checkpoints of the cell cycle, which establish commitment to cell division, signaling pathways and gene expression programs that commit cells to migration are incompletely understood. Apparently, several molecular switches are activated in response to an extracellular cue, such as the epidermal growth factor (EGF), and they simultaneously confer distinct features of an integrated motile phenotype. Here we review such early (transcription-independent) and late switches, in light of a novel ERK-ERF-EGR1 switch we recently reported in the FASEB Journal. The study employed human mammary cells and two stimuli: EGF, which induced mammary cell migration, and serum factors, which stimulated cell growth. By contrasting the underlying pathways we unveiled a cascade that allows the active form of the ERK mitogen-activated protein kinase (MAPK) cascade to export the ERF repressor from the nucleus, thereby permitting tightly balanced stimulation of an EGR1-centered gene expression program.
Collapse
Affiliation(s)
- Nir Ben-Chetrit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
246
|
Tong M, Chan KW, Bao JYJ, Wong KY, Chen JN, Kwan PS, Tang KH, Fu L, Qin YR, Lok S, Guan XY, Ma S. Rab25 is a tumor suppressor gene with antiangiogenic and anti-invasive activities in esophageal squamous cell carcinoma. Cancer Res 2012; 72:6024-35. [PMID: 22991305 DOI: 10.1158/0008-5472.can-12-1269] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC), the major histologic subtype of esophageal cancer, is a devastating disease characterized by distinctly high incidences and mortality rates. However, there remains limited understanding of molecular events leading to development and progression of the disease, which are of paramount importance to defining biomarkers for diagnosis, prognosis, and personalized treatment. By high-throughout transcriptome sequence profiling of nontumor and ESCC clinical samples, we identified a subset of significantly differentially expressed genes involved in integrin signaling. The Rab25 gene implicated in endocytic recycling of integrins was the only gene in this group significantly downregulated, and its downregulation was confirmed as a frequent event in a second larger cohort of ESCC tumor specimens by quantitative real-time PCR and immunohistochemical analyses. Reduced expression of Rab25 correlated with decreased overall survival and was also documented in ESCC cell lines compared with pooled normal tissues. Demethylation treatment and bisulfite genomic sequencing analyses revealed that downregulation of Rab25 expression in both ESCC cell lines and clinical samples was associated with promoter hypermethylation. Functional studies using lentiviral-based overexpression and suppression systems lent direct support of Rab25 to function as an important tumor suppressor with both anti-invasive and -angiogenic abilities, through a deregulated FAK-Raf-MEK1/2-ERK signaling pathway. Further characterization of Rab25 may provide a prognostic biomarker for ESCC outcome prediction and a novel therapeutic target in ESCC treatment.
Collapse
Affiliation(s)
- Man Tong
- Department of Pathology, Genome Research Centre, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Valdembri D, Serini G. Regulation of adhesion site dynamics by integrin traffic. Curr Opin Cell Biol 2012; 24:582-91. [PMID: 22981739 DOI: 10.1016/j.ceb.2012.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 08/20/2012] [Indexed: 01/14/2023]
Abstract
The dynamic control of integrin-mediated cell adhesion to extracellular matrix proteins is crucial for several physiological and pathological phenomena as diverse as embryonic morphogenesis, muscle contraction, tissue repair, and cancer cell dissemination. On one hand, the intrinsic conformational plasticity of integrins, which can be bidirectionally modulated by their ligands and cytosolic adaptors in combination with physical forces, is a key regulatory parameter. On the other hand, endo-exocytic integrin traffic logistics represent an additional important mode of control. Herein, we highlight how these two apparently parallel and independent strategies for tuning integrin function appear instead to be indissolubly intermingled, as eukaryotic cells have evolved distinct molecular strategies and endosomal pathways to traffic ligand-bound and ligand-free integrins.
Collapse
Affiliation(s)
- Donatella Valdembri
- Laboratory of Cell Adhesion Dynamics - IRCC and Department of Oncological Sciences, University of Torino School of Medicine, 10060, Candiolo, Italy
| | | |
Collapse
|
248
|
Margadant C, Kreft M, de Groot DJ, Norman JC, Sonnenberg A. Distinct roles of talin and kindlin in regulating integrin α5β1 function and trafficking. Curr Biol 2012; 22:1554-63. [PMID: 22795696 DOI: 10.1016/j.cub.2012.06.060] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/31/2012] [Accepted: 06/22/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Integrins are heterodimeric αβ transmembrane receptors that play key roles in cellular physiology and pathology. Accumulating data indicate that the two NPxY motifs in the cytoplasmic domain of the β1 subunit synergistically promote integrin activation through the binding of talin and kindlin. However, it is unclear how the individual motifs regulate integrin function and trafficking. RESULTS To investigate how the two NPxY motifs individually control integrin α5β1 function and trafficking, we introduced Y > A mutations in either motif. Disruption of the membrane-proximal NPxY completely prevented α5β1-induced morphological changes, cell scattering and migration, and fibronectin fibrillogenesis. In addition, it reduced α5β1 internalization but not its recycling. In contrast, disruption of the membrane-distal NPxY promoted degradation of α5β1 in late endosomes/lysosomes but did not prevent α5β1-dependent cell scattering, migration, or fibronectin fibrillogenesis. Whereas depletion of either talin-1 or kindlin-2 reduced α5β1 binding to fibronectin and cell adhesion, talin-1 depletion recapitulated the loss-of-function phenotype of the membrane-proximal NPxY mutation, whereas kindlin-2 depletion induced α5β1 accumulation in lysosomes and degradation. CONCLUSIONS The two NPxY motifs of β1 play distinct and separable roles in controlling the function and trafficking of α5β1. Whereas talin binding to the membrane-proximal NPxY is crucial for connecting α5β1 to the actin cytoskeleton and thus permit the tension required for fibronectin fibrillogenesis and cell migration, kindlin binding to the membrane-distal NPxY is dispensable for these events but regulates α5β1 surface expression and degradation.
Collapse
Affiliation(s)
- Coert Margadant
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
249
|
The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res 2012; 22:1479-501. [PMID: 22825554 PMCID: PMC3463263 DOI: 10.1038/cr.2012.110] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During developmental and tumor angiogenesis, semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases. R-Ras is mainly expressed in vascular cells, where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms. We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and -angiogenic activity of R-Ras. Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia. Upon binding, GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF) to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes. Here, the R-Ras/RIN2/Rab5 signaling module activates Rac1-dependent cell adhesion via TIAM1, a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate. In conclusion, the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Rac1.
Collapse
|
250
|
Murthi P, Stevenson JL, Money TT, Borg AJ, Brennecke SP, Gude NM. Placental CLIC3 is increased in fetal growth restriction and pre-eclampsia affected human pregnancies. Placenta 2012; 33:741-4. [PMID: 22795578 DOI: 10.1016/j.placenta.2012.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/09/2012] [Accepted: 06/14/2012] [Indexed: 12/01/2022]
Abstract
Chloride intracellular channel (CLIC) proteins constitute a subgroup of the glutathione-S-transferase (GSTs) superfamily. In humans, the CLIC family of proteins consists of six members, designated CLIC 1-6, which have a conserved C-terminal 240 residue module and one major transmembrane domain. CLIC proteins regulate fundamental cellular processes including regulation of chloride ion concentration, stabilization of cell membrane potential, trans-epithelial transport, regulation of cell volume and stimulation of apoptotic processes in response to cellular stress. Previously, we described the expression profile of a member of the CLIC family of proteins, CLIC3, in human placentae and fetal membranes. In the current study, we determined CLIC3 expression in placentae from pregnancies complicated with either fetal growth restriction (FGR, n=19), pre-eclampsia (PE, n=16) or both FGR and PE combined (n=12) compared to gestation-matched controls (n=13) using real-time PCR and a CLIC3 specific immunoassay. Significantly increased CLIC3 mRNA and protein were detected in placental extracts from pregnancies with FGR, PE and PE with FGR compared to controls. Our results suggest that increased expression of CLIC3 may play a role in abnormal placental function associated with the human pregnancy disorders FGR and PE.
Collapse
Affiliation(s)
- P Murthi
- Department of Perinatal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Parkville, 3052 VIC, Australia.
| | | | | | | | | | | |
Collapse
|