201
|
Boukid F, Rosell CM, Rosene S, Bover-Cid S, Castellari M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:6390-6420. [PMID: 33775185 DOI: 10.1080/10408398.2021.1901649] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumer interest in protein rich diets is increasing, with more attention being paid to the protein source. Despite the occurrence of animal proteins in the human diet, non-animal proteins are gaining popularity around the world due to their health benefits, environmental sustainability, and ethical merit. These sources of protein qualify for vegan, vegetarian, and flexitarian diets. Non-animal proteins are versatile, derived mainly from cereals, vegetables, pulses, algae (seaweed and microalgae), fungi, and bacteria. This review's intent is to analyze the current and future direction of research and innovation in non-animal proteins, and to elucidate the extent (limitations and opportunities) of their applications in food and beverage industries. Prior knowledge provided relevant information on protein features (processing, structure, and techno-functionality) with particular focus on those derived from soy and wheat. In the current food landscape, beyond conventionally used plant sources, other plant proteins are gaining traction as alternative ingredients to formulate animal-free foodstuffs (e.g., meat alternatives, beverages, baked products, snack foods, and others). Microbial proteins derived from fungi and algae are also food ingredients of interest due to their high protein quantity and quality, however there is no commercial food application for bacterial protein yet. In the future, key points to consider are the importance of strain/variety selection, advances in extraction technologies, toxicity assessment, and how this source can be used to create food products for personalized nutrition.
Collapse
Affiliation(s)
- Fatma Boukid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Sara Rosene
- General Mills, Golden Valley, Minnesota, USA
| | - Sara Bover-Cid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| |
Collapse
|
202
|
Wei YS, Feng K, Li SF, Hu TG, Linhardt RJ, Zong MH, Wu H. Oral fate and stabilization technologies of lactoferrin: a systematic review. Crit Rev Food Sci Nutr 2021; 62:6341-6358. [PMID: 33749401 DOI: 10.1080/10408398.2021.1900774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactoferrin (Lf), a bioactive protein initially found in many biological secretions including milk, is regarded as the nutritional supplement or therapeutic ligand due to its multiple functions. Research on its mode of action reveals that intact Lf or its active peptide (i.e., lactoferricin) shows an important multifunctional performance. Oral delivery is considered as the most convenient administration route for this bioactive protein. Unfortunately, Lf is sensitive to the gastrointestinal (GI) physicochemical stresses and lactoferricin is undetectable in GI digesta. This review introduces the functionality of Lf at the molecular level and its degradation behavior in GI tract is discussed in detail. Subsequently, the absorption and transport of Lf from intestine into the blood circulation, which is pivotal to its health promoting effects in various tissues, and some assisting labeling methods are discussed. Stabilization technologies aiming at preserving the structural integrity and functional properties of orally administrated Lf are summarized and compared. Altogether, this work comprehensively reviews the structure-function relationship of Lf, its oral fate and the development of stabilization technologies for the enhancement of the oral bioavailability of Lf. The existing limitations and scope for future research are also discussed.
Collapse
Affiliation(s)
- Yun-Shan Wei
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Kun Feng
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
203
|
Yu Y, Hu Q, Liu J, Su A, Xu H, Li X, Huang Q, Zhou J, Mariga AM, Yang W. Isolation, purification and identification of immunologically active peptides from Hericium erinaceus. Food Chem Toxicol 2021; 151:112111. [PMID: 33716052 DOI: 10.1016/j.fct.2021.112111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022]
Abstract
Biologically active peptides released by proteins are important in regulating immunity. The purpose of this study was to isolate and purify an immunologically active peptide from Hericium erinaceus (H. erinaceus) and to explore its effect on cytokine secretion and differentiation of macrophages. An active peptide with an amino acid sequence, Lys-Ser-Pro-Leu-Tyr (KSPLY) was obtained from H. erinaceus protein by ultrafiltration combined with multistage chromatography separation and identification technology. Subsequently, it was confirmed that the synthetic peptide KSPLY had a good immunomodulatory activity at a concentration of 100 μmol/L and could promote the secretion of NO, IL-1β, IL-6 and TNF-α by macrophages. The effects of KSPLY on M1 macrophages and M2 macrophages were also studied. Results showed that KSPLY inhibited the secretion of NO and IL-6 by M1 macrophages and promoted the tendency of M2 macrophages to transform to M1 macrophages. Therefore, it can be concluded that KSPLY is an effective immunomodulatory peptide that may be beneficial in cancer treatment and human health improvement.
Collapse
Affiliation(s)
- Yihan Yu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Qiuhui Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Jianhui Liu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Anxiang Su
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Hui Xu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Qingrong Huang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, United States
| | - Jinlan Zhou
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Alfred Mugambi Mariga
- School of Agriculture and Food Science, Meru University of Science Technology, P.O. Box, 972-60400, Meru, Kenya
| | - Wenjian Yang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
204
|
Bioinspired proteolytic membrane (BPM) with bilayer pepsin structure for protein hydrolysis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
205
|
Orafaie A, Bahrami AR, Matin MM. Use of anticancer peptides as an alternative approach for targeted therapy in breast cancer: a review. Nanomedicine (Lond) 2021; 16:415-433. [PMID: 33615876 DOI: 10.2217/nnm-2020-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Traditional therapies are expensive and cause severe side effects. Targeted therapy is a powerful method to circumvent the problems of other therapies. It also allows drugs to localize at predefined targets in a selective manner. Currently, there are several monoclonal antibodies which target breast cancer cell surface markers. However, using antibodies has some limitations. In the last two decades, many investigators have discovered peptides that may be useful to target breast cancer cells. In this article, we provide an overview on anti-breast cancer peptides, their sources and biological activities. We further discuss the pros and cons of using anticancer peptides with further emphasis on how to improve their effectiveness in cancer therapy.
Collapse
Affiliation(s)
- Ala Orafaie
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics & Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
206
|
Hong H, Fan H, Roy BC, Wu J. Amylase enhances production of low molecular weight collagen peptides from the skin of spent hen, bovine, porcine, and tilapia. Food Chem 2021; 352:129355. [PMID: 33667924 DOI: 10.1016/j.foodchem.2021.129355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/03/2023]
Abstract
Low molecular weight (LMW) collagen peptides show skin and bone health benefits for human. However, the production of LMW collagen peptides from land vertebrate sources remains challenging due to the presence of advanced glycation end products (AGEs) cross-links. In this study, the effect of α-amylase pre-treatment on proteolytic production of LMW collagen peptides by papain was investigated; spent hen, bovine, porcine, and tilapia skin collagens (HSC, BSC, PSC, and TSC, respectively) were chosen. Results showed that pre-treatment with α-amylase considerably improved the production of LMW peptides (<2 kDa) from HSC (33.79-67.66%), PSC (86.03-90.85%), BSC (6.60-28.78%), and TSC (89.92-90.27%). The HSC presented the highest carbohydrate content and was increased the most in LMW peptides after amylase pretreatment. These results suggested that α-amylase could cleave glycosidic bonds of AGEs between collagen and thus enhance the production of LMW collagen peptides.
Collapse
Affiliation(s)
- Hui Hong
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Hongbing Fan
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
207
|
Zhang QT, Liu ZD, Wang Z, Wang T, Wang N, Wang N, Zhang B, Zhao YF. Recent Advances in Small Peptides of Marine Origin in Cancer Therapy. Mar Drugs 2021; 19:md19020115. [PMID: 33669851 PMCID: PMC7923226 DOI: 10.3390/md19020115] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death in the world, and antineoplastic drug research continues to be a major field in medicine development. The marine milieu has thousands of biological species that are a valuable source of novel functional proteins and peptides, which have been used in the treatment of many diseases, including cancer. In contrast with proteins and polypeptides, small peptides (with a molecular weight of less than 1000 Da) have overwhelming advantages, such as preferential and fast absorption, which can decrease the burden on human gastrointestinal function. Besides, these peptides are only connected by a few peptide bonds, and their small molecular weight makes it easy to modify and synthesize them. Specifically, small peptides can deliver nutrients and drugs to cells and tissues in the body. These characteristics make them stand out in relation to targeted drug therapy. Nowadays, the anticancer mechanisms of the small marine peptides are still largely not well understood; however, several marine peptides have been applied in preclinical treatment. This paper highlights the anticancer linear and cyclic small peptides in marine resources and presents a review of peptides and the derivatives and their mechanisms.
Collapse
Affiliation(s)
- Qi-Ting Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Q.-T.Z.); (T.W.); (Y.-F.Z.)
| | - Ze-Dong Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Z.-D.L.); (Z.W.)
| | - Ze Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Z.-D.L.); (Z.W.)
| | - Tao Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Q.-T.Z.); (T.W.); (Y.-F.Z.)
| | - Nan Wang
- Quality Assurance Department, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, China;
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Q.-T.Z.); (T.W.); (Y.-F.Z.)
- Correspondence: (N.W.); (B.Z.)
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Z.-D.L.); (Z.W.)
- Correspondence: (N.W.); (B.Z.)
| | - Yu-Fen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Q.-T.Z.); (T.W.); (Y.-F.Z.)
| |
Collapse
|
208
|
Response Surface Optimization of Enzymatic Hydrolysis of Peptides of Chinese Pecan (Carya cathayensis) and Analysis of Their Antioxidant Capacities and Structures. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10164-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
209
|
Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
210
|
Gly-Pro-Ala peptide and FGSHF3 exert protective effects in DON-induced toxicity and intestinal damage via decreasing oxidative stress. Food Res Int 2021; 139:109840. [PMID: 33509464 DOI: 10.1016/j.foodres.2020.109840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 02/05/2023]
Abstract
Deoxynivalenol (DON), a common mycotoxin, usually induces oxidative stress and intestinal injury of humans and animals. This study aims to investigate the protective effect of Gly-Pro-Ala (GPA) peptide, isolated from fish skin gelatin hydrolysate fraction 3 (FGSHF3), on alleviating the toxicity and oxidative stress induced by DON in the mice and IPEC-J2 cells. DON treatment decreases average daily gain and feeds intake, which causes enlargement of the liver and spleen. FGSHF3 (200 mg/kg) and GPA (200 mg/kg) treatment significantly increase average daily gain and inhibits enlargement of the liver and spleen. Furthermore, FGSHF3 and GPA treatment significantly alleviates intestinal injury and maintains tight junction in mice and IPEC-J2 cells. FGSHF3 and GPA treatment significantly inhibits ROS and MDA production and enhances antioxidant enzyme activity, such as CAT, SOD-1, GCLM, GCLC, and GSH-PX. Furthermore, FGSHF3 and GPA treatment promote Nrf2 migration from the cytoplasm to the nucleus, resulting in exerting antioxidant effects. And its effects are abolished after Nrf2 is knockdown by siRNA. Overall, our results suggest GPA peptide may be a promising candidate for the alleviation of DON-induced toxicity in humans and animals.
Collapse
|
211
|
Wang TX, Shen DY, Wang Q, Xu XH, Wang X, Chen QX, Zhuang JX, Wang YY. Protective effects of orally administered shark compound peptides from Chiloscyllium plagiosum against acute inflammation. J Food Biochem 2021; 45:e13618. [PMID: 33491226 DOI: 10.1111/jfbc.13618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022]
Abstract
The anti-inflammatory effects of shark compound peptides (SCP) from Chiloscyllium plagiosum were investigated. Results showed that SCP enhanced the viability of RAW 264.7 macrophages in vitro in a dose-dependent manner. Orally administered SCP exhibited potent anti-inflammatory activity in lipopolysaccharide (LPS)-challenged mice by suppressing serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), as well as nitric oxide (NO). Moreover, SCP significantly inhibited the inflammatory rise of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and creatinine (CRE), while blocking the decline of cholinesterase (CHE), with an efficacy close to aspirin. This research showed that orally administered SCP from C. plagiosum notably downregulated uncontrolled inflammatory responses, and conferred substantial protection from endotoxin-induced acute hepatic damage and renal functional impairment. Therefore, oral supplementation of SCP can be used as a preventive approach to reduce the risk of inflammatory-related diseases.
Collapse
Affiliation(s)
- Tong-Xin Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Dong-Yan Shen
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qin Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xin-Heng Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xi Wang
- Marine Biomedicine Center, Tekwon Genetic Technologies Ltd, Xiamen, China
| | - Qing-Xi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiang-Xing Zhuang
- Key Laboratory of Neurodegenerative Disease and Aging Research Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yule-Yue Wang
- Marine Biomedicine Center, Tekwon Genetic Technologies Ltd, Xiamen, China
| |
Collapse
|
212
|
Gao R, Shu W, Shen Y, Sun Q, Jin W, Li D, Li Y, Yuan L. Peptide fraction from sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via MAPK and NF-κB pathways. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2020.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
213
|
He P, Wang Q, Zhan Q, Pan L, Xin X, Wu H, Zhang M. Purification and characterization of immunomodulatory peptides from enzymatic hydrolysates of duck egg ovalbumin. Food Funct 2021; 12:668-681. [DOI: 10.1039/d0fo02674c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Duck egg white (DEW) is considered as an abandoned protein resource.
Collapse
Affiliation(s)
- Ping He
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Qian Wang
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Qiping Zhan
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Leiman Pan
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Xuan Xin
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Hui Wu
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Mengmeng Zhang
- College of Food Sciences and Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
214
|
Ho YY, Lu HK, Lim ZFS, Lim HW, Ho YS, Ng SK. Applications and analysis of hydrolysates in animal cell culture. BIORESOUR BIOPROCESS 2021; 8:93. [PMID: 34603939 PMCID: PMC8476327 DOI: 10.1186/s40643-021-00443-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Animal cells are used in the manufacturing of complex biotherapeutic products since the 1980s. From its initial uses in biological research to its current importance in the biopharmaceutical industry, many types of culture media were developed: from serum-based media to serum-free to protein-free chemically defined media. The cultivation of animal cells economically has become the ultimate goal in the field of biomanufacturing. Serum serves as a source of amino acids, lipids, proteins and most importantly growth factors and hormones, which are essential for many cell types. However, the use of serum is unfavorable due to its high price tag, increased lot-to-lot variations and potential risk of microbial contamination. Efforts are progressively being made to replace serum with recombinant proteins such as growth factors, cytokines and hormones, as well as supplementation with lipids, vitamins, trace elements and hydrolysates. While hydrolysates are more complex, they provide a diverse source of nutrients to animal cells, with potential beneficial effects beyond the nutritional value. In this review, we discuss the use of hydrolysates in animal cell culture and briefly cover the composition of hydrolysates, mode of action and potential contaminants with some perspectives on its potential role in animal cell culture media formulations in the future.
Collapse
Affiliation(s)
- Yin Ying Ho
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Hao Kim Lu
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Zhi Feng Sherman Lim
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Hao Wei Lim
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Ying Swan Ho
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Say Kong Ng
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| |
Collapse
|
215
|
Famuwagun A, Alashi A, Gbadamosi S, Taiwo K, Oyedele J, Adebooye O, Aluko R. In Vitro Characterization of Fluted Pumpkin Leaf Protein Hydrolysates and Ultrafiltration of Peptide Fractions: Antioxidant and Enzyme-Inhibitory Properties. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/130401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
216
|
Yang J, Huang J, Zhu Z, Huang M. Investigation of optimal conditions for production of antioxidant peptides from duck blood plasma: response surface methodology. Poult Sci 2020; 99:7159-7168. [PMID: 33248633 PMCID: PMC7704753 DOI: 10.1016/j.psj.2020.08.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 10/31/2022] Open
Abstract
Duck blood is rich in protein. It is one of the main by-products in the slaughter industry. The objective of this research was to optimize and establish a method for producing duck plasma antioxidant peptides. The composition of duck plasma powder was analyzed. Protease selection experiment (Alcalase, Protamex, and Flavourzyme) and single-factor experiment were performed, and response surface methodology was used to determine the optimal hydrolysis conditions for duck plasma. Among the proteases, Alcalase hydrolysate exhibited the strongest 1,1-diphenyl-2-picrylhydrazyl scavenging rate. The optimum enzymatic hydrolysis conditions were hydrolysis time of 6 h, temperature of 65.5°C, pH 10.0, and enzyme-to-substrate ratio of 0.3%. The 1,1-diphenyl-2-picrylhydrazyl scavenging rate reached 64.84%, and the ratio of essential amino acids was 38.76%. Briefly, the duck plasma hydrolysate exhibited strong antioxidant properties and reasonable composition of amino acids. Thus, it may be used as a nutritional or functional ingredient in foods or medicines. This research provides a theoretical basis for comprehensive processing and high value utilization of duck plasma.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jichao Huang
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zongshuai Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
217
|
Yang Q, Cai X, Huang M, Chen X, Tian Y, Chen G, Wang M, Wang S, Xiao J. Isolation, Identification, and Immunomodulatory Effect of a Peptide from Pseudostellaria heterophylla Protein Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12259-12270. [PMID: 33084337 DOI: 10.1021/acs.jafc.0c04353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, a bioactive peptide YGPSSYGYG (YG-9) with immunomodulatory activity was isolated and identified from Pseudostellaria heterophylla protein hydrolysate. The highest proliferation index of mouse spleen lymphocytes reached 1.19 in the presence of 50 μg/mL YG-9. YG-9 could activate RAW264.7 cells by promoting the secretions of NO, the pinocytosis activity, and the productions of ROS and TNF-α. Moreover, YG-9 enhanced the expressions of TLR2 and TLR4 in RAW264.7 cells. TNF-α secretions induced by YG-9 were reduced in TLR2 and TLR4 siRNAs knockdown cells, and this suggested that macrophage activation of YG-9 was through TLR2 and TLR4. Furthermore, YG-9 promoted the translocation of NF-κB through the acceleration of IκB-α phosphorylation and degradation. Also, TNF-α secretions promoted by YG-9 were inhibited by NF-κB-specific inhibitors pyrrolidine dithiocarbamate and BAY11-7082. Altogether, these results suggested YG-9 activated RAW264.7 cells via the TLRs/NF-κB/TNF-α signaling pathway.
Collapse
Affiliation(s)
- Qian Yang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China
| | - Xixi Cai
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China
| | - Muchen Huang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China
| | - Xuan Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China
| | - Yongqi Tian
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China
| | - Guiqing Chen
- Zhongshi Beishan (Fujian)Wine Co., Ltd., Zherong, Fujian 350108, China
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
218
|
Preparation and purification of an immunoregulatory peptide from Stolephorus chinensis of the East Sea of China. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
219
|
Sun L, Chen Q, Lu H, Wang J, Zhao J, Li P. Electrodialysis with porous membrane for bioproduct separation: Technology, features, and progress. Food Res Int 2020; 137:109343. [DOI: 10.1016/j.foodres.2020.109343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/26/2022]
|
220
|
Fernández-Tomé S, Hernández-Ledesma B. Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Mol Nutr Food Res 2020; 64:e2000401. [PMID: 32974997 DOI: 10.1002/mnfr.202000401] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The gastrointestinal tract represents a specialized interface between the organism and the external environment. Because of its direct contact with lumen substances, the modulation of digestive functions by dietary substances is supported by a growing body of evidence. Food-derived bioactive peptides have demonstrated a plethora of activities in the organism with increasing interest toward their impact over the digestive system and related physiological effects. This review updates the biological effects of food proteins, specifically milk and soybean proteins, associated to gastrointestinal health and highlights the study of digestion products and released peptides, the identification of the active form/s, and the evaluation of the mechanisms of action underlying their relationship with the digestive cells and receptors. The approach toward the modifications that food proteins and peptides undergo during gastrointestinal digestion and their bioavailability is a crucial step for current investigations on the field. The recent literature on the regulation of digestive functions by peptides has been mostly considered in terms of their influence on gastrointestinal motility and signaling, oxidative damage and inflammation, and malignant cellular proliferation. A final section regarding the actual challenges and future perspectives in this scientific topic is critically discussed.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Samuel Fernández-Tomé. Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León, 62, 28006, Madrid, Spain
| | - Blanca Hernández-Ledesma
- Blanca Hernández-Ledesma. Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049, Madrid, Spain
| |
Collapse
|
221
|
Mao R, Wu L, Zhu N, Liu X, Hao Y, Liu R, Du Q, Li Y. Immunomodulatory effects of walnut (Juglans regia L.) oligopeptides on innate and adaptive immune responses in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
222
|
Görgüç A, Gençdağ E, Yılmaz FM. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments - A review. Food Res Int 2020; 136:109504. [PMID: 32846583 DOI: 10.1016/j.foodres.2020.109504] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/03/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022]
Abstract
Agro-industrial by-products containing considerable amounts of protein (10-50%) such as soybean meal, rice bran and coconut pulp are promising bioactive peptide sources with annual disposal rate of 800 million tons in the world. More recently, plant by-products rich in protein content have been studied under various prisms that include recovery techniques, peptide production methods, determination of technological benefits and functional properties, and their applications in foods. The researches in bioactive peptides provide evidence over the techno-functional properties and the health benefits are highly dependent upon their amino acid sequences, molecular weights, conformations and surface properties. Research findings compared bioactive properties of the obtained peptides with respect to their amino acid sequences and also reported that hydrophobic/hydrophilic properties have direct effect on both functional and health effects. In addition, the resultant properties of the peptides could be affected by the conducted extraction method (alkaline, enzymatic, ultrasound assisted, microwave assisted, etc.), extraction solvent, precipitation and purification techniques and even by the final drying process (spray, freeze, vacuum, etc.) which may alter molecular weights, conformations and surface properties. Latest studies have investigated solubility, emulsifying, foaming, water/oil holding capacity and surface properties and also antioxidant, antimicrobial, anticarcinogenic, hypocholesterolemic, antihypertensive, immunomodulatory and opioid activities of bioactive peptides obtained from plant by-products. Moreover, the application of the bioactive peptides into different food formulations has been a recent trend of functional food development. These bioactive peptides' bitter taste and toxicity are possible challenges in some cases that need to be resolved before their wider utilization.
Collapse
Affiliation(s)
- Ahmet Görgüç
- Aydın Adnan Menderes University, Engineering Faculty, Food Engineering Department, 09010 Efeler, Aydın, Turkey
| | - Esra Gençdağ
- Aydın Adnan Menderes University, Engineering Faculty, Food Engineering Department, 09010 Efeler, Aydın, Turkey
| | - Fatih Mehmet Yılmaz
- Aydın Adnan Menderes University, Engineering Faculty, Food Engineering Department, 09010 Efeler, Aydın, Turkey.
| |
Collapse
|
223
|
Xiao C, Toldrá F, Zhou F, Gallego M, Zhao M, Mora L. Effect of cooking and in vitro digestion on the peptide profile of chicken breast muscle and antioxidant and alcohol dehydrogenase stabilization activity. Food Res Int 2020; 136:109459. [DOI: 10.1016/j.foodres.2020.109459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/03/2023]
|
224
|
Sun X, Wang K, Gao S, Hong H, Zhang L, Liu H, Feng L, Luo Y. Purification and characterization of antioxidant peptides from yak ( Bos grunniens) bone hydrolysates and evaluation of cellular antioxidant activity. Journal of Food Science and Technology 2020; 58:3106-3119. [PMID: 34294973 DOI: 10.1007/s13197-020-04814-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
In this study, papain and alcalase were used to generate antioxidant peptides from yak bone protein. The antioxidant activities of hydrolysates in vitro were evaluated by 2,2'-azinobios-(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity, total reducing power, ferrous ion chelating ability and hydroxyl radical scavenging activity. The hydrolysates generated by alcalase possessed the best antioxidant activity among unhydrolyzed protein and samples treated by papain, but the antioxidant activity decreased after simulated gastrointestinal digestion in vitro. The products of simulated gastrointestinal digestion were separated by ultrafiltration and high performance liquid chromatography, and the amino acid sequences of peptides were identified by mass spectrometry. The digestion sites within peptides were predicted by a bioinformatics strategy, and ten peptides were selected for synthesis. Among 10 synthetic peptides, Gly-Phe-Hyp-Gly-Ala-Asp-Gly-Val-Ala, Gly-Gly-Pro-Gln-Gly-Pro-Arg and Gly-Ser-Gln-Gly-Ser-Gln-Gly-Pro-Ala possessed strong antioxidant activities, among which Gly-Phe-Hyp-Gly-Ala-Asp-Gly-Val-Ala had a significant cytoprotective effect in Caco-2 cells under oxidative stress induced by H2O2, which reduced the formation of reactive oxygen species and malondialdehyde, and improved the activity of antioxidant enzymes in cells. These results showed that yak bone peptides exhibited strong antioxidant activity and have a potential value as a new type of natural antioxidant.
Collapse
Affiliation(s)
- Xiaohui Sun
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Kai Wang
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Song Gao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Hui Hong
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Longteng Zhang
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Huaigao Liu
- Anhui Guotai Biotechnology Co., Ltd, Xuancheng, Anhui Province China
| | - Ligeng Feng
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Yongkang Luo
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022 Jiangxi China
| |
Collapse
|
225
|
Li M, Zhou M, Wei Y, Jia F, Yan Y, Zhang R, Cai M, Gu R. The beneficial effect of oyster peptides and oyster powder on cyclophosphamide-induced reproductive impairment in male rats: A comparative study. J Food Biochem 2020; 44:e13468. [PMID: 32935351 DOI: 10.1111/jfbc.13468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/20/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to evaluate the effect of oyster peptides and oyster powder on the procreative capacity of rats displaying reproductive dysfunction induced by cyclophosphamide (CTX). The amino acid composition and relative molecular mass of the oyster peptides and oyster powder were detected using an automatic amino acid analyzer and high-performance liquid chromatography (HPLC). After 5 d of exposure to CTX and six weeks of oyster peptide and oyster powder treatment, the biochemical serum indexes of the rats, the expression of related genes and proteins in the testes, as well as the antioxidant status and pathological state of the testes and kidneys were examined. The results showed that oyster peptides could effectively improve the biochemical blood indexes of rats, and increase the level of androgen in the blood, while improving the pathological state and oxidative stress state of the kidneys and testes, therefore, exhibiting a beneficial effect on reproductive injury. PRACTICAL APPLICATIONS: This study examined the activity of oyster peptides and their ability to enhance the procreative capacity of rats with reproductive dysfunction induced by CTX while analyzing the amino acid composition and relative molecular mass of the oyster peptides. The results of this experiment provided a preliminary theoretical basis for the development of new functional foods using oyster peptides.
Collapse
Affiliation(s)
- Mingliang Li
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Ming Zhou
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Ying Wei
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Fuhuai Jia
- Ningbo Yufangtang Biotechnology Co., Ltd, Ningbo, China
| | - Yongqiu Yan
- Ningbo Yufangtang Biotechnology Co., Ltd, Ningbo, China.,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ruixue Zhang
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Muyi Cai
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Ruizeng Gu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| |
Collapse
|
226
|
Zhu W, Ren L, Zhang L, Qiao Q, Farooq MZ, Xu Q. The Potential of Food Protein-Derived Bioactive Peptides against Chronic Intestinal Inflammation. Mediators Inflamm 2020; 2020:6817156. [PMID: 32963495 PMCID: PMC7499337 DOI: 10.1155/2020/6817156] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation can cause various chronic diseases like inflammatory bowel diseases. Various food protein-derived bioactive peptides (BAPs) with anti-inflammatory activity have the potential to manage these diseases. The aim of this paper is to overview the mechanisms and the molecular targets of BAPs to exert anti-inflammatory activity. In this review, the in vitro and in vivo effects of BAPs on intestinal inflammation are highlighted. The mechanism, pathways, and future perspectives of BAPs as the potential sources of therapeutic treatments to alleviate intestinal inflammation are provided, including nuclear factor-κB, mitogen-activated protein kinase, Janus kinase-signal transducer and activator of transcription, and peptide transporter 1 (PepT1), finding that PepT1 and gut microbiota are the promising targets for BAPs to alleviate the intestinal inflammation. This review provides a comprehensive understanding of the role of dietary BAPs in attenuating inflammation and gives a novel direction in nutraceuticals for people or animals with intestinal inflammation.
Collapse
Affiliation(s)
- Wanying Zhu
- Shanxian Central Hospital, Heze 274300, China
| | - Liying Ren
- Shanxian Central Hospital, Heze 274300, China
| | - Li Zhang
- Shanxian Central Hospital, Heze 274300, China
| | - Qinqin Qiao
- College of Information Engineering, Fuyang Normal University, Fuyang 236000, China
| | - Muhammad Zahid Farooq
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
227
|
Ameliorative effect of low molecular weight peptides from the head of red shrimp (Solenocera crassicornis) against cyclophosphamide-induced hepatotoxicity in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
228
|
Pantoa T, Kubota M, Suwannaporn P, Kadowaki M. Characterization and bioactivities of young rice protein hydrolysates. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
229
|
Gao R, Shu W, Shen Y, Sun Q, Bai F, Wang J, Li D, Li Y, Jin W, Yuan L. Sturgeon protein-derived peptides exert anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via the MAPK pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
230
|
Quintal-Bojórquez N, Segura-Campos MR. Bioactive Peptides as Therapeutic Adjuvants for Cancer. Nutr Cancer 2020; 73:1309-1321. [DOI: 10.1080/01635581.2020.1813316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
231
|
Shaik MI, Sarbon NM. A Review on Purification and Characterization of Anti-proliferative Peptides Derived from Fish Protein Hydrolysate. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1812634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
232
|
Deng Z, Liu Q, Wang M, Wei HK, Peng J. GPA Peptide-Induced Nur77 Localization at Mitochondria Inhibits Inflammation and Oxidative Stress through Activating Autophagy in the Intestine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4964202. [PMID: 32904539 PMCID: PMC7456482 DOI: 10.1155/2020/4964202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disease affecting the colon, and its incidence is rising worldwide. Nur77, belongs to the NR4A subfamily of nuclear hormone receptors, plays a critical role in controlling the pathology of colitis. The aim of this study is to investigate the protection effect and mechanism of Gly-Pro-Ala (GPA) peptide, isolated from fish skin gelatin hydrolysate, in a mouse model of dextran sulfate sodium- (DSS-) induced colitis and intestinal epithelial cells (IECs) stimulated by lipopolysaccharide (LPS). In vivo, GPA treatment alleviates DSS-induced weight loss, disease activity index (DAI) increase, colon length shortening, and colonic pathological damage. Production of proinflammatory cytokines, ROS, and MDA is significantly decreased by GPA treatment. In vitro, GPA significantly inhibits proinflammatory cytokine production, cytotoxicity, ROS, and MDA in IECs. Furthermore, GPA induces autophagy to suppress inflammation and oxidative stress. GPA promotes Nur77 translocation from the nucleus to mitochondria where it facilitates Nur77 interaction with TRAF6 and p62, leading to the induction of autophagy. In addition, GPA contributed to the maintenance of tight junction architecture in vivo and in vitro. Taken together, GPA, as a Nur77 modulator, could exert anti-inflammatory and antioxidant effects by inducing autophagy in IECs, suggesting that GPA may be promising for the prevention of colitis.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qi Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Miaomiao Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Hong-Kui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei, China
| |
Collapse
|
233
|
Kennedy K, Keogh B, Lopez C, Adelfio A, Molloy B, Kerr A, Wall AM, Jalowicki G, Holton TA, Khaldi N. An Artificial Intelligence Characterised Functional Ingredient, Derived from Rice, Inhibits TNF-α and Significantly Improves Physical Strength in an Inflammaging Population. Foods 2020; 9:foods9091147. [PMID: 32825524 PMCID: PMC7555431 DOI: 10.3390/foods9091147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Food-derived bioactive peptides offer great potential for the treatment and maintenance of various health conditions, including chronic inflammation. Using in vitro testing in human macrophages, a rice derived functional ingredient natural peptide network (NPN) significantly reduced Tumour Necrosis Factor (TNF)-α secretion in response to lipopolysaccharides (LPS). Using artificial intelligence (AI) to characterize rice NPNs lead to the identification of seven potentially active peptides, the presence of which was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Characterization of this network revealed the constituent peptides displayed anti-inflammatory properties as predicted in vitro. The rice NPN was then tested in an elderly "inflammaging" population with a view to subjectively assess symptoms of digestive discomfort through a questionnaire. While the primary subjective endpoint was not achieved, analysis of objectively measured physiological and physical secondary readouts showed clear significant benefits on the ability to carry out physical challenges such as a chair stand test that correlated with a decrease in blood circulating TNF-α. Importantly, the changes observed were without additional exercise or specific dietary alterations. Further health benefits were reported such as significant improvement in glucose control, a decrease in serum LDL concentration, and an increase in HDL concentration; however, this was compliance dependent. Here we provide in vitro and human efficacy data for a safe immunomodulatory functional ingredient characterized by AI.
Collapse
|
234
|
Wang J, Fang X, Wu T, Fang L, Liu C, Min W. In vitro immunomodulatory effects of acidic exopolysaccharide produced by Lactobacillus planetarium JLAU103 on RAW264.7 macrophages. Int J Biol Macromol 2020; 156:1308-1315. [DOI: 10.1016/j.ijbiomac.2019.11.169] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
|
235
|
Nguyen TT, Heimann K, Zhang W. Protein Recovery from Underutilised Marine Bioresources for Product Development with Nutraceutical and Pharmaceutical Bioactivities. Mar Drugs 2020; 18:E391. [PMID: 32727001 PMCID: PMC7460389 DOI: 10.3390/md18080391] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023] Open
Abstract
The global demand for dietary proteins and protein-derived products are projected to dramatically increase which cannot be met using traditional protein sources. Seafood processing by-products (SPBs) and microalgae are promising resources that can fill the demand gap for proteins and protein derivatives. Globally, 32 million tonnes of SPBs are estimated to be produced annually which represents an inexpensive resource for protein recovery while technical advantages in microalgal biomass production would yield secure protein supplies with minimal competition for arable land and freshwater resources. Moreover, these biomaterials are a rich source of proteins with high nutritional quality while protein hydrolysates and biopeptides derived from these marine proteins possess several useful bioactivities for commercial applications in multiple industries. Efficient utilisation of these marine biomaterials for protein recovery would not only supplement global demand and save natural bioresources but would also successfully address the financial and environmental burdens of biowaste, paving the way for greener production and a circular economy. This comprehensive review analyses the potential of using SPBs and microalgae for protein recovery and production critically assessing the feasibility of current and emerging technologies used for the process development. Nutritional quality, functionalities, and bioactivities of the extracted proteins and derived products together with their potential applications for commercial product development are also systematically summarised and discussed.
Collapse
Affiliation(s)
| | - Kirsten Heimann
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Health Science Building, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia;
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Health Science Building, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia;
| |
Collapse
|
236
|
Gani A, Benjakul S, Ul Ashraf Z. Nutraceutical profiling of surimi gel containing β-glucan stabilized virgin coconut oil with and without antioxidants after simulated gastro-intestinal digestion. Journal of Food Science and Technology 2020; 57:3132-3141. [PMID: 32624614 DOI: 10.1007/s13197-020-04347-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/16/2019] [Accepted: 03/13/2020] [Indexed: 12/30/2022]
Abstract
Surimi gels containing β-glucan stabilized virgin coconut oil (VCO) were subjected to simulated gastrointestinal digestion and the resulting digest was analyzed for nutraceutical properties. β-glucan stabilized VCO nanoemulsion (βG-V-N) remarkably improved antioxidant activities of the surimi digest. When epigallocatechin gallate (EGCG) was added in nanoemulsion, the surimi digest showed the highest antioxidant activities. Antidiabetic activity of the digest was also improved by the addition of βG-V-N comprising EGCG. Nevertheless, the addition of βG-V-N lowered ACE inhibitory activity of surimi digest. The surimi digest from the gel added with βG-V-N possessed an inhibitory effect on five cancer cell lines including HEK (Human embryonic kidney 293 cells), MCF-7 (breast cancer cell line), U87 (human glioma), HeLa (human cervical cancer), and IMR-32 (human neuroblastoma), regardless of EGCG or α-tocopherol incorporated. This study demonstrated that surimi gel supplemented with βG-V-N in the presence of EGCG exhibited nutraceutical potential and could be used as a functional food.
Collapse
Affiliation(s)
- Asir Gani
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Zanoor Ul Ashraf
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190006 India
| |
Collapse
|
237
|
Gong Q, Du Z, Guo J. Study on immunoregulation function of peony seed proteolysis product in mice. J Food Biochem 2020; 44:e13353. [PMID: 32614083 DOI: 10.1111/jfbc.13353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022]
Abstract
To explore the immunoregulatory function of peony seed proteolysis product in mice, the protein from peony seed meal was extracted and hydrolyzed with bromelain. The peony seed proteolysis product was fed to mice at three different doses of 0.25, 0.5, and 1.0 g/kg for 21 days. The immunoregulation abilities of peony seed proteolysis product after each of these doses were evaluated in mice. Our results showed that all immune indices were higher in mice that had received a lavage with peony seed proteolysis product than in control mice. The immune indices of immune organs, delayed-type hypersensitivity reaction (DTH), phagocytosis of peritoneal macrophages, serum hemolysin levels, lymphocyte proliferation (SI value), and levels of IFN-γ and IL-4 in the middle dose and high dose groups were significantly higher (p < .05) or extremely significant (p < .01) in comparison with the control group. These results indicate that the peony seed proteolysis product enhances immunological functions in mice. PRACTICAL APPLICATIONS: Peony seed is rich in proteins and can be extracted and hydrolyzed using bromelain. The peony seed proteolysis product can enhance the nonspecific, humoral, and cellular immune responses. Thus, peony seed could be of potential value to obtain peony seed protein, which can be further developed and utilized in the manufacture of functional health products.
Collapse
Affiliation(s)
- Qiang Gong
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, P.R. China.,Henan Engineering Research Center of Food Microbiology, Luoyang, P.R. China.,Henan Engineering Research Center of Food Material, Luoyang, P.R. China
| | - Zhenqi Du
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, P.R. China.,Henan Engineering Research Center of Food Microbiology, Luoyang, P.R. China.,Henan Engineering Research Center of Food Material, Luoyang, P.R. China
| | - Jiezhen Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, P.R. China.,Henan Engineering Research Center of Food Microbiology, Luoyang, P.R. China.,Henan Engineering Research Center of Food Material, Luoyang, P.R. China
| |
Collapse
|
238
|
Song P, Cheng L, Tian K, Zhang M, Mchunu NP, Niu D, Singh S, Prior B, Wang ZX. Biochemical characterization of two new Aspergillus niger aspartic proteases. 3 Biotech 2020; 10:303. [PMID: 32566441 DOI: 10.1007/s13205-020-02292-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/07/2020] [Indexed: 01/19/2023] Open
Abstract
Two new aspartic proteases, PepAb and PepAc (encoded by pepAb and pepAc), were heterologously expressed and biochemically characterized from Aspergillus niger F0215. They possessed a typical structure of pepsin-type aspartic protease with the conserved active residues D (84, 115), Y (131, 168) and D (281, 326), while their identity in amino acid sequences was only 19.0%. PepAb had maximum activity at pH 2.5 and 50 °C and PepAc at 3.0 and 50 °C. The specific activities of PepAb and PepAc toward casein were 1368.1 and 2081.4 U/mg, respectively. Their activities were significantly promoted by Cu2+ and Mn2+ and completely inhibited by pepstatin. PepAb exhibited higher catalytic efficiency (k cat/K m) toward soy protein isolates than casein, while PepAc showed higher catalytic efficiency toward casein. The hydrolysis capacities of PepAb and PepAc on soy protein isolates were slightly lower than that of previously identified A. niger aspartic protease, PepA (aspergillopepsin I), while the resultant peptide profiles were remarkably different for all three proteases.
Collapse
Affiliation(s)
- Peng Song
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Lei Cheng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Kangming Tian
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Meng Zhang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Nokuthula Peace Mchunu
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110 South Africa
| | - Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Suren Singh
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4001 South Africa
| | - Bernard Prior
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602 South Africa
| | - Zheng-Xiang Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| |
Collapse
|
239
|
Velliquette RA, Fast DJ, Maly ER, Alashi AM, Aluko RE. Enzymatically derived sunflower protein hydrolysate and peptides inhibit NFκB and promote monocyte differentiation to a dendritic cell phenotype. Food Chem 2020; 319:126563. [DOI: 10.1016/j.foodchem.2020.126563] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
|
240
|
Evaluation of Anti-Inflammatory and Atheroprotective Properties of Wheat Gluten Protein Hydrolysates in Primary Human Monocytes. Foods 2020; 9:foods9070854. [PMID: 32630013 PMCID: PMC7404777 DOI: 10.3390/foods9070854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bioactive protein hydrolysates have been identified in several sources as possible agents in the prevention and treatment of many diseases. A wheat gluten (WG) concentrate was hydrolyzed by Alcalase under specific conditions. The resulting hydrolysates were evaluated by in vitro cell-free experiments leading to the identification of one bioactive WG protein hydrolysate (WGPH), which was used at 50 and 100 μg/mL on primary human monocytes. Reactive oxygen species (ROS) and nitrite levels and RT-qPCR and ELISA techniques were used to analyze the functional activity of WGPH. Our results showed that WGPH hydrolyzed in 45 min (WGPH45A) down-regulated gene expression of Interleukin (IL)-1β, IL-6, IL-17, and Interferon gamma (IFNγ) and reduced cytokine release in lipopolysaccharide (LPS)-stimulated monocytes. In addition, WGPH45A down-regulated gene-related to atherosclerotic onset. Our results suggest that WGPH45A has a potent anti-inflammatory and atheroprotective properties, reducing the expression of gene-related inflammation and atherosclerosis that could be instrumental in maintaining cardiovascular homeostasis.
Collapse
|
241
|
Jakubczyk A, Karaś M, Stanikowski P, Rutkowska B, Dziedzic M, Zielińska E, Szychowski KA, Binduga UE, Rybczyńska-Tkaczyk K, Baraniak B. Characterisation of Biologically Active Hydrolysates and Peptide Fractions of Vacuum Packaging String Bean ( Phaseolus vulgaris L.). Foods 2020; 9:E842. [PMID: 32605271 PMCID: PMC7404719 DOI: 10.3390/foods9070842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the study is to characterise biologically active hydolysates and peptide fractions obtained from vacuum-packed string beans (Phaseolus vulragis L.) (PB). Unpacked beans were a control sample. The influence on human squamous carcinoma cell line SCC-15 (ATCC CRL-1623) was determined. Packed bean (PB) and unpacked bean (UB) extracts were found to exert no effect on the tongue squamous carcinoma cells. The results of the study indicated that the packing process contributed to the retention of protein, soluble dietary fibre, and free sugar (2.36, 3.5, and 1.79 g/100 d.m., respectively). PB was characterised by higher antioxidant activity (expressed as neutralisation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS ABTS•+) and 2,2-diphenyl-1-picrylhydrazyl (DPPH·) free radicals) as well as Fe2+ chelation and reducing power (IC50 = 54.56, 0.46, 3.85 mg mL-1; 0.088 A700/peptide content, respectively) than the UB samples before hydrolysis. The hydrolysis process enhanced these properties. The IC50 value of lipase and α-amylase inhibitory activity of the hydrolysates obtained from UB was reduced. The PB and UB fractions exhibited a certain level of antimicrobial activity against S. aureus and E. coli. Candida albicans were not sensitive to these peptide fractions.
Collapse
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Piotr Stanikowski
- Department of Plant Food Technology and Gastronomy, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Beata Rutkowska
- Scientific Students Group of Food Biochemistry and Nutrition Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland; (B.R.); (M.D.)
| | - Magdalena Dziedzic
- Scientific Students Group of Food Biochemistry and Nutrition Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland; (B.R.); (M.D.)
| | - Ewelina Zielińska
- Department of Analysis and Assessment of Food Quality, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Konrad A. Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, 35-225 Rzeszów, Poland; (K.A.S.); (U.E.B.)
| | - Urszula E. Binduga
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, 35-225 Rzeszów, Poland; (K.A.S.); (U.E.B.)
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, 20-069 Lublin, Poland;
| | - Barbara Baraniak
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| |
Collapse
|
242
|
Saisavoey T, Sangtanoo P, Srimongkol P, Reamtong O, Karnchanatat A. Hydrolysates from bee pollen could induced apoptosis in human bronchogenic carcinoma cells (ChaGo-K-1). Journal of Food Science and Technology 2020; 58:752-763. [PMID: 33568869 DOI: 10.1007/s13197-020-04592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022]
Abstract
In order to examine bee pollen hydrolysates to assess their anticancer and antioxidant properties, hydrolysis of bee pollen was first performed using three different commercially available enzymes: Alcalase®, Neutrase®, and Flavourzyme®. The study used DPPH and ABTS assay to evaluate the antioxidant properties of the hydrolysates obtained from bee pollen. All of the tested hydrolysates demonstrated antioxidant activity, while hydrolysate based on Alcalase® offered a high value for IC50 and was therefore chosen for further separation into five sub-fractions via ultrafiltration. The greatest antioxidant activity was presented by the MW < 0.65 kDa fraction, which achieved an IC50 value of 0.39 ± 0.01 µg/mL in the DPPH assay and 1.52 ± 0.01 µg/mL for ABTS. Purification of the MW < 0.65 kDa fraction was completed using RP-HPLC, whereupon the three fractions from the original six which had the highest antioxidant activity underwent further examination through ESI-Q-TOF-MS/MS. These particular peptides had between 7 and 11 amino acid residues. In the case of the MW < 0.65 kDa fraction, testing was also carried out to determine the viability of lung cancer cell lines, represented by ChaGo-K1 cells. Analysis of the antiproliferative properties allowed in vitro assessment of the ChaGo-K1 cells' viability following treatment using the MW < 0.65 kDa fraction. Flow-cytometry generated date which revealed that it was possible for the MW < 0.65 kDa fraction to induce apoptosis in the ChaGo-K1 cells in comparison to the results with cells which had not been treated.
Collapse
Affiliation(s)
- Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| |
Collapse
|
243
|
Potential role of ovomucin and its peptides in modulation of intestinal health: A review. Int J Biol Macromol 2020; 162:385-393. [PMID: 32569696 PMCID: PMC7305749 DOI: 10.1016/j.ijbiomac.2020.06.148] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
Abstract
Intestinal dysfunction, which may cause a series of metabolic diseases, has become a worldwide health problem. In the past few years, studies have shown that consumption of poultry eggs has the potential to prevent a variety of metabolic diseases, and increasing attention has been directed to the bioactive proteins and their peptides in poultry eggs. This review mainly focused on the biological activities of an important egg-derived protein named ovomucin. Ovomucin and its derivatives have good anti-inflammatory, antioxidant, immunity-regulating and other biological functions. These activities may affect the physical, biological and immune barriers associated with intestinal health. This paper reviewed the structure and the structure-activity relationship of ovomucin,the potential role of ovomucin and its derivatives in modulation of intestinal health are also summarized. Finally, the potential applications of ovomucin and its peptides as functional food components to prevent and assist in the pretreatment of intestinal health problems are prospected.
Collapse
|
244
|
Cruz-Chamorro I, Álvarez-Sánchez N, Santos-Sánchez G, Pedroche J, Fernández-Pachón MS, Millán F, Millán-Linares MC, Lardone PJ, Bejarano I, Guerrero JM, Carrillo-Vico A. Immunomodulatory and Antioxidant Properties of Wheat Gluten Protein Hydrolysates in Human Peripheral Blood Mononuclear Cells. Nutrients 2020; 12:nu12061673. [PMID: 32512720 PMCID: PMC7352691 DOI: 10.3390/nu12061673] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Peptides from several plant food proteins not only maintain the nutritional values of the original protein and decrease the environmental impact of animal agriculture, but also exert biological activities with significant health-beneficial effects. Wheat is the most important food grain source in the world. However, negative attention on wheat-based products has arose due to the role of gluten in celiac disease. A controlled enzymatic hydrolysis could reduce the antigenicity of wheat gluten protein hydrolysates (WGPHs). Therefore, the aims of the present study were to evaluate the effects of the in vitro administration of Alcalase-generated WGPHs on the immunological and antioxidant responses of human peripheral blood mononuclear cells (PBMCs) from 39 healthy subjects. WGPH treatment reduced cell proliferation and the production of the Type 1 T helper (Th1) and Th17 pro-inflammatory cytokines IFN-γ and IL-17, respectively. WPGHs also improved the cellular anti-inflammatory microenvironment, increasing Th2/Th1 and Th2/Th17 balances. Additionally, WGPHs improved global antioxidant capacity, increased levels of the reduced form of glutathione and reduced nitric oxide production. These findings, not previously reported, highlight the beneficial capacity of these vegetable protein hydrolysates, which might represent an effective alternative in functional food generation.
Collapse
Affiliation(s)
- Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (I.C.-C.); (N.Á.-S.); (G.S.-S.); (P.J.L.); (I.B.); (J.M.G.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Nuria Álvarez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (I.C.-C.); (N.Á.-S.); (G.S.-S.); (P.J.L.); (I.B.); (J.M.G.)
| | - Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (I.C.-C.); (N.Á.-S.); (G.S.-S.); (P.J.L.); (I.B.); (J.M.G.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Justo Pedroche
- Plant Protein Group, Instituto de la Grasa, CSIC, 41013 Seville, Spain; (J.P.); (F.M.)
| | - María-Soledad Fernández-Pachón
- Área de Nutrición y Bromatología, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. Utrera Km 1, 41013 Sevilla, Spain;
| | - Francisco Millán
- Plant Protein Group, Instituto de la Grasa, CSIC, 41013 Seville, Spain; (J.P.); (F.M.)
| | | | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (I.C.-C.); (N.Á.-S.); (G.S.-S.); (P.J.L.); (I.B.); (J.M.G.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Ignacio Bejarano
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (I.C.-C.); (N.Á.-S.); (G.S.-S.); (P.J.L.); (I.B.); (J.M.G.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Juan Miguel Guerrero
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (I.C.-C.); (N.Á.-S.); (G.S.-S.); (P.J.L.); (I.B.); (J.M.G.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
- Departamento de Bioquímica Clínica, Unidad de Gestión de Laboratorios, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; (I.C.-C.); (N.Á.-S.); (G.S.-S.); (P.J.L.); (I.B.); (J.M.G.)
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
- Correspondence: ; Tel.: +34-955-923-106
| |
Collapse
|
245
|
Xiong J, Cao SL, Zong MH, Lou WY, Wu XL. Biosynthesis of Alanyl-Histidine Dipeptide Catalyzed by Papain Immobilized on Magnetic Nanocrystalline Cellulose in Deep Eutectic Solvents. Appl Biochem Biotechnol 2020; 192:573-584. [DOI: 10.1007/s12010-020-03345-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/22/2020] [Indexed: 11/28/2022]
|
246
|
Faridy JCM, Stephanie CGM, Gabriela MMO, Cristian JM. Biological Activities of Chickpea in Human Health (Cicer arietinum L.). A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:142-153. [PMID: 32239331 DOI: 10.1007/s11130-020-00814-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chickpea is one of the most consumed legumes worldwide. Among their benefits are the high protein concentration that reflects not only at the nutritional level but also on the supply of active peptides; besides, it presents different metabolites with pharmacological activities. Some biological activities identified in the different compounds of chickpea are antioxidant, antihypertensive, hypocholesterolemic, and anticancer. Although most reports are based on the effects of the proteins and their hydrolysates, alcoholic extracts have also been proven that contain phenolic compounds, saponins, phytates, among others; therefore, their consumption has been dubbed as an alternative for the prevention of chronic degenerative diseases. In the present review, we summarize the nutritional composition of the chickpea and describe the main biological activities reported for this legume, revealing some of its beneficial effects on health, of which there is still much to be elucidated.
Collapse
Affiliation(s)
- Juárez-Chairez Milagros Faridy
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacateco, Unidad Profesional "Adolfo López Mateos", Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, C.P.07738. Delegación Gustavo A. Madero, CDMX, Mexico
| | - Cid-Gallegos María Stephanie
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacateco, Unidad Profesional "Adolfo López Mateos", Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, C.P.07738. Delegación Gustavo A. Madero, CDMX, Mexico
| | - Meza-Márquez Ofelia Gabriela
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacateco, Unidad Profesional "Adolfo López Mateos", Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, C.P.07738. Delegación Gustavo A. Madero, CDMX, Mexico
| | - Jiménez-Martínez Cristian
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacateco, Unidad Profesional "Adolfo López Mateos", Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, C.P.07738. Delegación Gustavo A. Madero, CDMX, Mexico.
| |
Collapse
|
247
|
Probiotic characteristics of Lactobacillus brevis B13-2 isolated from kimchi and investigation of antioxidant and immune-modulating abilities of its heat-killed cells. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
248
|
Ameliorative Effects of Peptides from the Oyster ( Crassostrea hongkongensis) Protein Hydrolysates against UVB-Induced Skin Photodamage in Mice. Mar Drugs 2020; 18:md18060288. [PMID: 32486363 PMCID: PMC7344810 DOI: 10.3390/md18060288] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic exposure to ultraviolet B (UVB) irradiation is a major cause for skin photoaging. UVB induces damage to skin mainly by oxidative stress, inflammation, and collagen degradation. This paper investigated the photo-protective effects of peptides from oyster (Crassostrea hongkongensis) protein hydrolysates (OPs) by topical application on the skin of UVB-irradiated mice. Results from mass spectrometry showed that OPs consisted of peptides with a molecular weight range of 302.17–2936.43 Da. In vivo study demonstrated that topical application of OPs on the skin significantly alleviated moisture loss, epidermal hyperplasia, as well as degradation of collagen and elastin fibers caused by chronic UVB irradiation. In this study, OPs treatment promoted antioxidant enzymes (SOD and GPH-Px) activities, while decreased malondialdehyde (MDA) level in the skin. In addition, OPs treatment significantly decreased inflammatory cytokines (IL-1β, IL-6, TNF-α) content, and inhibited inflammation related (iNOS, COX-2) protein expression in the skin. Via inhibiting metalloproteinase 1(MMP1) expression, OPs treatment markedly decreased the degradation of collagen and elastin fibers as well as recovered the altered arrangement of extracellular matrix network in the dermis of skin. Our study demonstrated for the first time that OPs protected against UVB induced skin photodamage by virtue of its antioxidative and anti-inflammatory properties, as well as regulating the abnormal expression of MMP-1. The possible molecular mechanism underlying OPs anti-photoaging is possibly related to downregulating of the MAPK/NF-κB signaling pathway, while promoting TGF-β production in the skin.
Collapse
|
249
|
Characterization of Chenopodin Isoforms from Quinoa Seeds and Assessment of Their Potential Anti-Inflammatory Activity in Caco-2 Cells. Biomolecules 2020; 10:biom10050795. [PMID: 32455586 PMCID: PMC7277664 DOI: 10.3390/biom10050795] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 01/18/2023] Open
Abstract
Several food-derived molecules, including proteins and peptides, can show bioactivities toward the promotion of well-being and disease prevention in humans. There is still a lack of information about the potential effects on immune and inflammatory responses in mammalian cells following the ingestion of seed storage proteins. This study, for the first time, describes the potential immunomodulation capacity of chenopodin, the major protein component of quinoa seeds. After characterizing the molecular features of the purified protein, we were able to separate two different forms of chenopodin, indicated as LcC (Low charge Chenopodin, 30% of total chenopodin) and HcC (High charge Chenopodin, 70% of total chenopodin). The biological effects of LcC and HcC were investigated by measuring NF-κB activation and IL-8 expression studies in undifferentiated Caco-2 cells. Inflammation was elicited using IL-1β. The results indicate that LcC and HcC show potential anti-inflammatory activities in an intestinal cell model, and that the proteins can act differently, depending on their structural features. Furthermore, the molecular mechanisms of action and the structural/functional relationships of the protein at the basis of the observed bioactivity were investigated using in silico analyses and structural predictions.
Collapse
|
250
|
Ultra high temperature (UHT) processability of high protein dispersions prepared from milk protein-soy protein hydrolysate mixtures. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|