201
|
Porter MR, Kochi A, Karty JA, Lim MH, Zaleski JM. Chelation-induced diradical formation as an approach to modulation of the amyloid-β aggregation pathway. Chem Sci 2014; 6:1018-1026. [PMID: 29560189 PMCID: PMC5811126 DOI: 10.1039/c4sc01979b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022] Open
Abstract
Current approaches toward modulation of metal-induced Aβ aggregation pathways involve the development of small molecules that bind metal ions, such as Cu(ii) and Zn(ii), and interact with Aβ. For this effort, we present the enediyne-containing ligand (Z)-N,N'-bis[1-pyridin-2-yl-meth(E)-ylidene]oct-4-ene-2,6-diyne-1,8-diamine (PyED), which upon chelation of Cu(ii) and Zn(ii) undergoes Bergman-cyclization to yield diradical formation. The ability of this chelation-triggered diradical to modulate Aβ aggregation is evaluated relative to the non-radical generating control pyridine-2-ylmethyl-(2-{[(pyridine-2-ylmethylene)-amino]-methyl}-benzyl)-amine (PyBD). Variable-pH, ligand UV-vis titrations reveal pKa = 3.81(2) for PyBD, indicating it exists mainly in the neutral form at experimental pH. Lipinski's rule parameters and evaluation of blood-brain barrier (BBB) penetration potential by the PAMPA-BBB assay suggest that PyED may be CNS+ and penetrate the BBB. Both PyED and PyBD bind Zn(ii) and Cu(ii) as illustrated by bathochromic shifts of their UV-vis features. Speciation diagrams indicate that Cu(ii)-PyBD is the major species at pH 6.6 with a nanomolar Kd, suggesting the ligand may be capable of interacting with Cu(ii)-Aβ species. In the presence of Aβ40/42 under hyperthermic conditions (43 °C), the radical-generating PyED demonstrates markedly enhanced activity (2-24 h) toward the modulation of Aβ species as determined by gel electrophoresis. Correspondingly, transmission electron microscopy images of these samples show distinct morphological changes to the fibril structure that are most prominent for Cu(ii)-Aβ cases. The loss of CO2 from the metal binding region of Aβ in MALDI-TOF mass spectra further suggests that metal-ligand-Aβ interaction with subsequent radical formation may play a role in the aggregation pathway modulation.
Collapse
Affiliation(s)
- Meghan R Porter
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , USA .
| | - Akiko Kochi
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , USA.,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798 , Korea .
| | - Jonathan A Karty
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , USA .
| | - Mi Hee Lim
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798 , Korea . .,Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , USA
| | - Jeffrey M Zaleski
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , USA .
| |
Collapse
|
202
|
Zheng WX, Wang F, Cao XL, Pan HY, Liu XY, Hu XM, Sun YY. Baicalin protects PC-12 cells from oxidative stress induced by hydrogen peroxide via anti-apoptotic effects. Brain Inj 2014; 28:227-34. [PMID: 24456060 DOI: 10.3109/02699052.2013.860469] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PRIMARY OBJECTIVE To examine the neuroprotection of baicalin, a flavonoid compound derived from the dried root of Scutellaria baicalensis Georgi, on neurons. RESEARCH DESIGN A rat PC12 cell line was used to study the neuroprotection and possible mechanisms of baicalin on H₂O₂-induced neuron damage. METHODS Three anti- and one pro-apoptosis genes in PC12 cells were examined. Cell apoptosis was induced by H₂O₂ and apoptotic rate was obtained by flow cytometry. MTT for cell viability, immunofluorescence microscopy for promoter activity and western blot for gene expression were also employed. RESULTS Data of MTT reduction assay and flow cytometry revealed that viability loss and apoptotic rate were reduced by pre-treatment of PC12 cells with baicalin for 24 hours. Baicalin was also found to increase SOD, GSH-Px activities and to decrease MDA level. Results from Western blot and immunofluorescence microscopy showed baicalin increased the expressions of survivin, Bcl-2 and p-STAT3 and decreased caspase-3 expression which were attenuated by AG-490. CONCLUSIONS The results point to the possibility of the neuroprotective effects of baicalin on neuronal apoptosis induced by oxidative stress and indicate that activation of the JAK/STAT signalling pathway might involve the anti-apoptotic effect of baicalin.
Collapse
Affiliation(s)
- Wen-xia Zheng
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology , Wuhan, Hubei Province , PR China
| | | | | | | | | | | | | |
Collapse
|
203
|
Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol. Biochim Biophys Acta Mol Basis Dis 2014; 1852:1195-201. [PMID: 25281824 DOI: 10.1016/j.bbadis.2014.09.011] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 11/30/2022]
Abstract
Low-to-moderate red wine consumption appeared to reduce age-related neurological disorders including macular degeneration, stroke, and cognitive deficits with or without dementia. Resveratrol has been considered as one of the key ingredients responsible for the preventive action of red wine since the stilbene displays a neuroprotective action in various models of toxicity. Besides its well documented free radical scavenging and anti-inflammatory properties, resveratrol has been shown to increase the clearance of beta-amyloid, a key feature of Alzheimer's disease, and to modulate intracellular effectors associated with oxidative stress (e.g. heme oxygenase), neuronal energy homeostasis (e.g. AMP kinase), program cell death (i.e. AIF) and longevity (i.e. sirtuins). This article summarizes the most recent findings on mechanisms of action involved in the protective effects of this multi target polyphenol, and discusses its possible roles in the prevention of various age-related neurological disorders. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.
Collapse
Affiliation(s)
- Stéphane Bastianetto
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Caroline Ménard
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal Research Center, Montreal, QC H2X 0A9, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Rémi Quirion
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada.
| |
Collapse
|
204
|
Kong M, Ba M, Liang H, Shao P, Yu T, Wang Y. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25-35). Neural Regen Res 2014; 8:56-63. [PMID: 25206372 PMCID: PMC4107498 DOI: 10.3969/j.issn.1673-5374.2013.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/30/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease in PC12 cell viability induced by amyloid-β peptide (25-35). Diazoxide protected PC12 cells against amyloid-β peptide (25-35)-induced increases in mitochondrial membrane potential and intracellular reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nω-nitro-L-arginine, also protected PC12 cells from amyloid-β peptide (25-35)-induced increases in both mitochondrial membrane potential and intracellular reactive oxygen species levels. However, the H2O2-degrading enzyme catalase could not reverse the amyloid-β peptide (25-35)-induced increase in intracellular reactive oxygen species. A 24-hour exposure to amyloid-β peptide (25-35) did not result in apoptosis or necrosis, suggesting that the increases in both mitochondrial membrane potential and reactive oxygen species levels preceded cell death. The data suggest that amyloid-β peptide (25-35) cytotoxicity is associated with adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid-β peptide (25-35).
Collapse
Affiliation(s)
- Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai 264000, Shandong Province, China
| | - Maowen Ba
- Department of Neurology, Yuhuangding Hospital Affiliated to Qingdao Medical University, Yantai 264000, Shandong Province, China
| | - Hui Liang
- Department of Neurology, Yantaishan Hospital, Yantai 264000, Shandong Province, China
| | - Peng Shao
- Department of Neurology, Yantaishan Hospital, Yantai 264000, Shandong Province, China
| | - Tianxia Yu
- Department of Neurology, Yantaishan Hospital, Yantai 264000, Shandong Province, China
| | - Ying Wang
- Department of Neurology, Yantaishan Hospital, Yantai 264000, Shandong Province, China
| |
Collapse
|
205
|
Is Alzheimer's disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 2014; 121:125-46. [PMID: 25084549 DOI: 10.1016/j.pneurobio.2014.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 36 million people worldwide. AD is characterized by a progressive loss of cognitive functions. For years, it has been thought that age is the main risk factor for AD. Recent studies suggest that life style factors, including nutritional behaviors, play a critical role in the onset of dementia. Evidence about the relationship between nutritional behavior and AD includes the role of conditions such as obesity, hypertension, dyslipidemia and elevated glucose levels. The coexistence of some of these cardio-metabolic risk factors is generally known as metabolic syndrome (MS). Some clinical studies support the role of MS in the onset of AD. However, the cross-talk between the molecular signaling implicated in these disorders is unknown. In the present review, we focus on the molecular correlates that support the relationship between MS and the onset of AD. We also discuss relevant issues such as the role of leptin, insulin and renin-angiotensin signaling in the brain and the possible role of Wnt signaling in both MS and AD. We discuss the evidence supporting the use of ob/ob mice, high-fructose diets, aortic coarctation-induced hypertension and Octodon degus, which spontaneously develops β-amyloid deposits and metabolic derangements, as suitable animal models to address the relationships between MS and AD. Finally, we examine emergent data supporting the role of Wnt signaling in the modulation of AD and MS, implicating this pathway as a therapeutic target in both conditions.
Collapse
|
206
|
Yan JJ, Ahn WG, Jung JS, Kim HS, Hasan MA, Song DK. Protective effects of Acanthopanax divaricatus extract in mouse models of Alzheimer's disease. Nutr Res Pract 2014; 8:386-90. [PMID: 25110557 PMCID: PMC4122709 DOI: 10.4162/nrp.2014.8.4.386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/05/2013] [Accepted: 12/24/2013] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Acanthopanax divaricatus var. albeofructus (ADA) extract has been reported to have anti-oxidant, immunomodulatory, and anti-mutagenic activity. MATERIALS/METHODS We investigated the effects of ADA extract on two mouse models of Alzheimer's disease (AD); intracerebroventricular injection of β-amyloid peptide (Aβ) and amyloid precursor protein/presenilin 1 (APP/PS1)-transgenic mice. RESULTS Intra-gastric administration of ADA stem extract (0.25 g/kg, every 12 hrs started from one day prior to injection of Aβ1-42 until evaluation) effectively blocked Aβ1-42-induced impairment in passive avoidance performance, and Aβ1-42-induced increase in immunoreactivities of glial fibrillary acidic protein and interleukin (IL)-1α in the hippocampus. In addition, it alleviated the Aβ1-42-induced decrease in acetylcholine and increase in malondialdehyde levels in the cortex. In APP/PS1-transgenic mice, chronic oral administration of ADA stem extract (0.1 or 0.5 g/kg/day for six months from the age of six to 12 months) resulted in significantly enhanced performance of the novel-object recognition task, and reduced amyloid deposition and IL-1β in the brain. CONCLUSIONS The results of this study suggest that ADA stem extract may be useful for prevention and treatment of AD.
Collapse
Affiliation(s)
- Ji-Jing Yan
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 200-702, Korea
| | - Won-Gyun Ahn
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 200-702, Korea
| | - Jun-Sub Jung
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 200-702, Korea
| | - Hee-Sung Kim
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 200-702, Korea
| | - Md Ashraful Hasan
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 200-702, Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 200-702, Korea
| |
Collapse
|
207
|
Ramirez A, van der Flier WM, Herold C, Ramonet D, Heilmann S, Lewczuk P, Popp J, Lacour A, Drichel D, Louwersheimer E, Kummer MP, Cruchaga C, Hoffmann P, Teunissen C, Holstege H, Kornhuber J, Peters O, Naj AC, Chouraki V, Bellenguez C, Gerrish A, Heun R, Frölich L, Hüll M, Buscemi L, Herms S, Kölsch H, Scheltens P, Breteler MM, Rüther E, Wiltfang J, Goate A, Jessen F, Maier W, Heneka MT, Becker T, Nöthen MM. SUCLG2 identified as both a determinator of CSF Aβ1-42 levels and an attenuator of cognitive decline in Alzheimer's disease. Hum Mol Genet 2014; 23:6644-58. [PMID: 25027320 DOI: 10.1093/hmg/ddu372] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cerebrospinal fluid amyloid-beta 1-42 (Aβ1-42) and phosphorylated Tau at position 181 (pTau181) are biomarkers of Alzheimer's disease (AD). We performed an analysis and meta-analysis of genome-wide association study data on Aβ1-42 and pTau181 in AD dementia patients followed by independent replication. An association was found between Aβ1-42 level and a single-nucleotide polymorphism in SUCLG2 (rs62256378) (P = 2.5×10(-12)). An interaction between APOE genotype and rs62256378 was detected (P = 9.5 × 10(-5)), with the strongest effect being observed in APOE-ε4 noncarriers. Clinically, rs62256378 was associated with rate of cognitive decline in AD dementia patients (P = 3.1 × 10(-3)). Functional microglia experiments showed that SUCLG2 was involved in clearance of Aβ1-42.
Collapse
Affiliation(s)
- Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, Institute of Human Genetics,
| | - Wiesje M van der Flier
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, 1081 HZ, Amsterdam, The Netherlands, Department of Epidemiology & Biostatistics, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands
| | - Christine Herold
- German Center for Neurodegenerative Diseases (DZNE), 53175, Bonn, Germany
| | | | - Stefanie Heilmann
- Institute of Human Genetics, Department of Genomics, Life & Brain Center
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | | | - André Lacour
- German Center for Neurodegenerative Diseases (DZNE), 53175, Bonn, Germany
| | - Dmitriy Drichel
- German Center for Neurodegenerative Diseases (DZNE), 53175, Bonn, Germany
| | - Eva Louwersheimer
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, 1081 HZ, Amsterdam, The Netherlands, Department of Epidemiology & Biostatistics, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands
| | - Markus P Kummer
- Clinical Neuroscience Unit, Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), 53175, Bonn, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Hope Center for Neurological Disorders, School of Medicine
| | - Per Hoffmann
- Institute of Human Genetics, Department of Genomics, Life & Brain Center, Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, CH-4058, Basel, Switzerland
| | - Charlotte Teunissen
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, 1081 HZ, Amsterdam, The Netherlands, Department of Epidemiology & Biostatistics, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands
| | - Henne Holstege
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, 1081 HZ, Amsterdam, The Netherlands, Department of Epidemiology & Biostatistics, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Oliver Peters
- Department of Psychiatry, Charité, 14050, Berlin, Germany
| | - Adam C Naj
- Center for Clinical Epidemiology & Biostatistics, University of Pennsylvania, PA 19104, Philadelphia, USA
| | - Vincent Chouraki
- Department of Neurology, Boston University School of Medicine, MA 02118, Boston, USA, The Framingham Heart Study, MA 01702, Framingham, USA
| | - Céline Bellenguez
- Inserm, U744, Lille 59000, France, Université Lille 2, Lille 59000, France, Institut Pasteur de Lille, Lille 59000, France
| | - Amy Gerrish
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | | | | | | | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Michael Hüll
- Centre for Geriatric Medicine and Section of Gerontopsychiatry and Neuropsychology, Medical School, University of Freiburg, 79106, Freiburg, Germany
| | - Lara Buscemi
- Department of Fundamental Neurosciences, UNIL, 1005 Lausanne, Switzerland and
| | - Stefan Herms
- Institute of Human Genetics, Department of Genomics, Life & Brain Center, Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, CH-4058, Basel, Switzerland
| | | | - Philip Scheltens
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, 1081 HZ, Amsterdam, The Netherlands, Department of Epidemiology & Biostatistics, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands
| | - Monique M Breteler
- German Center for Neurodegenerative Diseases (DZNE), 53175, Bonn, Germany
| | - Eckart Rüther
- Department of Psychiatry and Psychotherapy, University of Göttingen, 37075 Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University of Göttingen, 37075 Göttingen, Germany
| | - Alison Goate
- Department of Psychiatry, Department of Genetics, Washington University, St. Louis, MO 63110, USA
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, German Center for Neurodegenerative Diseases (DZNE), 53175, Bonn, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, German Center for Neurodegenerative Diseases (DZNE), 53175, Bonn, Germany
| | - Michael T Heneka
- Clinical Neuroscience Unit, Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), 53175, Bonn, Germany
| | - Tim Becker
- Institute for Medical Biometry, Informatics, and Epidemiology, University of Bonn, 53127, Bonn, Germany, German Center for Neurodegenerative Diseases (DZNE), 53175, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, Department of Genomics, Life & Brain Center
| |
Collapse
|
208
|
Bahna SG, Sathiyapalan A, Foster JA, Niles LP. Regional upregulation of hippocampal melatonin MT2 receptors by valproic acid: Therapeutic implications for Alzheimer's disease. Neurosci Lett 2014; 576:84-7. [DOI: 10.1016/j.neulet.2014.05.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/27/2014] [Accepted: 05/29/2014] [Indexed: 01/30/2023]
|
209
|
Khairallah RJ, Sadayappan S. Finding the missing link: disulfide-containing proteins via a high-throughput proteomics approach. Proteomics 2014; 13:3245-6. [PMID: 24150840 DOI: 10.1002/pmic.201300445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 11/11/2022]
Abstract
Top-down proteomics have recently started to gain attention as a novel method to provide insight into the structure of proteins in their native state, specifically the number and location of disulfide bridges. However, previous techniques still relied on complex and time-consuming protein purification and reduction reactions to yield useful information. In this issue of Proteomics, Zhao et al. (high-throughput screening of disulfide-containing proteins in a complex mixture, Proteomics 2013, 13, 3256-3260) devise a clever and rapid method for high-throughput determination of disulfides in proteins via reduction by tris(2-carboxyethyl)phosphine. Their work provides the foundation necessary to undertake more complex experiments in biological samples.
Collapse
Affiliation(s)
- Ramzi J Khairallah
- Health Sciences Division, Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | | |
Collapse
|
210
|
Chao XJ, Chen ZW, Liu AM, He XX, Wang SG, Wang YT, Liu PQ, Ramassamy C, Mak SH, Cui W, Kong AN, Yu ZL, Han YF, Pi RB. Effect of tacrine-3-caffeic acid, a novel multifunctional anti-Alzheimer's dimer, against oxidative-stress-induced cell death in HT22 hippocampal neurons: involvement of Nrf2/HO-1 pathway. CNS Neurosci Ther 2014; 20:840-50. [PMID: 24922524 DOI: 10.1111/cns.12286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/27/2022] Open
Abstract
AIMS Oxidative stress (OS) plays an important role in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). This study was designed to uncover the cellular and biochemical mechanisms underlying the neuroprotective effects of tacrine-3-caffeic acid (T3CA), a novel promising multifunctional anti-Alzheimer's dimer, against OS-induced neuronal death. METHODS AND RESULTS T3CA protected HT22 cells against high-concentration-glutamate-induced cell death in time- and concentration-dependent manners and potently attenuated glutamate-induced intracellular reactive oxygen species (ROS) production as well as mitochondrial membrane-potential (ΔΨ) disruption. Besides, T3CA significantly induced nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and increased its transcriptional activity, which were demonstrated by Western blotting, immunofluorescence, and antioxidant response element (ARE)-luciferase reporter gene assay. Further studies showed that T3CA potently up-regulated heme oxygenase-1 (HO-1), an endogenous antioxidative enzyme and a downstream effector of Nrf2, at both mRNA and protein levels. The neuroprotective effects of T3CA were partially reversed by brusatol, which reduced protein level of Nrf2, or by inhibiting HO-1 with siRNA or ZnPP-IX, a specific inhibitor of HO-1. CONCLUSIONS Taken together, these results clearly demonstrate that T3CA protects neurons against OS-induced cell death partially through Nrf2/ARE/HO-1 signaling pathway, which further supports that T3CA might be a promising novel therapeutic agent for OS-associated diseases.
Collapse
Affiliation(s)
- Xiao-Juan Chao
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Dibenzo[1,4,5]thiadiazepine: A hardly-known heterocyclic system with neuroprotective properties of potential usefulness in the treatment of neurodegenerative diseases. Eur J Med Chem 2014; 81:350-8. [DOI: 10.1016/j.ejmech.2014.04.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
|
212
|
Reducing Effect of IL-32α in the Development of Stroke Through Blocking of NF-κB, but Enhancement of STAT3 Pathways. Mol Neurobiol 2014; 51:648-60. [DOI: 10.1007/s12035-014-8739-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/05/2014] [Indexed: 02/04/2023]
|
213
|
Shared mechanisms of neurodegeneration in Alzheimer's disease and Parkinson's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:648740. [PMID: 24900975 PMCID: PMC4037122 DOI: 10.1155/2014/648740] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/16/2014] [Accepted: 04/20/2014] [Indexed: 12/03/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) have markedly different clinical and pathological features, but these two diseases are the most common neurodegenerative disorders. Previous studies have showed that there are common mechanisms in AD and PD. Several genetic studies have revealed mutations in genes associated with the risk of AD and PD. Circumstantial evidences have shown that dysregulation of brain iron homeostasis leads to abnormal iron accumulation and results in AD as well as PD. α-Synuclein and tau take part in the mechanisms of these diseases by oxidative stress and mitochondrial dysfunction. Some studies indicated that the loss of LC noradrenergic neurons may occur early in the progression of AD and PD. Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of pentameric ligand-gated ion channels; some evidence showed that nicotinic receptors may be associated with AD and PD. These experimental and clinical studies may provide a scientific foundation for common shared mechanisms in AD and PD.
Collapse
|
214
|
Kálai T, Altman R, Maezawa I, Balog M, Morisseau C, Petrlova J, Hammock BD, Jin LW, Trudell JR, Voss JC, Hideg K. Synthesis and functional survey of new Tacrine analogs modified with nitroxides or their precursors. Eur J Med Chem 2014; 77:343-50. [PMID: 24657571 PMCID: PMC4065883 DOI: 10.1016/j.ejmech.2014.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/03/2014] [Accepted: 03/08/2014] [Indexed: 12/22/2022]
Abstract
A series of new Tacrine analogs modified with nitroxides or pre-nitroxides on 9-amino group via methylene or piperazine spacers were synthesized; the nitroxide or its precursors were incorporated into the Tacrine scaffold. The new compounds were tested for their hydroxyl radical and peroxyl radical scavenging ability, acetylcholinesterase inhibitor activity and protection against Aβ-induced cytotoxicity. Based on these assays, we conclude that Tacrine analogs connected to five and six-membered nitroxides via piperazine spacers (9b, 9b/HCl and 12) exhibited the best activity, providing direction for further development of additional candidates with dual functionality (anti Alzheimer's and antioxidant).
Collapse
Affiliation(s)
- Tamás Kálai
- Institute of Organic and Medicinal Chemistry, University of Pécs, H-7624 Pécs, Szigeti St. 12. Pécs, Hungary
| | - Robin Altman
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| | - Izumi Maezawa
- M.I.N.D. Institute and Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA95817, USA
| | - Mária Balog
- Institute of Organic and Medicinal Chemistry, University of Pécs, H-7624 Pécs, Szigeti St. 12. Pécs, Hungary
| | - Christophe Morisseau
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Jitka Petrlova
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Lee-Way Jin
- M.I.N.D. Institute and Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA95817, USA
| | - James R Trudell
- Department of Anesthesia, Beckman Program for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305-5117, USA
| | - John C Voss
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, H-7624 Pécs, Szigeti St. 12. Pécs, Hungary.
| |
Collapse
|
215
|
Prasad SN, Muralidhara. Protective effects of geraniol (a monoterpene) in a diabetic neuropathy rat model: Attenuation of behavioral impairments and biochemical perturbations. J Neurosci Res 2014; 92:1205-16. [DOI: 10.1002/jnr.23393] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/26/2014] [Accepted: 03/18/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Sathya N. Prasad
- Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute (CFTRI); Karnataka India
| | - Muralidhara
- Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute (CFTRI); Karnataka India
| |
Collapse
|
216
|
Sikorska M, Lanthier P, Miller H, Beyers M, Sodja C, Zurakowski B, Gangaraju S, Pandey S, Sandhu JK. Nanomicellar formulation of coenzyme Q10 (Ubisol-Q10) effectively blocks ongoing neurodegeneration in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model: potential use as an adjuvant treatment in Parkinson's disease. Neurobiol Aging 2014; 35:2329-46. [PMID: 24775711 DOI: 10.1016/j.neurobiolaging.2014.03.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/13/2022]
Abstract
Although the support for the use of antioxidants, such as coenzyme Q(10) (CoQ(10)), to treat Parkinson's disease (PD) comes from the extensive scientific evidence, the results of conducted thus far clinical trials are inconclusive. It is assumed that the efficacy of CoQ(10) is hindered by insolubility, poor bioavailability, and lack of brain penetration. We have developed a nanomicellar formulation of CoQ(10) (Ubisol-Q(10)) with improved properties, including the brain penetration, and tested its effectiveness in mouse MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) model with the objectives to assess its potential use as an adjuvant therapy for PD. We used a subchronic MPTP model (5-daily MPTP injections), characterized by 50% loss of dopamine neurons over a period of 28 days. Ubisol-Q(10) was delivered in drinking water. Prophylactic application of Ubisol-Q(10), started 2 weeks before the MPTP exposure, significantly offset the neurotoxicity (approximately 50% neurons died in MPTP group vs. 17% in MPTP+ Ubisol-Q(10) group by day 28). Therapeutic application of Ubisol-Q(10), given after the last MPTP injection, was equally effective. At the time of intervention on day 5 nearly 25% of dopamine neurons were already lost, but the treatment saved the remaining 25% of cells, which otherwise would have died by day 28. This was confirmed by cell counts, analyses of striatal dopamine levels, and improved animals' motor skill on a beam walk test. Similar levels of neuroprotection were obtained with 3 different Ubisol-Q(10) concentrations tested, that is, 30 mg, 6 mg, or 3 mg CoQ(10)/kg body weight/day, showing clearly that high doses of CoQ(10) were not required to deliver these effects. Furthermore, the Ubisol-Q(10) treatments brought about a robust astrocytic activation in the brain parenchyma, indicating that astroglia played an active role in this neuroprotection. Thus, we have shown for the first time that Ubisol-Q(10) was capable of halting the neurodegeneration already in progress; however, to maintain it a continuous supplementation of Ubisol-Q(10) was required. The pathologic processes initiated by MPTP resumed if supplementation was withdrawn. We suggest that in addition to brain delivery of powerful antioxidants, Ubisol-Q(10) might have also supported subcellular oxidoreductase systems allowing them to maintain a favorable cellular redox status, especially in astroglia, facilitating their role in neuroprotection. Based on this data further clinical testing of this formulation in PD patients might be justifiable.
Collapse
Affiliation(s)
- Marianna Sikorska
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Patricia Lanthier
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Harvey Miller
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Melissa Beyers
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Caroline Sodja
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Bogdan Zurakowski
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Sandhya Gangaraju
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor Essex Hall, Windsor, Ontario, Canada
| | - Jagdeep K Sandhu
- Department of Translational Bioscience, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
217
|
Genotoxic and oxidative damage potentials in human lymphocytes after exposure to terpinolene in vitro. Cytotechnology 2014; 67:409-18. [PMID: 24590926 DOI: 10.1007/s10616-014-9698-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 01/30/2014] [Indexed: 01/15/2023] Open
Abstract
Terpinolene (TPO) is a monocyclic monoterpene found in the essential oils of various fir and pine species. Recent reports indicated that several monoterpenes could exhibit antioxidant effects in both human and animal experimental models. However, so far, the nature and/or biological roles of TPO have not been elucidated in human models yet. The aim of this study was to investigate the genetic, oxidative and cytotoxic effects of TPO in cultured human blood cells (n = 5) for the first time. Human blood cells were treated with TPO (0-200 mg/L) for 24 and 48 h, and then cytotoxicity was detected by lactate dehydrogenase (LDH) release and [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay, while DNA damage was also analyzed by micronucleus assay, sister chromatid exchanges assay and 8-oxo-2-deoxyguanosine (8-OH-dG) level. In addition, biochemical parameters [total antioxidant capacity (TAC) and total oxidative stress (TOS)] were examined to determine oxidative effects. The results of LDH and MTT assays showed that TPO (at concentrations greater than 100 mg/L) decreased cell viability. In our in vitro test systems, it was observed that TPO had no genotoxicity on human lymphocytes. Again, TPO (at 10, 25, 50 and 75 mg/L) treatment caused statistically important (p < 0.05) increases of TAC levels in human lymphocytes without changing TOS levels. In conclusion, TPO can be a new resource of therapeutics as recognized in this study with its non-genotoxic and antioxidant features.
Collapse
|
218
|
Chen CT, Trépanier MO, Hopperton KE, Domenichiello AF, Masoodi M, Bazinet RP. Inhibiting mitochondrial β-oxidation selectively reduces levels of nonenzymatic oxidative polyunsaturated fatty acid metabolites in the brain. J Cereb Blood Flow Metab 2014; 34:376-9. [PMID: 24326387 PMCID: PMC3948125 DOI: 10.1038/jcbfm.2013.221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 01/09/2023]
Abstract
Schönfeld and Reiser recently hypothesized that fatty acid β-oxidation is a source of oxidative stress in the brain. To test this hypothesis, we inhibited brain mitochondrial β-oxidation with methyl palmoxirate (MEP) and measured oxidative polyunsaturated fatty acid (PUFA) metabolites in the rat brain. Upon MEP treatment, levels of several nonenzymatic auto-oxidative PUFA metabolites were reduced with few effects on enzymatically derived metabolites. Our finding confirms the hypothesis that reduced fatty acid β-oxidation decreases oxidative stress in the brain and β-oxidation inhibitors may be a novel therapeutic approach for brain disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony F Domenichiello
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Masoodi
- 1] Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada [2] Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
219
|
Zeng L, Yang Y, Hu Y, Sun Y, Du Z, Xie Z, Zhou T, Kong W. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model. PLoS One 2014; 9:e88019. [PMID: 24505357 PMCID: PMC3913718 DOI: 10.1371/journal.pone.0088019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/03/2014] [Indexed: 12/31/2022] Open
Abstract
Age-related dysfunction of the central auditory system, also known as central presbycusis, can affect speech perception and sound localization. Understanding the pathogenesis of central presbycusis will help to develop novel approaches to prevent or treat this disease. In this study, the mechanisms of central presbycusis were investigated using a mimetic aging rat model induced by chronic injection of D-galactose (D-Gal). We showed that malondialdehyde (MDA) levels were increased and manganese superoxide dismutase (SOD2) activity was reduced in the auditory cortex in natural aging and D-Gal-induced mimetic aging rats. Furthermore, mitochondrial DNA (mtDNA) 4834 bp deletion, abnormal ultrastructure and cell apoptosis in the auditory cortex were also found in natural aging and D-Gal mimetic aging rats. Sirt3, a mitochondrial NAD+-dependent deacetylase, has been shown to play a crucial role in controlling cellular reactive oxygen species (ROS) homeostasis. However, the role of Sirt3 in the pathogenesis of age-related central auditory cortex deterioration is still unclear. Here, we showed that decreased Sirt3 expression might be associated with increased SOD2 acetylation, which negatively regulates SOD2 activity. Oxidative stress accumulation was likely the result of low SOD2 activity and a decline in ROS clearance. Our findings indicate that Sirt3 might play an essential role, via the mediation of SOD2, in central presbycusis and that manipulation of Sirt3 expression might provide a new approach to combat aging and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Lingling Zeng
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Yang Yang
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Yujuan Hu
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Zhengde Du
- Department of Otorhinolaryngology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, China
| | - Zhen Xie
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
- * E-mail:
| |
Collapse
|
220
|
Kamarehei M, Yazdanparast R, Aghazadeh S. Curcumin Protects SK-N-MC Cells from H<sub>2</sub>O<sub>2</sub>-Induced Cell Death by Modulation of Notch Signaling Pathway. CELLBIO 2014; 03:72-86. [DOI: 10.4236/cellbio.2014.32008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
|
221
|
Wang C, He L, Yan M, Zheng GY, Liu XY. Effects of polyprenols from pine needles of Pinus massoniana on ameliorating cognitive impairment in a D-galactose-induced mouse model. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9676. [PMID: 24981114 PMCID: PMC4150899 DOI: 10.1007/s11357-014-9676-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/18/2014] [Indexed: 05/14/2023]
Abstract
Cognitive deficiency and oxidative stress have been well documented in aging and in neurodegenerative disorders such as Alzheimer's disease. In this study, we assessed the therapeutic effect of polyprenols on D-galactose-induced cognitive impairment in mice by testing on of behavioral and cognitive performance. In order to explore the possible role of polyprenols against D-galactose-induced oxidative damages, we assessed various biochemical indicators. Chronic administration of D-galactose (150 mg/kg·d, s.c.) for 7 weeks significantly impaired cognitive performance (both in step-through passive and active avoidance tests) and locomotor activity (in open-field test) and the ability of spatial learning and memory (in Morris water maze test) compared with the control group. The results revealed that polyprenols treatment for 2 weeks significantly ameliorated model mice's cognitive performance and oxidative defense. All groups of polyprenols enhanced the learning and memory ability in step-through passive and active avoidance tests, locomotor activity in open-field test, and the ability of spatial learning and memory in Morris water maze test. Furthermore, high and middle level of polyprenols significantly increased total antioxidative capacity (T-AOC), glutathione peroxidase (GSH-Px), super oxide dismutase (SOD) activity, neprilysin (NEP), and β-site AβPP cleaving enzyme 1 (BACE1) expression, while nitric oxide (NO), nitric oxide synthase (NOS) activity, malondialdehyde (MDA) concentration, and the level of Aβ1-42 and presenilin 1 (PS1) were decreased. Polyprenols have a significant relieving effect on learning, memory, and spontaneous activities in a D-galactose-induced mouse model and ameliorates cognitive impairment and biochemical dysfunction in mice. In summary, we have demonstrated that polyprenols may ameliorate memory and cognitive impairment via enhancing oxidative defense and affecting generation and dissimilation of Aβ-related enzymes, suggesting that polyprenols represent a novel drug for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Cong Wang
- />Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, JiangSu Province China
| | - Ling He
- />Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, JiangSu Province China
| | - Ming Yan
- />National Drug Screening Laboratory, China Pharmaceutical University, Nanjing, 210009 China
| | - Guang-yao Zheng
- />Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042 China
| | - Xiao-yang Liu
- />Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, JiangSu Province China
| |
Collapse
|
222
|
BAE SEUNGHEE, LEE EUNJIN, LEE JAEHO, PARK INCHUL, LEE SUJAE, HAHN HYUNGJIN, AHN KYUJOONG, AN SUNGKWAN, AN INSOOK, CHA HWAJUN. Oridonin protects HaCaT keratinocytes against hydrogen peroxide-induced oxidative stress by altering microRNA expression. Int J Mol Med 2013; 33:185-93. [DOI: 10.3892/ijmm.2013.1561] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/12/2013] [Indexed: 11/06/2022] Open
|
223
|
Rosini M, Simoni E, Milelli A, Minarini A, Melchiorre C. Oxidative Stress in Alzheimer’s Disease: Are We Connecting the Dots? J Med Chem 2013; 57:2821-31. [DOI: 10.1021/jm400970m] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michela Rosini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Elena Simoni
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Milelli
- Department
for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto
237, 47921 Rimini, Italy
| | - Anna Minarini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Carlo Melchiorre
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
224
|
Chandran G, Muralidhara. Neuroprotective effect of aqueous extract of Selaginella delicatula as evidenced by abrogation of rotenone-induced motor deficits, oxidative dysfunctions, and neurotoxicity in mice. Cell Mol Neurobiol 2013; 33:929-42. [PMID: 23868340 PMCID: PMC11498029 DOI: 10.1007/s10571-013-9959-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/27/2013] [Indexed: 12/21/2022]
Abstract
Oxidative stress is one of the mechanisms implicated to play a significant role in the pathophysiology of Parkinson's disease. Previously, we showed that an aqueous extract of Selaginella delicatula (SDAE) offered robust neuroprotection against rotenone (ROT) in a Drosophila model. In furtherance in the present study, we validated the neuroprotective efficacy of SDAE in a chronic ROT exposure model in mice. Initially, we assessed the propensity of SDAE to modulate the levels of endogenous markers in striatal region of mice. Subsequently, the neuroprotective efficacy of SDAE (100 mg/kg bw, 21 d) to mitigate ROT-induced striatal motor deficits, oxidative stress, and neurotoxicity was examined employing a co-exposure paradigm. We found significant attenuation of ROT-induced motor deficits (stride length and landing foot spread distance) among mice given SDAE supplements. Biochemical analysis revealed that ROT-induced elevation in the levels of oxidative markers in cytosol/mitochondria of striatum were normalized with SDAE supplements. In addition, SDAE also restored the ROT-induced elevation in the levels of oxidized and nitrated proteins. Further, SDAE also restored the activities of acetylcholinesterase and butyrylcholinesterase indicating its effect on cholinergic function. While ROT exposure caused significant perturbations in the activity levels of mitochondrial electron transport chain enzymes (complex I/II), membrane potential and activity of ATPases, these functions were restored to normalcy among mice receiving SDAE suggesting its effects on mitochondrial function. Since these data corroborate our previous findings in Drosophila system, we propose that the neuroprotective property of SDAE may be largely attributed to the antioxidant properties and its ability to attenuate mitochondrial dysfunction. However, studies employing dopaminergic cell models would enable us to identify specific molecular mechanism, by which SDAE exerts neuroprotective action.
Collapse
Affiliation(s)
- Girish Chandran
- Department of Biochemistry & Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, 570020 India
| | - Muralidhara
- Department of Biochemistry & Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, 570020 India
| |
Collapse
|
225
|
Schönfeld P, Reiser G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab 2013; 33:1493-9. [PMID: 23921897 PMCID: PMC3790936 DOI: 10.1038/jcbfm.2013.128] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/11/2013] [Accepted: 07/05/2013] [Indexed: 02/08/2023]
Abstract
It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood-brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain.
Collapse
Affiliation(s)
- Peter Schönfeld
- Institute of Biochemistry and Cell Biology, Medical Faculty of Otto-von-Guericke-University, Magdeburg, Germany
| | | |
Collapse
|
226
|
Türkez H, Aydın E. In vitro assessment of cytogenetic and oxidative effects of α-pinene. Toxicol Ind Health 2013; 32:168-76. [PMID: 24081629 DOI: 10.1177/0748233713498456] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
α-Pinene (α-pinene), a bicyclic monoterpene, is present in the oils of many species of coniferous trees, most notably the pine, and is known for its diverse biological properties such as antimicrobial, anti-inflammatory, antiproliferative and antioxidant. However, there are limited data on the cytogenetic and antioxidant effects of α-pinene in cultured human blood cells (n = 5) for the first time. The purpose of this study was to investigate the genetic, oxidative, and cytotoxic effects of α-pinene in cultured human blood cells (n = 5) for the first time. Human blood cells were treated with α-pinene (0 to 200 mg/L) for 24 and 48 h, and then cytotoxicity was detected by lactate dehydrogenase (LDH) release and (3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide) (MTT) assay, while DNA damage was also analyzed by micronucleus (MN) assay, chromosomal aberration (CA) assay and 8-oxo-2-deoxyguanosine (8-OH-dG). In addition, biochemical parameters (total antioxidant capacity (TAC) and total oxidative stress (TOS)) were examined to determine oxidative effects. The results of LDH and MTT assays showed that α-pinene (at 200 mg/L) decreased cell viability. In our in vitro test systems, it was observed that α-pinene did not cause any statistically important changes in the rates of studied genotoxicity endpoints but dose-dependent alterations were observed in TAC and TOS levels. α-Pinene treatment caused increases in TAC levels (at 25 and 50 mg/L) and decreases in TOS levels (only at 200 mg/L) on human lymphocytes. In conclusion, the findings of the present study confirm for the first time that α-pinene could be a significant source of natural antioxidant compound that may have beneficial health effects.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Elanur Aydın
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
227
|
Ye X, Tai W, Bao X, Chen X, Zhang D. FLZ inhibited γ-secretase selectively and decreased Aβ mitochondrial production in APP-SH-SY5Y cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 387:75-85. [PMID: 24071813 DOI: 10.1007/s00210-013-0918-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/08/2013] [Indexed: 10/26/2022]
Abstract
Amyloid precursor protein (APP) metabolism is a key factor in the pathogenesis of Alzheimer's disease (AD). Amyloid-beta (Aβ) in mitochondria comes from APP mitochondrial metabolism or from the uptake Aβ from outside of mitochondria. It has been recently proposed that mitochondria are involved in the biochemical pathways through which Aβ causes neuronal dysfunction. The accumulated Aβ in mitochondria decreases the level of cytochrome c oxidase (COX IV) and attenuates the ATP production consequently. FLZ is a synthetic cyclic derivative of squamosamide from Annona glabra. In this study, the effect of FLZ on APP processing in mitochondria was investigated in SH-SY5Y cells over-expressing APP695 (wt/Swe). FLZ treatment attenuated APP processing and decreased Aβ production in mitochondria. The mitochondrial function was increased with the upregulation of COX IV both at protein and activity levels. ATP production was also increased after FLZ treatment. The mechanistic study showed that FLZ inhibited γ-secretase activity by decreasing C-terminal fragment protein level of presenilin, the active center of γ-secretase. The effect of FLZ differs from DAPT (a non-selective γ-secretase inhibitor), suggesting FLZ is a selective γ-secretase inhibitor. FLZ selectively inhibited γ-secretase in the cleavage of recombinant C terminus of APP in vitro, without specifically modulating the processing of recombinant Notch intracellular domain. These results indicate that FLZ decreases Aβ accumulation in mitochondria by selectively inhibiting γ-secretase. We propose that FLZ is a potential anti-AD drug candidate, and its mechanism may be improving mitochondrial function by reducing the Aβ burden in mitochondria.
Collapse
Affiliation(s)
- Xuan Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | | | | | | | | |
Collapse
|
228
|
Ayissi Owona B, Njayou NF, Laufer S, Moundipa PF, Schluesener HJ. A fraction of stem bark extract of Entada africana suppresses lipopolysaccharide-induced inflammation in RAW 264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:162-8. [PMID: 23796875 DOI: 10.1016/j.jep.2013.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Entada africana is a plant used in African traditional medicine for the treatment of stomachache, fever, liver related diseases, wound healing, cataract and dysentery. AIMS OF THE STUDY This study aimed at evaluating the anti-inflammatory activity of fractions of the stem bark extract of the plant using lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages model. MATERIALS AND METHODS The crude extract was prepared using the mixture CH2Cl2/MeOH (1:1, v/v) and fractionated by flash chromatography using solvents of increasing polarity to obtain five different fractions. The effects of the fractions on the cells viability were studied by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and their inhibitory activity against LPS-induced nitric oxide (NO) production screened by Griess test. The most active fraction was further investigated for its effects on reactive oxygen species (ROS) production using flux cytometry, the expression of inducible nitric oxide synthase (iNOS), pro-and anti-inflammatory cytokines (IL1β, TNFα, IL6, IL10 and IL13) by RT-PCR, and the activity of the enzyme p38 MAPK kinase by enzyme-linked immunosorbent assay (ELISA). RESULTS The fractions presented no significant effect on the viability of macrophages at 100 μg/ml after 24h incubation. The CH2Cl2/MeOH 5% (Ea5) fraction was found to be the most potent in inhibiting NO production with a half inhibition concentration (IC50)=18.36 μg/ml, and showed the highest inhibition percentage (89.068%) in comparison with Baicalin (63.34%), an external standard at 50 μg/ml. Ea5, as well as Baicalin significantly (P<0.05) inhibited the expression of TNFα, IL6 and IL1β mRNA, attenuated mRNA expression of inducible NO synthase in a concentration-dependent manner, stimulated the expression of anti-inflammatory cytokines (IL10 and IL13), and showed a 30% inhibition of the activity of p38 MAPK kinase. CONCLUSION The results of the present study indicate that the fraction Ea5 of Entada africana possesses most potent in vitro anti-inflammatory activity and may contain compounds useful as a therapeutic agent in the treatment of inflammatory related diseases cause by over-activation of macrophages.
Collapse
Affiliation(s)
- Brice Ayissi Owona
- Division of Immunopathology of Nervous System, Department of Neuropathology, Institute of Pathology, University of Tübingen, Germany.
| | | | | | | | | |
Collapse
|
229
|
Gubandru M, Margina D, Tsitsimpikou C, Goutzourelas N, Tsarouhas K, Ilie M, Tsatsakis AM, Kouretas D. Alzheimer's disease treated patients showed different patterns for oxidative stress and inflammation markers. Food Chem Toxicol 2013; 61:209-14. [PMID: 23871825 DOI: 10.1016/j.fct.2013.07.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/05/2013] [Accepted: 07/07/2013] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia accounting for 60-80% of the reported cases. The aim of this study was to evaluate levels of certain parameters of oxidative stress and markers of endothelial dysfunction in the blood of 21 AD patients under standard treatment compared with 10 controls, in an attempt to elucidate the contribution of AD to the total oxidative stress status of the patients. Results indicate that IL-6, TNF-α, ADMA and homocysteine levels were significantly elevated in AD patients. Protein carbonyls levels were higher in AD group, while glutathione reductase and total antioxidant capacity were lower, depicting decreased defense ability against reactive oxygen species. Besides, a higher level of advanced glycation end-products was observed in AD patients. Depending on the treatment received, a distinct inflammatory and oxidative stress profile was observed: in Rivastigmine-treated group, IL6 levels were 47% lower than the average value of the remaining AD patients; homocysteine and glutathione reductase were statistically unchanged in the Rivastigmine and Donepezil-Memantine, respectively Donepezil group. Although the study is based on a limited population, the results could constitute the basis for further studies regarding the effect of medication and diet on AD patients.
Collapse
Affiliation(s)
- Miriana Gubandru
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania.
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Tavares L, Figueira I, McDougall GJ, Vieira HLA, Stewart D, Alves PM, Ferreira RB, Santos CN. Neuroprotective effects of digested polyphenols from wild blackberry species. Eur J Nutr 2013; 52:225-36. [PMID: 22314351 DOI: 10.1007/s00394-012-0307-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/18/2012] [Indexed: 01/06/2023]
Abstract
PURPOSE Blackberry ingestion has been demonstrated to attenuate brain degenerative processes with the benefits ascribed to the (poly)phenolic components. The aim of this work was to evaluate the neuroprotective potential of two wild blackberry species in a neurodegeneration cell model and compare them with a commercial variety. METHODS This work encompasses chemical characterization before and after an in vitro digestion and the assessment of neuroprotection by digested metabolites. Some studies targeting redox/cell death systems were also performed to assess possible neuroprotective molecular mechanisms. RESULTS The three blackberry extracts presented some quantitative differences in polyphenol composition that could be responsible for the different responses in the neurodegeneration cell model. Commercial blackberry extracts were ineffective but both wild blackberries, Rubus brigantinus and Rubus vagabundus, presented neuroprotective effects. It was verified that a diminishment of intracellular ROS levels, modulation of glutathione levels and activation of caspases occurred during treatment. The last effect suggests a preconditioning effect since caspase activation was not accompanied by diminution in cell death and loss of functionality. CONCLUSIONS This is the first time that metabolites obtained from an in vitro digested food matrix, and tested at levels approaching the concentrations found in human plasma, have been described as inducing an adaptative response.
Collapse
Affiliation(s)
- Lucélia Tavares
- Instituto de Tecnologia Química e Biológica, Universidade Novade Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Zhang J, Cao Q, Li S, Lu X, Zhao Y, Guan JS, Chen JC, Wu Q, Chen GQ. 3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer's disease via mitochondria protection mechanism. Biomaterials 2013; 34:7552-62. [PMID: 23849878 DOI: 10.1016/j.biomaterials.2013.06.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/23/2013] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is induced by many reasons, including decreased cellular utilization of glucose and brain cell mitochondrial damages. Degradation product of microbially synthesized polyhydroxybutyrate (PHB), namely, 3-hydroxybutyrate (3HB), can be an alternative to glucose during sustained hypoglycemia. In this study, the derivative of 3HB, 3-hydroxybutyrate methyl ester (HBME), was used by cells as an alternative to glucose. HBME inhibited cell apoptosis under glucose deprivation, rescued activities of mitochondrial respiratory chain complexes that were impaired in AD patients and decreased the generation of ROS. Meanwhile, HBME stabilized the mitochondrial membrane potential. In vivo studies showed that HBME crossed the blood brain barrier easier compared with charged 3HB, resulting in a better bioavailability. AD mice treated with HBME performed significantly better (p < 0.05) in the Morris water maze compared with other groups, demonstrating that HBME has a positive in vivo pharmaceutical effect to improve the spatial learning and working memory of mice. A reduced amyloid-β deposition in mouse brains after intragastric administration of HBME was also observed. Combined with the in vitro and in vivo results, HBME was proposed to be a drug candidate against AD, its working mechanism appeared to be mediated by various effects of protecting mitochondrial damages.
Collapse
Affiliation(s)
- Junyu Zhang
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Zhou XW, Zhang Z, Su CF, Lv RH, Zhou X, Cai L, Wang CY, Yan L, Zhang W, Luo HM. Methyl 3,4-dihydroxybenzoate protects primary cortical neurons against Aβ25-35-induced neurotoxicity through mitochondria pathway. J Neurosci Res 2013; 91:1215-25. [DOI: 10.1002/jnr.23235] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/06/2013] [Accepted: 03/14/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Xiao-Wen Zhou
- Department of Pharmacology; School of Medicine, Jinan University; Guangzhou; China
| | - Zheng Zhang
- The First Affiliated Hospital of Jinan University; Guangzhou; China
| | - Chao-Fen Su
- Department of Pharmacology; School of Medicine, Jinan University; Guangzhou; China
| | - Ruo-Hua Lv
- Sinopharm Medicine Holding Guangzhou Co., Ltd.; Guangzhou; China
| | - Xing Zhou
- Department of Pharmacology; School of Medicine, Jinan University; Guangzhou; China
| | - Liang Cai
- Department of Pharmacology; School of Medicine, Jinan University; Guangzhou; China
| | - Chen-Yu Wang
- Department of Clinical Medicine; School of Medicine, Jinan University; Guangzhou; China
| | - Li Yan
- Department of Pharmacology; School of Medicine, Jinan University; Guangzhou; China
| | - Wei Zhang
- Department of Pharmacology; School of Medicine, Jinan University; Guangzhou; China
| | | |
Collapse
|
233
|
Prinz M, Parlar S, Bayraktar G, Alptüzün V, Erciyas E, Fallarero A, Karlsson D, Vuorela P, Burek M, Förster C, Turunc E, Armagan G, Yalcin A, Schiller C, Leuner K, Krug M, Sotriffer CA, Holzgrabe U. 1,4-Substituted 4-(1H)-pyridylene-hydrazone-type inhibitors of AChE, BuChE, and amyloid-β aggregation crossing the blood–brain barrier. Eur J Pharm Sci 2013; 49:603-13. [DOI: 10.1016/j.ejps.2013.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 01/09/2023]
|
234
|
Zhou B, Li B, Yi W, Bu X, Ma L. Synthesis, antioxidant, and antimicrobial evaluation of some 2-arylbenzimidazole derivatives. Bioorg Med Chem Lett 2013; 23:3759-63. [DOI: 10.1016/j.bmcl.2013.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 02/05/2023]
|
235
|
Santos RX, Correia SC, Zhu X, Smith MA, Moreira PI, Castellani RJ, Nunomura A, Perry G. Mitochondrial DNA oxidative damage and repair in aging and Alzheimer's disease. Antioxid Redox Signal 2013; 18:2444-57. [PMID: 23216311 PMCID: PMC3671662 DOI: 10.1089/ars.2012.5039] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SIGNIFICANCE Mitochondria are fundamental to the life and proper functioning of cells. These organelles play a key role in energy production, in maintaining homeostatic levels of second messengers (e.g., reactive oxygen species and calcium), and in the coordination of apoptotic cell death. The role of mitochondria in aging and in pathophysiological processes is constantly being unraveled, and their involvement in neurodegenerative processes, such as Alzheimer's disease (AD), is very well known. RECENT ADVANCES A considerable amount of evidence points to oxidative damage to mitochondrial DNA (mtDNA) as a determinant event that occurs during aging, which may cause or potentiate mitochondrial dysfunction favoring neurodegenerative events. Concomitantly to reactive oxygen species production, an inefficient mitochondrial base excision repair (BER) machinery has also been pointed to favor the accumulation of oxidized bases in mtDNA during aging and AD progression. CRITICAL ISSUES The accumulation of oxidized mtDNA bases during aging increases the risk of sporadic AD, an event that is much less relevant in the familial forms of the disease. This aspect is critical for the interpretation of data arising from tissue of AD patients and animal models of AD, as the major part of animal models rely on mutations in genes associated with familial forms of the disease. FUTURE DIRECTIONS Further investigation is important to unveil the role of mtDNA and BER in aging brain and AD in order to design more effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Renato X Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Chico L, Simoncini C, Lo Gerfo A, Rocchi A, Petrozzi L, Carlesi C, Volpi L, Tognoni G, Siciliano G, Bonuccelli U. Oxidative stress and APO E polymorphisms in Alzheimer's disease and in mild cognitive impairment. Free Radic Res 2013; 47:569-76. [PMID: 23668794 DOI: 10.3109/10715762.2013.804622] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A number of evidences indicates oxidative stress as a relevant pathogenic factor in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Considering its recognized major genetic risk factors in AD, apolipoprotein (APO E) has been investigated in several experimental settings regarding its role in the process of reactive oxygen species (ROS) generation. The aim of this work has been to evaluate possible relationships between APO E genotype and plasma levels of selected oxidative stress markers in both AD and MCI patients. APO E genotypes were determined using restriction enzyme analysis. Plasma levels of oxidative markers, advanced oxidation protein products, iron-reducing ability of plasma and, in MCI, activity of superoxide dismutases were evaluated using spectrophotometric analysis. We found, compared to controls, increased levels of oxidized proteins and decreased values of plasma-reducing capacity in both AD patients (p < 0.0001) and MCI patients (p < 0.001); the difference between AD and MCI patients was significant only for plasma-reducing capacity (p < 0.0001), the former showing the lowest values. Superoxide dismutase activity was reduced, although not at statistical level, in MCI compared with that in controls. E4 allele was statistically associated (p < 0.05) with AD patients. When comparing different APO E genotype subgroups, no difference was present, as far as advanced oxidation protein products and iron-reducing ability of plasma levels were concerned, between E4 and non-E4 carriers, in both AD and MCI; on the contrary, E4 carriers MCI patients showed significantly decreased (p < 0.05) superoxide dismutase activity with respect to non-E4 carriers. This study, in confirming the occurrence of oxidative stress in AD and MCI patients, shows how it can be related, at least for superoxide dismutase activity in MCI, to APO E4 allele risk factor.
Collapse
Affiliation(s)
- L Chico
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Lymphocytes of patients with Alzheimer's disease display different DNA damage repair kinetics and expression profiles of DNA repair and stress response genes. Int J Mol Sci 2013; 14:12380-400. [PMID: 23752274 PMCID: PMC3709791 DOI: 10.3390/ijms140612380] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 03/21/2013] [Accepted: 05/23/2013] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, characterized by loss of memory and cognitive capacity. Given the limitations to analyze brain cells, it is important to study whether peripheral lymphocytes can provide biological markers for AD, an interesting approach, once they represent the overall condition of the organism. To that extent, we sought to find whether lymphocytes of AD patients present DNA damage and repair kinetics different from those found in elderly matched controls (EC group) under in vitro treatment with hydrogen peroxide. We found that AD patient cells indeed showed an altered DNA repair kinetics (comet assay). Real-time quantitative analysis of genes associated with DNA stress response also showed that FANCG and CDKN1A are upregulated in AD, while MTH1 is downregulated, compared with the control group. In contrast, the expression of ATM, ATR and FEN1 genes does not seem to differ between these groups. Interestingly, TP53 protein expression was increased in AD patients. Therefore, we found that kinetics of the stress response in the DNA were significantly different in AD patients, supporting the hypothesis that repair pathways may be compromised in AD and that peripheral lymphocytes can reveal this condition.
Collapse
|
238
|
Kovacic P, Somanathan R. Redox processes in neurodegenerative disease involving reactive oxygen species. Curr Neuropharmacol 2013; 10:289-302. [PMID: 23730253 PMCID: PMC3520039 DOI: 10.2174/157015912804143487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/12/2012] [Accepted: 06/20/2012] [Indexed: 11/22/2022] Open
Abstract
Much attention has been devoted to neurodegenerative diseases involving redox processes. This review comprises an update involving redox processes reported in the considerable literature in recent years. The mechanism involves reactive oxygen species and oxidative stress, usually in the brain. There are many examples including Parkinson’s, Huntington’s, Alzheimer’s, prions, Down’s syndrome, ataxia, multiple sclerosis, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis, schizophrenia, and Tardive Dyskinesia. Evidence indicates a protective role for antioxidants, which may have clinical implications. A multifaceted approach to mode of action appears reasonable.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego CA 92182 USA
| | | |
Collapse
|
239
|
Muller AP, Dietrich MDO, Martimbianco de Assis A, Souza DO, Portela LV. High saturated fat and low carbohydrate diet decreases lifespan independent of body weight in mice. LONGEVITY & HEALTHSPAN 2013; 2:10. [PMID: 24472284 PMCID: PMC3922950 DOI: 10.1186/2046-2395-2-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/05/2013] [Indexed: 01/16/2023]
Abstract
Background Obesity is a health problem that is reaching epidemic proportions worldwide. We investigated the effects of a life-long high saturated fat and low carbohydrate (HF) diet on the body mass, glucose tolerance, cognitive performance and lifespan of mice. Findings C57BL/6J mice were fed with a HF diet (60% kcal/fat) or control diets (15% kcal/fat) for 27 months. One-half of the mice on the HF diet developed obesity (diet-induced obese (DIO) mice), whereas the remaining mice were diet resistant (DR). At 8 months of age, both DIO and DR groups had increased hyperglycemic response during a glucose tolerance test, which was normalized in 16-month-old mice. At this latter time point, all groups presented similar performance in cognitive tests (Morris water maze and inhibitory avoidance). The survival curves of the HF and control diet groups started to diverge at 15 months of age and, after 27 months, the survival rate of mice in the DIO and DR groups was 40%, whereas in the control diet group it was 75%. Conclusions AHFdiet decreased the survival of mice independent of bodyweight.
Collapse
Affiliation(s)
- Alexandre Pastoris Muller
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo I, Porto Alegre, RS, 90035-000, Brazil.
| | | | | | | | | |
Collapse
|
240
|
Kim SU, Park YH, Min JS, Sun HN, Han YH, Hua JM, Lee TH, Lee SR, Chang KT, Kang SW, Kim JM, Yu DY, Lee SH, Lee DS. Peroxiredoxin I is a ROS/p38 MAPK-dependent inducible antioxidant that regulates NF-κB-mediated iNOS induction and microglial activation. J Neuroimmunol 2013; 259:26-36. [DOI: 10.1016/j.jneuroim.2013.03.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/18/2013] [Accepted: 03/18/2013] [Indexed: 12/12/2022]
|
241
|
Evaluation of Antioxidant Capacity of Hydrophilic and Hydrophobic Antioxidants Using Peroxyoxalate Chemiluminescence Reaction of the Novel Furandicarboxylate Derivative. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9625-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
242
|
Li R, Yang Q, Qiu X, Li K, Li G, Zhu P, Zhu T. Reactive oxygen species alteration of immune cells in local residents at an electronic waste recycling site in northern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3344-3352. [PMID: 23473389 DOI: 10.1021/es400027v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The health effects of exposure to pollutants from electronic waste (e-waste) pose an important issue. In this study, we explored the association between oxidative stress and blood levels of e-waste-related pollutants. Blood samples were collected from individuals living in the proximity of an e-waste recycling site located in northern China, and pollutants, as well as reactive oxygen species (ROS), were measured in comparison to a reference population. The geometric mean concentrations of PCBs, dechlorane plus, and 2,2',4,4',5,5'-hexabromobiphenyl in plasma from the exposure group were 60.4, 9.0, and 0.55 ng g(-1) lipid, respectively, which were 2.2, 3.2, and 2.2 times higher than the corresponding measurement in the reference group. Correspondingly, ROS levels in white blood cells, including in neutrophil granulocytes, from the exposure group were significantly higher than in those from the reference group, suggesting potential ROS related health effects for residents at the e-waste site. In contrast, fewer ROS were generated in the respiratory burst of neutrophil granulocytes for the exposure group, indicating a depressed innate immune function for the individuals living at the e-waste site. These findings suggest a potential linkage between exposure to pollutants from e-waste recycling and both elevated oxidative stress and altered immune function.
Collapse
Affiliation(s)
- Ran Li
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
Currently, all treatment of mitochondrial disorders is performed with dietary supplements or by off-label use of drugs approved for other indications. The present challenge is translation of our collective knowledge of the molecular details underlying the pathophysiology of mitochondrial disorders into safe and effective therapies that are approved by the regulatory authorities. Molecular details permit precise diagnoses, but homogeneity is gained at the expense of limiting numbers of subjects for clinical trials and of small markets from which to recoup the considerable expense of drug discovery and development. The Food and Drug Administration recognizes that trial designs suitable for common diseases are often not feasible for rare disorders. They have developed a number of programs to facilitate development of novel therapies for such rare diseases, without compromise of regulatory standards. With advances in technology, including the use of biomarkers, replacement therapies and sophisticated trial designs, both biotechnology firms and, increasingly, large integrated pharmaceutical companies, are taking advantage of the opportunities in rare disorders. Precise molecular delineation of pathophysiology and of responsive patients has led to success rates with rare diseases that are significantly greater than those for common disorders. It appears likely, but not yet proven, that this may now be the case for rare mitochondrial disorders as well.
Collapse
Affiliation(s)
- Orest Hurko
- Clinical Translational Medicine, 19 Sugar Knoll Drive, Suite 203, Devon, PA 19333-1558, USA.
| |
Collapse
|
244
|
Ma WW, Hou CC, Zhou X, Yu HL, Xi YD, Ding J, Zhao X, Xiao R. Genistein alleviates the mitochondria-targeted DNA damage induced by β-amyloid peptides 25–35 in C6 glioma cells. Neurochem Res 2013; 38:1315-23. [DOI: 10.1007/s11064-013-1019-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/07/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
|
245
|
Muller AP, Haas CB, Camacho-Pereira J, Brochier AW, Gnoatto J, Zimmer ER, de Souza DO, Galina A, Portela LV. Insulin prevents mitochondrial generation of H₂O₂ in rat brain. Exp Neurol 2013; 247:66-72. [PMID: 23499835 DOI: 10.1016/j.expneurol.2013.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 01/08/2023]
Abstract
The mitochondrial electron transport system (ETS) is a main source of cellular ROS, including hydrogen peroxide (H₂O₂). The production of H₂O₂ also involves the mitochondrial membrane potential (ΔΨm) and oxygen consumption. Impaired insulin signaling causes oxidative neuronal damage and places the brain at risk of neurodegeneration. We evaluated whether insulin signaling cross-talks with ETS components (complexes I and F₀F₁ATP synthase) and ΔΨm to regulate mitochondrial H₂O₂ production, in tissue preparations from rat brain. Insulin (50 to 100 ng/mL) decreased H₂O₂ production in synaptosomal preparations in high Na(+) buffer (polarized state), stimulated by glucose and pyruvate, without affecting the oxygen consumption. In addition, insulin (10 to 100 ng/mL) decreased H₂O₂ production induced by succinate in synaptosomes in high K(+) (depolarized state), whereas wortmannin and LY290042, inhibitors of the PI3K pathway, reversed this effect; heated insulin had no effect. Insulin decreased H₂O₂ production when complexes I and F₀F₁ATP synthase were inhibited by rotenone and oligomycin respectively suggesting a target effect on complex III. Also, insulin prevented the generation of maximum level of ∆Ψm induced by succinate. The PI3K inhibitors and heated insulin maintained the maximum level of ∆Ψm induced by succinate in synaptosomes in a depolarized state. Similarly, insulin decreased ROS production in neuronal cultures. In mitochondrial preparations, insulin neither modulated H2O2 production or oxygen consumption. In conclusion, the normal downstream insulin receptor signaling is necessary to regulate complex III of ETS avoiding the generation of maximal ∆Ψm and increased mitochondrial H2O2 production.
Collapse
Affiliation(s)
- Alexandre Pastoris Muller
- Departamento de Bioquímica, ICBS, UFRG, Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Vignini A, Giusti L, Raffaelli F, Giulietti A, Salvolini E, Luzzi S, Provinciali L, Mazzanti L, Nanetti L. Impact of gender on platelet membrane functions of Alzheimer's disease patients. Exp Gerontol 2013; 48:319-325. [PMID: 23228953 DOI: 10.1016/j.exger.2012.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 01/29/2023]
Abstract
There are many evidences suggesting that oxidative stress is one of the earliest events in Alzheimer disease (AD) pathogenesis and plays a key role in the development of the AD pathology. The existence of substantial gender-related differences in the clinical features of AD has been recently confirmed (i.e. pathophysiologic features and epidemiologic trends). In addition, study results appear to indicate that the etiopathogenetic mechanisms of AD differ significantly in the 2 sexes. Based on previous results regarding changes in AD platelet plasma membrane, the purpose of the present study was to assess the impact of gender in the same model above reported. In particular we aimed at studying platelets from AD patients (M-AD and F-AD) and matched controls (M-C and F-C), divided into gender, by studying nitric oxide (NO) and peroxynitrite (ONOO(-)) production, the intracellular Ca(2+) concentration ([Ca(2+)]i), membrane Na(+)/K(+)-ATPase activity and fluidity. NO production was significantly elevated in platelets from both F-AD and M-AD compared to matched controls. M-AD showed NO production significantly higher than F-AD and it was the same between M-C and F-C. A similar trend was seen for ONOO(-). Platelets of both M-AD and F-AD had intracellular Ca(2+) concentrations significantly higher than F-C and M-C, while membrane Na(+)/K(+)-ATPase activity showed an opposite trend, but these differences are still significant. M-AD male subjects showed a significantly increased DPH fluorescence anisotropy (r) compared with controls, while for F-AD this discrepancy was not significant. The difference in DHP fluorescence anisotropy remained significant between M-AD and F-AD as well as between M-C and F-C. The TMA-DPH fluorescence anisotropy showed the same trend, but there were no significant differences between M-AD and F-AD, as well as between controls. The results of the current research support the conclusion that F-AD is not at greater risk than M-AD for oxidative stress injuries. Studies on gender differences could lead to a higher probability of improved health outcomes via better-targeted therapies.
Collapse
Affiliation(s)
- Arianna Vignini
- Department of Clinical Science - Biochemistry, School of Medicine, Polytechnic University of Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β. J Neurosci 2013; 32:16458-65. [PMID: 23152628 DOI: 10.1523/jneurosci.3987-12.2012] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.
Collapse
|
248
|
Park JB. Isolation and quantification of major chlorogenic acids in three major instant coffee brands and their potential effects on H2O2-induced mitochondrial membrane depolarization and apoptosis in PC-12 cells. Food Funct 2013; 4:1632-8. [DOI: 10.1039/c3fo60138b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
249
|
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2013; 3:461-91. [PMID: 24252804 PMCID: PMC4135313 DOI: 10.3233/jpd-130230] [Citation(s) in RCA: 1157] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection.
Collapse
Affiliation(s)
- Vera Dias
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Eunsung Junn
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - M. Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
250
|
|