201
|
Nuclear Receptors as Autophagy-Based Antimicrobial Therapeutics. Cells 2020; 9:cells9091979. [PMID: 32867365 PMCID: PMC7563212 DOI: 10.3390/cells9091979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an intracellular process that targets intracellular pathogens for lysosomal degradation. Autophagy is tightly controlled at transcriptional and post-translational levels. Nuclear receptors (NRs) are a family of transcriptional factors that regulate the expression of gene sets involved in, for example, metabolic and immune homeostasis. Several NRs show promise as host-directed anti-infectives through the modulation of autophagy activities by their natural ligands or small molecules (agonists/antagonists). Here, we review the roles and mechanisms of NRs (vitamin D receptors, estrogen receptors, estrogen-related receptors, and peroxisome proliferator-activated receptors) in linking immunity and autophagy during infection. We also discuss the potential of emerging NRs (REV-ERBs, retinoic acid receptors, retinoic acid-related orphan receptors, liver X receptors, farnesoid X receptors, and thyroid hormone receptors) as candidate antimicrobials. The identification of novel roles and mechanisms for NRs will enable the development of autophagy-adjunctive therapeutics for emerging and re-emerging infectious diseases.
Collapse
|
202
|
Wu Y, Pinkevych M, Xu Z, Keele BF, Davenport MP, Cromer D. Impact of fluctuation in frequency of human immunodeficiency virus/simian immunodeficiency virus reactivation during antiretroviral therapy interruption. Proc Biol Sci 2020; 287:20200354. [PMID: 32811309 PMCID: PMC7482276 DOI: 10.1098/rspb.2020.0354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Antiretroviral therapy (ART) provides effective control of human immunodeficiency virus (HIV) replication and maintains viral loads of HIV at undetectable levels. Interruption of ART causes rapid recrudescence of HIV plasma viremia due to reactivation of latently HIV-infected cells. Here, we characterize the timing of both the initial and subsequent successful viral reactivations following ART interruption in macaques infected with simian immunodeficiency virus (SIV). We compare these to previous results from HIV-infected patients. We find that on average the time until the first successful viral reactivation event is longer than the time between subsequent reactivations. Based on this result, we hypothesize that the reactivation frequency of both HIV and SIV may fluctuate over time, and that this may impact the treatment of HIV. We develop a stochastic model incorporating fluctuations in the frequency of viral reactivation following ART interruption that shows behaviours consistent with the observed data. Furthermore, we show that one of the impacts of a fluctuating reactivation frequency would be to significantly reduce the efficacy of 'anti-latency' interventions for HIV that aim to reduce the frequency of reactivation. It is therefore essential to consider the possibility of a fluctuating reactivation frequency when assessing the impact of such intervention strategies.
Collapse
Affiliation(s)
- Yuhuang Wu
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW, Australia
| | - Mykola Pinkevych
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW, Australia
| | - Zhuang Xu
- School of Physics, University of New South Wales, Sydney, NSW, Australia
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Miles P. Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW, Australia
| | - Deborah Cromer
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, NSW, Australia
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
203
|
Borrmann H, Davies R, Dickinson M, Pedroza-Pacheco I, Schilling M, Vaughan-Jackson A, Magri A, James W, Balfe P, Borrow P, McKeating JA, Zhuang X. Pharmacological activation of the circadian component REV-ERB inhibits HIV-1 replication. Sci Rep 2020; 10:13271. [PMID: 32764708 PMCID: PMC7413328 DOI: 10.1038/s41598-020-70170-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) is a life-threatening pathogen that still lacks a curative therapy or vaccine. Despite the reduction in AIDS-related deaths achieved by current antiretroviral therapies, drawbacks including drug resistance and the failure to eradicate infection highlight the need to identify new pathways to target the infection. Circadian rhythms are endogenous 24-h oscillations which regulate physiological processes including immune responses to infection, and there is an emerging role for the circadian components in regulating viral replication. The molecular clock consists of transcriptional/translational feedback loops that generate rhythms. In mammals, BMAL1 and CLOCK activate rhythmic transcription of genes including the nuclear receptor REV-ERBα, which represses BMAL1 and plays an essential role in sustaining a functional clock. We investigated whether REV-ERB activity regulates HIV-1 replication and found REV-ERB agonists inhibited HIV-1 promoter activity in cell lines, primary human CD4 T cells and macrophages, whilst antagonism or genetic disruption of REV-ERB increased promoter activity. The REV-ERB agonist SR9009 inhibited promoter activity of diverse HIV-subtypes and HIV-1 replication in primary T cells. This study shows a role for REV-ERB synthetic agonists to inhibit HIV-1 LTR promoter activity and viral replication, supporting a role for circadian clock components in regulating HIV-1 replication.
Collapse
Affiliation(s)
- Helene Borrmann
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Rhianna Davies
- Institute of Immunity and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Matthew Dickinson
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | | | - Mirjam Schilling
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | | | - Andrea Magri
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Peter Balfe
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Jane A McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
204
|
Pourcet B, Duez H. Circadian Control of Inflammasome Pathways: Implications for Circadian Medicine. Front Immunol 2020; 11:1630. [PMID: 32849554 PMCID: PMC7410924 DOI: 10.3389/fimmu.2020.01630] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
The innate immune system senses “non-self” molecules derived from pathogens (PAMPs) as well as endogenous damage-associated molecular patterns (DAMPs) and promotes sterile inflammation that is necessary for injury resolution, tissue repair/regeneration, and homeostasis. The NOD-, LRR- and pyrin domain containing protein 3 (NLRP3) is an innate immune signaling complex whose assembly and activation can be triggered by various signals ranging from microbial molecules to ATP or the abnormal accumulation of crystals, thus leading to IL-1β and IL-18 maturation and secretion. Deregulation of the NLRP3 signaling cascade is associated with numerous inflammatory and metabolic diseases including rheumatoid arthritis, gout, atherosclerosis or type 2 diabetes. Interestingly, the circadian clock controls numerous inflammatory processes while clock disruption leads to or exacerbates inflammation. Recently, the biological clock was demonstrated to control NLRP3 expression and activation, thereby controlling IL-1β and IL-18 secretion in diverse tissues and immune cells, particularly macrophages. Circadian oscillations of NLRP3 signaling is lost in models of clock disruption, contributing to the development of peritonitis, hepatitis, or colitis. Sterile inflammation is also an important driver of atherosclerosis, and targeting the production of IL-1β has proven to be a promising approach for atherosclerosis management in humans. Interestingly, the extent of injury after fulminant hepatitis or myocardial infarction is time-of-day dependent under the control of the clock, and chronotherapy represents a promising approach for the management of pathologies involving deregulation of NLRP3 signaling.
Collapse
Affiliation(s)
- Benoit Pourcet
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Hélène Duez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
205
|
Coronatine is more potent than jasmonates in regulating Arabidopsis circadian clock. Sci Rep 2020; 10:12862. [PMID: 32732994 PMCID: PMC7393363 DOI: 10.1038/s41598-020-69627-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/21/2020] [Indexed: 11/08/2022] Open
Abstract
Recent studies establish a crucial role of the circadian clock in regulating plant defense against pathogens. Whether pathogens modulate host circadian clock as a potential strategy to suppress host innate immunity is not well understood. Coronatine is a toxin produced by the bacterial pathogen Pseudomonas syringae that is known to counteract Arabidopsis defense through mimicking defense signaling molecules, jasmonates (JAs). We report here that COR preferentially suppresses expression of clock-related genes in high throughput gene expression studies, compared with the plant-derived JA molecule methyl jasmonate (MJ). COR treatment dampens the amplitude and lengthens the period of all four reporters tested while MJ and another JA agonist JA-isoleucine (JA-Ile) only affect some reporters. COR, MJ, and JA-Ile act through the canonical JA receptor COI1 in clock regulation. These data support a stronger role of the pathogen-derived molecule COR than plant-derived JA molecules in regulating Arabidopsis clock. Further study shall reveal mechanisms underlying COR regulation of host circadian clock.
Collapse
|
206
|
Wang Q, Robinette ML, Billon C, Collins PL, Bando JK, Fachi JL, Sécca C, Porter SI, Saini A, Gilfillan S, Solt LA, Musiek ES, Oltz EM, Burris TP, Colonna M. Circadian rhythm-dependent and circadian rhythm-independent impacts of the molecular clock on type 3 innate lymphoid cells. Sci Immunol 2020; 4:4/40/eaay7501. [PMID: 31586012 DOI: 10.1126/sciimmunol.aay7501] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/29/2019] [Indexed: 11/02/2022]
Abstract
Many gut functions are attuned to circadian rhythm. Intestinal group 3 innate lymphoid cells (ILC3s) include NKp46+ and NKp46- subsets, which are RORγt dependent and provide mucosal defense through secretion of interleukin-22 (IL-22) and IL-17. Because ILC3s highly express some key circadian clock genes, we investigated whether ILC3s are also attuned to circadian rhythm. We noted circadian oscillations in the expression of clock and cytokine genes, such as REV-ERBα, IL-22, and IL-17, whereas acute disruption of the circadian rhythm affected cytokine secretion by ILC3s. Because of prominent and rhythmic expression of REV-ERBα in ILC3s, we also investigated the impact of constitutive deletion of REV-ERBα, which has been previously shown to inhibit the expression of a RORγt repressor, NFIL3, while also directly antagonizing DNA binding of RORγt. Development of the NKp46+ ILC3 subset was markedly impaired, with reduced cell numbers, RORγt expression, and IL-22 production in REV-ERBα-deficient mice. The NKp46- ILC3 subsets developed normally, potentially due to compensatory expression of other clock genes, but IL-17 secretion paradoxically increased, probably because RORγt was not antagonized by REV-ERBα. We conclude that ILC3s are attuned to circadian rhythm, but clock regulator REV-ERBα also has circadian-independent impacts on ILC3 development and functions due to its roles in the regulation of RORγt.
Collapse
Affiliation(s)
- Qianli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michelle L Robinette
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cyrielle Billon
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Patrick L Collins
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jennifer K Bando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - José Luís Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Cristiane Sécca
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sofia I Porter
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ankita Saini
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Erik S Musiek
- Hope Center for Neurological Disorders, Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Thomas P Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
207
|
Diallo AB, Coiffard B, Leone M, Mezouar S, Mege JL. For Whom the Clock Ticks: Clinical Chronobiology for Infectious Diseases. Front Immunol 2020; 11:1457. [PMID: 32733482 PMCID: PMC7363845 DOI: 10.3389/fimmu.2020.01457] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
The host defense against pathogens varies among individuals. Among the factors influencing host response, those associated with circadian disruptions are emerging. These latter depend on molecular clocks, which control the two partners of host defense: microbes and immune system. There is some evidence that infections are closely related to circadian rhythms in terms of susceptibility, clinical presentation and severity. In this review, we overview what is known about circadian rhythms in infectious diseases and update the knowledge about circadian rhythms in immune system, pathogens and vectors. This heuristic approach opens a new fascinating field of time-based personalized treatment of infected patients.
Collapse
Affiliation(s)
- Aïssatou Bailo Diallo
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Benjamin Coiffard
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Univ, AP-HM, Hôpital Nord, Médecine Intensive-Réanimation, Marseille, France
| | - Marc Leone
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Univ, AP-HM, CHU Hôpital Nord, Service d'Anesthésie et de Réanimation, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,AP-HM, UF Immunologie, Marseille, France
| |
Collapse
|
208
|
Tamimi F, Abusamak M, Akkanti B, Chen Z, Yoo SH, Karmouty-Quintana H. The case for chronotherapy in Covid-19-induced acute respiratory distress syndrome. Br J Pharmacol 2020; 177:4845-4850. [PMID: 32442317 PMCID: PMC7280566 DOI: 10.1111/bph.15140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/27/2022] Open
Abstract
Coronavirus disease 2019 (COVID‐19), the disease resulting from infection by a novel coronavirus, SARS‐Cov2, has rapidly spread since November 2019 leading to a global pandemic. SARS‐Cov2 has infected over four million people and caused over 290,000 deaths worldwide. Although most cases are mild, a subset of patients develop a severe and atypical presentation of acute respiratory distress syndrome (ARDS) that is characterised by a cytokine release storm (CRS). Paradoxically, treatment with anti‐inflammatory agents and immune regulators has been associated with worsening of ARDS. We hypothesize that the intrinsic circadian clock of the lung and the immune system may regulate individual components of CRS, and thus, chronotherapy may be used to effectively manage ARDS in COVID‐19 patients. LINKED ARTICLES This article is part of a themed issue on The Pharmacology of COVID‐19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc
Collapse
Affiliation(s)
- Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,College of Dental Medicine, Qatar University, Doha, Qatar
| | | | - Bindu Akkanti
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
209
|
Yvan-Charvet L, Ng LG. Granulopoiesis and Neutrophil Homeostasis: A Metabolic, Daily Balancing Act. Trends Immunol 2020; 40:598-612. [PMID: 31256783 DOI: 10.1016/j.it.2019.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Granulopoiesis is part of the hematopoietic hierarchic architecture, where hematopoietic stem cells give rise to highly proliferative multipotent and lineage-committed granulocytic progenitor cells that differentiate into unipotent neutrophil progenitors. Given their short lifespan, neutrophils are rapidly cleared from circulation through specialized efferocytic macrophages. Together with an intrinsic clock, these processes contribute to circadian fluctuations, preserving self-tolerance and protection against invading pathogens. However, metabolic perturbation of granulopoiesis and neutrophil homeostasis can result in low-grade chronic inflammation, as observed with aging. During acute pathogenic infections, hematopoiesis can also be switched into emergency mode, which has been recently associated with significant neutrophil functional heterogeneity. This review focuses on a new reassessment of regulatory mechanisms governing neutrophil production, life-cycle, and diversity in health and disease.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore 138648, Singapore; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, 288 Nanjing Road, Tianjin 300020, China; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
210
|
Light-Mediated Decreases in Cyclic di-GMP Levels Inhibit Structure Formation in Pseudomonas aeruginosa Biofilms. J Bacteriol 2020; 202:JB.00117-20. [PMID: 32366589 DOI: 10.1128/jb.00117-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Light is known to trigger regulatory responses in diverse organisms, including slime molds, animals, plants, and phototrophic bacteria. However, light-dependent processes in nonphototrophic bacteria, and those of pathogens in particular, have received comparatively little research attention. In this study, we examined the impact of light on multicellular development in Pseudomonas aeruginosa, a leading cause of biofilm-based bacterial infections. We grew P. aeruginosa strain PA14 in a colony morphology assay and found that growth under prolonged exposure to low-intensity blue light inhibited biofilm matrix production and thereby the formation of vertical biofilm structures (i.e., "wrinkles"). Light-dependent inhibition of biofilm wrinkling was correlated with low levels of cyclic di-GMP (c-di-GMP), consistent with the role of this signal in stimulating matrix production. A screen of enzymes with the potential to catalyze c-di-GMP synthesis or degradation identified c-di-GMP phosphodiesterases that contribute to light-dependent inhibition of biofilm wrinkling. One of these, RmcA, was previously characterized by our group for its role in mediating the effect of redox-active P. aeruginosa metabolites called phenazines on biofilm wrinkle formation. Our results suggest that an RmcA sensory domain that is predicted to bind a flavin cofactor is involved in light-dependent inhibition of wrinkling. Together, these findings indicate that P. aeruginosa integrates information about light exposure and redox state in its regulation of biofilm development.IMPORTANCE Light exposure tunes circadian rhythms, which modulate the immune response and affect susceptibility to infection in plants and animals. Though molecular responses to light are defined for model plant and animal hosts, analogous pathways that function in bacterial pathogens are understudied. We examined the response to light exposure in biofilms (matrix-encased multicellular assemblages) of the nonphotosynthetic bacterium Pseudomonas aeruginosa We found that light at intensities that are not harmful to human cells inhibited biofilm maturation via effects on cellular signals. Because biofilm formation is a critical factor in many types of P. aeruginosa infections, including burn wound infections that may be exposed to light, these effects could be relevant for pathogenicity.
Collapse
|
211
|
Nakao A. Circadian Regulation of the Biology of Allergic Disease: Clock Disruption Can Promote Allergy. Front Immunol 2020; 11:1237. [PMID: 32595651 PMCID: PMC7304491 DOI: 10.3389/fimmu.2020.01237] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Allergic diseases such as allergic rhinitis, asthma, atopic dermatitis, and food allergy are characterized by epithelial barrier dysfunction and deregulated immune responses. Components of the circadian clock interact with critical elements of epithelial barrier function and immune responses, and regulate the biological processes on a 24-h cycle at steady state. This may represent an anticipatory defense response to day-night fluctuation of attack by noxious stimuli such as pathogens in the environment. This review will summarize clock control of epithelial barrier function and immune responses associated with allergic disease and offer novel insights and opportunities into how clock dysfunction impacts allergic disease. Importantly, perturbation of normal clock activity by genetic and environmental disturbances, such as chronic light cycle perturbations or irregular eating habits, deregulates epithelial barrier function and immune responses. This implies that the circadian clock is strongly linked to the fundamental biology of allergic disease, and that clock disruption can precipitate allergic disease by altering the epithelial barrier and immune functions. Given that contemporary lifestyles often involve chronic circadian disruptions such as shift work, we propose that lifestyle or therapeutic interventions that align the endogenous circadian clock with environmental cycles should be a part of the efforts to prevent or treat allergic disease in modern society.
Collapse
Affiliation(s)
- Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Kofu, Japan.,Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
212
|
Lananna BV, Musiek ES. The wrinkling of time: Aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol Dis 2020; 139:104832. [PMID: 32179175 PMCID: PMC7727873 DOI: 10.1016/j.nbd.2020.104832] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
A substantial body of research now implicates the circadian clock in the regulation of an array of diverse biological processes including glial function, metabolism, peripheral immune responses, and redox homeostasis. Sleep abnormalities and other forms of circadian disruption are common symptoms of aging and neurodegeneration. Circadian clock disruption may also influence the aging processes and the pathogenesis of neurodegenerative diseases. The specific mechanisms governing the interaction between circadian systems, aging, and the immune system are still being uncovered. Here, we review the evidence supporting a bidirectional relationship between aging and the circadian system. Further, we explore the hypothesis that age-related circadian deterioration may exacerbate multiple pathogenic processes, priming the brain for neurodegeneration.
Collapse
Affiliation(s)
- Brian V Lananna
- Dept. of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik S Musiek
- Dept. of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
213
|
Chen S, Fuller KK, Dunlap JC, Loros JJ. A Pro- and Anti-inflammatory Axis Modulates the Macrophage Circadian Clock. Front Immunol 2020; 11:867. [PMID: 32477351 PMCID: PMC7240016 DOI: 10.3389/fimmu.2020.00867] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
The circadian clock broadly governs immune cell function, leading to time-of-day differences in inflammatory responses and subsequently, pathogen clearance. However, the effect of inflammatory signals on circadian machinery is poorly understood. We found that in bone marrow-derived macrophages, some host-derived pro-inflammatory cytokines, e.g., IFN-γ or TNF-α, and pathogen-associated molecular patterns, e.g., LPS or Pam3Csk4, suppress the amplitude in oscillations of circadian negative feedback arm clock components such as PER2, and when examined, specific combinations of these immune-related signals suppressed the amplitude of these oscillations to a greater degree in both bone marrow-derived and peritoneal macrophages. At the transcript level, multiple components of the circadian clock were affected in different ways by pro-inflammatory stimulus, including Per2 and Nr1d1. This suppressive effect on PER2 did not arise from nor correlate with cell death or clock resetting. Suppression of the clock by IFN-γ was dependent on its cognate receptor; however, pharmacological inhibition of the canonical JAK/STAT and MEK pathways did not hinder suppression, suggesting a mechanism involving a non-canonical pathway. In contrast, anti-inflammatory signals such as IL-4 and dexamethasone enhanced the expression of PER2 protein and Per2 mRNA. Our results suggest that the circadian system in macrophages can differentially respond to pro- and anti-inflammatory signals in their microenvironments.
Collapse
Affiliation(s)
- Shan Chen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
214
|
Mondelli V, Vernon AC. From early adversities to immune activation in psychiatric disorders: the role of the sympathetic nervous system. Clin Exp Immunol 2020; 197:319-328. [PMID: 31319436 DOI: 10.1111/cei.13351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
Increased peripheral levels of cytokines and central microglial activation have been reported in patients with psychiatric disorders. The degree of both innate and adaptive immune activation is also associated with worse clinical outcomes and poor treatment response in these patients. Understanding the possible causes and mechanisms leading to this immune activation is therefore an important and necessary step for the development of novel and more effective treatment strategies for these patients. In this work, we review the evidence of literature pointing to childhood trauma as one of the main causes behind the increased immune activation in patients with psychiatric disorders. We then discuss the potential mechanisms linking the experience of early life adversity (ELA) to innate immune activation. Specifically, we focus on the innervation of the bone marrow from sympathetic nervous system (SNS) as a new and emerging mechanism that has the potential to bridge the observed increases in both central and peripheral inflammatory markers in patients exposed to ELA. Experimental studies in laboratory rodents suggest that SNS activation following early life stress exposure causes a shift in the profile of innate immune cells, with an increase in proinflammatory monocytes. In turn, these cells traffic to the brain and influence neural circuitry, which manifests as increased anxiety and other relevant behavioural phenotypes. To date, however, very few studies have been conducted to explore this candidate mechanism in humans. Future research is also needed to clarify whether these pathways could be partially reversible to improve prevention and treatment strategies in the future.
Collapse
Affiliation(s)
- V Mondelli
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK.,NIHR Biomedical Research Centre South London and Maudsley NHS Trust, London, UK
| | - A C Vernon
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
215
|
Lu D, Zhao M, Chen M, Wu B. Circadian Clock-Controlled Drug Metabolism: Implications for Chronotherapeutics. Drug Metab Dispos 2020; 48:395-406. [PMID: 32114506 DOI: 10.1124/dmd.120.090472] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Dependence of drug metabolism on dosing time has long been recognized. However, only recently are the underlying mechanisms for circadian drug metabolism being clarified. Diurnal rhythmicity in expression of drug-metabolizing enzymes is believed to be a key factor determining circadian metabolism. Supporting the notion that biological rhythms are generated and maintained by the circadian clock, a number of diurnal enzymes are under the control of the circadian clock. In general, circadian clock genes generate and regulate diurnal rhythmicity in drug-metabolizing enzymes via transcriptional actions on one or two of three cis-elements (i.e., E-box, D-box, and Rev-erb response element or RAR-related orphan receptor response element). Additionally, cycling or clock-controlled nuclear receptors such as hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor γ are contributors to diurnal enzyme expression. These newly discovered mechanisms for each of the rhythmic enzymes are reviewed in this article. We also discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics. Our discussion is also extended to two diurnal transporters (P-glycoprotein and multidrug resistance-associated protein 2) that have an important role in drug absorption. Although the experimental evidence is lacking in metabolism-based chronoefficacy, circadian genes (e.g., Rev-erbα) as drug targets are shown to account for diurnal variability in drug efficacy. SIGNIFICANCE STATEMENT: Significant progress has been made in understanding the molecular mechanisms for generation of diurnal rhythmicity in drug-metabolizing enzymes. In this article, we review the newly discovered mechanisms for each of the rhythmic enzymes and discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics.
Collapse
Affiliation(s)
- Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| | - Mengjing Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| |
Collapse
|
216
|
Zhao M, Zhao H, Lin L, Wang Y, Chen M, Wu B. Nuclear receptor co-repressor RIP140 regulates diurnal expression of cytochrome P450 2b10 in mouse liver. Xenobiotica 2020; 50:1139-1148. [PMID: 32238093 DOI: 10.1080/00498254.2020.1751342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Elucidating the mechanisms for circadian expression of drug-metabolizing enzymes is essential for a better understanding of dosing time-dependent drug metabolism and pharmacokinetics. CYP2B6 (Cyp2b10 in mice) is an important enzyme responsible for metabolism and detoxification of approximately 10% of drugs. Here, we aimed to investigate a potential role of nuclear receptor co-repressor RIP140 in circadian regulation of Cyp2b10 in mice.We first uncovered diurnal rhythmicity in hepatic RIP140 mRNA and protein with peak values at ZT10 (ZT, zeitgeber time). RIP140 ablation up-regulated Cyp2b10 expression and blunted its rhythm in mice and in AML-12 cells. Consistent with a negative regulatory effect, overexpression of RIP140 inhibited Cyp2b10 promoter activity and reduced cellular Cyp2b10 expression.Furthermore, RIP140 suppressed Car- and Pxr-mediated transactivation of Cyp2b10, and the suppressive effects were attenuated when the RIP140 gene was silenced. Chromatin immunoprecipitation assays revealed that recruitment of RIP140 protein to the Cyp2b10 promoter was circadian time-dependent in wild-type mice. More extensive recruitment was observed at ZT10 than at ZT2 consistent with the rhythmic pattern of RIP140 protein. However, the time-dependency of RIP140 recruitment was lost in RIP140-/- mice.Additionally, we identified a D-box and a RORE cis-element in RIP140 promoter. D-box- and RORE-acting clock components such as Dbp, E4bp4, Rev-erbα/β and Rorα transcriptionally regulated RIP140, potentially accounting for its rhythmic expression.In conclusion, RIP140 regulates diurnal expression of Cyp2b10 in mouse liver through periodical repression of Car- and Pxr-mediated transactivation. This co-regulator-driven mechanism represents a novel source of diurnal rhythmicity in drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Mengjing Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Huan Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Luomin Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yi Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Menglin Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
217
|
Parasram K, Karpowicz P. Time after time: circadian clock regulation of intestinal stem cells. Cell Mol Life Sci 2020; 77:1267-1288. [PMID: 31586240 PMCID: PMC11105114 DOI: 10.1007/s00018-019-03323-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Daily fluctuations in animal physiology, known as circadian rhythms, are orchestrated by a conserved molecular timekeeper, known as the circadian clock. The circadian clock forms a transcription-translation feedback loop that has emerged as a central biological regulator of many 24-h processes. Early studies of the intestine discovered that many digestive functions have a daily rhythm and that intestinal cell production was similarly time-dependent. As genetic methods in model organisms have become available, it has become apparent that the circadian clock regulates many basic cellular functions, including growth, proliferation, and differentiation, as well as cell signalling and stem cell self-renewal. Recent connections between circadian rhythms and immune system function, and between circadian rhythms and microbiome dynamics, have also been revealed in the intestine. These processes are highly relevant in understanding intestinal stem cell biology. Here we describe the circadian clock regulation of intestinal stem cells primarily in two model organisms: Drosophila melanogaster and mice. Like all cells in the body, intestinal stem cells are subject to circadian timing, and both cell-intrinsic and cell-extrinsic circadian processes contribute to their function.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Phillip Karpowicz
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
218
|
Martínez-Tapia RJ, Chavarría A, Navarro L. Differences in Diurnal Variation of Immune Responses in Microglia and Macrophages: Review and Perspectives. Cell Mol Neurobiol 2020; 40:301-309. [PMID: 31549296 PMCID: PMC11448797 DOI: 10.1007/s10571-019-00736-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/07/2019] [Indexed: 12/18/2022]
Abstract
Biological rhythms, especially those that last close to 24 h, better known as circadian rhythms, are highly regulated phenomena, maintained throughout evolution in various organisms which allow organisms to predict, prepare for, and adapt to environmental changes. One of these phenomena that exhibit biological rhythms is the immune response to external agents. Immune cells (neutrophils, lymphocytes, macrophages, among others), as well as their mediators such as cytokines and chemokines, undergo variations in tissue and blood concentrations during the day. These rhythms are still being elucidated in microglia, the resident macrophages of the central nervous system, but since these cells share a common origin with peripheral macrophages, they are expected to behave similarly. In this review, we will discuss the possible differences in the responses between peripheral macrophages and microglia, their relationship with the circadian clock, and whether these rhythms can influence therapeutic choices.
Collapse
Affiliation(s)
- Ricardo J Martínez-Tapia
- Neuroendocrinology Laboratory, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Coyacán, Mexico
- Programa de Doctorado en Ciencias Biomédicas, División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luz Navarro
- Neuroendocrinology Laboratory, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Coyacán, Mexico.
| |
Collapse
|
219
|
Rhythmic expression of the melatonergic biosynthetic pathway and its differential modulation in vitro by LPS and IL10 in bone marrow and spleen. Sci Rep 2020; 10:4799. [PMID: 32179854 PMCID: PMC7075864 DOI: 10.1038/s41598-020-61652-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Daily oscillation of the immune system follows the central biological clock outputs control such as melatonin produced by the pineal gland. Despite the literature showing that melatonin is also synthesized by macrophages and T lymphocytes, no information is available regarding the temporal profile of the melatonergic system of immune cells and organs in steady-state. Here, the expression of the enzymes arylalkylamine-N-acetyltransferase (AA-NAT), its phosphorylated form (P-AA-NAT) and acetylserotonin-O-methyltransferase (ASMT) were evaluated in phagocytes and T cells of the bone marrow (BM) and spleen. We also determined how the melatonergic system of these cells is modulated by LPS and the cytokine IL-10. The expression of the melatonergic enzymes showed daily rhythms in BM and spleen cells. Melatonin rhythm in the BM, but not in the spleen, follows P-AA-NAT daily variation. In BM cells, LPS and IL10 induced an increase in melatonin levels associated with the increased expressions of P-AA-NAT and ASMT. In spleen cells, LPS induced an increase in the expression of P-AA-NAT but not of melatonin. Conversely, IL10 induced a significant increase in melatonin production associated with increased AA-NAT/P-AA-NAT expressions. In conclusion, BM and spleen cells present different profiles of circadian production of local melatonin and responses to immune signals.
Collapse
|
220
|
Carmona P, Mendez N, Ili CG, Brebi P. The Role of Clock Genes in Fibrinolysis Regulation: Circadian Disturbance and Its Effect on Fibrinolytic Activity. Front Physiol 2020; 11:129. [PMID: 32231582 PMCID: PMC7083126 DOI: 10.3389/fphys.2020.00129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022] Open
Abstract
The fibrinolytic system is critical during the onset of fibrinolysis, a fundamental mechanism for fibrin degradation. Both tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) trigger fibrinolysis, leading to proteolytic activation of plasminogen to plasmin and subsequently fibrin proteolysis. This system is regulated by several inhibitors; plasminogen activator inhibitor-1 (PAI-1), the most studied, binds to and inactivates both tPA and uPA. Through the action of plasmin, this system regulates several physiological processes: embryogenesis, activation of inflammatory cells, cell proliferation and death, synaptic plasticity, wound healing, and others. The deregulated intervention of fibrinolysis in the pathophysiology of various diseases has been widely studied; findings of altered functioning have been reported in different chronic non-communicable diseases (NCD), reinforcing its pleiotropic character and the importance of its physiology and regulation. The evidence indicates that fundamental elements of the fibrinolytic system, such as tPA and PAI-1, show a circadian rhythm in their plasmatic levels and their gene expression are regulated by circadian system elements, known as clock genes – Bmal, Clock, Cry-, and accessory clock genes such as Rev-Erb and Ror. The disturbance in the molecular machinery of the clock by exposure to light during the night alters the natural light/dark cycle and causes disruption of the circadian rhythm. Such exposure affects the synchronization and functioning of peripheral clocks responsible for the expression of the components of the fibrinolytic system. So, this circadian disturbance could be critical in the pathophysiology of chronic diseases where this system has been found to be deregulated.
Collapse
Affiliation(s)
- Pamela Carmona
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile.,Laboratory of Integrative Biology, Center for Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Carmen G Ili
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile.,Laboratory of Integrative Biology, Center for Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Priscilla Brebi
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile.,Laboratory of Integrative Biology, Center for Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
221
|
Wang S, Li F, Lin Y, Wu B. Targeting REV-ERBα for therapeutic purposes: promises and challenges. Theranostics 2020; 10:4168-4182. [PMID: 32226546 PMCID: PMC7086371 DOI: 10.7150/thno.43834] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
REV-ERBα (NR1D1) is a circadian clock component that functions as a transcriptional repressor. Due to its role in direct modulation of metabolic genes, REV-ERBα is regarded as an integrator of cell metabolism with circadian clock. Accordingly, REV-ERBα is first proposed as a drug target for treating sleep disorders and metabolic syndromes (e.g., dyslipidaemia, hyperglycaemia and obesity). Recent years of studies uncover a rather broad role of REV-ERBα in pathological conditions including local inflammatory diseases, heart failure and cancers. Moreover, REV-ERBα is involved in regulation of circadian drug metabolism that has implications in chronopharmacology. In the meantime, recent years have witnessed discovery of an array of new REV-ERBα ligands most of which have pharmacological activities in vivo. In this article, we review the regulatory role of REV-ERBα in various types of diseases and discuss the underlying mechanisms. We also describe the newly discovered ligands and the old ones together with their targeting potential. Despite well-established pharmacological effects of REV-ERBα ligands in animals (preclinical studies), no progress has been made regarding their translation to clinical trials. This implies certain challenges associated with drug development of REV-ERBα ligands. In particular, we discuss the potential challenges related to drug safety (or adverse effects) and bioavailability. For new drug development, it is advocated that REV-ERBα should be targeted to treat local diseases and a targeting drug should be locally distributed, avoiding the adverse effects on other tissues.
Collapse
Affiliation(s)
- Shuai Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, 510632, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, 510632, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Baojian Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
222
|
Arafa K, Emara M. Insights About Circadian Clock and Molecular Pathogenesis in Gliomas. Front Oncol 2020; 10:199. [PMID: 32195174 PMCID: PMC7061216 DOI: 10.3389/fonc.2020.00199] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
The circadian clock is an endogenous time-keeping system that has been discovered across kingdoms of life. It controls and coordinates metabolism, physiology, and behavior to adapt to variations within the day and the seasonal environmental cycles driven by earth rotation. In mammals, although circadian rhythm is controlled by a set of core clock genes that are present in both in suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral tissues, the generation and control of the circadian rhythm at the cellular, tissue, and organism levels occurs in a hierarchal fashion. The SCN is central pacemaker comprising the principal circadian clock that synchronizes peripheral circadian clocks to their appropriate phase. Different epidemiological studies have shown that disruption of normal circadian rhythm is implicated in increasing the risk of developing cancers. In addition, deregulated expression of clock genes has been demonstrated in various types of cancer. These findings indicate a close association between circadian clock and cancer development and progression. Here, we review different evidences of this association in relation to molecular pathogenesis in gliomas.
Collapse
Affiliation(s)
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Cairo, Egypt
| |
Collapse
|
223
|
Inokawa H, Umemura Y, Shimba A, Kawakami E, Koike N, Tsuchiya Y, Ohashi M, Minami Y, Cui G, Asahi T, Ono R, Sasawaki Y, Konishi E, Yoo SH, Chen Z, Teramukai S, Ikuta K, Yagita K. Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in mice. Sci Rep 2020; 10:2569. [PMID: 32054990 PMCID: PMC7018741 DOI: 10.1038/s41598-020-59541-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022] Open
Abstract
Modern society characterized by a 24/7 lifestyle leads to misalignment between environmental cycles and endogenous circadian rhythms. Persisting circadian misalignment leads to deleterious effects on health and healthspan. However, the underlying mechanism remains not fully understood. Here, we subjected adult, wild-type mice to distinct chronic jet-lag paradigms, which showed that long-term circadian misalignment induced significant early mortality. Non-biased RNA sequencing analysis using liver and kidney showed marked activation of gene regulatory pathways associated with the immune system and immune disease in both organs. In accordance, we observed enhanced steatohepatitis with infiltration of inflammatory cells. The investigation of senescence-associated immune cell subsets from the spleens and mesenteric lymph nodes revealed an increase in PD-1+CD44high CD4 T cells as well as CD95+GL7+ germinal center B cells, indicating that the long-term circadian misalignment exacerbates immune senescence and consequent chronic inflammation. Our results underscore immune homeostasis as a pivotal interventional target against clock-related disorders.
Collapse
Affiliation(s)
- Hitoshi Inokawa
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuhiro Umemura
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-0856, Japan
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshiki Tsuchiya
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Munehiro Ohashi
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoichi Minami
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryutaro Ono
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuh Sasawaki
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Satoshi Teramukai
- Department of Biostatistics, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| |
Collapse
|
224
|
Abstract
Life for meta-organisms is based on a strong relationship between gut bacteria and body cells. This review summarizes to what extent the microbiota can influence host circadian rhythms via a literature review on the topic. The results show that microbiota can influence the host's circadian gene expression through direct interactions via immunoreceptors and microbiota-derived metabolites, especially in peripheral tissues. Noteworthy metabolites that are only attributable to the microbiota are short-chain fatty acids and unconjugated bile acids. The microbiota also serves as a mediator for the interplay between the host's diet and circadian rhythmicity. This work furthermore displays that the microbiota is subject to diurnal variations in terms of structure and function and that the host and the host's diet influence these fluctuations. As most of these results originate in mouse models, we hope this work stimulates further research in human derived tissue to verify these conclusions.
Collapse
Affiliation(s)
- Victor Schmalle
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Axel Lorentz
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
225
|
Aguilar-López BA, Moreno-Altamirano MMB, Dockrell HM, Duchen MR, Sánchez-García FJ. Mitochondria: An Integrative Hub Coordinating Circadian Rhythms, Metabolism, the Microbiome, and Immunity. Front Cell Dev Biol 2020; 8:51. [PMID: 32117978 PMCID: PMC7025554 DOI: 10.3389/fcell.2020.00051] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022] Open
Abstract
There is currently some understanding of the mechanisms that underpin the interactions between circadian rhythmicity and immunity, metabolism and immune response, and circadian rhythmicity and metabolism. In addition, a wealth of studies have led to the conclusion that the commensal microbiota (mainly bacteria) within the intestine contributes to host homeostasis by regulating circadian rhythmicity, metabolism, and the immune system. Experimental studies on how these four biological domains interact with each other have mainly focused on any two of those domains at a time and only occasionally on three. However, a systematic analysis of how these four domains concurrently interact with each other seems to be missing. We have analyzed current evidence that signposts a role for mitochondria as a key hub that supports and integrates activity across all four domains, circadian clocks, metabolic pathways, the intestinal microbiota, and the immune system, coordinating their integration and crosstalk. This work will hopefully provide a new perspective for both hypothesis-building and more systematic experimental approaches.
Collapse
Affiliation(s)
- Bruno A Aguilar-López
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Hazel M Dockrell
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
226
|
Domingues RG, Hepworth MR. Immunoregulatory Sensory Circuits in Group 3 Innate Lymphoid Cell (ILC3) Function and Tissue Homeostasis. Front Immunol 2020; 11:116. [PMID: 32117267 PMCID: PMC7015949 DOI: 10.3389/fimmu.2020.00116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Recent years have seen a revolution in our understanding of how cells of the immune system are modulated and regulated not only via complex interactions with other immune cells, but also through a range of potent inputs derived from diverse and varied biological systems. Within complex tissue environments, such as the gastrointestinal tract and lung, these systems act to orchestrate and temporally align immune responses, regulate cellular function, and ensure tissue homeostasis and protective immunity. Group 3 Innate Lymphoid Cells (ILC3s) are key sentinels of barrier tissue homeostasis and critical regulators of host-commensal mutualism—and respond rapidly to damage, inflammation and infection to restore tissue health. Recent findings place ILC3s as strategic integrators of environmental signals. As a consequence, ILC3s are ideally positioned to detect perturbations in cues derived from the environment—such as the diet and microbiota—as well as signals produced by the host nervous, endocrine and circadian systems. Together these cues act in concert to induce ILC3 effector function, and form critical sensory circuits that continually function to reinforce tissue homeostasis. In this review we will take a holistic, organismal view of ILC3 biology and explore the tissue sensory circuits that regulate ILC3 function and align ILC3 responses with changes within the intestinal environment.
Collapse
Affiliation(s)
- Rita G Domingues
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Matthew R Hepworth
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
227
|
Costantini C, Renga G, Sellitto F, Borghi M, Stincardini C, Pariano M, Zelante T, Chiarotti F, Bartoli A, Mosci P, Romani L, Brancorsini S, Bellet MM. Microbes in the Era of Circadian Medicine. Front Cell Infect Microbiol 2020; 10:30. [PMID: 32117804 PMCID: PMC7013081 DOI: 10.3389/fcimb.2020.00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 12/29/2022] Open
Abstract
The organisms of most domains of life have adapted to circadian changes of the environment and regulate their behavior and physiology accordingly. A particular case of such paradigm is represented by some types of host-pathogen interaction during infection. Indeed, not only some hosts and pathogens are each endowed with their own circadian clock, but they are also influenced by the circadian changes of the other with profound consequences on the outcome of the infection. It comes that daily fluctuations in the availability of resources and the nature of the immune response, coupled with circadian changes of the pathogen, may influence microbial virulence, level of colonization and damage to the host, and alter the equilibrium between commensal and invading microorganisms. In the present review, we discuss the potential relevance of circadian rhythms in human bacterial and fungal pathogens, and the consequences of circadian changes of the host immune system and microbiome on the onset and development of infection. By looking from the perspective of the interplay between host and microbes circadian rhythms, these concepts are expected to change the way we approach human infections, not only by predicting the outcome of the host-pathogen interaction, but also by indicating the best time for intervention to potentiate the anti-microbial activities of the immune system and to weaken the pathogen when its susceptibility is higher.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Federica Sellitto
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Flavia Chiarotti
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Mosci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
228
|
Coffman JA. Chronic stress, physiological adaptation and developmental programming of the neuroendocrine stress system. FUTURE NEUROLOGY 2020. [DOI: 10.2217/fnl-2019-0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic stress undermines physical and mental health, in part via dysregulation of the neuroendocrine stress system. Key to understand this dysregulation is recognizing that the problem is not stress per se, but rather its chronicity. The optimally functioning stress system is highly dynamic, and negative feedback regulation enforces transient responses to acute stressors. Chronic stress overrides this, and adaptation to the chronicity can result in persistent dysregulation by altering sensitivity thresholds critical for control of system dynamics. Such adaptation involves plasticity within the central nervous system (CNS) as well as epigenetic regulation. When it occurs during development, it can have persistent effects on neuroendocrine regulation. Understanding how chronic stress programs development of the neuroendocrine stress system requires elucidation of stress-responsive gene regulatory networks that control CNS plasticity and development.
Collapse
Affiliation(s)
- James A Coffman
- MDI Biological Laboratory, Kathryn W Davis Center for Regenerative Biology and Aging, Salisbury Cove, ME 04672, USA
| |
Collapse
|
229
|
Abstract
Essentially all biological processes fluctuate over the course of the day, observed at cellular (eg, transcription, translation, and signaling), organ (eg, contractility and metabolism), and whole-body (eg, physical activity and appetite) levels. It is, therefore, not surprising that both cardiovascular physiology (eg, heart rate and blood pressure) and pathophysiology (eg, onset of adverse cardiovascular events) oscillate during the 24-hour day. Chronobiological influence over biological processes involves a complex interaction of factors that are extrinsic (eg, neurohumoral factors) and intrinsic (eg, circadian clocks) to cells. Here, we focus on circadian governance of 6 fundamentally important processes: metabolism, signaling, electrophysiology, extracellular matrix, clotting, and inflammation. In each case, we discuss (1) the physiological significance for circadian regulation of these processes (ie, the good); (2) the pathological consequence of circadian governance impairment (ie, the bad); and (3) whether persistence/augmentation of circadian influences contribute to pathogenesis during distinct disease states (ie, the ugly). Finally, the translational impact of chronobiology on cardiovascular disease is highlighted.
Collapse
Affiliation(s)
- Samir Rana
- From the Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham
| | - Sumanth D Prabhu
- From the Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham
| | - Martin E Young
- From the Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham
| |
Collapse
|
230
|
Al-Waeli H, Nicolau B, Stone L, Abu Nada L, Gao Q, Abdallah MN, Abdulkader E, Suzuki M, Mansour A, Al Subaie A, Tamimi F. Chronotherapy of Non-Steroidal Anti-Inflammatory Drugs May Enhance Postoperative Recovery. Sci Rep 2020; 10:468. [PMID: 31949183 PMCID: PMC6965200 DOI: 10.1038/s41598-019-57215-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Postoperative pain relief is crucial for full recovery. With the ongoing opioid epidemic and the insufficient effect of acetaminophen on severe pain; non-steroidal anti-inflammatory drugs (NSAIDs) are heavily used to alleviate this pain. However, NSAIDs are known to inhibit postoperative healing of connective tissues by inhibiting prostaglandin signaling. Pain intensity, inflammatory mediators associated with wound healing and the pharmacological action of NSAIDs vary throughout the day due to the circadian rhythm regulated by the clock genes. According to this rhythm, most of wound healing mediators and connective tissue formation occurs during the resting phase, while pain, inflammation and tissue resorption occur during the active period of the day. Here we show, in a murine tibia fracture surgical model, that NSAIDs are most effective in managing postoperative pain, healing and recovery when drug administration is limited to the active phase of the circadian rhythm. Limiting NSAID treatment to the active phase of the circadian rhythm resulted in overexpression of circadian clock genes, such as Period 2 (Per2) at the healing callus, and increased serum levels of anti-inflammatory cytokines interleukin-13 (IL-13), interleukin-4 (IL-4) and vascular endothelial growth factor. By contrast, NSAID administration during the resting phase resulted in severe bone healing impairment.
Collapse
Affiliation(s)
- H Al-Waeli
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - B Nicolau
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - L Stone
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - L Abu Nada
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - Q Gao
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - M N Abdallah
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, M5G 1G, Canada
| | - E Abdulkader
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - M Suzuki
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Mansour
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Al Subaie
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - F Tamimi
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
231
|
De Nobrega AK, Lyons LC. Aging and the clock: Perspective from flies to humans. Eur J Neurosci 2020; 51:454-481. [PMID: 30269400 PMCID: PMC6441388 DOI: 10.1111/ejn.14176] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
Endogenous circadian oscillators regulate molecular, cellular and physiological rhythms, synchronizing tissues and organ function to coordinate activity and metabolism with environmental cycles. The technological nature of modern society with round-the-clock work schedules and heavy reliance on personal electronics has precipitated a striking increase in the incidence of circadian and sleep disorders. Circadian dysfunction contributes to an increased risk for many diseases and appears to have adverse effects on aging and longevity in animal models. From invertebrate organisms to humans, the function and synchronization of the circadian system weakens with age aggravating the age-related disorders and pathologies. In this review, we highlight the impacts of circadian dysfunction on aging and longevity and the reciprocal effects of aging on circadian function with examples from Drosophila to humans underscoring the highly conserved nature of these interactions. Additionally, we review the potential for using reinforcement of the circadian system to promote healthy aging and mitigate age-related pathologies. Advancements in medicine and public health have significantly increased human life span in the past century. With the demographics of countries worldwide shifting to an older population, there is a critical need to understand the factors that shape healthy aging. Drosophila melanogaster, as a model for aging and circadian interactions, has the capacity to facilitate the rapid advancement of research in this area and provide mechanistic insights for targeted investigations in mammals.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
232
|
Butler TD, Gibbs JE. Circadian Host-Microbiome Interactions in Immunity. Front Immunol 2020; 11:1783. [PMID: 32922391 PMCID: PMC7456996 DOI: 10.3389/fimmu.2020.01783] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome plays a critical role in regulating host immunity and can no longer be regarded as a bystander in human health and disease. In recent years, circadian (24 h) oscillations have been identified in the composition of the microbiota, its biophysical localization within the intestinal tract and its metabolic outputs. The gut microbiome and its key metabolic outputs, such as short chain fatty acids and tryptophan metabolites contribute to maintenance of intestinal immunity by promoting barrier function, regulating the host mucosal immune system and maintaining the function of gut-associated immune cell populations. Loss of rhythmic host-microbiome interactions disrupts host immunity and increases risk of inflammation and metabolic complications. Here we review factors that drive circadian variation in the microbiome, including meal timing, dietary composition and host circadian clocks. We also consider how host-microbiome interactions impact the core molecular clock and its rhythmic outputs in addition to the potential impact of this relationship on circadian control of immunity.
Collapse
|
233
|
The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat Immunol 2019; 21:168-177. [DOI: 10.1038/s41590-019-0567-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/22/2019] [Indexed: 12/25/2022]
|
234
|
Kenig A, Ilan Y. A Personalized Signature and Chronotherapy-Based Platform for Improving the Efficacy of Sepsis Treatment. Front Physiol 2019; 10:1542. [PMID: 31920730 PMCID: PMC6930923 DOI: 10.3389/fphys.2019.01542] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
Sepsis remains a major therapeutic challenge and is associated with a high rate of morbidity and mortality. It is a dynamic condition in which multiple parameters change over time, rendering it difficult to overcome the various injurious responses, which worsen the prognosis in these patients. The prognosis of sepsis is associated with a disbalance of compensatory responses to infectious triggers, part of which can be deleterious. Marked inter- and intra-patient variability characterizes the mechanisms that underlie sepsis progression and determine the response to therapy. In this paper, we review some of the data on the use of chronopharmacological approaches for the treatment of patients with sepsis and discuss the role of the autonomic nervous system in the mechanisms associated with immune response and chronotherapy in these patients. We describe the implementation of an individualized platform that is based on the personalized autonomic nervous system, immune, and chronobiology-derived parameters for generating a patient-tailored therapeutic regimen. The notion of overcoming the deleterious compensatory response in a highly dynamic system in sepsis is presented to ensure an improved response to current therapies.
Collapse
Affiliation(s)
- Ariel Kenig
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
235
|
Abstract
Circadian clocks are endogenous oscillators that control 24-h physiological and behavioral processes. The central circadian clock exerts control over myriad aspects of mammalian physiology, including the regulation of sleep, metabolism, and the immune system. Here, we review advances in understanding the genetic regulation of sleep through the circadian system, as well as the impact of dysregulated gene expression on metabolic function. We also review recent studies that have begun to unravel the circadian clock’s role in controlling the cardiovascular and nervous systems, gut microbiota, cancer, and aging. Such circadian control of these systems relies, in part, on transcriptional regulation, with recent evidence for genome-wide regulation of the clock through circadian chromosome organization. These novel insights into the genomic regulation of human physiology provide opportunities for the discovery of improved treatment strategies and new understanding of the biological underpinnings of human disease.
Collapse
|
236
|
Mukherjee S, Jemielita M, Stergioula V, Tikhonov M, Bassler BL. Photosensing and quorum sensing are integrated to control Pseudomonas aeruginosa collective behaviors. PLoS Biol 2019; 17:e3000579. [PMID: 31830037 PMCID: PMC6932827 DOI: 10.1371/journal.pbio.3000579] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/26/2019] [Accepted: 11/26/2019] [Indexed: 01/28/2023] Open
Abstract
Bacteria convert changes in sensory inputs into alterations in gene expression, behavior, and lifestyles. A common lifestyle choice that bacteria make is whether to exhibit individual behavior and exist in the free-living planktonic state or to engage in collective behavior and form sessile communities called biofilms. Transitions between individual and collective behaviors are controlled by the chemical cell-to-cell communication process called quorum sensing. Here, we show that quorum sensing represses Pseudomonas aeruginosa biofilm formation and virulence by activating expression of genes encoding the KinB–AlgB two-component system (TCS). Phospho-AlgB represses biofilm and virulence genes, while KinB dephosphorylates and thereby inactivates AlgB. We discover that the photoreceptor BphP is the kinase that, in response to light, phosphorylates and activates AlgB. Indeed, exposing P. aeruginosa to light represses biofilm formation and virulence gene expression. To our knowledge, P. aeruginosa was not previously known to detect and respond to light. The KinB–AlgB–BphP module is present in all pseudomonads, and we demonstrate that AlgB is the partner response regulator for BphP in diverse bacterial phyla. We propose that in the KinB–AlgB–BphP system, AlgB functions as the node at which varied sensory information is integrated. This network architecture provides a mechanism enabling bacteria to integrate at least two different sensory inputs, quorum sensing (via RhlR-driven activation of algB) and light (via BphP–AlgB), into the control of collective behaviors. This study sets the stage for light-mediated control of P. aeruginosa infectivity. Photosensing and quorum sensing are integrated to control collective behaviors of the pathogenic bacterium Pseudomonas aeruginosa; the information is transduced via a phosphorylation–dephosphorylation sensory system. The study has implications for light-mediated control of P. aeruginosa infectivity.
Collapse
Affiliation(s)
- Sampriti Mukherjee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Matthew Jemielita
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Vasiliki Stergioula
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mikhail Tikhonov
- Physics Department, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
237
|
Secretory Proteins in the Skin Mucus of Nile Tilapia (Oreochromis niloticus) are Modulated Temporally by Photoperiod and Bacterial Endotoxin Cues. FISHES 2019. [DOI: 10.3390/fishes4040057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although it is well known that the biological and physical characteristics of skin mucus in fishes are strongly affected by changes in environmental conditions, the influence of photoperiod and time-dependent bacterial endotoxin stimulation is not well documented. In the present study, we determined the diel variations in the basal activities of secretory proteins with known defense functions in the skin mucus of Nile tilapia (Oreochromis niloticus) maintained under two photic environments: equal length of day and night (12L:12D, LD) or total darkness (0L:24D, DD). A second experiment was conducted to determine how time-dependent (i.e., day versus night) lipopolysaccharide (LPS) challenge could influence these skin mucosal defenses. The results revealed that LD signal differentially modulated the activities of mucosal immune molecules. Fish subjected to LD regime showed significantly higher levels of skin mucus lysozyme and protease at nighttime than at daytime. This distinct feature was not observed in fish under DD. There was no general mucosal response patterns to time-dependent LPS challenge. Nonetheless, protease and lysozyme, which were identified to be at elevated levels at night, were significantly modulated when the endotoxin was administered at nighttime. Ceruloplasmin was the only molecule that responded to LPS challenge at daytime, where its activity significantly increased at 8 h post-stimulation. Collectively, the results revealed that photoperiod cues influenced the activities of mucosal defenses and this may play, at least in part, in the temporal sensitivity to bacterial endotoxin.
Collapse
|
238
|
Abstract
The immune system potentially plays an important mechanistic role in the relation between shift work and adverse health effects. To better understand the immunological effects of shift work, we compared numbers and functionality of immune cells between night-shift and non-shift workers. Blood samples were collected from 254 night-shift and 57 non-shift workers employed in hospitals. Absolute numbers of monocytes, granulocytes, lymphocytes, and T cell subsets were assessed. As read out of immune function, monocyte cytokine production and proliferative capacity of CD4 and CD8 T cells in response to various stimuli were analysed. The mean number of monocytes was 1.15 (95%-CI = 1.05–1.26) times higher in night-shift than in non-shift workers. Furthermore, night-shift workers who worked night shifts in the past three days had a higher mean number of lymphocytes (B = 1.12 (95%-CI = 1.01–1.26)), T cells (B = 1.16 (95%-CI = 1.03–1.31)), and CD8 T cells (B = 1.23 (95%-CI = 1.05–1.45)) compared to non-shift workers. No differences in functional parameters of monocytes and lymphocytes were observed. The differences in numbers of monocytes and T cells suggest that chronic exposure to night-shift work as well as recent night-shift work may influence the immune status of healthcare workers. This knowledge could be relevant for preventive initiatives in night-shift workers, such as timing of vaccination.
Collapse
|
239
|
Yang H, Yang J, Cheng H, Cao H, Tang S, Wang Q, Zhao J, Li B, Ding Y, Ma C. Probiotics ingestion prevents HDAC11-induced DEC205+ dendritic cell dysfunction in night shift nurses. Sci Rep 2019; 9:18002. [PMID: 31784669 PMCID: PMC6884592 DOI: 10.1038/s41598-019-54558-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
It is known that the day-night shift-rotation has a negative impact on the immune system. The underlying mechanism remains to be further investigated. Probiotics have regulatory effects on immune functions. This study aims to investigate the role of probiotic ingestion in preventing the DEC205+ dendritic cell (decDC) dysfunction in day-night shift-engaging nurses. In this study, blood samples were collected from day-night shift-rotating nurses who took or did not take yogurt (containing C. Butyricum) during the night shift (NS). decDC functions were evaluated with pertinent immunological approaches. We observed that the immune tolerogenic functions and interleukin (IL)-10 expression were impaired in decDCs of nurses after NS. HDAC11 was detected in decDCs that was markedly up regulated after NS. The HDAC11 levels were negatively correlated with the immune tolerogenic functions in decDCs. Ingestion of probiotic-containing yogurt during NS efficiently suppressed Bmal1 and HDAC11 levels as well as up regulated the immune regulatory functions in decDCs. In conclusion, NS has a negative impact on decDC immune tolerogenic functions, which can be prevented by ingesting probiotics-containing yogurt during NS.
Collapse
Affiliation(s)
- Hui Yang
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Jing Yang
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Cheng
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Huili Cao
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shan Tang
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiaohong Wang
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Zhao
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Baohua Li
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yongxia Ding
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chang Ma
- Department of Respirology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
240
|
Carmona P, Pérez B, Trujillo C, Espinosa G, Miranda F, Mendez N, Torres-Farfan C, Richter HG, Vergara K, Brebi P, Sarmiento J. Long-Term Effects of Altered Photoperiod During Pregnancy on Liver Gene Expression of the Progeny. Front Physiol 2019; 10:1377. [PMID: 31824324 PMCID: PMC6883370 DOI: 10.3389/fphys.2019.01377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/18/2019] [Indexed: 01/16/2023] Open
Abstract
Experimental and epidemiological studies have revealed a relationship between an adverse intrauterine environment and chronic non-communicable disease (NCD) like cardiovascular disease (CVD) in adulthood. An important risk factor for CVD is the deregulation of the fibrinolytic system particularly high levels of expression of plasminogen activator inhibitor 1 (Pai-1). Chronic exposure to altered photoperiod disrupts the circadian organization of physiology in the pregnant female, known as gestational chronodisruption, and cause long-term effects on the adult offspring's circadian physiology. The Pai-1 expression is regulated by the molecular components of the circadian system, termed clock genes. The present study aimed to evaluate the long-term effects of chronic photoperiod shifts (CPS) during pregnancy on the expression of the clock genes and the fibrinolytic system in the liver of adult male offspring. Our results using an animal model demonstrated statistically significant differences at the transcriptional level in males gestated under CPS. At 90 days of postnatal age, the liver transcript levels of the clock gene Bmal1 were downregulated, whereas Rorα, Rorγ, Nfil3, and Pai-1 were upregulated. Our data indicate that CPS during pregnancy affects gene expression in the liver of male adult progeny, showing that alteration of the photoperiod in the mother's environment leads to persistent effects in the offspring. In conclusion, these results reveal for the first time the long-term effects of gestational chronodisruption on the transcriptional activity of one well-established risk factor associated with CVD in the adult male offspring.
Collapse
Affiliation(s)
- Pamela Carmona
- Laboratorio de Cronoinmunología, Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile
| | - Bárbara Pérez
- Laboratorio de Cronoinmunología, Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Trujillo
- Laboratorio de Cronoinmunología, Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Programa de Doctorado en Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriel Espinosa
- Laboratorio de Cronoinmunología, Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Miranda
- Laboratorio de Cronoinmunología, Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Hans G. Richter
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Priscilla Brebi
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Patología Molecular, Departamento de Patología, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - José Sarmiento
- Laboratorio de Cronoinmunología, Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
241
|
Zaaqoq AM, Namas RA, Abdul-Malak O, Almahmoud K, Barclay D, Yin J, Zamora R, Rosengart MR, Billiar TR, Vodovotz Y. Diurnal Variation in Systemic Acute Inflammation and Clinical Outcomes Following Severe Blunt Trauma. Front Immunol 2019; 10:2699. [PMID: 31824494 PMCID: PMC6879654 DOI: 10.3389/fimmu.2019.02699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Animal studies suggest that the time of day is a determinant of the immunological response to both injury and infection. We hypothesized that due to this diurnal variation, time of injury could affect the systemic inflammatory response and outcomes post-trauma and tested this hypothesis by examining the dynamics of circulating inflammatory mediators in blunt trauma patients injured during daytime vs. nighttime. From a cohort of 472 blunt trauma survivors, two stringently matched sub-cohorts of moderately/severely injured patients [injury severity score (ISS) >20] were identified. Fifteen propensity-matched, daytime-inured (“mDay”) patients (age 43.6 ± 5.2, M/F 11/4, ISS 22.9 ± 0.7) presented during the shortest local annual period (8:00 am−5:00 pm), and 15 propensity-matched “mNight” patients (age 43 ± 4.3, M/F 11/4, ISS 24.5 ± 2.5) presented during the shortest night period (10:00 pm−5:00 am). Serial blood samples were obtained (3 samples within the first 24 h and daily from days 1–7) from all patients. Thirty-two plasma inflammatory mediators were assayed. Two-way Analysis of Variance (ANOVA) was used to compare groups. Dynamic Network Analysis (DyNA) and Dynamic Bayesian Network (DyBN) inference were utilized to infer dynamic interrelationships among inflammatory mediators. Both total hospital and intensive care unit length of stay were significantly prolonged in the mNight group. Circulating IL-17A was elevated significantly in the mNight group from 24 h to 7 days post-injury. Circulating MIP-1α, IL-7, IL-15, GM-CSF, and sST2 were elevated in the mDay group. DyNA demonstrated elevated network complexity in the mNight vs. the mDay group. DyBN suggested that cortisol and sST2 were central nodes upstream of TGF-β1, chemokines, and Th17/protective mediators in both groups, with IL-6 being an additional downstream node in the mNight group only. Our results suggest that time of injury affects clinical outcomes in severely injured patients in a manner associated with an altered systemic inflammation program, possibly implying a role for diurnal or circadian variation in the response to traumatic injury.
Collapse
Affiliation(s)
- Akram M Zaaqoq
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Critical Care Medicine, MedStar Washington Hospital Center, Washington, DC, United States
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Othman Abdul-Malak
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Khalid Almahmoud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Critical Care Medicine, MedStar Washington Hospital Center, Washington, DC, United States
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
242
|
Tang Q, Xie M, Yu S, Zhou X, Xie Y, Chen G, Guo F, Chen L. Periodic Oxaliplatin Administration in Synergy with PER2-Mediated PCNA Transcription Repression Promotes Chronochemotherapeutic Efficacy of OSCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900667. [PMID: 31728273 PMCID: PMC6839751 DOI: 10.1002/advs.201900667] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/08/2019] [Indexed: 05/21/2023]
Abstract
Developing chemotherapeutic resistance affects clinical outcomes of oxaliplatin treatment on various types of cancer. Thus, it is imperative to explore alternative therapeutic strategies to improve the efficacy of oxaliplatin. Here, it is shown that circadian regulator period 2 (PER2) can potentiate the cytotoxicity of oxaliplatin and boost cell apoptosis by inhibiting DNA adducts repair in human oral squamous cell carcinoma (OSCC) cells. The circadian timing system is closely involved in controling the activity of DNA adducts repair and gives it a 24 h rhythm. The mechanistic dissection clarifies that PER2 can periodically suppress proliferating cell nuclear antigen (PCNA) transcription by pulling down circadian locomotor output cycles kaput-brain and muscle arnt-like 1 heterodimer from PCNA promoter in a CRY1/2-dependent manner, which subsequently impedes oxaliplatin-induced DNA adducts repair. Similarly, PER2 is capable of improving the efficacy of classical DNA-damaging chemotherapeutic agents. The tumor-bearing mouse model displays PER2 can be deployed as an oxaliplatin administration timing biomarker. In summary, it is believed that the chronochemotherapeutic strategy matching PER2 expression rhythm can efficiently improve the oxaliplatin efficacy of OSCC.
Collapse
Affiliation(s)
- Qingming Tang
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Mengru Xie
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shaoling Yu
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xin Zhou
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yanling Xie
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Guangjin Chen
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Fengyuan Guo
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lili Chen
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
243
|
Grote V, Levnajić Z, Puff H, Ohland T, Goswami N, Frühwirth M, Moser M. Dynamics of Vagal Activity Due to Surgery and Subsequent Rehabilitation. Front Neurosci 2019; 13:1116. [PMID: 31827417 PMCID: PMC6849369 DOI: 10.3389/fnins.2019.01116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Background Vagal activity is critical for maintaining key body functions, including the stability of inflammatory control. Its weakening, such as in the aftermatch of a surgery, leaves the body vulnerable to diverse inflammatory conditions, including sepsis. Methods Vagal activity can be measured by the cardiorespiratory interaction known as respiratory sinus arrhythmia or high-frequency heart-rate variability (HRV). We examined the vagal dynamics before, during and after an orthopedic surgery. 39 patients had their HRV measured around the period of operation and during subsequent rehabilitation. Measurements were done during 24 h circadian cycles on ten specific days. For each patient, the circadian vagal activity was calculated from HRV data. Results Our results confirm the deteriorating effect of surgery on vagal activity. Patients with stronger pre-operative vagal activity suffer greater vagal withdrawal during the peri-operative phase, but benefit from stronger improvements during post-operative period, especially during the night. Rehabilitation seems not only to efficiently restore the vagal activity to pre-operative level, but in some cases to actually improve it. Discussion Our findings indicate that orthopedic rehabilitation has the potential to strengthen the vagal activity and hence boost inflammatory control. We conclude that providing a patient with a vagal reinforcement procedure prior to the surgery (“pre-habilitation”) might be a beneficial strategy against post-operative complications. The study also shows the clinical usefulness of quantifying the cardiorespiratory interactions.
Collapse
Affiliation(s)
- Vincent Grote
- Human Research Institute, Weiz, Austria.,Orthopedic Rehabilitation Center, Humanomed Center Althofen, Althofen, Austria.,Division of Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Zoran Levnajić
- Complex Systems and Data Science Lab, Faculty of Information Studies in Novo Mesto, Novo Mesto, Slovenia
| | - Henry Puff
- Orthopedic Rehabilitation Center, Humanomed Center Althofen, Althofen, Austria
| | - Tanja Ohland
- Orthopedic Rehabilitation Center, Humanomed Center Althofen, Althofen, Austria
| | - Nandu Goswami
- Division of Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | | | - Maximilian Moser
- Human Research Institute, Weiz, Austria.,Division of Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
244
|
Conditional Controlled Light/Dark Cycle Influences Exercise-Induced Benefits in a Rat Model with Osteoarthritis: In Vitro and In Vivo Study. J Clin Med 2019; 8:jcm8111855. [PMID: 31684092 PMCID: PMC6912430 DOI: 10.3390/jcm8111855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022] Open
Abstract
Physical exercise has long been recommended as a treatment for osteoarthritis (OA), though its effects vary based on the exercise protocol. Here, we examined whether environmental lighting conditions influence the anti-inflammatory benefits of exercise in a rat model of OA. Moderate-intensity treadmill exercise (Ex) was performed for six weeks under a 12:12 h light/dark (L/D) cycle, and compared against rats housed in a 24 h continuous light (L/L) environment. L/L conditions were associated with serological changes shortly after OA induction, which exacerbated the inflammatory microenvironment in the joint. Differentiation capacity was also impaired in bone precursor cells isolated from normal rats maintained under L/L conditions, despite elevated inflammatory responses. Exercise training under L/L conditions led to increased corticosterone levels in the blood, which exacerbated the progression of cartilaginous and synovial lesions. Osteoporotic phenomena were also observed in exercise-trained rats maintained under L/L conditions, along with inflammation-induced catabolism in the gastrocnemius muscle. Aberrant light/dark cycle conditions were also found to be associated with suppression of splenic Cry1 expression in exercise-trained rats, leading to dysregulation of immune responses. Taken together, these data suggest that lighting condition may be an important environmental factor influencing the exercise-induced benefits on OA.
Collapse
|
245
|
Lin Y, Wang S, Zhou Z, Guo L, Yu F, Wu B. Bmal1 regulates circadian expression of cytochrome P450 3a11 and drug metabolism in mice. Commun Biol 2019; 2:378. [PMID: 31633069 PMCID: PMC6795895 DOI: 10.1038/s42003-019-0607-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolism is a major defense mechanism of the body against xenobiotic threats. Here we unravel a critical role of Bmal1 for circadian clock-controlled Cyp3a11 expression and xenobiotic metabolism. Bmal1 deficiency decreases the mRNA, protein and microsomal activity of Cyp3a11, and blunts their circadian rhythms in mice. A screen for Cyp3a11 regulators identifies two circadian genes Dbp and Hnf4α as potential regulatory mediators. Cell-based experiments confirm that Dbp and Hnf4α activate Cyp3a11 transcription by their binding to a D-box and a DR1 element in the Cyp3a11 promoter, respectively. Bmal1 binds to the P1 distal promoter to regulate Hnf4α transcriptionally. Cellular regulation of Cyp3a11 by Bmal1 is Dbp- and Hnf4α-dependent. Bmal1 deficiency sensitizes mice to toxicities of drugs such as aconitine and triptolide (and blunts circadian toxicity rhythmicities) due to elevated drug exposure. In summary, Bmal1 connects circadian clock and Cyp3a11 metabolism, thereby impacting drug detoxification as a function of daily time.
Collapse
Affiliation(s)
- Yanke Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, China
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Ziyue Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, China
| | - Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, China
| | - Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, China
| |
Collapse
|
246
|
Teng F, Goc J, Zhou L, Chu C, Shah MA, Eberl G, Sonnenberg GF. A circadian clock is essential for homeostasis of group 3 innate lymphoid cells in the gut. Sci Immunol 2019; 4:eaax1215. [PMID: 31586011 PMCID: PMC7008004 DOI: 10.1126/sciimmunol.aax1215] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) critically orchestrate host-microbe interactions in the healthy mammalian intestine and become substantially impaired in the context of inflammatory bowel disease (IBD). However, the molecular pathways controlling the homeostasis of ILC3s remain incompletely defined. Here, we identify that intestinal ILC3s are highly enriched in expression of genes involved in the circadian clock and exhibit diurnal oscillations of these pathways in response to light cues. Classical ILC3 effector functions also exhibited diurnal oscillations, and lineage-specific deletion of BMAL1, a master regulator of the circadian clock, resulted in markedly reduced ILC3s selectively in the intestine. BMAL1-deficient ILC3s exhibit impaired expression of Nr1d1 and Per3, hyperactivation of RORγt-dependent target genes, and elevated proapoptotic pathways. Depletion of the microbiota with antibiotics partially reduced the hyperactivation of BMAL1-deficient ILC3s and restored cellular homeostasis in the intestine. Last, ILC3s isolated from the inflamed intestine of patients with IBD exhibit substantial alterations in expression of several circadian-related genes. Our results collectively define that circadian regulation is essential for the homeostasis of ILC3s in the presence of a complex intestinal microbiota and that this pathway is disrupted in the context of IBD.
Collapse
Affiliation(s)
- Fei Teng
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Goc
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lei Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Coco Chu
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Manish A Shah
- Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Gérard Eberl
- Institut Pasteur, Microenvironment and Immunity Unit, Paris, France
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
247
|
Abstract
Metabolism and transport of many drugs oscillate with times of the day (solar time), resulting in circadian time-dependent drug exposure and pharmacokinetics.Time-dependent pharmacokinetics (also known as chronopharmacokinetics) is associated with time-varying drug effects and toxicity.This review summarizes drug-metabolizing enzymes and transporters with rhythmic expressions in the liver, intestine and/or kidney. Correlations of these diurnal proteins with circadian variations in drug exposure and effects/toxicity are covered. We also discuss the molecular mechanisms for circadian control of enzymes and transporters.Mechanism-based chronopharmacokinetics would facilitate a better understanding of chronopharmacology and the design of time-specific drug delivery systems, ultimately leading to improved drug efficacy and minimized toxicity.
Collapse
Affiliation(s)
- Mengjing Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Huijie Xing
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
248
|
Nakao A. Clockwork allergy: How the circadian clock underpins allergic reactions. J Allergy Clin Immunol 2019; 142:1021-1031. [PMID: 30293559 DOI: 10.1016/j.jaci.2018.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022]
Abstract
Allergic disease is characterized by marked day-night changes in the clinical symptoms and laboratory parameters of allergy. Recent reports suggest that the circadian clock, which drives a biological rhythm with a periodicity of approximately 24 hours in behavior and physiology, underpins a time of day-dependent variation in allergic reactions. New studies also suggest that disruption of clock activity not only influences temporal variation but can also enhance the severity of allergic reactions and even increase susceptibility to allergic disease. These findings suggest that the circadian clock is a potent regulator of allergic reactions that plays more than a simple circadian timekeeping role in allergy. A better understanding of these processes will provide new insight into previously unknown aspects of the biology of allergies and can lead to the application of clock modifiers to treat allergic disease. Finally, this area of research provides a novel opportunity to consider how modern lifestyles in the developed world are changing the clinical manifestations of allergy as our society quickly transforms into a circadian rhythm-disrupted society in which sleeping, working, and eating habits are out of sync with endogenous circadian rhythmicity. Such findings might reveal lifestyle interventions that enable us to better control allergic disease.
Collapse
Affiliation(s)
- Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan; Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
249
|
The circadian clock of CD8 T cells modulates their early response to vaccination and the rhythmicity of related signaling pathways. Proc Natl Acad Sci U S A 2019; 116:20077-20086. [PMID: 31527231 DOI: 10.1073/pnas.1905080116] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Circadian variations of various aspects of the immune system have been described. However, the circadian control of T cells has been relatively unexplored. Here, we investigated the role of circadian clocks in regulating CD8 T cell response to antigen presentation by dendritic cells (DCs). The in vivo CD8 T cell response following vaccination with DCs loaded with the OVA257-264 peptide antigen (DC-OVA) leads to a higher expansion of OVA-specific T cells in response to vaccination done in the middle of the day, compared to other time points. This rhythm was dampened when DCs deficient for the essential clock gene Bmal1 were used and abolished in mice with a CD8 T cell-specific Bmal1 deletion. Thus, we assessed the circadian transcriptome of CD8 T cells and found an enrichment in the daytime of genes and pathways involved in T cell activation. Based on this, we investigated early T cell activation events. Three days postvaccination, we found higher T cell activation markers and related signaling pathways (including IRF4, mTOR, and AKT) after a vaccination done during the middle of the day compared to the middle of the night. Finally, the functional impact of the stronger daytime response was shown by a more efficient response to a bacterial challenge at this time of day. Altogether, these results suggest that the clock of CD8 T cells modulates the response to vaccination by shaping the transcriptional program of these cells and making them more prone to strong and efficient activation and proliferation according to the time of day.
Collapse
|
250
|
Sengupta S, Tang SY, Devine JC, Anderson ST, Nayak S, Zhang SL, Valenzuela A, Fisher DG, Grant GR, López CB, FitzGerald GA. Circadian control of lung inflammation in influenza infection. Nat Commun 2019; 10:4107. [PMID: 31511530 PMCID: PMC6739310 DOI: 10.1038/s41467-019-11400-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza is a leading cause of respiratory mortality and morbidity. While inflammation is essential for fighting infection, a balance of anti-viral defense and host tolerance is necessary for recovery. Circadian rhythms have been shown to modulate inflammation. However, the importance of diurnal variability in the timing of influenza infection is not well understood. Here we demonstrate that endogenous rhythms affect survival in influenza infection. Circadian control of influenza infection is mediated by enhanced inflammation as proven by increased cellularity in bronchoalveolar lavage (BAL), pulmonary transcriptomic profile and histology and is not attributable to viral burden. Better survival is associated with a time dependent preponderance of NK and NKT cells and lower proportion of inflammatory monocytes in the lung. Further, using a series of genetic mouse mutants, we elucidate cellular mechanisms underlying circadian gating of influenza infection.
Collapse
Affiliation(s)
- Shaon Sengupta
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Soon Y Tang
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Systems Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jill C Devine
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Seán T Anderson
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Systems Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Soumyashant Nayak
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shirley L Zhang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Alex Valenzuela
- University of Pennsylvania Veterinary School, Philadelphia, PA, 19104, USA
| | - Devin G Fisher
- University of Pennsylvania Veterinary School, Philadelphia, PA, 19104, USA
| | - Gregory R Grant
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Carolina B López
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- University of Pennsylvania Veterinary School, Philadelphia, PA, 19104, USA
| | - Garret A FitzGerald
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Systems Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|