201
|
Wadhwani AR, Affaneh A, Van Gulden S, Kessler JA. Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in alzheimer disease. Ann Neurol 2019; 85:726-739. [PMID: 30840313 PMCID: PMC8123085 DOI: 10.1002/ana.25455] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The apolipoprotein E (APOE) E4 isoform is the strongest genetic risk factor for sporadic Alzheimer disease (AD). Although APOE is predominantly expressed by astrocytes in the central nervous system, neuronal expression of APOE is of increasing interest in age-related cognitive impairment, neurological injury, and neurodegeneration. Here, we show that endogenous expression of E4 in stem-cell-derived neurons predisposes them to injury and promotes the release of phosphorylated tau. METHODS Induced pluripotent stem cells from 2 unrelated AD patients carrying the E4 allele were corrected to the E3/E3 genotype with the CRISPR/Cas9 system and differentiated into pure cultures of forebrain excitatory neurons without contamination from other cells types. RESULTS Compared to unedited E4 neurons, E3 neurons were less susceptible to ionomycin-induced cytotoxicity. Biochemically, E4 cells exhibited increased tau phosphorylation and ERK1/2 phosphoactivation. Moreover, E4 neurons released increased amounts of phosphorylated tau extracellularly in an isoform-dependent manner by a heparin sulfate proteoglycan-dependent mechanism. INTERPRETATION Our results demonstrate that endogenous expression of E4 by stem-cell-derived forebrain excitatory neurons predisposes neurons to calcium dysregulation and ultimately cell death. This change is associated with increased cellular tau phosphorylation and markedly enhanced release of phosphorylated tau. Importantly, these effects are independent of glial APOE. These findings suggest that E4 accelerates spreading of tau pathology and neuron death in part by neuron-specific, glia-independent mechanisms. Ann Neurol 2019;85:726-739.
Collapse
Affiliation(s)
- Anil R Wadhwani
- Department of Neurology, Northwestern University, Chicago, IL
| | - Amira Affaneh
- Department of Neurology, Northwestern University, Chicago, IL
| | | | - John A Kessler
- Department of Neurology, Northwestern University, Chicago, IL
| |
Collapse
|
202
|
Hachinski V. Dementia: Paradigm shifting into high gear. Alzheimers Dement 2019; 15:985-994. [PMID: 30979540 DOI: 10.1016/j.jalz.2019.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/30/2022]
Abstract
Redressing the rising threat of dementia demands not only an increase, but a diversification of efforts. We need new approaches, trials, and partners. We cannot afford to continue to only round up the usual suspects, β amyloid, and tau and try to stop them with a single drug "silver bullet". Dementia of late onset is not a disease, but an amalgam of interactive pathologies on the shifting background of aging, requiring multimodal targeting. Cerebrovascular diseases coexist and coact with all major neurodegenerative pathologies, increasing two-fold the likelihood that they will manifest clinically. Cerebrovascular diseases need to be controlled, to give antidegenerative drugs a chance to succeed. This calls for new types of trials and designs. Stroke doubles the chances of developing dementia and decreases in stroke incidence correlate with decreases in dementia. Ninety percent of strokes are potentially preventable and so are a proportion of dementias. The stroke and dementia communities need to partner and complement the search for silver bullets with the golden opportunity of doing something now.
Collapse
Affiliation(s)
- Vladimir Hachinski
- Schulich School of Medicine & Dentistry, Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
203
|
Wang X, Zheng W. Ca 2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles. FASEB J 2019; 33:6697-6712. [PMID: 30848934 DOI: 10.1096/fj.201801751r] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that Ca2+ is a vital factor in modulating the pathogenesis of Alzheimer's disease (AD). In healthy neurons, Ca2+ concentration is balanced to maintain a lower level in the cytosol than in the extracellular space or certain intracellular compartments such as endoplasmic reticulum (ER) and the lysosome, whereas this homeostasis is broken in AD. On the plasma membrane, the AD hallmarks amyloid-β (Aβ) and tau interact with ligand-gated or voltage-gated Ca2+-influx channels and inhibit the Ca2+-efflux ATPase or exchangers, leading to an elevated intracellular Ca2+ level and disrupted Ca2+ signal. In the ER, the disabled presenilin "Ca2+ leak" function and the direct implications of Aβ and presenilin mutants contribute to Ca2+-signal disorder. The enhanced ryanodine receptor (RyR)-mediated and inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the ER aggravates cytosolic Ca2+ disorder and triggers apoptosis; the down-regulated ER Ca2+ sensor, stromal interaction molecule (STIM), alleviates store-operated Ca2+ entry in plasma membrane, leading to spine loss. The increased transfer of Ca2+ from ER to mitochondria through mitochondria-associated ER membrane (MAM) causes Ca2+ overload in the mitochondrial matrix and consequently opens the cellular damage-related channel, mitochondrial permeability transition pore (mPTP). In this review, we discuss the effects of Aβ, tau and presenilin on neuronal Ca2+ signal, focusing on the receptors and regulators in plasma membrane and ER; we briefly introduce the involvement of MAM-mediated Ca2+ transfer and mPTP opening in AD pathogenesis.-Wang, X., Zheng, W. Ca2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles.
Collapse
Affiliation(s)
- Xingjian Wang
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
204
|
Zaidi A, Adewale M, McLean L, Ramlow P. The plasma membrane calcium pumps-The old and the new. Neurosci Lett 2019; 663:12-17. [PMID: 29452610 DOI: 10.1016/j.neulet.2017.09.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 12/27/2022]
Abstract
The plasma membrane Ca2+-ATPase (PMCA) pumps play a critical role in the maintenance of calcium (Ca2+) homeostasis, crucial for optimal neuronal function and cell survival. Loss of Ca2+ homeostasis is a key precursor in neuronal dysfunction associated with brain aging and in the pathogenesis of neurodegenerative disorders. In this article, we review evidence showing age-related changes in the PMCAs in synaptic plasma membranes (SPMs) and lipid raft microdomains isolated from rat brain. Both PMCA activity and protein levels decline progressively with increasing age. However, the loss of activity is disproportionate to the reduction of protein levels suggesting the presence of dysfunctional PMCA molecules in aged brain. PMCA activity is also diminished in post-mortem human brain samples from Alzheimer's disease and Parkinson's disease patients and in cell models of these neurodegenerative disorders. Experimental reduction of the PMCAs not only alter Ca2+ homeostasis but also have diverse effects on neurons such as reduced neuritic network, impaired release of neurotransmitter and increased susceptibility to stressful stimuli, particularly to agents that elevate intracellular Ca2+ [Ca2+]i. Loss of PMCA is likely to contribute to neuronal dysfunction observed in the aging brain and in the development of age-dependent neurodegenerative disorders. Therapeutic (pharmacological and/or non-pharmacological) approaches that can enhance PMCA activity and stabilize [Ca2+]i homeostasis may be capable of preventing, slowing, and/or reversing neuronal degeneration.
Collapse
Affiliation(s)
- Asma Zaidi
- Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106, USA.
| | - Mercy Adewale
- Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106, USA
| | - Lauren McLean
- Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106, USA
| | - Paul Ramlow
- Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106, USA
| |
Collapse
|
205
|
The Effectiveness of Vitamin E Treatment in Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20040879. [PMID: 30781638 PMCID: PMC6412423 DOI: 10.3390/ijms20040879] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Vitamin E was proposed as treatment for Alzheimer’s disease many years ago. However, the effectiveness of the drug is not clear. Vitamin E is an antioxidant and neuroprotector and it has anti-inflammatory and hypocholesterolemic properties, driving to its importance for brain health. Moreover, the levels of vitamin E in Alzheimer’s disease patients are lower than in non-demented controls. Thus, vitamin E could be a good candidate to have beneficial effects against Alzheimer’s. However, evidence is consistent with a limited effectiveness of vitamin E in slowing progression of dementia; the information is mixed and inconclusive. The question is why does vitamin E fail to treat Alzheimer’s disease? In this paper we review the studies with and without positive results in Alzheimer’s disease and we discuss the reasons why vitamin E as treatment sometimes has positive results on cognition but at others, it does not.
Collapse
|
206
|
Núñez MT, Hidalgo C. Noxious Iron-Calcium Connections in Neurodegeneration. Front Neurosci 2019; 13:48. [PMID: 30809110 PMCID: PMC6379295 DOI: 10.3389/fnins.2019.00048] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
Iron and calcium share the common feature of being essential for normal neuronal function. Iron is required for mitochondrial function, synaptic plasticity, and the development of cognitive functions whereas cellular calcium signals mediate neurotransmitter exocytosis, axonal growth and synaptic plasticity, and control the expression of genes involved in learning and memory processes. Recent studies have revealed that cellular iron stimulates calcium signaling, leading to downstream activation of kinase cascades engaged in synaptic plasticity. The relationship between calcium and iron is Janus-faced, however. While under physiological conditions iron-mediated reactive oxygen species generation boosts normal calcium-dependent signaling pathways, excessive iron levels promote oxidative stress leading to the upsurge of unrestrained calcium signals that damage mitochondrial function, among other downstream targets. Similarly, increases in mitochondrial calcium to non-physiological levels result in mitochondrial dysfunction and a predicted loss of iron homeostasis. Hence, if uncontrolled, the iron/calcium self-feeding cycle becomes deleterious to neuronal function, leading eventually to neuronal death. Here, we review the multiple cell-damaging responses generated by the unregulated iron/calcium self-feeding cycle, such as excitotoxicity, free radical-mediated lipid peroxidation, and the oxidative modification of crucial components of iron and calcium homeostasis/signaling: the iron transporter DMT1, plasma membrane, and intracellular calcium channels and pumps. We discuss also how iron-induced dysregulation of mitochondrial calcium contributes to the generation of neurodegenerative conditions, including Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Marco Tulio Núñez
- Iron and Neuroregeneration Laboratory, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Calcium Signaling Laboratory, Biomedical Research Institute, CEMC, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
207
|
Pang C, Yang H, Hu B, Wang S, Chen M, Cohen DS, Chen HS, Jarrell JT, Carpenter KA, Rosin ER, Huang X. Identification and Analysis of Alzheimer's Candidate Genes by an Amplitude Deviation Algorithm. ACTA ACUST UNITED AC 2019; 9. [PMID: 31080696 PMCID: PMC6505709 DOI: 10.4172/2161-0460.1000460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Alzheimer’s disease (AD) is the most common form of senile dementia. However, its pathological mechanisms are not fully understood. In order to comprehend AD pathological mechanisms, researchers employed AD-related DNA microarray data and diverse computational algorithms. More efficient computational algorithms are needed to process DNA microarray data for identifying AD-related candidate genes. Methods: In this paper, we propose a specific algorithm that is based on the following observation: When an acrobat walks along a steel-wire, his/her body must have some swing; if the swing can be controlled, then the acrobat can maintain the body balance. Otherwise, the acrobat will fall. Based on this simple idea, we have designed a simple, yet practical, algorithm termed as the Amplitude Deviation Algorithm (ADA). Deviation, overall deviation, deviation amplitude, and 3δ are introduced to characterize ADA. Results: 52 candidate genes for AD have been identified via ADA. The implications for some of the AD candidate genes in AD pathogenesis have been discussed. Conclusions: Through the analysis of these AD candidate genes, we believe that AD pathogenesis may be related to the abnormality of signal transduction (AGTR1 and PTAFR), the decrease in protein transport capacity (COL5A2 (221729_at), COL5A2 (221730_at), COL4A1), the impairment of axon repair (CNR1), and the intracellular calcium dyshomeostasis (CACNB2, CACNA1E). However, their potential implication for AD pathology should be further validated by wet lab experiments as they were only identified by computation using ADA.
Collapse
Affiliation(s)
- Chaoyang Pang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Hualan Yang
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - Benqiong Hu
- College of Management Science, Chengdu University of Technology, Chengdu, China
| | - Shipeng Wang
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - Meixia Chen
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - David S Cohen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hannah S Chen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kristy A Carpenter
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
208
|
Tellez Freitas CM, Burrell HR, Valdoz JC, Hamblin GJ, Raymond CM, Cox TD, Johnson DK, Andersen JL, Weber KS, Bridgewater LC. The nuclear variant of bone morphogenetic protein 2 (nBMP2) is expressed in macrophages and alters calcium response. Sci Rep 2019; 9:934. [PMID: 30700748 PMCID: PMC6353957 DOI: 10.1038/s41598-018-37329-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022] Open
Abstract
We previously identified a nuclear variant of bone morphogenetic protein 2 (BMP2), named nBMP2, that is translated from an alternative start codon. Decreased nuclear localization of nBMP2 in the nBmp2NLStm mouse model leads to muscular, neurological, and immune phenotypes-all of which are consistent with aberrant intracellular calcium (Ca2+) response. Ca2+ response in these mice, however, has yet to be measured directly. Because a prior study suggested impairment of macrophage function in nBmp2NLStm mutant mice, bone marrow derived (BMD) macrophages and splenic macrophages were isolated from wild type and nBmp2NLStm mutant mice. Immunocytochemistry revealed that nuclei of both BMD and splenic macrophages from wild type mice contain nBMP2, while the protein is decreased in nuclei of nBmp2NLStm mutant macrophages. Live-cell Ca2+ imaging and engulfment assays revealed that Ca2+ response and phagocytosis in response to bacterial supernatant are similar in BMD macrophages isolated from naïve (uninfected) nBmp2NLStm mutant mice and wild type mice, but are deficient in splenic macrophages isolated from mutant mice after secondary systemic infection with Staphylococcus aureus, suggesting progressive impairment as macrophages respond to infection. This direct evidence of impaired Ca2+ handling in nBMP2 mutant macrophages supports the hypothesis that nBMP2 plays a role in Ca2+ response.
Collapse
Affiliation(s)
- Claudia M Tellez Freitas
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Haley R Burrell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Jonard C Valdoz
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Garrett J Hamblin
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Carlee M Raymond
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Tyler D Cox
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Deborah K Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Laura C Bridgewater
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America.
| |
Collapse
|
209
|
Al Rihani SB, Lan RS, Kaddoumi A. Granisetron Alleviates Alzheimer's Disease Pathology in TgSwDI Mice Through Calmodulin-Dependent Protein Kinase II/cAMP-Response Element Binding Protein Pathway. J Alzheimers Dis 2019; 72:1097-1117. [PMID: 31683487 PMCID: PMC7183768 DOI: 10.3233/jad-190849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is characterized by a compromised blood-brain barrier (BBB) and disrupted intracellular calcium homeostasis in the brain. Therefore, rectifying the BBB integrity and restoring calcium homeostasis could provide an effective strategy to treat AD. Recently, we developed a high throughput-screening assay to screen for compounds that enhance a cell-based BBB model integrity, which identified multiple hits among which is granisetron, a Food and Drug Administration approved drug. Here, we evaluated the therapeutic potential of granisetron against AD. Granisetron was tested in C57Bl/6J young and aged wild-type mice, and in a transgenic mouse model of AD namely TgSwDI for its effect on BBB intactness and amyloid-β (Aβ)-related pathology. Our study findings showed that granisetron enhanced BBB integrity in both aged and TgSwDI mice. This effect was associated with an overall reduction in Aβ load and neuroinflammation in TgSwDI mice brains. In addition, and supported by proteomics analysis, granisetron significantly reduced Aβ induced calcium influx in vitro, and rectified calcium dyshomeostasis in TgSwDI mice brains by restoring calmodulin-dependent protein kinase II/cAMP-response element binding protein pathway, which was associated with cognitive improvement. These results support granisetron repurposing as a potential drug to hold, slow, and/or treat AD.
Collapse
Affiliation(s)
- Sweilem B. Al Rihani
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, AL, 36849
| | - Renny S. Lan
- Department of Biochemistry and Molecular Biology, Biomedical Research Building, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, AL, 36849
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| |
Collapse
|
210
|
Abstract
β-amyloid is regarded by some scientists to be the cause of Alzheimer’s disease (AD). One of the strongest arguments against this hypothesis is the presence of hundreds of AD-causing mutations in presenilin, but none in the other three components of γ-secretase. This observation implies a γ-secretase–independent function of presenilin. To understand such a putative function, discovery of presenilin-binding proteins represents an important first step. In this study, we report the identification of Bax-inhibitor 1 (BI1) as a stable interacting partner of presenilin 1 (PS1), but not the intact γ-secretase. Our results link PS1 to BI1, a protein thought to play a role in apoptosis and calcium channel regulation. This finding opens a range of possibilities for the investigation of PS1 function and AD genesis. Presenilin is the catalytic subunit of γ-secretase, a four-component intramembrane protease responsible for the generation of β-amyloid (Aβ) peptides. Over 200 Alzheimer’s disease-related mutations have been identified in presenilin 1 (PS1) and PS2. Here, we report that Bax-inhibitor 1 (BI1), an evolutionarily conserved transmembrane protein, stably associates with PS1. BI1 specifically interacts with PS1 in isolation, but not with PS1 in the context of an assembled γ-secretase. The PS1–BI1 complex exhibits no apparent proteolytic activity, as judged by the inability to produce Aβ40 and Aβ42 from the substrate APP-C99. At an equimolar concentration, BI1 has no impact on the proteolytic activity of γ-secretase; at a 200-fold molar excess, BI1 reduces γ-secretase activity nearly by half. Our biochemical study identified BI1 as a PS1-interacting protein, suggesting additional functions of PS1 beyond its involvement in γ-secretase.
Collapse
|
211
|
Sabbir MG. Loss of Ca 2+/Calmodulin Dependent Protein Kinase Kinase 2 Leads to Aberrant Transferrin Phosphorylation and Trafficking: A Potential Biomarker for Alzheimer's Disease. Front Mol Biosci 2018; 5:99. [PMID: 30525042 PMCID: PMC6256988 DOI: 10.3389/fmolb.2018.00099] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine kinase that is activated following an increase in the intracellular Ca2+ concentration and activates multiple signaling cascades that control physiologically important neuronal processes. CaMKK2 has been implicated in schizophrenia, bipolar disease, neurodegeneration, and cancer. Using isoelectric focusing (IEF) and mass spectrometry-based proteomic analysis, it was found that knockdown (KD) of CaMKK2 in cultured adult primary dorsal root ganglion (DRG) neurons resulted in the reduction of transferrin (TF) phosphorylation at multiple functionally relevant residues which corresponded to loss of an acidic fraction (pH~3-4) of TF. In vitro studies using CRISPR/Cas9 based CaMKK2 knockout (KO) HEK293 and HepG2 cells lines validated previous findings and revealed that loss of CaMKK2 interfered with TF trafficking and turnover. TF is an iron transporter glycoprotein. Abnormal accumulation of iron and/or deregulated Ca2+ homeostasis leads to neurodegeneration in Alzheimer's disease (AD). Therefore, it was hypothesized that aberrant CaMKK2 in AD may lead to aberrant phosphorylated transferrin (P-TF: pH~3-4 fraction) which may serve as a hallmark biomarker for AD. A significant reduction of P-TF in the brain and serum of CaMKK2 KO mice and a triple-transgenic mouse model of AD (3xTg-AD) supported this hypothesis. In addition, analysis of early (< 65 years) and late-stage (>65 years) postmortem human AD cerebrospinal fluid (CSF) and serum samples revealed that aberrant P-TF (pH~3-4 fraction) profile was associated with both early and late-stage AD compared to age-matched controls. This indicates P-TF (pH~3-4 fraction) profile may be useful as a minimally invasive biomarker for AD. In addition, this study provides a link between aberrant CaMKK2 with TF trafficking and turnover which provides a novel insight into the neurodegeneration process.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| |
Collapse
|
212
|
Kirsebom BE, Nordengen K, Selnes P, Waterloo K, Torsetnes SB, Gísladóttir B, Brix B, Vanmechelen E, Bråthen G, Hessen E, Aarsland D, Fladby T. Cerebrospinal fluid neurogranin/β-site APP-cleaving enzyme 1 predicts cognitive decline in preclinical Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:617-627. [PMID: 30519627 PMCID: PMC6260221 DOI: 10.1016/j.trci.2018.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Introduction The cerebrospinal fluid neurogranin (Ng)/β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) ratio may reflect synaptic affection resulting from reduced beta-amyloid (Aβ) clearance. We hypothesize that increased Ng/BACE1 ratio predicts the earliest cognitive decline in Alzheimer's disease. Methods We compared Ng/BACE1 levels between cases with subjective cognitive decline (n = 18) and mild cognitive impairment (n = 20) both with amyloid plaques and healthy controls (APOE-ε4+, n = 16; APOE-ε4-, n = 20). We performed regression analyses between cerebrospinal fluid levels, baseline hippocampal and amygdala volumes, and pertinent cognitive measures (memory, attention, Mini Mental State Examination [MMSE]) at baseline and after 2 years. Results Ng/BACE1 levels were elevated in both subjective cognitive decline and mild cognitive impairment compared to healthy controls. Higher Ng/BACE1 ratio was associated with lower hippocampal and amygdala volumes; lower baseline memory functions, attention, and MMSE; and significant decline in MMSE and memory function at 2-year follow-up. Discussion High Ng/BACE1 ratio predicts cognitive decline also in preclinical cases with amyloid plaques. CSF Ng/BACE1 may confer synapse loss tied to β-amyloid disease mechanism. CSF Ng/BACE1 is increased already in preclinical cases with amyloid plaques High CSF Ng/BACE1 is the only biomarker related to lower baseline memory function. High CSF Ng is the only biomarker related to reduced baseline hippocampal volume. High CSF Ng predicts decline in verbal memory function at 2-year follow-up.
Collapse
Affiliation(s)
- Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway.,Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kaja Nordengen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway.,Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Berglind Gísladóttir
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Molecular Biology (EpiGen), Institute of Clinical Medicine, University of Oslo, Akershus University Hospital, Lørenskog, Norway
| | | | | | - Geir Bråthen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Erik Hessen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| |
Collapse
|
213
|
Czeredys M, Vigont VA, Boeva VA, Mikoshiba K, Kaznacheyeva EV, Kuznicki J. Huntingtin-Associated Protein 1A Regulates Store-Operated Calcium Entry in Medium Spiny Neurons From Transgenic YAC128 Mice, a Model of Huntington's Disease. Front Cell Neurosci 2018; 12:381. [PMID: 30455632 PMCID: PMC6231533 DOI: 10.3389/fncel.2018.00381] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disease that is caused by polyglutamine expansion within the huntingtin (HTT) gene. One of the cellular activities that is dysregulated in HD is store-operated calcium entry (SOCE), a process by which Ca2+ release from the endoplasmic reticulum (ER) induces Ca2+ influx from the extracellular space. HTT-associated protein-1 (HAP1) is a binding partner of HTT. The aim of the present study was to examine the role of HAP1A protein in regulating SOCE in YAC128 mice, a transgenic model of HD. After Ca2+ depletion from the ER by the activation of inositol-(1,4,5)triphosphate receptor type 1 (IP3R1), we detected an increase in the activity of SOC channels when HAP1 protein isoform HAP1A was overexpressed in medium spiny neurons (MSNs) from YAC128 mice. A decrease in the activity of SOC channels in YAC128 MSNs was observed when HAP1 protein was silenced. In YAC128 MSNs that overexpressed HAP1A, an increase in activity of IP3R1 was detected while the ionomycin-sensitive ER Ca2+ pool decreased. 6-Bromo-N-(2-phenylethyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine hydrochloride (C20H22BrClN2), identified in our previous studies as a SOCE inhibitor, restored the elevation of SOCE in YAC128 MSN cultures that overexpressed HAP1A. The IP3 sponge also restored the elevation of SOCE and increased the release of Ca2+ from the ER in YAC128 MSN cultures that overexpressed HAP1A. The overexpression of HAP1A in the human neuroblastoma cell line SK-N-SH (i.e., a cellular model of HD (SK-N-SH HTT138Q)) led to the appearance of a pool of constitutively active SOC channels and an increase in the expression of STIM2 protein. Our results showed that HAP1A causes the activation of SOC channels in HD models by affecting IP3R1 activity.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Warsaw, Poland
| | - Vladimir A. Vigont
- Institute of Cytology, Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Vasilisa A. Boeva
- Institute of Cytology, Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), Saitama, Japan
| | | | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Warsaw, Poland
| |
Collapse
|
214
|
Popugaeva E, Pchitskaya E, Bezprozvanny I. Dysregulation of Intracellular Calcium Signaling in Alzheimer's Disease. Antioxid Redox Signal 2018; 29:1176-1188. [PMID: 29890840 PMCID: PMC6157344 DOI: 10.1089/ars.2018.7506] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calcium (Ca2+) hypothesis of Alzheimer's disease (AD) gains popularity. It points to new signaling pathways that may underlie AD pathogenesis. Based on calcium hypothesis, novel targets for the development of potential AD therapies are identified. Recent Advances: Recently, the key role of neuronal store-operated calcium entry (nSOCE) in the development of AD has been described. Correct regulation of nSOCE is necessary for the stability of postsynaptic contacts to preserve the memory formation. Molecular identity of hippocampal nSOCE is defined. Perspective nSOCE-activating molecule, prototype of future anti-AD drugs, is described. CRITICAL ISSUES Endoplasmic reticulum Ca2+ overload happens in many but not in all AD models. The nSOCE targeting therapy described in this review may not be universally applicable. FUTURE DIRECTIONS There is a need to determine whether AD is a syndrome with one critical signaling pathway that initiates pathology, or it is a disorder with many different signaling pathways that are disrupted simultaneously or one after each other. It is necessary to validate applicability of nSOCE-activating therapy for the development of anti-AD medication. There is an experimental correlation between downregulated nSOCE and disrupted postsynaptic contacts in AD mouse models. Signaling mechanisms downstream of nSOCE which are responsible for the regulation of stability of postsynaptic contacts have to be discovered. That will bring new targets for the development of AD-preventing therapies. Antioxid. Redox Signal. 29, 1176-1188.
Collapse
Affiliation(s)
- Elena Popugaeva
- 1 Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University , St.Petersburg, Russian Federation
| | - Ekaterina Pchitskaya
- 1 Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University , St.Petersburg, Russian Federation
| | - Ilya Bezprozvanny
- 1 Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University , St.Petersburg, Russian Federation.,2 Department of Physiology, UT Southwestern Medical Center at Dallas , Dallas, Texas
| |
Collapse
|
215
|
Zebrafish: an emerging real-time model system to study Alzheimer's disease and neurospecific drug discovery. Cell Death Discov 2018; 4:45. [PMID: 30302279 PMCID: PMC6170431 DOI: 10.1038/s41420-018-0109-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
Zebrafish (Danio rerio) is emerging as an increasingly successful model for translational research on human neurological disorders. In this review, we appraise the high degree of neurological and behavioural resemblance of zebrafish with humans. It is highly validated as a powerful vertebrate model for investigating human neurodegenerative diseases. The neuroanatomic and neurochemical pathways of zebrafish brain exhibit a profound resemblance with the human brain. Physiological, emotional and social behavioural pattern similarities between them have also been well established. Interestingly, zebrafish models have been used successfully to simulate the pathology of Alzheimer’s disease (AD) as well as Tauopathy. Their relatively simple nervous system and the optical transparency of the embryos permit real-time neurological imaging. Here, we further elaborate on the use of recent real-time imaging techniques to obtain vital insights into the neurodegeneration that occurs in AD. Zebrafish is adeptly suitable for Ca2+ imaging, which provides a better understanding of neuronal activity and axonal dystrophy in a non-invasive manner. Three-dimensional imaging in zebrafish is a rapidly evolving technique, which allows the visualisation of the whole organism for an elaborate in vivo functional and neurophysiological analysis in disease condition. Suitability to high-throughput screening and similarity with humans makes zebrafish an excellent model for screening neurospecific compounds. Thus, the zebrafish model can be pivotal in bridging the gap from the bench to the bedside. This fish is becoming an increasingly successful model to understand AD with further scope for investigation in neurodevelopment and neurodegeneration, which promises exciting research opportunities in the future.
Collapse
|
216
|
An updated Alzheimer hypothesis: Complement C3 and risk of Alzheimer's disease-A cohort study of 95,442 individuals. Alzheimers Dement 2018; 14:1589-1601. [PMID: 30243924 DOI: 10.1016/j.jalz.2018.07.223] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION We tested the hypothesis that low plasma complement C3 is observationally and genetically associated with high risk of Alzheimer's disease (AD). METHODS We studied 95,442 individuals enrolled in the Copenhagen General Population Study. In genetic analyses, we further included 8367 individuals from the Copenhagen City Heart Study. In the two studies, 1189 and 35 developed AD during median 8 years follow-up. RESULTS The multifactorially adjusted hazard ratio for risk of AD for a one standard deviation lower levels of complement C3 was 1.11 (95% confidence interval: 1.04-1.19) in all individuals and 1.66 (1.33-2.07) in APOE ε44 carriers. In Mendelian randomization, the corresponding genetic estimates were 1.66 (1.05-2.63) overall and 1.99 (0.52-7.65) in APOE ε44 carriers. DISCUSSION Low baseline levels of complement C3 were associated with high risk of AD. The risk was amplified in APOE ε44 highly susceptible individuals, and these findings were substantiated by a Mendelian randomization approach, potentially implying causality. Based on these findings, we present and thoroughly discuss an updated Alzheimer hypothesis incorporating low complement C3 levels.
Collapse
|
217
|
Toglia P, Demuro A, Mak DOD, Ullah G. Data-driven modeling of mitochondrial dysfunction in Alzheimer's disease. Cell Calcium 2018; 76:23-35. [PMID: 30248575 DOI: 10.1016/j.ceca.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
Intracellular accumulation of oligomeric forms of β amyloid (Aβ) are now believed to play a key role in the earliest phase of Alzheimer's disease (AD) as their rise correlates well with the early symptoms of the disease. Extensive evidence points to impaired neuronal Ca2+ homeostasis as a direct consequence of the intracellular Aβ oligomers. However, little is known about the downstream effects of the resulting Ca2+ rise on the many intracellular Ca2+-dependent pathways. Here we use multiscale modeling in conjunction with patch-clamp electrophysiology of single inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and fluorescence imaging of whole-cell Ca2+ response, induced by exogenously applied intracellular Aβ42 oligomers to show that Aβ42 inflicts cytotoxicity by impairing mitochondrial function. Driven by patch-clamp experiments, we first model the kinetics of IP3R, which is then extended to build a model for the whole-cell Ca2+ signals. The whole-cell model is then fitted to fluorescence signals to quantify the overall Ca2+ release from the endoplasmic reticulum by intracellular Aβ42 oligomers through G-protein-mediated stimulation of IP3 production. The estimated IP3 concentration as a function of intracellular Aβ42 content together with the whole-cell model allows us to show that Aβ42 oligomers impair mitochondrial function through pathological Ca2+ uptake and the resulting reduced mitochondrial inner membrane potential, leading to an overall lower ATP and increased production of reactive oxygen species and H2O2. We further show that mitochondrial function can be restored by the addition of Ca2+ buffer EGTA, in accordance with the observed abrogation of Aβ42 cytotoxicity by EGTA in our live cells experiments.
Collapse
Affiliation(s)
- Patrick Toglia
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Angelo Demuro
- Department of Neurobiology and Behavior and Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Don-On Daniel Mak
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
218
|
Yao F, Hong X, Li S, Zhang Y, Zhao Q, Du W, Wang Y, Ni J. Urine-Based Biomarkers for Alzheimer’s Disease Identified Through Coupling Computational and Experimental Methods. J Alzheimers Dis 2018; 65:421-431. [DOI: 10.3233/jad-180261] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fang Yao
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaoyu Hong
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| | - Shuiming Li
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| | - Yan Zhang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| | - Qing Zhao
- Department of Neurology, China-Japan Union Hospital, Changchun, China
| | - Wei Du
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yong Wang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| | - Jiazuan Ni
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, China
| |
Collapse
|
219
|
STIM1 deficiency is linked to Alzheimer's disease and triggers cell death in SH-SY5Y cells by upregulation of L-type voltage-operated Ca 2+ entry. J Mol Med (Berl) 2018; 96:1061-1079. [PMID: 30088035 PMCID: PMC6133163 DOI: 10.1007/s00109-018-1677-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
Abstract STIM1 is an endoplasmic reticulum protein with a role in Ca2+ mobilization and signaling. As a sensor of intraluminal Ca2+ levels, STIM1 modulates plasma membrane Ca2+ channels to regulate Ca2+ entry. In neuroblastoma SH-SY5Y cells and in familial Alzheimer’s disease patient skin fibroblasts, STIM1 is cleaved at the transmembrane domain by the presenilin-1-associated γ-secretase, leading to dysregulation of Ca2+ homeostasis. In this report, we investigated expression levels of STIM1 in brain tissues (medium frontal gyrus) of pathologically confirmed Alzheimer’s disease patients, and observed that STIM1 protein expression level decreased with the progression of neurodegeneration. To study the role of STIM1 in neurodegeneration, a strategy was designed to knock-out the expression of STIM1 gene in the SH-SY5Y neuroblastoma cell line by CRISPR/Cas9-mediated genome editing, as an in vitro model to examine the phenotype of STIM1-deficient neuronal cells. It was proved that, while STIM1 is not required for the differentiation of SH-SY5Y cells, it is absolutely essential for cell survival in differentiating cells. Differentiated STIM1-KO cells showed a significant decrease of mitochondrial respiratory chain complex I activity, mitochondrial inner membrane depolarization, reduced mitochondrial free Ca2+ concentration, and higher levels of senescence as compared with wild-type cells. In parallel, STIM1-KO cells showed a potentiated Ca2+ entry in response to depolarization, which was sensitive to nifedipine, pointing to L-type voltage-operated Ca2+ channels as mediators of the upregulated Ca2+ entry. The stable knocking-down of CACNA1C transcripts restored mitochondrial function, increased mitochondrial Ca2+ levels, and dropped senescence to basal levels, demonstrating the essential role of the upregulation of voltage-operated Ca2+ entry through Cav1.2 channels in STIM1-deficient SH-SY5Y cell death. Key messages STIM1 protein expression decreases with the progression of neurodegeneration in Alzheimer’s disease. STIM1 is essential for cell viability in differentiated SH-SY5Y cells. STIM1 deficiency triggers voltage-regulated Ca2+ entry-dependent cell death. Mitochondrial dysfunction and senescence are features of STIM1-deficient differentiated cells.
Electronic supplementary material The online version of this article (10.1007/s00109-018-1677-y) contains supplementary material, which is available to authorized users.
Collapse
|
220
|
Altunrende ME, Gezen-Ak D, Atasoy İL, Candaş E, Dursun E. The Role of Astaxanthin on Transcriptional Regulation of NMDA Receptors Voltage Sensitive Calcium Channels and Calcium Binding Proteins in Primary Cortical Neurons. ACTA ACUST UNITED AC 2018; 55:295-300. [PMID: 30622383 DOI: 10.29399/npa.23259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022]
Abstract
Introduction Calcium (Ca) is the phenomenon intracellular molecule that regulate many cellular process in neurons physiologically. Calcium dysregulation may occur in neurons due to excessive synaptic release of glutamate or other reasons related with neurodegeneration. Astaxanthin is a carotenoid that has antioxidant effect in cell. The purpose of this study was to investigate whether astaxanthin affects NMDA subunits, calcium binding proteins and L Type voltage sensitive Ca-channels (LVSCC) in primary cortical neuron cultures in order to see its role in calcium metabolism. Methods Primary cortical neurons were prepared from embryonic day 16-Sprague Dawley rat embryos. The cultures were treated with 10 nM and 20 nM astaxanthin on day 7. NMDA subunits, LVSCC-A1C and LVSCC-A1D, calbindinD28k and parvalbumin mRNA expression levels was determined by qRT-PCR at 4, 24 and 48 hours. Results Our findings indicate that astaxanthin could have direct or indirect outcome on calcium homeostasis by regulating mRNA expression levels of NMDA subunits, LVSCC-A1C and LVSCC-A1D, calbindinD28k and parvalbumin by a dose and time dependent manner. Conclusion Neuroprotective effects of astaxanthin as a Ca homeostasis regulator should be noted throughout neurodegenerative disorders, and neurosurgery applications.
Collapse
Affiliation(s)
- Muhittin Emre Altunrende
- Department of Neurosurgery, Gaziosmanpaşa Taksim Training and Research Hospital, İstanbul, Turkey
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - İrem L Atasoy
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Esin Candaş
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
221
|
Sompol P, Norris CM. Ca 2+, Astrocyte Activation and Calcineurin/NFAT Signaling in Age-Related Neurodegenerative Diseases. Front Aging Neurosci 2018; 10:199. [PMID: 30038565 PMCID: PMC6046440 DOI: 10.3389/fnagi.2018.00199] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence supports a fundamental role for Ca2+ dysregulation in astrocyte activation. Though the activated astrocyte phenotype is complex, cell-type targeting approaches have revealed a number of detrimental roles of activated astrocytes involving neuroinflammation, release of synaptotoxic factors and loss of glutamate regulation. Work from our lab and others has suggested that the Ca2+/calmodulin dependent protein phosphatase, calcineurin (CN), provides a critical link between Ca2+ dysregulation and the activated astrocyte phenotype. A proteolyzed, hyperactivated form of CN appears at high levels in activated astrocytes in both human tissue and rodent tissue around regions of amyloid and vascular pathology. Similar upregulation of the CN-dependent transcription factor nuclear factor of activated T cells (NFAT4) also appears in activated astrocytes in mouse models of Alzheimer's disease (ADs) and traumatic brain injury (TBI). Major consequences of hyperactivated CN/NFAT4 signaling in astrocytes are neuroinflammation, synapse dysfunction and glutamate dysregulation/excitotoxicity, which will be covered in this review article.
Collapse
Affiliation(s)
- Pradoldej Sompol
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
222
|
Klotho at the Edge of Alzheimer’s Disease and Senile Depression. Mol Neurobiol 2018; 56:1908-1920. [DOI: 10.1007/s12035-018-1200-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023]
|
223
|
Kodis EJ, Choi S, Swanson E, Ferreira G, Bloom GS. N-methyl-D-aspartate receptor-mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer's disease. Alzheimers Dement 2018; 14:1302-1312. [PMID: 30293574 DOI: 10.1016/j.jalz.2018.05.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) symptoms reflect synaptic dysfunction and neuron death. Amyloid-β oligomers (AβOs) induce excess calcium entry into neurons via N-methyl-D-aspartate receptors (NMDARs), contributing to synaptic dysfunction. The study described here tested the hypothesis that AβO-stimulated calcium entry also drives neuronal cell cycle reentry (CCR), a prelude to neuron death in AD. METHODS Pharmacologic modulators of calcium entry and gene expression knockdown were used in cultured neurons and AD model mice. RESULTS In cultured neurons, AβO-stimulated CCR was blocked by NMDAR antagonists, total calcium chelation with 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), or knockdown of the NMDAR subunit, NR1. NMDAR antagonists also blocked the activation of calcium-calmodulin-dependent protein kinase II and treatment of Tg2576 AD model mice with the NMDAR antagonist, memantine, prevented CCR. DISCUSSION This study demonstrates a role for AβO-stimulated calcium influx via NMDAR and CCR in AD and suggests the use of memantine as a disease-modifying therapy for presymptomatic AD.
Collapse
Affiliation(s)
- Erin J Kodis
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | - Sophie Choi
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Eric Swanson
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Gonzalo Ferreira
- Departamento de Biofisica de la Facultad de Medicina, Universidad de la República, Monetivideo, Uruguay
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
224
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [PMID: 29471055 DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
225
|
Vigont V, Nekrasov E, Shalygin A, Gusev K, Klushnikov S, Illarioshkin S, Lagarkova M, Kiselev SL, Kaznacheyeva E. Patient-Specific iPSC-Based Models of Huntington's Disease as a Tool to Study Store-Operated Calcium Entry Drug Targeting. Front Pharmacol 2018; 9:696. [PMID: 30008670 PMCID: PMC6033963 DOI: 10.3389/fphar.2018.00696] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023] Open
Abstract
Neurodegenerative pathologies are among the most serious and socially significant problems of modern medicine, along with cardiovascular and oncological diseases. Several attempts have been made to prevent neuronal death using novel drugs targeted to the cell calcium signaling machinery, but the lack of adequate models for screening markedly impairs the development of relevant drugs. A potential breakthrough in this field is offered by the models of hereditary neurodegenerative pathologies based on endogenous expression of mutant proteins in neurons differentiated from patient-specific induced pluripotent stem cells (iPSCs). Here, we study specific features of store-operated calcium entry (SOCE) using an iPSCs-based model of Huntington's disease (HD) and analyze the pharmacological effects of a specific drug targeted to the calcium channels. We show that SOCE in gamma aminobutyric acid-ergic striatal medium spiny neurons (GABA MSNs) was mediated by currents through at least two different channel groups, ICRAC and ISOC. Both of these groups were upregulated in HD neurons compared with the wild-type neurons. Thapsigargin-induced intracellular calcium store depletion in GABA MSNs resulted in predominant activation of either ICRAC or ISOC. The potential anti-HD drug EVP4593, which was previously shown to have neuroprotective activity in different HD models, affected both ICRAC and ISOC.
Collapse
Affiliation(s)
- Vladimir Vigont
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Evgeny Nekrasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Shalygin
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Konstantin Gusev
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Sergey Klushnikov
- Scientific Center of Neurology, Russian Academy of Medical Sciences, Moscow, Russia
| | - Sergey Illarioshkin
- Scientific Center of Neurology, Russian Academy of Medical Sciences, Moscow, Russia
| | - Maria Lagarkova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Sergey L. Kiselev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena Kaznacheyeva
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
226
|
Paspalas CD, Carlyle BC, Leslie S, Preuss TM, Crimins JL, Huttner AJ, van Dyck CH, Rosene DL, Nairn AC, Arnsten AFT. The aged rhesus macaque manifests Braak stage III/IV Alzheimer's-like pathology. Alzheimers Dement 2018; 14:680-691. [PMID: 29241829 PMCID: PMC6178089 DOI: 10.1016/j.jalz.2017.11.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/18/2017] [Accepted: 11/07/2017] [Indexed: 01/10/2023]
Abstract
INTRODUCTION An animal model of late-onset Alzheimer's disease is needed to research what causes degeneration in the absence of dominant genetic insults and why the association cortex is particularly vulnerable to degeneration. METHODS We studied the progression of tau and amyloid cortical pathology in the aging rhesus macaque using immunoelectron microscopy and biochemical assays. RESULTS Aging macaques exhibited the same qualitative pattern and sequence of tau and amyloid cortical pathology as humans, reaching Braak stage III/IV. Pathology began in the young-adult entorhinal cortex with protein kinase A-phosphorylation of tau, progressing to fibrillation with paired helical filaments and mature tangles in oldest animals. Tau pathology in the dorsolateral prefrontal cortex paralleled but lagged behind the entorhinal cortex, not afflicting the primary visual cortex. DISCUSSION The aging rhesus macaque provides the long-sought animal model for exploring the etiology of late-onset Alzheimer's disease and for testing preventive strategies.
Collapse
Affiliation(s)
| | - Becky C Carlyle
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Shannon Leslie
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Center, Emory University, Atlanta, GA, USA
| | - Johanna L Crimins
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Anita J Huttner
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Christopher H van Dyck
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
227
|
Secondo A, Bagetta G, Amantea D. On the Role of Store-Operated Calcium Entry in Acute and Chronic Neurodegenerative Diseases. Front Mol Neurosci 2018; 11:87. [PMID: 29623030 PMCID: PMC5874322 DOI: 10.3389/fnmol.2018.00087] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
In both excitable and non-excitable cells, calcium (Ca2+) signals are maintained by a highly integrated process involving store-operated Ca2+ entry (SOCE), namely the opening of plasma membrane (PM) Ca2+ channels following the release of Ca2+ from intracellular stores. Upon depletion of Ca2+ store, the stromal interaction molecule (STIM) senses Ca2+ level reduction and migrates from endoplasmic reticulum (ER)-like sites to the PM where it activates the channel proteins Orai and/or the transient receptor potential channels (TRPC) prompting Ca2+ refilling. Accumulating evidence suggests that SOCE dysregulation may trigger perturbation of intracellular Ca2+ signaling in neurons, glia or hematopoietic cells, thus participating to the pathogenesis of diverse neurodegenerative diseases. Under acute conditions, such as ischemic stroke, neuronal SOCE can either re-establish Ca2+ homeostasis or mediate Ca2+ overload, thus providing a non-excitotoxic mechanism of ischemic neuronal death. The dualistic role of SOCE in brain ischemia is further underscored by the evidence that it also participates to endothelial restoration and to the stabilization of intravascular thrombi. In Parkinson's disease (PD) models, loss of SOCE triggers ER stress and dysfunction/degeneration of dopaminergic neurons. Disruption of neuronal SOCE also underlies Alzheimer's disease (AD) pathogenesis, since both in genetic mouse models and in human sporadic AD brain samples, reduced SOCE contributes to synaptic loss and cognitive decline. Unlike the AD setting, in the striatum from Huntington's disease (HD) transgenic mice, an increased STIM2 expression causes elevated synaptic SOCE that was suggested to underlie synaptic loss in medium spiny neurons. Thus, pharmacological inhibition of SOCE is beneficial to synapse maintenance in HD models, whereas the same approach may be anticipated to be detrimental to cortical and hippocampal pyramidal neurons. On the other hand, up-regulation of SOCE may be beneficial during AD. These intriguing findings highlight the importance of further mechanistic studies to dissect the molecular pathways, and their corresponding targets, involved in synaptic dysfunction and neuronal loss during aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Napoli, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Cosenza, Italy
| | - Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Cosenza, Italy
| |
Collapse
|
228
|
Wang X, Kastanenka KV, Arbel-Ornath M, Commins C, Kuzuya A, Lariviere AJ, Krafft GA, Hefti F, Jerecic J, Bacskai BJ. An acute functional screen identifies an effective antibody targeting amyloid-β oligomers based on calcium imaging. Sci Rep 2018; 8:4634. [PMID: 29545579 PMCID: PMC5854710 DOI: 10.1038/s41598-018-22979-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/05/2018] [Indexed: 12/15/2022] Open
Abstract
Soluble amyloid β oligomers (AβOs) are widely recognized neurotoxins that trigger aberrant signaling in specific subsets of neurons, leading to accumulated neuronal damage and memory disorders in Alzheimer's disease (AD). One of the profound downstream consequences of AβO-triggered events is dysregulation of cytosolic calcium concentration ([Ca2+]i), which has been implicated in synaptic failure, cytoskeletal abnormalities, and eventually neuronal death. We have developed an in vitro/in vivo drug screening assay to evaluate putative AβO-blocking candidates by measuring AβO-induced real-time changes in [Ca2+]i. Our screening assay demonstrated that the anti-AβO monoclonal antibody ACU3B3 exhibits potent blocking capability against a broad size range of AβOs. We showed that picomolar concentrations of AβOs were capable of increasing [Ca2+]i in primary neuronal cultures, an effect prevented by ACU3B3. Topical application of 5 nM AβOs onto exposed cortical surfaces also elicited significant calcium elevations in vivo, which was completely abolished by pre-treatment of the brain with 1 ng/mL (6.67 pM) ACU3B3. Our results provide strong support for the utility of this functional screening assay in identifying and confirming the efficacy of AβO-blocking drug candidates such as the human homolog of ACU3B3, which may emerge as the first experimental AD therapeutic to validate the amyloid oligomer hypothesis.
Collapse
Affiliation(s)
- Xueying Wang
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Harvard University, Center for Brain Science, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Ksenia V Kastanenka
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Michal Arbel-Ornath
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Caitlin Commins
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Akira Kuzuya
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Amanda J Lariviere
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Grant A Krafft
- Acumen Pharmaceuticals, Inc., 4435 North First Street, #360, Livermore, CA, 94551, USA
| | - Franz Hefti
- Acumen Pharmaceuticals, Inc., 4435 North First Street, #360, Livermore, CA, 94551, USA
| | - Jasna Jerecic
- Acumen Pharmaceuticals, Inc., 4435 North First Street, #360, Livermore, CA, 94551, USA.
| | - Brian J Bacskai
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
229
|
Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 2018; 70:87-94. [PMID: 28728834 PMCID: PMC5748019 DOI: 10.1016/j.ceca.2017.06.008] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/23/2023]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger that regulates various activities in eukaryotic cells. Especially important role calcium plays in excitable cells. Neurons require extremely precise spatial-temporal control of calcium-dependent processes because they regulate such vital functions as synaptic plasticity. Recent evidence indicates that neuronal calcium signaling is abnormal in many of neurodegenerative disorders such as Alzheimer's disease (AD), Huntington's disease (HD) and Parkinson's disease (PD). These diseases represent a major medical, social, financial and scientific problem, but despite enormous research efforts, they are still incurable and only symptomatic relief drugs are available. Thus, new approaches and targets are needed. This review highlight neuronal calcium-signaling abnormalities in these diseases, with particular emphasis on the role of neuronal store-operated Ca2+ entry (SOCE) pathway and its potential relevance as a therapeutic target for treatment of neurodegeneration.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation; Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
230
|
Ovsepian SV, O'Leary VB, Zaborszky L, Ntziachristos V, Dolly JO. Synaptic vesicle cycle and amyloid β: Biting the hand that feeds. Alzheimers Dement 2018; 14:502-513. [PMID: 29494806 DOI: 10.1016/j.jalz.2018.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
Abstract
The synaptic vesicle cycle (SVC) holds center stage in the biology of presynaptic terminals. Through recurrent exocytosis and endocytosis, it facilitates a sequence of events enabling chemical neurotransmission between functionally related neurons. As a fundamental process that links the interior of nerve cells with their environment, the SVC is also critical for signaling and provides an entry route for a range of pathogens and toxins, enabling detrimental effects. In Alzheimer's disease, the SVC is both the prime site of amyloid β production and toxicity. In this study, we discuss the emerging evidence for physiological and pathological effects of Aβ on various stages of the SVC, from postfusion membrane recovery to trafficking, docking, and priming of vesicles for fusion and transmitter release. Understanding of the mechanisms of Aβ interaction with the SVC within the unifying calcium hypothesis of aging and Alzheimer's disease should further elucidate the fundamental biology of the presynaptic terminal and reveal novel therapeutic targets for Alzheimer's disease and other age-related dementias.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, Munich, Germany; International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland.
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| |
Collapse
|
231
|
Xiao-Li Z, Meng-Bei X, Ting-Yu J, Pei-Qing R, Guo-Qing Z, Yan L. Preclinical Evidence and Possible Mechanisms of Extracts or Compounds from Cistanches for Alzheimer’s Disease. Aging Dis 2018. [DOI: 10.14336/ad.2018.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
232
|
Doig AJ. Positive Feedback Loops in Alzheimer's Disease: The Alzheimer's Feedback Hypothesis. J Alzheimers Dis 2018; 66:25-36. [PMID: 30282364 PMCID: PMC6484277 DOI: 10.3233/jad-180583] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
The dominant model for Alzheimer's disease (AD) is the amyloid cascade hypothesis, in which the accumulation of excess amyloid-β (Aβ) leads to inflammation, excess glutamate and intracellular calcium, oxidative stress, tau hyperphosphorylation and tangle formation, neuronal loss, and ultimately dementia. In a cascade, AD proceeds in a unidirectional fashion, with events only affecting downstream processes. Compelling evidence now exists for the presence of positive feedback loops in AD, however, involving oxidative stress, inflammation, glutamate, calcium, and tau. The pathological state of AD is thus a system of positive feedback loops, leading to amplification of the initial perturbation, rather than a linear cascade. Drugs may therefore be effective by targeting numerous points within the loops, rather than concentrating on upstream processes. Anti-inflammatories and anti-oxidants may be especially valuable, since these processes are involved in many loops and hence would affect numerous processes in AD.
Collapse
Affiliation(s)
- Andrew J. Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, Oxford Road, University of Manchester, UK
| |
Collapse
|
233
|
Khachaturian AS. Letter. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2017; 9:84-87. [PMID: 29255790 PMCID: PMC5725207 DOI: 10.1016/j.dadm.2017.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Ara S. Khachaturian
- Corresponding author. Tel.: 301-309-6730; Fax: (844) 309-6730. http://www.alzheimersanddementia.orghttp://adj.edmgr.com
| |
Collapse
|
234
|
Medina M, Khachaturian ZS, Rossor M, Avila J, Cedazo-Minguez A. Toward common mechanisms for risk factors in Alzheimer's syndrome. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2017; 3:571-578. [PMID: 29124116 PMCID: PMC5671628 DOI: 10.1016/j.trci.2017.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The global strategic goal of reducing health care cost, especially the prospects for massive increases due to expanding markets for health care services demanded by aging populations and/or people with a wide range of chronic disorders-disabilities, is a complex and formidable challenge with many facets. Current projections predict marked increases in the demand for health driven by both the exponential climb in the prevalence of chronic disabilities and the increases in the absolute numbers of people in need of some form of health care. Thus, the looming predicament for the economics of health care systems worldwide mandates the formulation of a strategic goal to foster significant expansion of global R&D efforts to discover and develop wide-ranging interventions to delay and/or prevent the onset of chronic disabling conditions. The rationale for adopting such a tactical objective is based on the premise that the costs and prevalence of chronic disabling conditions will be reduced by half even if a modest delay of 5 years in the onset of disability is obtained by a highly focused multinational research initiative. Because of the recent history of many failures in drug trials, the central thesis of this paper is to argue for the exploration-adoption of novel mechanistic ideas, theories, and paradigms for developing wide range and/or types of interventions. Although the primary focus of our discussion has been on biological approaches to therapy, we recognize the importance of emerging knowledge on nonpharmacological interventions and their potential impact in reducing health care costs. Although we may not find a drug to cure or prevent dementia for a long time, research is starting to demonstrate the potential contributes of nonpharmacological interventions toward the economics of health care in terms of rehabilitation, promoting autonomy, and potential to delay institutionalization, thus promoting healthy aging and reductions in the cost of care.
Collapse
Affiliation(s)
- Miguel Medina
- CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), ISCIII, Madrid, Spain
- CIEN Foundation, Reina Sofia Foundation Alzheimer Center, Madrid, Spain
| | | | - Martin Rossor
- Institute of Neurology, University College London, London, UK
| | - Jesús Avila
- CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), ISCIII, Madrid, Spain
- Neurobiology Laboratory, Center for Molecular Biology “Severo Ochoa” CSIC-UAM, Madrid, Spain
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
235
|
Gunn‐Moore D, Kaidanovich‐Beilin O, Iradi MCG, Gunn‐Moore F, Lovestone S. Alzheimer's disease in humans and other animals: A consequence of postreproductive life span and longevity rather than aging. Alzheimers Dement 2017; 14:195-204. [DOI: 10.1016/j.jalz.2017.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/19/2017] [Accepted: 08/19/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Danièlle Gunn‐Moore
- University of Edinburgh Royal (Dick) School of Veterinary Studies and The Roslin Institute Easter Bush Campus Roslin UK
| | | | - María Carolina Gallego Iradi
- University of Florida, College of Medicine Department of Neuroscience, Center for Translational Research in Neurodegenerative Diseases Gainesville FL USA
| | | | | |
Collapse
|
236
|
Maimaiti S, Frazier HN, Anderson KL, Ghoweri AO, Brewer LD, Porter NM, Thibault O. Novel calcium-related targets of insulin in hippocampal neurons. Neuroscience 2017; 364:130-142. [PMID: 28939258 DOI: 10.1016/j.neuroscience.2017.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/28/2023]
Abstract
Both insulin signaling disruption and Ca2+ dysregulation are closely related to memory loss during aging and increase the vulnerability to Alzheimer's disease (AD). In hippocampal neurons, aging-related changes in calcium regulatory pathways have been shown to lead to higher intracellular calcium levels and an increase in the Ca2+-dependent afterhyperpolarization (AHP), which is associated with cognitive decline. Recent studies suggest that insulin reduces the Ca2+-dependent AHP. Given the sensitivity of neurons to insulin and evidence that brain insulin signaling is reduced with age, insulin-mediated alterations in calcium homeostasis may underlie the beneficial actions of insulin in the brain. Indeed, increasing insulin signaling in the brain via intranasal delivery has yielded promising results such as improving memory in both clinical and animal studies. However, while several mechanisms have been proposed, few have focused on regulation on intracellular Ca2+. In the present study, we further examined the effects of acute insulin on calcium pathways in primary hippocampal neurons in culture. Using the whole-cell patch-clamp technique, we found that acute insulin delivery reduced voltage-gated calcium currents. Fura-2 imaging was used to also address acute insulin effects on spontaneous and depolarization-mediated Ca2+ transients. Results indicate that insulin reduced Ca2+ transients, which appears to have involved a reduction in ryanodine receptor function. Together, these results suggest insulin regulates pathways that control intracellular Ca2+ which may reduce the AHP and improve memory. This may be one mechanism contributing to improved memory recall in response to intranasal insulin therapy in the clinic.
Collapse
Affiliation(s)
- Shaniya Maimaiti
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Hilaree N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Adam O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Lawrence D Brewer
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Nada M Porter
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States.
| |
Collapse
|
237
|
Mata AM. Functional interplay between plasma membrane Ca 2+-ATPase, amyloid β-peptide and tau. Neurosci Lett 2017; 663:55-59. [PMID: 28780168 DOI: 10.1016/j.neulet.2017.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022]
Abstract
It is well known that dysregulation of Ca2+ homeostasis is involved in Alzheimeŕs disease (AD), a neurodegenerative disorder characterized by the presence of toxic aggregates of amyloid β-peptide (Aβ) and neurofibrillary tangles of tau. Alteration of calcium signaling has been linked to Aβ and tau pathologies, although the understanding of underlying molecular and cellular mechanisms is far from clear. This review summarizes the functional inhibition of plasma membrane Ca2+-ATPase (PMCA) by Aβ and tau, and its modulation by calmodulin and the ionic nature of phospholipids. The data obtained until now in our laboratory suggest that PMCA injury linked to Aβ and tau can be significantly involved in the cascade of events leading to intracellular calcium overload associated to AD.
Collapse
Affiliation(s)
- Ana M Mata
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
238
|
Blonz ER. Alzheimer's Disease as the Product of a Progressive Energy Deficiency Syndrome in the Central Nervous System: The Neuroenergetic Hypothesis. J Alzheimers Dis 2017; 60:1223-1229. [PMID: 28946565 PMCID: PMC5676979 DOI: 10.3233/jad-170549] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2017] [Indexed: 12/25/2022]
Abstract
The decreased availability of metabolizable energy resources in the central nervous system is hypothesized to be a key factor in the pathogenesis of Alzheimer's disease. More specifically, the age-related decline in the ability of glucose to cross the blood-brain barrier creates a metabolic stress that shifts the normal, benign processing of amyloid-β protein precursor toward pathways associated with the production of amyloid-β plaques and tau-containing neurofibrillary tangles that are characteristic of the disease. The neuroenergetic hypothesis provides insight into the etiology of Alzheimer's disease and illuminates new approaches for diagnosis, monitoring, and treatment.
Collapse
Affiliation(s)
- Edward R. Blonz
- Department of Clinical Pharmacy, University of California, San Francisco, CA, USA
| |
Collapse
|