201
|
Mauney CH, Rogers LC, Harris RS, Daniel LW, Devarie-Baez NO, Wu H, Furdui CM, Poole LB, Perrino FW, Hollis T. The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox Switch. Antioxid Redox Signal 2017; 27:1317-1331. [PMID: 28398823 PMCID: PMC5655415 DOI: 10.1089/ars.2016.6888] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Proliferative signaling involves reversible posttranslational oxidation of proteins. However, relatively few molecular targets of these modifications have been identified. We investigate the role of protein oxidation in regulation of SAMHD1 catalysis. RESULTS Here we report that SAMHD1 is a major target for redox regulation of nucleotide metabolism and cell cycle control. SAMHD1 is a triphosphate hydrolase, whose function involves regulation of deoxynucleotide triphosphate pools. We demonstrate that the redox state of SAMHD1 regulates its catalytic activity. We have identified three cysteine residues that constitute an intrachain disulfide bond "redox switch" that reversibly inhibits protein tetramerization and catalysis. We show that proliferative signals lead to SAMHD1 oxidation in cells and oxidized SAMHD1 is localized outside of the nucleus. Innovation and Conclusions: SAMHD1 catalytic activity is reversibly regulated by protein oxidation. These data identify a previously unknown mechanism for regulation of nucleotide metabolism by SAMHD1. Antioxid. Redox Signal. 27, 1317-1331.
Collapse
Affiliation(s)
- Christopher H Mauney
- 1 Department of Biochemistry, Center for Structural Biology , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - LeAnn C Rogers
- 1 Department of Biochemistry, Center for Structural Biology , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Reuben S Harris
- 2 Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Howard Hughes Medical Institute, University of Minnesota , Minneapolis, Minnesota
| | - Larry W Daniel
- 1 Department of Biochemistry, Center for Structural Biology , Wake Forest School of Medicine, Winston-Salem, North Carolina.,3 Center for Molecular Communication and Signaling , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nelmi O Devarie-Baez
- 4 Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Hanzhi Wu
- 4 Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Cristina M Furdui
- 3 Center for Molecular Communication and Signaling , Wake Forest School of Medicine, Winston-Salem, North Carolina.,4 Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Leslie B Poole
- 1 Department of Biochemistry, Center for Structural Biology , Wake Forest School of Medicine, Winston-Salem, North Carolina.,3 Center for Molecular Communication and Signaling , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Fred W Perrino
- 1 Department of Biochemistry, Center for Structural Biology , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas Hollis
- 1 Department of Biochemistry, Center for Structural Biology , Wake Forest School of Medicine, Winston-Salem, North Carolina.,3 Center for Molecular Communication and Signaling , Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
202
|
Sakellariou GK, Lightfoot AP, Earl KE, Stofanko M, McDonagh B. Redox homeostasis and age-related deficits in neuromuscular integrity and function. J Cachexia Sarcopenia Muscle 2017; 8:881-906. [PMID: 28744984 PMCID: PMC5700439 DOI: 10.1002/jcsm.12223] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/06/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this 'epidemic' problem, the primary biochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age-associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age-related muscle atrophy and weakness.
Collapse
Affiliation(s)
| | - Adam P. Lightfoot
- School of Healthcare ScienceManchester Metropolitan UniversityManchesterM1 5GDUK
| | - Kate E. Earl
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
| | - Martin Stofanko
- Microvisk Technologies LtdThe Quorum7600 Oxford Business ParkOxfordOX4 2JZUK
| | - Brian McDonagh
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
- Department of Physiology, School of MedicineNational University of IrelandGalwayIreland
| |
Collapse
|
203
|
Liu Y, Li J, Tschirhart T, Terrell JL, Kim E, Tsao C, Kelly DL, Bentley WE, Payne GF. Connecting Biology to Electronics: Molecular Communication via Redox Modality. Adv Healthc Mater 2017; 6. [PMID: 29045017 DOI: 10.1002/adhm.201700789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD 21228 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
204
|
McHale CM, Osborne G, Morello-Frosch R, Salmon AG, Sandy MS, Solomon G, Zhang L, Smith MT, Zeise L. Assessing health risks from multiple environmental stressors: Moving from G×E to I×E. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 775:11-20. [PMID: 29555026 DOI: 10.1016/j.mrrev.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023]
Abstract
Research on disease causation often attempts to isolate the effects of individual factors, including individual genes or environmental factors. This reductionist approach has generated many discoveries, but misses important interactive and cumulative effects that may help explain the broad range of variability in disease occurrence observed across studies and individuals. A disease rarely results from a single factor, and instead results from a broader combination of factors, characterized here as intrinsic (I) and extrinsic (E) factors. Intrinsic vulnerability or resilience emanates from a variety of both fixed and shifting biological factors including genetic traits, while extrinsic factors comprise all biologically-relevant external stressors encountered across the lifespan. The I×E concept incorporates the multi-factorial and dynamic nature of health and disease and provides a unified, conceptual basis for integrating results from multiple areas of research, including genomics, G×E, developmental origins of health and disease, and the exposome. We describe the utility of the I×E concept to better understand and characterize the cumulative impact of multiple extrinsic and intrinsic factors on individual and population health. New research methods increasingly facilitate the measurement of multifactorial and interactive effects in epidemiological and toxicological studies. Tiered or indicator-based approaches can guide the selection of potentially relevant I and E factors for study and quantification, and exposomics methods may eventually produce results that can be used to generate a response function over the life course. Quantitative data on I×E interactive effects should generate a better understanding of the variability in human response to environmental factors. The proposed I×E concept highlights the role for broader study design in order to identify extrinsic and intrinsic factors amenable to interventions at the individual and population levels in order to enhance resilience, reduce vulnerability and improve health.
Collapse
Affiliation(s)
- Cliona M McHale
- Superfund Research Center, School of Public Health, University of California, Berkeley, CA 94720, USA.
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA
| | - Rachel Morello-Frosch
- Superfund Research Center, School of Public Health, University of California, Berkeley, CA 94720, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Andrew G Salmon
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA
| | - Gina Solomon
- California Environmental Protection Agency, Sacramento, CA 95814, USA
| | - Luoping Zhang
- Superfund Research Center, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Martyn T Smith
- Superfund Research Center, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA
| |
Collapse
|
205
|
Kuksal N, Chalker J, Mailloux RJ. Progress in understanding the molecular oxygen paradox - function of mitochondrial reactive oxygen species in cell signaling. Biol Chem 2017; 398:1209-1227. [PMID: 28675747 DOI: 10.1515/hsz-2017-0160] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/27/2017] [Indexed: 11/15/2022]
Abstract
The molecular oxygen (O2) paradox was coined to describe its essential nature and toxicity. The latter characteristic of O2 is associated with the formation of reactive oxygen species (ROS), which can damage structures vital for cellular function. Mammals are equipped with antioxidant systems to fend off the potentially damaging effects of ROS. However, under certain circumstances antioxidant systems can become overwhelmed leading to oxidative stress and damage. Over the past few decades, it has become evident that ROS, specifically H2O2, are integral signaling molecules complicating the previous logos that oxyradicals were unfortunate by-products of oxygen metabolism that indiscriminately damage cell structures. To avoid its potential toxicity whilst taking advantage of its signaling properties, it is vital for mitochondria to control ROS production and degradation. H2O2 elimination pathways are well characterized in mitochondria. However, less is known about how H2O2 production is controlled. The present review examines the importance of mitochondrial H2O2 in controlling various cellular programs and emerging evidence for how production is regulated. Recently published studies showing how mitochondrial H2O2 can be used as a secondary messenger will be discussed in detail. This will be followed with a description of how mitochondria use S-glutathionylation to control H2O2 production.
Collapse
|
206
|
Cortese-Krott MM, Koning A, Kuhnle GG, Nagy P, Bianco CL, Pasch A, Wink DA, Fukuto JM, Jackson AA, van Goor H, Olson KR, Feelisch M. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine. Antioxid Redox Signal 2017; 27:684-712. [PMID: 28398072 PMCID: PMC5576088 DOI: 10.1089/ars.2017.7083] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. CRITICAL ISSUES To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. FUTURE DIRECTIONS Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Miriam M. Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anne Koning
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gunter G.C. Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Peter Nagy
- Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | | | - Andreas Pasch
- Department of Clinical Chemistry, University of Bern and Calciscon AG, Bern, Switzerland
| | - David A. Wink
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jon M. Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, California
| | - Alan A. Jackson
- NIHR Southampton Biomedical Research Center, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kenneth R. Olson
- Indiana University School of Medicine-South Bend, South Bend, Indiana
| | - Martin Feelisch
- NIHR Southampton Biomedical Research Center, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
207
|
Cell Signaling with Extracellular Thioredoxin and Thioredoxin-Like Proteins: Insight into Their Mechanisms of Action. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8475125. [PMID: 29138681 PMCID: PMC5613632 DOI: 10.1155/2017/8475125] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022]
Abstract
Thioredoxins are small thiol-oxidoreductase enzymes that control cellular redox homeostasis. Paradoxically, human thioredoxin (TXN1) was first identified as the adult T cell leukemia-derived factor (ADF), a secreted protein. ADF has been implicated in a wide variety of cell-to-cell communication systems acting as a cytokine or a chemokine. TRX80 is a truncated TXN1 protein with cytokine activity. The unconventional secretion mechanism of these extracellular thioredoxins is unknown. The thioredoxin system is relying on glucose metabolism through the pentose phosphate pathway that provides reducing power in the form of NADPH, the cofactor of thioredoxin reductase (TXNRD). While a complete extracellular TXN system is present in the blood in the form of circulating TXN1 and TXNDR1, the source of extracellular NADPH remains a mystery. In the absence of redox regenerating capacity, extracellular thioredoxins may rather be prooxidant agents. Rod-derived cone viability factor (RdCVF) is the product of intron retention of the nucleoredoxin-like 1 (NXNL1) gene, a secreted truncated thioredoxin-like protein. The other product encoded by the gene, RdCVFL, is an enzymatically active thioredoxin. This is a very singular example of positive feedback of a superthioredoxin system encoded by a single gene likely emerging during evolution from metabolic constraints on redox signaling.
Collapse
|
208
|
Farina M, Aschner M, da Rocha JBT. The catecholaminergic neurotransmitter system in methylmercury-induced neurotoxicity. ADVANCES IN NEUROTOXICOLOGY 2017; 1:47-81. [PMID: 32346666 DOI: 10.1016/bs.ant.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
209
|
Pérez-Pérez ME, Mauriès A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, Marchand CH. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation. MOLECULAR PLANT 2017; 10:1107-1125. [PMID: 28739495 DOI: 10.1016/j.molp.2017.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
Thiol-based redox post-translational modifications have emerged as important mechanisms of signaling and regulation in all organisms, and thioredoxin plays a key role by controlling the thiol-disulfide status of target proteins. Recent redox proteomic studies revealed hundreds of proteins regulated by glutathionylation and nitrosylation in the unicellular green alga Chlamydomonas reinhardtii, while much less is known about the thioredoxin interactome in this organism. By combining qualitative and quantitative proteomic analyses, we have comprehensively investigated the Chlamydomonas thioredoxome and 1188 targets have been identified. They participate in a wide range of metabolic pathways and cellular processes. This study broadens not only the redox regulation to new enzymes involved in well-known thioredoxin-regulated metabolic pathways but also sheds light on cellular processes for which data supporting redox regulation are scarce (aromatic amino acid biosynthesis, nuclear transport, etc). Moreover, we characterized 1052 thioredoxin-dependent regulatory sites and showed that these data constitute a valuable resource for future functional studies in Chlamydomonas. By comparing this thioredoxome with proteomic data for glutathionylation and nitrosylation at the protein and cysteine levels, this work confirms the existence of a complex redox regulation network in Chlamydomonas and provides evidence of a tremendous selectivity of redox post-translational modifications for specific cysteine residues.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Adeline Mauriès
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Alexandre Maes
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Nicolas J Tourasse
- Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marion Hamon
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
210
|
Cobley JN, Close GL, Bailey DM, Davison GW. Exercise redox biochemistry: Conceptual, methodological and technical recommendations. Redox Biol 2017; 12:540-548. [PMID: 28371751 PMCID: PMC5377294 DOI: 10.1016/j.redox.2017.03.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Exercise redox biochemistry is of considerable interest owing to its translational value in health and disease. However, unaddressed conceptual, methodological and technical issues complicate attempts to unravel how exercise alters redox homeostasis in health and disease. Conceptual issues relate to misunderstandings that arise when the chemical heterogeneity of redox biology is disregarded: which often complicates attempts to use redox-active compounds and assess redox signalling. Further, that oxidised macromolecule adduct levels reflect formation and repair is seldom considered. Methodological and technical issues relate to the use of out-dated assays and/or inappropriate sample preparation techniques that confound biochemical redox analysis. After considering each of the aforementioned issues, we outline how each issue can be resolved and provide a unifying set of recommendations. We specifically recommend that investigators: consider chemical heterogeneity, use redox-active compounds judiciously, abandon flawed assays, carefully prepare samples and assay buffers, consider repair/metabolism, use multiple biomarkers to assess oxidative damage and redox signalling.
Collapse
Affiliation(s)
- James N Cobley
- Department for Sport and Exercise Sciences, Abertay University, 40 Bell Street, Dundee, Scotland DD1 1HG, UK.
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Liverpool, England L3 3AF, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, CF37 4AT, UK; Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Gareth W Davison
- Sport and Exercise Science Research Institute, Ulster University, Belfast, BT37 OQB, UK
| |
Collapse
|
211
|
Regulatory Role of Redox Balance in Determination of Neural Precursor Cell Fate. Stem Cells Int 2017; 2017:9209127. [PMID: 28804501 PMCID: PMC5540383 DOI: 10.1155/2017/9209127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/22/2017] [Indexed: 12/15/2022] Open
Abstract
In 1990s, reports of discovery of a small group of cells capable of proliferation and contribution to formation of new neurons in the central nervous system (CNS) reversed a century-old concept on lack of neurogenesis in the adult mammalian brain. These cells are found in all stages of human life and contribute to normal cellular turnover of the CNS. Therefore, the identity of regulating factors that affect their proliferation and differentiation is a highly noteworthy issue for basic scientists and their clinician counterparts for therapeutic purposes. The cues for such control are embedded in developmental and environmental signaling through a highly regulated tempo-spatial expression of specific transcription factors. Novel findings indicate the importance of reactive oxygen species (ROS) in the regulation of this signaling system. The elusive nature of ROS signaling in many vital processes from cell proliferation to cell death creates a complex literature in this field. Here, we discuss the emerging thoughts on the importance of redox regulation of proliferation and maintenance in mammalian neural stem and progenitor cells under physiological and pathological conditions. The current knowledge on ROS-mediated changes in redox-sensitive proteins that govern the molecular mechanisms in proliferation and differentiation of these cells is reviewed.
Collapse
|
212
|
Trevisan R, Flores-Nunes F, Dolores ES, Mattos JJ, Piazza CE, Sasaki ST, Taniguchi S, Montone RC, Bícego MC, Dos Reis IMM, Zacchi FL, Othero BNM, Bastolla CLV, Mello DF, Fraga APM, Wendt N, Toledo-Silva G, Razzera G, Dafre AL, de Melo CMR, Bianchini A, Marques MRF, Bainy ACD. Thiol oxidation of hemolymph proteins in oysters Crassostrea brasiliana as markers of oxidative damage induced by urban sewage exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1833-1845. [PMID: 27363828 DOI: 10.1002/etc.3543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/28/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Urban sewage is a concerning issue worldwide, threatening both wildlife and human health. The present study investigated protein oxidation in mangrove oysters (Crassostrea brasiliana) exposed to seawater from Balneário Camboriú, an important tourist destination in Brazil that is affected by urban sewage. Oysters were exposed for 24 h to seawater collected close to the Camboriú River (CAM1) or 1 km away (CAM2). Seawater from an aquaculture laboratory was used as a reference. Local sewage input was marked by higher levels of coliforms, nitrogen, and phosphorus in seawater, as well as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), linear alkylbenzenes (LABs), and fecal steroid in sediments at CAM1. Exposure of oysters to CAM1 caused marked bioaccumulation of LABs and decreased PAH and PCB concentrations after exposure to both CAM1 and CAM2. Protein thiol oxidation in gills, digestive gland, and hemolymph was evaluated. Lower levels of reduced protein thiols were detected in hemolymph from CAM1, and actin, segon, and dominin were identified as targets of protein thiol oxidation. Dominin susceptibility to oxidation was confirmed in vitro by exposure to peroxides and hypochlorous acid, and 2 cysteine residues were identified as potential sites of oxidation. Overall, these data indicate that urban sewage contamination in local waters has a toxic potential and that protein thiol oxidation in hemolymph could be a useful biomarker of oxidative stress in bivalves exposed to contaminants. Environ Toxicol Chem 2017;36:1833-1845. © 2016 SETAC.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Euler S Dolores
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jacó J Mattos
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clei E Piazza
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sílvio T Sasaki
- Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | | | - Márcia C Bícego
- Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Isis M M Dos Reis
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Flávia L Zacchi
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bárbara N M Othero
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Camila L V Bastolla
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Danielle F Mello
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ana Paula M Fraga
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Nestor Wendt
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Guilherme Razzera
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cláudio M R de Melo
- Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Adalto Bianchini
- Department of Physiological Sciences, Federal University of Rio Grande Foundation, Rio Grande, Brazil
| | - Maria R F Marques
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Afonso C D Bainy
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
213
|
Abstract
This Perspective delineates how redox signaling affects the activity of specific enzyme isoforms and how this property may be harnessed for rational drug design. Covalent drugs have resurged in recent years and several reports have extolled the general virtues of developing irreversible inhibitors. Indeed, many modern pharmaceuticals contain electrophilic appendages. Several invoke a warhead that hijacks active-site nucleophiles whereas others take advantage of spectator nucleophilic side chains that do not participate in enzymatic chemistry, but are poised to bind/react with electrophiles. The latest data suggest that innate electrophile sensing-which enables rapid reaction with an endogenous signaling electrophile-is a quintessential resource for the development of covalent drugs. For instance, based on recent work documenting isoform-specific electrophile sensing, isozyme non-specific drugs may be converted to isozyme-specific analogs by hijacking privileged first-responder electrophile-sensing cysteines. Because this approach targets functionally relevant cysteines, we can simultaneously harness previously untapped moonlighting roles of enzymes linked to redox sensing.
Collapse
Affiliation(s)
| | - Yimon Aye
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14850, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
214
|
Abstract
Thiol groups can undergo numerous modifications, making cysteine a unique molecular switch. Cysteine plays structural and regulatory roles as part of proteins or glutathione, contributing to maintain redox homeostasis and regulate signaling within and amongst cells. Not surprisingly therefore, cysteines are associated with many hereditary and acquired diseases. Mutations in the primary protein sequence (gain or loss of a cysteine) are most frequent in membrane and secretory proteins, correlating with the key roles of disulfide bonds. On the contrary, in the cytosol and nucleus, aberrant post-translational oxidative modifications of thiol groups, reflecting redox changes in the surrounding environment, are a more frequent cause of dysregulation of protein function. This essay highlights the regulatory functions performed by protein cysteine residues and provides a framework for understanding how mutation and/or (in)activation of this key amino acid can cause disease.
Collapse
Affiliation(s)
- Annamaria Fra
- Department of Molecular and Translational Medicine, University of BresciaBrescia, Italy
| | - Edgar D Yoboue
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele UniversityMilan, Italy.,Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific InstituteMilan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele UniversityMilan, Italy.,Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific InstituteMilan, Italy
| |
Collapse
|
215
|
Kosmachevskaya OV, Shumaev KB, Topunov AF. Signal and regulatory effects of methylglyoxal in eukaryotic cells (review). APPL BIOCHEM MICRO+ 2017; 53:273-289. [DOI: 10.1134/s0003683817030103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
216
|
Abstract
Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (H2O2) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of H2O2 as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University, Düsseldorf, University, D-40225, Düsseldorf, Germany; .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich Heine University, D-40225, Düsseldorf, Germany;
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, Georgia 30322;
| |
Collapse
|
217
|
Li J, Liu Y, Kim E, March JC, Bentley WE, Payne GF. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology. Free Radic Biol Med 2017; 105:110-131. [PMID: 28040473 DOI: 10.1016/j.freeradbiomed.2016.12.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
The intestine is the site of digestion and forms a critical interface between the host and the outside world. This interface is composed of host epithelium and a complex microbiota which is "connected" through an extensive web of chemical and biological interactions that determine the balance between health and disease for the host. This biology and the associated chemical dialogues occur within a context of a steep oxygen gradient that provides the driving force for a variety of reduction and oxidation (redox) reactions. While some redox couples (e.g., catecholics) can spontaneously exchange electrons, many others are kinetically "insulated" (e.g., biothiols) allowing the biology to set and control their redox states far from equilibrium. It is well known that within cells, such non-equilibrated redox couples are poised to transfer electrons to perform reactions essential to immune defense (e.g., transfer from NADH to O2 for reactive oxygen species, ROS, generation) and protection from such oxidative stresses (e.g., glutathione-based reduction of ROS). More recently, it has been recognized that some of these redox-active species (e.g., H2O2) cross membranes and diffuse into the extracellular environment including lumen to transmit redox information that is received by atomically-specific receptors (e.g., cysteine-based sulfur switches) that regulate biological functions. Thus, redox has emerged as an important modality in the chemical signaling that occurs in the intestine and there have been emerging efforts to develop the experimental tools needed to probe this modality. We suggest that electrochemistry provides a unique tool to experimentally probe redox interactions at a systems level. Importantly, electrochemistry offers the potential to enlist the extensive theories established in signal processing in an effort to "reverse engineer" the molecular communication occurring in this complex biological system. Here, we review our efforts to develop this electrochemical tool for in vitro redox-probing.
Collapse
Affiliation(s)
- Jinyang Li
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Yi Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Eunkyoung Kim
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - John C March
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
218
|
Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol 2017; 11:613-619. [PMID: 28110218 PMCID: PMC5256672 DOI: 10.1016/j.redox.2016.12.035] [Citation(s) in RCA: 1521] [Impact Index Per Article: 190.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/09/2016] [Accepted: 12/16/2016] [Indexed: 11/29/2022] Open
Abstract
Hydrogen peroxide emerged as major redox metabolite operative in redox sensing, signaling and redox regulation. Generation, transport and capture of H2O2 in biological settings as well as their biological consequences can now be addressed. The present overview focuses on recent progress on metabolic sources and sinks of H2O2 and on the role of H2O2 in redox signaling under physiological conditions (1-10nM), denoted as oxidative eustress. Higher concentrations lead to adaptive stress responses via master switches such as Nrf2/Keap1 or NF-κB. Supraphysiological concentrations of H2O2 (>100nM) lead to damage of biomolecules, denoted as oxidative distress. Three questions are addressed: How can H2O2 be assayed in the biological setting? What are the metabolic sources and sinks of H2O2? What is the role of H2O2 in redox signaling and oxidative stress?
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Institute for Research in Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
219
|
3-bromopyruvate and buthionine sulfoximine effectively kill anoikis-resistant hepatocellular carcinoma cells. PLoS One 2017; 12:e0174271. [PMID: 28362858 PMCID: PMC5376082 DOI: 10.1371/journal.pone.0174271] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/06/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND & AIMS Acquisition of anoikis resistance is a prerequisite for metastasis in hepatocellular carcinoma (HCC). However, little is known about how energy metabolism and antioxidant systems are altered in anoikis-resistant (AR) HCC cells. We evaluated anti-tumor effects of a combination treatment of 3-bromopyruvate (3-BP) and buthionine sulfoximine (BSO) in AR HCC cells. METHODS We compared glycolysis, reactive oxygen species (ROS) production, and chemoresistance among Huh-BAT, HepG2 HCC cells, and the corresponding AR cells. Expression of hexokinase II, gamma-glutamylcysteine synthetase (rGCS), and epithelial-mesenchymal transition (EMT) markers in AR cells was assessed. Anti-tumor effects of a combination treatment of 3-BP and BSO were evaluated in AR cells and an HCC xenograft mouse model. RESULTS AR HCC cells showed significantly higher chemoresistance, glycolysis and lower ROS production than attached cells. Expression of hexokinase II, rGCS, and EMT markers was higher in AR HCC cells than attached cells. A combination treatment of 3-BP/BSO effectively suppressed proliferation of AR HCC cells through apoptosis by blocking glycolysis and enhancing ROS levels. In xenograft mouse models, tumor growth derived from AR HCC cells was significantly suppressed in the group treated with 3-BP/BSO compared to the group treated with 3-BP or sorafenib. CONCLUSIONS These results demonstrated that a combination treatment of 3-BP/BSO had a synergistic anti-tumor effect in an AR HCC model. This strategy may be an effective adjuvant therapy for patients with sorafenib-resistant HCC.
Collapse
|
220
|
Kang ES, Lee J, Homma T, Kurahashi T, Kobayashi S, Nabeshima A, Yamada S, Seo HG, Miyata S, Sato H, Fujii J. xCT deficiency aggravates acetaminophen-induced hepatotoxicity under inhibition of the transsulfuration pathway. Free Radic Res 2017; 51:80-90. [PMID: 28081640 DOI: 10.1080/10715762.2017.1282157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cystine, an oxidized form of cysteine (Cys), is imported into cells via the protein xCT, which is also associated with the export of glutamate as the counter amino acid. In the current study, we attempted to rationalize roles of xCT in the livers of male mice. While xCT was not expressed in the livers of ordinary mice, it was induced under conditions of glutathione depletion, caused by the administration of acetaminophen (AAP). To differentiate the role between xCT and the transsulfuration pathway on the supply of Cys, we employed an inhibitor of the enzyme cystathionine γ-lyase, propargylglycine (PPG). This inhibitor caused a marked aggravation in AAP-induced hepatic damage and the mortality of the xCT-/- mice was increased to a greater extent than that for the xCT+/+ mice. While a PPG pretreatment had no effect on liver condition or Cys levels, the administration of AAP to the PPG-pretreated mice reduced the levels of Cys as well as glutathione to very low levels in both the xCT+/+ and xCT-/- mice. These findings indicate that the transsulfuration pathway plays a major role in replenishing Cys when glutathione levels are low. Moreover, an ascorbic acid insufficiency, induced by Akr1a ablation, further aggravated the AAP-induced liver damage in the case of the xCT deficiency, indicating that glutathione and ascorbic acid function cooperatively in protecting the liver. In conclusion, while the transsulfuration pathway plays a primary role in supplying Cys to the redox system in the liver, xCT is induced in cases of emergencies, by compensating for Cys supply systems.
Collapse
Affiliation(s)
- Eun Sil Kang
- a Department of Biochemistry and Molecular Biology , Graduate School of Medical Science, Yamagata University , Yamagata , Japan.,b Department of Animal Biotechnology , Konkuk University , Seoul , Republic of Korea
| | - Jaeyong Lee
- a Department of Biochemistry and Molecular Biology , Graduate School of Medical Science, Yamagata University , Yamagata , Japan
| | - Takujiro Homma
- a Department of Biochemistry and Molecular Biology , Graduate School of Medical Science, Yamagata University , Yamagata , Japan
| | - Toshihiro Kurahashi
- a Department of Biochemistry and Molecular Biology , Graduate School of Medical Science, Yamagata University , Yamagata , Japan
| | - Sho Kobayashi
- a Department of Biochemistry and Molecular Biology , Graduate School of Medical Science, Yamagata University , Yamagata , Japan
| | - Atsunori Nabeshima
- c Department of Pathology and Cell Biology , University of Occupational and Environmental Health , Kitakyushu , Japan
| | - Sohsuke Yamada
- c Department of Pathology and Cell Biology , University of Occupational and Environmental Health , Kitakyushu , Japan
| | - Han Geuk Seo
- b Department of Animal Biotechnology , Konkuk University , Seoul , Republic of Korea
| | - Satoshi Miyata
- d Department of Internal Medicine , Osaka Hospital, Japan Community Healthcare Organization , Osaka , Japan
| | - Hideyo Sato
- e Laboratory of Biochemistry and Molecular Biology, Department of Medical Technology, Faculty of Medicine , Niigata University , Niigata , Japan
| | - Junichi Fujii
- a Department of Biochemistry and Molecular Biology , Graduate School of Medical Science, Yamagata University , Yamagata , Japan
| |
Collapse
|
221
|
Dong Z, Shanmughapriya S, Tomar D, Siddiqui N, Lynch S, Nemani N, Breves SL, Zhang X, Tripathi A, Palaniappan P, Riitano MF, Worth AM, Seelam A, Carvalho E, Subbiah R, Jaña F, Soboloff J, Peng Y, Cheung JY, Joseph SK, Caplan J, Rajan S, Stathopulos PB, Madesh M. Mitochondrial Ca 2+ Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity. Mol Cell 2017; 65:1014-1028.e7. [PMID: 28262504 DOI: 10.1016/j.molcel.2017.01.032] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/02/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
Abstract
Ca2+ dynamics and oxidative signaling are fundamental mechanisms for mitochondrial bioenergetics and cell function. The MCU complex is the major pathway by which these signals are integrated in mitochondria. Whether and how these coactive elements interact with MCU have not been established. As an approach toward understanding the regulation of MCU channel by oxidative milieu, we adapted inflammatory and hypoxia models. We identified the conserved cysteine 97 (Cys-97) to be the only reactive thiol in human MCU that undergoes S-glutathionylation. Furthermore, biochemical, structural, and superresolution imaging analysis revealed that MCU oxidation promotes MCU higher order oligomer formation. Both oxidation and mutation of MCU Cys-97 exhibited persistent MCU channel activity with higher [Ca2+]m uptake rate, elevated mROS, and enhanced [Ca2+]m overload-induced cell death. In contrast, these effects were largely independent of MCU interaction with its regulators. These findings reveal a distinct functional role for Cys-97 in ROS sensing and regulation of MCU activity.
Collapse
Affiliation(s)
- Zhiwei Dong
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing 400038, PRC
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dhanendra Tomar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Naveed Siddiqui
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Solomon Lynch
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Neeharika Nemani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah L Breves
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xueqian Zhang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Aparna Tripathi
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Palaniappan Palaniappan
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Massimo F Riitano
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alison M Worth
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajay Seelam
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Edmund Carvalho
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ramasamy Subbiah
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Fabián Jaña
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jonathan Soboloff
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing 400038, PRC
| | - Joseph Y Cheung
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Suresh K Joseph
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffrey Caplan
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Sudarsan Rajan
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
222
|
Beuve A. Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor. Antioxid Redox Signal 2017; 26:137-149. [PMID: 26906466 PMCID: PMC5240013 DOI: 10.1089/ars.2015.6591] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/27/2016] [Accepted: 02/21/2016] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylyl cyclase (sGC), which produces the second messenger cyclic guanosine 3', 5'-monophosphate (cGMP), is at the crossroads of nitric oxide (NO) signaling: sGC catalytic activity is both stimulated by NO binding to the heme and inhibited by NO modification of its cysteine (Cys) thiols (S-nitrosation). Modulation of sGC activity by thiol oxidation makes sGC a therapeutic target for pathologies originating from oxidative or nitrosative stress. sGC has an unusually high percentage of Cys for a cytosolic protein, the majority solvent exposed and therefore accessible modulatory targets for biological and pathophysiological signaling. Recent Advances: Thiol oxidation of sGC contributes to the development of cardiovascular diseases by decreasing NO-dependent cGMP production and thereby vascular reactivity. This thiol-based resistance to NO (e.g., increase in peripheral resistance) is observed in hypertension and hyperaldosteronism. CRITICAL ISSUES Some roles of specific Cys thiols have been identified in vitro. So far, it has not been possible to pinpoint the roles of specific Cys of sGC in vivo and to investigate the molecular mechanisms in an animal model. FUTURE DIRECTIONS The role of Cys as redox sensors, intermediates of activation, and mediators of change in sGC conformation, activity, and dimerization remains largely unexplored. To understand modulation of sGC activity, it is critical to investigate the roles of specific oxidative thiol modifications that are formed during these processes. Where the redox state of sGC thiols contribute to pathologies (vascular resistance and sGC desensitization by NO donors), it becomes crucial to design therapeutic strategies to restore sGC to its normal, physiological thiol redox state. Antioxid. Redox Signal. 26, 137-149.
Collapse
Affiliation(s)
- Annie Beuve
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers , Newark, New Jersey
| |
Collapse
|
223
|
Smith MR, Fernandes J, Go YM, Jones DP. Redox dynamics of manganese as a mitochondrial life-death switch. Biochem Biophys Res Commun 2017; 482:388-398. [PMID: 28212723 PMCID: PMC5382988 DOI: 10.1016/j.bbrc.2016.10.126] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022]
Abstract
Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca+2-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause "manganism", a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H2O2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
224
|
DeMartino AW, Zigler DF, Fukuto JM, Ford PC. Carbon disulfide. Just toxic or also bioregulatory and/or therapeutic? Chem Soc Rev 2017; 46:21-39. [DOI: 10.1039/c6cs00585c] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The overview presented here has the goal of examining whether carbon disulfide (CS2) may play a role as an endogenously generated bioregulator and/or has therapeutic value.
Collapse
Affiliation(s)
- Anthony W. DeMartino
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - David F. Zigler
- Department of Chemistry & Biochemistry
- California Polytechnic State University
- San Luis Obispo
- USA
| | - Jon M. Fukuto
- Department of Chemistry
- Sonoma State University
- Rohnert Park
- USA
| | - Peter C. Ford
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| |
Collapse
|
225
|
Electrophilic Nitro-Fatty Acids: Nitric Oxide and Nitrite-Derived Metabolic and Inflammatory Signaling Mediators. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
226
|
Araki K, Ushioda R, Kusano H, Tanaka R, Hatta T, Fukui K, Nagata K, Natsume T. A crosslinker-based identification of redox relay targets. Anal Biochem 2016; 520:22-26. [PMID: 28048978 DOI: 10.1016/j.ab.2016.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/16/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Abstract
Thiol-based redox control is among the most important mechanisms for maintaining cellular redox homeostasis, with essential participation of cysteine thiols of oxidoreductases. To explore cellular redox regulatory networks, direct interactions among active cysteine thiols of oxidoreductases and their targets must be clarified. We applied a recently described thiol-ene crosslinking-based strategy, named divinyl sulfone (DVSF) method, enabling identification of new potential redox relay partners of the cytosolic oxidoreductases thioredoxin (TXN) and thioredoxin domain containing 17 (TXNDC17). Applying multiple methods, including classical substrate-trapping techniques, will increase understanding of redox regulatory mechanisms in cells.
Collapse
Affiliation(s)
- Kazutaka Araki
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan.
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Hidewo Kusano
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Riko Tanaka
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | | | - Kazuhiko Fukui
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Robotic Biology Institute, Inc., Tokyo 135-0064, Japan
| |
Collapse
|
227
|
Gómez-Serrano M, Camafeita E, López JA, Rubio MA, Bretón I, García-Consuegra I, García-Santos E, Lago J, Sánchez-Pernaute A, Torres A, Vázquez J, Peral B. Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes. Redox Biol 2016; 11:415-428. [PMID: 28064117 PMCID: PMC5220168 DOI: 10.1016/j.redox.2016.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
Human age-related diseases, including obesity and type 2 diabetes (T2DM), have long been associated to mitochondrial dysfunction; however, the role for adipose tissue mitochondria in these conditions remains unknown. We have tackled the impact of aging and T2DM on adipocyte mitochondria from obese patients by quantitating not only the corresponding abundance changes of proteins, but also the redox alterations undergone by Cys residues thereof. For that, we have resorted to a high-throughput proteomic approach based on isobaric labeling, liquid chromatography and mass spectrometry. The alterations undergone by the mitochondrial proteome revealed aging- and T2DM-specific hallmarks. Thus, while a global decrease of oxidative phosphorylation (OXPHOS) subunits was found in aging, the diabetic patients exhibited a reduction of specific OXPHOS complexes as well as an up-regulation of the anti-oxidant response. Under both conditions, evidence is shown for the first time of a link between increased thiol protein oxidation and decreased protein abundance in adipose tissue mitochondria. This association was stronger in T2DM, where OXPHOS mitochondrial- vs. nuclear-encoded protein modules were found altered, suggesting impaired mitochondrial protein translocation and complex assembly. The marked down-regulation of OXPHOS oxidized proteins and the alteration of oxidized Cys residues related to protein import through the redox-active MIA (Mitochondrial Intermembrane space Assembly) pathway support that defects in protein translocation to the mitochondria may be an important underlying mechanism for mitochondrial dysfunction in T2DM and physiological aging. The present draft of redox targets together with the quantification of protein and oxidative changes may help to better understand the role of oxidative stress in both a physiological process like aging and a pathological condition like T2DM.
Collapse
Affiliation(s)
- María Gómez-Serrano
- Instituto de Investigaciones Biomédicas, Alberto Sols, (IIBM); Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain
| | - Emilio Camafeita
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Juan A López
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Miguel A Rubio
- Department of Endocrinology, Hospital Clínico San Carlos (IDISSC), Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain
| | - Irene Bretón
- Department of Endocrinology and Nutrition, Hospital General Universitario Gregorio Marañón (IISGM), Madrid 28007, Spain
| | - Inés García-Consuegra
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Eva García-Santos
- Instituto de Investigaciones Biomédicas, Alberto Sols, (IIBM); Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain
| | - Jesús Lago
- Department of Surgery, Hospital General Universitario Gregorio Marañón (IISGM), Madrid 28007, Spain
| | - Andrés Sánchez-Pernaute
- Department of Surgery, Hospital Clínico San Carlos (IDISSC), Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain
| | - Antonio Torres
- Department of Surgery, Hospital Clínico San Carlos (IDISSC), Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Belén Peral
- Instituto de Investigaciones Biomédicas, Alberto Sols, (IIBM); Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain.
| |
Collapse
|
228
|
Review: Placental mitochondrial function and structure in gestational disorders. Placenta 2016; 54:2-9. [PMID: 28024805 DOI: 10.1016/j.placenta.2016.12.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
The aetiology of many gestational disorders is still unknown. However, insufficient trans-placental nutrient and oxygen transfer due to abnormal placentation is characteristic of several pathologies, and may alter the function of placental mitochondria. Mitochondria are multifunctional organelles that respond to a wide range of stimuli - such as physiological changes in cellular energy demands or various pathologies - by reshaping via fusion or fission, increasing/decreasing in number, altering oxidative phosphorylation, and signalling cellular functions such as apoptosis. Mitochondrial function is integral to tissue functions including energy production, metabolism, and regulation of various cellular responses including response to oxidative stress. This review details the functions of placental mitochondria and investigates mitochondrial function and structure in gestational disorders including preeclampsia, intrauterine growth restriction, diabetes mellitus, and obesity. Placental mitochondrial dysfunction may be critical in a range of gestational disorders which have important implications for maternal and fetal/offspring health.
Collapse
|
229
|
Bianco CL, Chavez TA, Sosa V, Saund SS, Nguyen QNN, Tantillo DJ, Ichimura AS, Toscano JP, Fukuto JM. The chemical biology of the persulfide (RSSH)/perthiyl (RSS·) redox couple and possible role in biological redox signaling. Free Radic Biol Med 2016; 101:20-31. [PMID: 27677567 PMCID: PMC5154930 DOI: 10.1016/j.freeradbiomed.2016.09.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
The recent finding that hydropersulfides (RSSH) are biologically prevalent in mammalian systems has prompted further investigation of their chemical properties in order to provide a basis for understanding their potential functions, if any. Hydropersulfides have been touted as hyper-reactive thiol-like species that possess increased nucleophilicity and reducing capabilities compared to their thiol counterparts. Herein, using persulfide generating model systems, the ability of RSSH species to act as one-electron reductants has been examined. Not unexpectedly, RSSH is relatively easily oxidized, compared to thiols, by weak oxidants to generate the perthiyl radical (RSS·). Somewhat surprisingly, however, RSS· was found to be stable in the presence of both O2 and NO and only appears to dimerize. Thus, the RSSH/RSS· redox couple is readily accessible under biological conditions and since dimerization of RSS· may be a rare event due to low concentrations and/or sequestration within a protein, it is speculated that the general lack of reactivity of individual RSS· species may allow this couple to be utilized as a redox component in biological systems.
Collapse
Affiliation(s)
- Christopher L Bianco
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Tyler A Chavez
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Victor Sosa
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, United States
| | - Simran S Saund
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, United States
| | - Q Nhu N Nguyen
- Department of Chemistry, University of California, Davis, One Shield Ave., Davis, CA 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, One Shield Ave., Davis, CA 95616, United States
| | - Andrew S Ichimura
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132-4163, United States
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States.
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, United States.
| |
Collapse
|
230
|
Allan KM, Loberg MA, Chepngeno J, Hurtig JE, Tripathi S, Kang MG, Allotey JK, Widdershins AH, Pilat JM, Sizek HJ, Murphy WJ, Naticchia MR, David JB, Morano KA, West JD. Trapping redox partnerships in oxidant-sensitive proteins with a small, thiol-reactive cross-linker. Free Radic Biol Med 2016; 101:356-366. [PMID: 27816612 PMCID: PMC5154803 DOI: 10.1016/j.freeradbiomed.2016.10.506] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/14/2016] [Accepted: 10/27/2016] [Indexed: 12/15/2022]
Abstract
A broad range of redox-regulated proteins undergo reversible disulfide bond formation on oxidation-prone cysteine residues. Heightened reactivity of the thiol groups in these cysteines also increases susceptibility to modification by organic electrophiles, a property that can be exploited in the study of redox networks. Here, we explored whether divinyl sulfone (DVSF), a thiol-reactive bifunctional electrophile, cross-links oxidant-sensitive proteins to their putative redox partners in cells. To test this idea, previously identified oxidant targets involved in oxidant defense (namely, peroxiredoxins, methionine sulfoxide reductases, sulfiredoxin, and glutathione peroxidases), metabolism, and proteostasis were monitored for cross-link formation following treatment of Saccharomyces cerevisiae with DVSF. Several proteins screened, including multiple oxidant defense proteins, underwent intermolecular and/or intramolecular cross-linking in response to DVSF. Specific redox-active cysteines within a subset of DVSF targets were found to influence cross-linking; in addition, DVSF-mediated cross-linking of its targets was impaired in cells first exposed to oxidants. Since cross-linking appeared to involve redox-active cysteines in these proteins, we examined whether potential redox partners became cross-linked to them upon DVSF treatment. Specifically, we found that several substrates of thioredoxins were cross-linked to the cytosolic thioredoxin Trx2 in cells treated with DVSF. However, other DVSF targets, like the peroxiredoxin Ahp1, principally formed intra-protein cross-links upon DVSF treatment. Moreover, additional protein targets, including several known to undergo S-glutathionylation, were conjugated via DVSF to glutathione. Our results indicate that DVSF is of potential use as a chemical tool for irreversibly trapping and discovering thiol-based redox partnerships within cells.
Collapse
Affiliation(s)
- Kristin M Allan
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Matthew A Loberg
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Juliet Chepngeno
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Jennifer E Hurtig
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Susmit Tripathi
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Min Goo Kang
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Jonathan K Allotey
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Afton H Widdershins
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Jennifer M Pilat
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Herbert J Sizek
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Wesley J Murphy
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Matthew R Naticchia
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Joseph B David
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, United States.
| |
Collapse
|
231
|
Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin. Sci Rep 2016; 6:37346. [PMID: 27869126 PMCID: PMC5116746 DOI: 10.1038/srep37346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022] Open
Abstract
The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling.
Collapse
|
232
|
ROS homeostasis and metabolism: a critical liaison for cancer therapy. Exp Mol Med 2016; 48:e269. [PMID: 27811934 PMCID: PMC5133371 DOI: 10.1038/emm.2016.119] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
Evidence indicates that hypoxia and oxidative stress can control metabolic reprogramming of cancer cells and other cells in tumor microenvironments and that the reprogrammed metabolic pathways in cancer tissue can also alter the redox balance. Thus, important steps toward developing novel cancer therapy approaches would be to identify and modulate critical biochemical nodes that are deregulated in cancer metabolism and determine if the therapeutic efficiency can be influenced by changes in redox homeostasis in cancer tissues. In this review, we will explore the molecular mechanisms responsible for the metabolic reprogramming of tumor microenvironments, the functional modulation of which may disrupt the effects of or may be disrupted by redox homeostasis modulating cancer therapy.
Collapse
|
233
|
Rodacka A, Gerszon J, Puchala M, Bartosz G. Radiation-induced inactivation of enzymes – Molecular mechanism based on inactivation of dehydrogenases. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
234
|
Hsu MF, Pan KT, Chang FY, Khoo KH, Urlaub H, Cheng CF, Chang GD, Haj FG, Meng TC. S-nitrosylation of endogenous protein tyrosine phosphatases in endothelial insulin signaling. Free Radic Biol Med 2016; 99:199-213. [PMID: 27521458 PMCID: PMC5514559 DOI: 10.1016/j.freeradbiomed.2016.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) exerts its biological function through S-nitrosylation of cellular proteins. Due to the labile nature of this modification under physiological condition, identification of S-nitrosylated residue in enzymes involved in signaling regulation remains technically challenging. The present study investigated whether intrinsic NO produced in endothelium-derived MS-1 cells response to insulin stimulation might target endogenous protein tyrosine phosphatases (PTPs). For this, we have developed an approach using a synthetic reagent that introduces a phenylacetamidyl moiety on S-nitrosylated Cys, followed by detection with anti-phenylacetamidyl Cys (PAC) antibody. Coupling with sequential blocking of free thiols with multiple iodoacetyl-based Cys-reactive chemicals, we employed this PAC-switch method to show that endogenous SHP-2 and PTP1B were S-nitrosylated in MS-1 cells exposed to insulin. The mass spectrometry detected a phenylacetamidyl moiety specifically present on the active-site Cys463 of SHP-2. Focusing on the regulatory role of PTP1B, we showed S-nitrosylation to be the principal Cys reversible redox modification in endothelial insulin signaling. The PAC-switch method in an imaging format illustrated that a pool of S-nitrosylated PTP1B was colocalized with activated insulin receptor to the cell periphery, and that such event was endothelial NO synthase (eNOS)-dependent. Moreover, ectopic expression of the C215S mutant of PTP1B that mimics the active-site Cys215 S-nitrosylated form restored insulin responsiveness in eNOS-ablated cells, which was otherwise insensitive to insulin stimulation. This work not only introduces a new method that explores the role of physiological NO in regulating signal transduction, but also highlights a positive NO effect on promoting insulin responsiveness through S-nitrosylation of PTP1B's active-site Cys215.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Plank Institute for Biophysical Chemistry, Göttingen, Germany
| | - Fan-Yu Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Plank Institute for Biophysical Chemistry, Göttingen, Germany; Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Ching-Feng Cheng
- Department of Medical Research, Tzu Chi University and Department of Pediatrics, Tzu Chi General Hospital, Hualien, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Geen-Dong Chang
- Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan.
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA, USA.
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
235
|
Kim E, Liu Y, Ben-Yoav H, Winkler TE, Yan K, Shi X, Shen J, Kelly DL, Ghodssi R, Bentley WE, Payne GF. Fusing Sensor Paradigms to Acquire Chemical Information: An Integrative Role for Smart Biopolymeric Hydrogels. Adv Healthc Mater 2016; 5:2595-2616. [PMID: 27616350 PMCID: PMC5485850 DOI: 10.1002/adhm.201600516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/26/2016] [Indexed: 12/14/2022]
Abstract
The Information Age transformed our lives but it has had surprisingly little impact on the way chemical information (e.g., from our biological world) is acquired, analyzed and communicated. Sensor systems are poised to change this situation by providing rapid access to chemical information. This access will be enabled by technological advances from various fields: biology enables the synthesis, design and discovery of molecular recognition elements as well as the generation of cell-based signal processors; physics and chemistry are providing nano-components that facilitate the transmission and transduction of signals rich with chemical information; microfabrication is yielding sensors capable of receiving these signals through various modalities; and signal processing analysis enhances the extraction of chemical information. The authors contend that integral to the development of functional sensor systems will be materials that (i) enable the integrative and hierarchical assembly of various sensing components (for chemical recognition and signal transduction) and (ii) facilitate meaningful communication across modalities. It is suggested that stimuli-responsive self-assembling biopolymers can perform such integrative functions, and redox provides modality-spanning communication capabilities. Recent progress toward the development of electrochemical sensors to manage schizophrenia is used to illustrate the opportunities and challenges for enlisting sensors for chemical information processing.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yi Liu
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Hadar Ben-Yoav
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Thomas E Winkler
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Jana Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - William E Bentley
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Gregory F Payne
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
236
|
Mathieu C, Duval R, Cocaign A, Petit E, Bui LC, Haddad I, Vinh J, Etchebest C, Dupret JM, Rodrigues-Lima F. An Isozyme-specific Redox Switch in Human Brain Glycogen Phosphorylase Modulates Its Allosteric Activation by AMP. J Biol Chem 2016; 291:23842-23853. [PMID: 27660393 DOI: 10.1074/jbc.m116.757062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism.
Collapse
Affiliation(s)
- Cécile Mathieu
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Romain Duval
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Angélique Cocaign
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Emile Petit
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Linh-Chi Bui
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris
| | - Iman Haddad
- ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMPB), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex 05, France
| | - Joelle Vinh
- ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMPB), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex 05, France
| | - Catherine Etchebest
- INSERM, UMR S1134, Université Paris Diderot, F-75015 Paris.,Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris.,Institut National de la Transfusion Sanguine (INTS), 75015 Paris.,GR-Ex, Laboratoire d'excellence, 75015 Paris, and.,UFR Sciences du Vivant, Université Paris Diderot, 75013 Paris, France
| | - Jean-Marie Dupret
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris.,UFR Sciences du Vivant, Université Paris Diderot, 75013 Paris, France
| | - Fernando Rodrigues-Lima
- From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris, .,UFR Sciences du Vivant, Université Paris Diderot, 75013 Paris, France
| |
Collapse
|
237
|
Zaccarin M, Bosello-Travain V, Di Paolo ML, Falda M, Maiorino M, Miotto G, Piccolo S, Roveri A, Ursini F, Venerando R, Toppo S. Redox status in a model of cancer stem cells. Arch Biochem Biophys 2016; 617:120-128. [PMID: 27638050 DOI: 10.1016/j.abb.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022]
Abstract
Reversible oxidation of Cys residues is a crucial element of redox homeostasis and signaling. According to a popular concept in oxidative stress signaling, the oxidation of targets of signals can only take place following an overwhelming of the cellular antioxidant capacity. This concept, however, ignores the activation of feedback mechanisms possibly leading to a paradoxical effect. In a model of cancer stem cells (CSC), stably overexpressing the TAZ oncogene, we observed that the increased formation of oxidants is associated with a globally more reduced state of proteins. Redox proteomics revealed that several proteins, capable of undergoing reversible redox transitions, are indeed more reduced while just few are more oxidized. Among the proteins more oxidized, G6PDH emerges as both more expressed and activated by oxidation. This accounts for the observed more reduced state of the NADPH/NADP+ couple. The dynamic redox flux generating this apparently paradoxical effect is rationalized in a computational system biology model highlighting the crucial role of G6PDH activity on the rate of redox transitions eventually leading to the reduction of reversible redox switches.
Collapse
Affiliation(s)
- Mattia Zaccarin
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | | | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Marco Falda
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Giovanni Miotto
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Rina Venerando
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Viale G.Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
238
|
Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, Nikolaidis MG. Going retro: Oxidative stress biomarkers in modern redox biology. Free Radic Biol Med 2016; 98:2-12. [PMID: 26855421 DOI: 10.1016/j.freeradbiomed.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 12/23/2022]
Abstract
The field of redox biology is inherently intertwined with oxidative stress biomarkers. Oxidative stress biomarkers have been utilized for many different objectives. Our analysis indicates that oxidative stress biomarkers have several salient applications: (1) diagnosing oxidative stress, (2) pinpointing likely redox components in a physiological or pathological process and (3) estimating the severity, progression and/or regression of a disease. On the contrary, oxidative stress biomarkers do not report on redox signaling. Alternative approaches to gain more mechanistic insights are: (1) measuring molecules that are integrated in pathways linking redox biochemistry with physiology, (2) using the exomarker approach and (3) exploiting -omics techniques. More sophisticated approaches and large trials are needed to establish oxidative stress biomarkers in the clinical setting.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece; Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - J N Cobley
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK
| | - V Paschalis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece; Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A S Veskoukis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - A A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece.
| |
Collapse
|
239
|
Sun MA, Zhang Q, Wang Y, Ge W, Guo D. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features. BMC Bioinformatics 2016; 17:316. [PMID: 27553667 PMCID: PMC4995733 DOI: 10.1186/s12859-016-1185-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Reactive oxygen species can modify the structure and function of proteins and may also act as important signaling molecules in various cellular processes. Cysteine thiol groups of proteins are particularly susceptible to oxidation. Meanwhile, their reversible oxidation is of critical roles for redox regulation and signaling. Recently, several computational tools have been developed for predicting redox-sensitive cysteines; however, those methods either only focus on catalytic redox-sensitive cysteines in thiol oxidoreductases, or heavily depend on protein structural data, thus cannot be widely used. Results In this study, we analyzed various sequence-based features potentially related to cysteine redox-sensitivity, and identified three types of features for efficient computational prediction of redox-sensitive cysteines. These features are: sequential distance to the nearby cysteines, PSSM profile and predicted secondary structure of flanking residues. After further feature selection using SVM-RFE, we developed Redox-Sensitive Cysteine Predictor (RSCP), a SVM based classifier for redox-sensitive cysteine prediction using primary sequence only. Using 10-fold cross-validation on RSC758 dataset, the accuracy, sensitivity, specificity, MCC and AUC were estimated as 0.679, 0.602, 0.756, 0.362 and 0.727, respectively. When evaluated using 10-fold cross-validation with BALOSCTdb dataset which has structure information, the model achieved performance comparable to current structure-based method. Further validation using an independent dataset indicates it is robust and of relatively better accuracy for predicting redox-sensitive cysteines from non-enzyme proteins. Conclusions In this study, we developed a sequence-based classifier for predicting redox-sensitive cysteines. The major advantage of this method is that it does not rely on protein structure data, which ensures more extensive application compared to other current implementations. Accurate prediction of redox-sensitive cysteines not only enhances our understanding about the redox sensitivity of cysteine, it may also complement the proteomics approach and facilitate further experimental investigation of important redox-sensitive cysteines. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1185-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-An Sun
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Qing Zhang
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Yejun Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Nanhai Ave 3688, Shenzhen, 518060, People's Republic of China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, People's Republic of China
| | - Dianjing Guo
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China.
| |
Collapse
|
240
|
Liu Z, Liu Y, Kim E, Bentley WE, Payne GF. Electrochemical Probing through a Redox Capacitor To Acquire Chemical Information on Biothiols. Anal Chem 2016; 88:7213-21. [PMID: 27385047 PMCID: PMC4962791 DOI: 10.1021/acs.analchem.6b01394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
The
acquisition of chemical information is a critical need for
medical diagnostics, food/environmental monitoring, and national security.
Here, we report an electrochemical information processing approach
that integrates (i) complex electrical inputs/outputs, (ii) mediators
to transduce the electrical I/O into redox signals that can actively
probe the chemical environment, and (iii) a redox capacitor that manipulates
signals for information extraction. We demonstrate the capabilities
of this chemical information processing strategy using biothiols because
of the emerging importance of these molecules in medicine and because
their distinct chemical properties allow evaluation of hypothesis-driven
information probing. We show that input sequences can be tailored
to probe for chemical information both qualitatively (step inputs
probe for thiol-specific signatures) and quantitatively. Specifically,
we observed picomolar limits of detection and linear responses to
concentrations over 5 orders of magnitude (1 pM–0.1 μM).
This approach allows the capabilities of signal processing to be extended
for rapid, robust, and on-site analysis of chemical information.
Collapse
Affiliation(s)
- Zhengchun Liu
- Department of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University , Changsha 410083, People's Republic of China.,Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
241
|
Abstract
Purpose of review Extensive data indicate a role for reactive oxygen species (ROS) and redox signaling in vascular damage in hypertension. However, molecular mechanisms underlying these processes remain unclear, but oxidative post-translational modification of vascular proteins is critical. This review discusses how proteins are oxidatively modified and how redox signaling influences vascular smooth muscle cell growth and vascular remodeling in hypertension. We also highlight Nox5 as a novel vascular ROS-generating oxidase. Recent findings Oxidative stress in hypertension leads to oxidative imbalance that affects vascular cell function through redox signaling. Many Nox isoforms produce ROS in the vascular wall, and recent findings show that Nox5 may be important in humans. ROS regulate signaling by numerous processes including cysteine oxidative post-translational modification such as S-nitrosylation, S-glutathionylation and sulfydration. In vascular smooth muscle cells, this influences cellular responses to oxidative stimuli promoting changes from a contractile to a proliferative phenotype. Summary In hypertension, Nox-induced ROS production is increased, leading to perturbed redox signaling through oxidative modifications of vascular proteins. This influences mitogenic signaling and cell cycle regulation, leading to altered cell growth and vascular remodeling in hypertension.
Collapse
|
242
|
Salah T, Belaidi S, Melkemi N, Daoud I, Boughdiri S. In silico investigation by conceptual DFT and molecular docking of antitrypanosomal compounds for understanding cruzain inhibition. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Current knowledge about Chagas disease, the potentially life-threatening illness caused by the protozoan parasite (Trypanosoma cruzi), has led to the development of new drugs and the understanding of their mode of action. The Conceptual Density-Functional Theory was applied to determine the active center sites of trypanocidal compounds, extended by the Molecular Docking analysis to identify the most favorable ligand conformation when bound to the active site of cruzain. Results such as CHELPG charges, Fukui function, MESP, and Molecular Docking analysis are reported and discussed in the present investigation. Whereas, a close agreement with experimental results was found to explain the possibility of studying the receptor-binding mode using these different axes.
Collapse
Affiliation(s)
- Toufik Salah
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Biskra, Biskra 07000, Algeria
| | - Salah Belaidi
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Biskra, Biskra 07000, Algeria
| | - Nadjib Melkemi
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Biskra, Biskra 07000, Algeria
| | - Ismail Daoud
- Laboratory of Naturals Products and Bio Actives-LASNABIO, Department of Chemistry, Faculty of Sciences, Aboubakr Belkaid University , Tlemcen , Algeria
| | - Salima Boughdiri
- Research Unit: Physico-Chimie des Matériaux à l’état Condensé, Faculty of Sciences of Tunis, El Manar University, 2092-Tunis, Tunisia
| |
Collapse
|
243
|
Riebeling C, Wiemann M, Schnekenburger J, Kuhlbusch TA, Wohlleben W, Luch A, Haase A. A redox proteomics approach to investigate the mode of action of nanomaterials. Toxicol Appl Pharmacol 2016; 299:24-9. [DOI: 10.1016/j.taap.2016.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
|
244
|
Zhou P, Yao J, Hu G, Fang J. Naphthalimide Scaffold Provides Versatile Platform for Selective Thiol Sensing and Protein Labeling. ACS Chem Biol 2016; 11:1098-105. [PMID: 26813105 DOI: 10.1021/acschembio.5b00856] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reversible thiol modifications are fundamental of cellular redox regulation. Specific thiol detection, including thiol sensing and protein thiols labeling, is critical to study such modifications. We reported the discovery of 4-methylsulfonyl-N-n-butyl-1,8-naphthalimide (MSBN), a highly selective fluorogenic probe for thiols based on the 1,8-naphthalimide scaffold. Thiols react with MSBN nearly quantitatively via nucleophilic aromatic substitution to replace the methylsulfonyl group and restore the quenched fluorescence (>100-fold increase). MSBN was employed to selectively image thiols in live cells and specifically label protein thiols with a turn-on signal to determine diverse reversible protein thiol modifications. In addition, we introduced a bulky group into the MSBN as a mass tag to create a probe MSBN-TPP, which readily discriminates the reduced thioredoxin from the oxidized one. The specific reaction of MSBN with thiols and the easy manipulation of the naphthalimide unit enable MSBN a versatile scaffold in developing novel probes for thiol-based protein bioconjugation and studying various thiol modifications.
Collapse
Affiliation(s)
- Pengcheng Zhou
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juan Yao
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Guodong Hu
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
245
|
Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, Nikolaidis MG. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology. Cell Signal 2016; 28:256-71. [DOI: 10.1016/j.cellsig.2015.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/07/2015] [Accepted: 12/20/2015] [Indexed: 12/14/2022]
|
246
|
Scalise M, Pochini L, Galluccio M, Indiveri C. Glutamine transport. From energy supply to sensing and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1147-1157. [PMID: 26951943 DOI: 10.1016/j.bbabio.2016.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
Glutamine is the most abundant amino acid in plasma and is actively involved in many biosynthetic and regulatory processes. It can be synthesized endogenously but becomes "conditionally essential" in physiological or pathological conditions of high proliferation rate. To accomplish its functions glutamine has to be absorbed and distributed in the whole body. This job is efficiently carried out by a network of membrane transporters that differ in transport mechanisms and energetics, belonging to families SLC1, 6, 7, 38, and possibly, 25. Some of the transporters are involved in glutamine traffic across different membranes for metabolic purposes; others are involved in specific signaling functions through mTOR. Structure/function relationships and regulatory aspects of glutamine transporters are still at infancy. In the while, insights in involvement of these transporters in cell redox control, cancer metabolism and drug interactions are arising, stimulating basic research to uncover molecular mechanisms of transport and regulation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
247
|
Haslund-Vinding J, McBean G, Jaquet V, Vilhardt F. NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br J Pharmacol 2016; 174:1733-1749. [PMID: 26750203 DOI: 10.1111/bph.13425] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022] Open
Abstract
Microglia are the resident immune cells of the CNS and constitute a self-sustaining population of CNS-adapted tissue macrophages. As mononuclear phagocytic cells, they express high levels of superoxide-producing NADPH oxidases (NOX). The sole function of the members of the NOX family is to generate reactive oxygen species (ROS) that are believed to be important in CNS host defence and in the redox signalling circuits that shape the different activation phenotypes of microglia. NOX are also important in pathological conditions, where over-generation of ROS contributes to neuronal loss via direct oxidative tissue damage or disruption of redox signalling circuits. In this review, we assess the evidence for involvement of NOX in CNS physiopathology, with particular emphasis on the most important surface receptors that lead to generation of NOX-derived ROS. We evaluate the potential significance of the subcellular distribution of NOX isoforms for redox signalling or release of ROS to the extracellular medium. Inhibitory mechanisms that have been reported to restrain NOX activity in microglia and macrophages in vivo are also discussed. We provide a critical appraisal of frequently used and recently developed NOX inhibitors. Finally, we review the recent literature on NOX and other sources of ROS that are involved in activation of the inflammasome and discuss the potential influence of microglia-derived oxidants on neurogenesis, neural differentiation and culling of surplus progenitor cells. The degree to which excessive, badly timed or misplaced NOX activation in microglia may affect neuronal homeostasis in physiological or pathological conditions certainly merits further investigation. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- J Haslund-Vinding
- Institute of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark.,Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - G McBean
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Ireland
| | - V Jaquet
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - F Vilhardt
- Institute of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
248
|
|
249
|
Dóka É, Pader I, Bíró A, Johansson K, Cheng Q, Ballagó K, Prigge JR, Pastor-Flores D, Dick TP, Schmidt EE, Arnér ESJ, Nagy P. A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. SCIENCE ADVANCES 2016; 2:e1500968. [PMID: 26844296 PMCID: PMC4737208 DOI: 10.1126/sciadv.1500968] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/20/2015] [Indexed: 05/17/2023]
Abstract
Hydrogen sulfide signaling involves persulfide formation at specific protein Cys residues. However, overcoming current methodological challenges in persulfide detection and elucidation of Cys regeneration mechanisms from persulfides are prerequisites for constructing a bona fide signaling model. We here establish a novel, highly specific protein persulfide detection protocol, ProPerDP, with which we quantify 1.52 ± 0.6 and 11.6 ± 6.9 μg/mg protein steady-state protein persulfide concentrations in human embryonic kidney 293 (HEK293) cells and mouse liver, respectively. Upon treatment with polysulfides, HEK293 and A549 cells exhibited increased protein persulfidation. Deletion of the sulfide-producing cystathionine-γ-lyase or cystathionine-β-synthase enzymes in yeast diminished protein persulfide levels, thereby corroborating their involvement in protein persulfidation processes. We here establish that thioredoxin (Trx) and glutathione (GSH) systems can independently catalyze reductions of inorganic polysulfides and protein persulfides. Increased endogenous persulfide levels and protein persulfidation following polysulfide treatment in thioredoxin reductase-1 (TrxR1) or thioredoxin-related protein of 14 kDa (TRP14) knockdown HEK293 cells indicated that these enzymes constitute a potent regeneration system of Cys residues from persulfides in a cellular context. Furthermore, TrxR1-deficient cells were less viable upon treatment with toxic amounts of polysulfides compared to control cells. Emphasizing the dominant role of cytosolic disulfide reduction systems in maintaining sulfane sulfur homeostasis in vivo, protein persulfide levels were markedly elevated in mouse livers where hepatocytes lack both TrxR1 and glutathione reductase (TR/GR-null). The different persulfide patterns observed in wild-type, GR-null, and TR/GR-null livers suggest distinct roles for the Trx and GSH systems in regulating subsets of protein persulfides and thereby fine-tuning sulfide signaling pathways.
Collapse
Affiliation(s)
- Éva Dóka
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Ráth György utca 7-9, Budapest 1122, Hungary
| | - Irina Pader
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Adrienn Bíró
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Ráth György utca 7-9, Budapest 1122, Hungary
| | - Katarina Johansson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Krisztina Ballagó
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Ráth György utca 7-9, Budapest 1122, Hungary
| | - Justin R. Prigge
- Department of Microbiology and Immunology, Montana State University, Cooley Hall, PO Box 173520, Bozeman, MT 59717, USA
| | - Daniel Pastor-Flores
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tobias P. Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Edward E. Schmidt
- Department of Microbiology and Immunology, Montana State University, Cooley Hall, PO Box 173520, Bozeman, MT 59717, USA
| | - Elias S. J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Ráth György utca 7-9, Budapest 1122, Hungary
- Corresponding author. E-mail:
| |
Collapse
|
250
|
Lennicke C, Rahn J, Heimer N, Lichtenfels R, Wessjohann LA, Seliger B. Redox proteomics: Methods for the identification and enrichment of redox-modified proteins and their applications. Proteomics 2015; 16:197-213. [PMID: 26508685 DOI: 10.1002/pmic.201500268] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/14/2015] [Accepted: 10/15/2015] [Indexed: 01/24/2023]
Abstract
PTMs are defined as covalent additions to functional groups of amino acid residues in proteins like phosphorylation, glycosylation, S-nitrosylation, acetylation, methylation, lipidation, SUMOylation as well as oxidation. Oxidation of proteins has been characterized as a double-edged sword. While oxidative modifications, in particular of cysteine residues, are widely involved in the regulation of cellular homeostasis, oxidative stress resulting in the oxidation of biomolecules along with the disruption of their biological functions can be associated with the development of diseases, such as cancer, diabetes, and neurodegenerative diseases, respectively. This is also the case for advanced glycation end products, which result from chemical reactions of keto compounds such as oxidized sugars with proteins. The role of oxidative modifications under physiological and pathophysiological conditions remains largely unknown. Recently, novel technologies have been established that allow the enrichment, identification, and characterization of specific oxidative PTMs (oxPTMs). This is essential to develop strategies to prevent and treat diseases that are associated with oxidative stress. Therefore this review will focus on (i) the methods and technologies, which are currently applied for the detection, identification, and quantification of oxPTMs including the design of high throughput approaches and (ii) the analyses of oxPTMs related to physiological and pathological conditions.
Collapse
Affiliation(s)
- Claudia Lennicke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Jette Rahn
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Nadine Heimer
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | | | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|